Number Theory for Cryptography

密碼學與應用 海洋大學資訊工程系 丁培毅

Congruence

- *** Modulo Operation:**
 - * Question: What is 12 mod 9?
 - * Answer: $12 \mod 9 \equiv 3 \text{ or } 12 \equiv 3 \pmod 9$

"12 is congruent to 3 modulo 9"

- ♦ **Definition:** Let $a, r, m \in \mathbb{Z}$ (where \mathbb{Z} is the set of all integers) and m > 0. We write
 - * $a \equiv r \pmod{m}$ if m divides a r (i.e. m | a r |
 - * m is called the modulus
 - * r is called the remainder
 - * $a = q \cdot m + r$ $0 \le r < m$
- ♦ **Example:** a = 42 and m=9
 - * $42 = 4 \cdot 9 + 6$ therefore $42 \equiv 6 \pmod{9}$

Greatest Common Divisor

- ♦ GCD of a and b is the largest positive integer dividing both a and b
- \Rightarrow gcd(a, b) or (a,b)
- \Rightarrow ex. gcd(6, 4) = 2, gcd(5, 7) = 1
- → Euclidean algorithm

* ex. gcd(482, 1180)

$$1180 = 2 : 482 + 216$$

$$482 = 2 \cdot 216 + 50$$

$$216 = 4 \cdot 50 + 16$$

$$50 = 3 \cdot 16 + 2$$

$$16 = 8 \cdot 2 + 0$$
gc

remainder \rightarrow divisor \rightarrow dividend \rightarrow ignore

```
Why does it work?

Let d = \gcd(482, 1180)

d \mid 482 and d \mid 1180 \Rightarrow d \mid 216

because 216 = 1180 - 2 \cdot 482

d \mid 216 and d \mid 482 \Rightarrow d \mid 50

d \mid 50 and d \mid 216 \Rightarrow d \mid 16

d \mid 16 and d \mid 50 \Rightarrow d \mid 2

2 \mid 16 \Rightarrow d = 2
```

Greatest Common Divisor (cont'd)

♦ Euclidean Algorithm: calculating GCD

gcd(1180, 482)

(輾轉相除法)

2	482	1180	2
	432	964	
3	50	216	4
	48	200	
	2	16	8
		16	
		0	

Greatest Common Divisor (cont'd)

- \Rightarrow Def: a and b are relatively prime: gcd(a, b) = 1
- ♦ Theorem: Let a and b be two integers, with at least one of a, b nonzero, and let $d = \gcd(a,b)$. Then there exist integers x, y, $\gcd(x, y) = 1$ such that $a \cdot x + b \cdot y = d$
 - * Constructive proof: Using Extended Euclidean Algorithm to find x and y

$$d = 2 = 50 - 3 \cdot 16$$

$$= (482 - 2 \cdot 216) - 3 \cdot (216 - 4 \cdot 50)$$

$$= (482 - 2 \cdot 216) - 3 \cdot (216 - 4 \cdot 50)$$

$$= \bullet \bullet \bullet = 1180 \cdot (-29) + 482 \cdot 71$$

$$= \bullet \bullet \bullet \bullet = 1180 \cdot (-29) + 482 \cdot 71$$

$$= \bullet \bullet \bullet \bullet = 1180 \cdot (-29) + 482 \cdot 71$$

$$= \bullet \bullet \bullet \bullet = 1180 \cdot (-29) + 482 \cdot 71$$

Extended Euclidean Algorithm

Let gcd(a, b) = d

- \Rightarrow Looking for s and t, gcd(s, t) = 1 s.t. $a \cdot s + b \cdot t = d$
- \Rightarrow When d = 1, $t \equiv b^{-1} \pmod{a}$

$$a = q_{1} \cdot b + r_{1}$$

$$b \neq q_{2} \cdot r_{1} + r_{2}$$

$$2 \cdot r_{1} \neq q_{3} \cdot r_{2} + r_{3}$$

$$4 \cdot r_{2} = q_{4} \cdot r_{3} + d$$

$$\mathbf{r_3} = \mathbf{q_5} \cdot \mathbf{d} + \mathbf{0}$$

Ex.
$$1180 = 2 \cdot 482 + 216$$

$$1180 - 2 \cdot 482 = 216$$

$$482 = 2 \cdot 216 + 50$$

$$482 - 2 \cdot (1180 - 2 \cdot 482) = 50$$

$$-2 \cdot 1180 + 5 \cdot 482 = 50$$

$$216 = 4 \cdot 50 + 16$$

$$(1180 - 2 \cdot 482) -$$

$$4 \cdot (-2 \cdot 1180 + 5 \cdot 482) = 16$$

$$9 \cdot 1180 - 22 \cdot 482 = 16$$

$$50 = 3 \cdot 16 + 2$$

$$(-2 \cdot 1180 + 5 \cdot 482) -$$

$$3 \cdot (9 \cdot 1180 - 22 \cdot 482) = 2$$

$$-29 \cdot 1180 + 71 \cdot 482 = 2$$

Greatest Common Divisor (cont'd)

- * The above proves only the existence of integers x and y
- * How about gcd(x, y)? $d = a \cdot x + b \cdot y$ d = gcd(a, b)If gcd(x, y) = r then $1 = a/d \cdot (x' \cdot r) + b/d \cdot (y' \cdot r)$ i.e. $1 = r \cdot (a/d \cdot x' + b/d \cdot y')^{\ell}$ which means that $r \mid 1$ i.e. r = 1 gcd(x, y) = 1

Note:
$$gcd(x, y) = 1$$
 but (x, y) is not unique
e.g. $d = a x + b y = a (x-kb) + b (y+ka)$

Greatest Common Divisor (cont'd)

```
Lemma: gcd(a,b) = gcd(x,y) = gcd(a,y) = gcd(x,b) = 1 \Leftrightarrow
                 \exists a, b, x, y \text{ s.t. } 1 = a x + b y
pf:(\Rightarrow)
       following the previous theorem
    (\Leftarrow)
        Given a, b, z, if \exists x, y, \gcd(x,y)=1 s.t. z = ax + by
       then gcd(a, b) \mid z (also gcd(a, y) \mid z, gcd(x, b) \mid z)
               (let d = \gcd(a, b) \Rightarrow d \mid a \text{ and } d \mid b \Rightarrow d \mid a x + b y \Rightarrow d \mid z)
       especially, given a, b, \exists x, y \text{ s.t. } 1 = a x + b y
                     \Rightarrow gcd(a, b) | 1 \Rightarrow gcd(a, b) = 1
```

Operations under mod n

♦ Proposition:

```
Let a,b,c,d,n be integers with n \neq 0, suppose a \equiv b \pmod{n} and c \equiv d \pmod{n} then a + c \equiv b + d \pmod{n}, a - c \equiv b - d \pmod{n}, a \cdot c \equiv b \cdot d \pmod{n}
```

♦ Proposition:

```
Let a,b,c,n be integers with n \neq 0 and gcd(a,n) = 1.
If a \cdot b \equiv a \cdot c \pmod{n} then b \equiv c \pmod{n}
```

Operations under mod n

♦ What is the multiplicative inverse of a (mod n)?

i.e.
$$a \cdot a^{-1} \equiv 1 \pmod{n}$$
 or $a \cdot a^{-1} = 1 + k \cdot n$
 $gcd(a, n) = 1 \implies \exists s \text{ and } t \text{ such that } a \cdot s + n \cdot t = 1$
 $\Rightarrow a^{-1} \equiv s \pmod{n}$

This expression also

 \Rightarrow a · x \equiv b (mod n), gcd(a, n) = 1, x \equiv ?

$$x \equiv b \cdot a^{-1} \equiv b \cdot s \pmod{n}$$

 \Rightarrow a · x \equiv b (mod n), gcd(a, n) = d > 1, x \equiv ? Are there any solutions?

if
$$d \mid b \ (a/d) \cdot x \equiv (b/d) \ (mod \ n/d) \quad gcd(a/d,n/d) = 1$$

$$x_0 \equiv (b/d) \cdot (a/d)^{-1} \ (mod \ n/d)$$

 \Rightarrow there are d solutions to the equation a $\cdot x \equiv b \pmod{n}$:

$$x_0, x_0+(n/d), \dots, x_0+(d-1)\cdot(n/d) \pmod{n}$$

implies gcd(a,n)=1.

Matrix inversion under mod n

- A square matrix is invertible mod n if and only if its determinant and n are relatively prime

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d - b \\ -c & a \end{pmatrix}$$

In a finite field Z (mod n)? we need to find the inverse for ad-bc (mod n) in order to calculate the inverse of the

matrix
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} \equiv (ad - bc)^{-1} \begin{pmatrix} d - b \\ -c & a \end{pmatrix} \pmod{n}$$

Group

→ A group G is a finite or infinite set of elements and a binary operation × which together satisfy

1. Closure: $\forall a,b \in G$ $a \times b = c \in G$ 對閉性

2. Associativity: $\forall a,b,c \in G \ (a \times b) \times c = a \times (b \times c)$ 結合性

3. Identity: $\forall a \in G$ $1 \times a = a \times 1 = a$ 單位元素

4. Inverse: $\forall a \in G$ $a \times a^{-1} = 1 = a^{-1} \times a$ 反元素

♦ Cyclic group G of order m: a group defined by an element $g \in G$ such that $g, g^2, g^3, ..., g^m$ are all distinct elements in G (thus cover all elements of G) and $g^m = 1$, the element g is called a generator of G. Ex. Z_n (or Z/nZ)

Group (cont'd)

- ♦ The **order of a group**: the number of elements in a group G, denoted |G|. If the order of a group is a finite number, the group is said to be a finite group, note $g^{|G|} = 1$ (the identity element).
- \Rightarrow The **order of an element g** of a finite group G is the **smallest** power m such that $g^{m} = 1$ (the identity element), denoted by $ord_{G}(g)$
- \Rightarrow ex: $\mathbb{Z}_{\mathbf{n}}^{*}$: multiplicative group modulo n is the set $\{i:0 < i < n, \gcd(i,n) = 1\}$ binary operation: $\times \pmod{n}$ size of \mathbb{Z}^{*} is $\phi(n)$

identity: 1

size of Z_n^* is $\phi(n)$, $g^{\phi(n)} \equiv 1 \pmod{n}$

inverse: x⁻¹ can be found using extended Euclidean Algorithm

Ring Z_m

- \Rightarrow **Definition:** The ring Z_m consists of
 - * The set $Z_m = \{0, 1, 2, ..., m-1\}$
 - * Two operations "+ (mod m)" and "× (mod m)" for all $a, b \in \mathbb{Z}_m$ such that they satisfy the properties on the next slide

Properties of the ring Z_m

- \diamond Consider the ring $Z_m = \{0, 1, ..., m-1\}$
 - \Rightarrow The additive identity "0": $a + 0 \equiv a \pmod{m}$
 - \Rightarrow The additive inverse of a: -a = m a s.t. $a + (-a) \equiv 0 \pmod{m}$
 - \Rightarrow Addition is closed i.e if $a, b \in Z_{\text{m}}$ then $a + b \in Z_{\text{m}}$
 - \Rightarrow Addition is commutative $a + b \equiv b + a \pmod{m}$
 - \Rightarrow Addition is associative $(a + b) + c \equiv a + (b + c) \pmod{m}$
 - \Rightarrow Multiplicative identity "1": $a \times 1 \equiv a \pmod{m}$

 - \Rightarrow Multiplication is closed i.e. if $a, b \in \mathbb{Z}_m$ then $a \times b \in \mathbb{Z}_m$
 - \Rightarrow Multiplication is commutative $a \times b \equiv b \times a \pmod{m}$
 - \Rightarrow Multiplication is associative $(a \times b) \times c \equiv a \times (b \times c) \pmod{m}$

Some remarks on the ring Z_m

- ♦ A ring is an Abelian group under addition and a semigroup under multiplication.
- ♦ A semigroup is defined for a set and a binary operator in which the multiplication operation is associative. No other restrictions are placed on a semigroup; thus a semigroup need not have an identity element and its elements need not have inverses within the semigroup.

Some remarks on the ring Z_m (cont'd)

♦ Roughly speaking a ring is a mathematical structure in which we can add, subtract, multiply, and even sometimes divide. (A ring in which every element has multiplicative inverse is called a field.)

```
Example: Is the division 4/15 \pmod{26} possible?

In fact, 4/15 \pmod{26} \equiv 4 \times 15^{-1} \pmod{26}

Does 15^{-1} \pmod{26} exist?

It exists only if \gcd(15, 26) = 1.

15^{-1} \equiv 7 \pmod{26} \quad \text{therefore,}
4/15 \mod 26 \equiv 4 \times 7 \equiv 28 \equiv 2 \mod 26
```

Some remarks on the group Z_m and Z_m^*

♦ The modulo operation can be applied whenever we want

```
under Z_m
(a + b) \pmod{m} \equiv [(a \pmod{m}) + ((b \pmod{m}))] \pmod{m}
under Z_m^*
(a \times b) \pmod{m} \equiv [(a \pmod{m}) \times ((b \pmod{m}))] \pmod{m}
a^b \pmod{m} \equiv (a \pmod{m})^b \pmod{m}
```

Question? $a^b \pmod{m} \stackrel{?}{=} a^{(b \mod m)} \pmod{m}$

Exponentiation in Z_m

⇒ Example: $3^{8} \pmod{7} \equiv ?$ $3^{8} \pmod{7} \equiv 6561 \pmod{7} \equiv 2 \text{ since } 6561 \equiv 937 \times 7 + 2 \text{ or}$ $3^{8} \pmod{7} \equiv 3^{4} \times 3^{4} \pmod{7} \equiv 3^{2} \times 3^{2} \times 3^{2} \times 3^{2} \pmod{7}$ $\equiv (3^{2} \pmod{7}) \times (3^{2} \pmod{7}) \times (3^{2} \pmod{7}) \times (3^{2} \pmod{7})$ $\equiv 2 \times 2 \times 2 \times 2 \pmod{7} \equiv 16 \pmod{7} \equiv 2$

♦ The cyclic group Z_m* and the modulo arithmetic is of central importance to modern public-key cryptography. In practice, the order of the integers involved in PKC are in the range of [2¹⁶⁰, 2¹⁰²⁴]. Perhaps even larger.

Exponentiation in Z_m (cont'd)

- ♦ How do we do the exponentiation efficiently?
- $\Rightarrow 3^{12\overline{34}} \pmod{789}$ many ways to do this
 - a. do 1234 times multiplication and then calculate remainder
 - b. repeat 1234 times (multiplication by 3 and calculate remainder)
 - c. repeated log 1234 times (square, multiply and calculate remainder)
 - ex. first tabulate

$$3^2 \equiv 9 \pmod{789}$$
 $3^{32} \equiv 459^2 \equiv 18$ $3^{512} \equiv 732^2 \equiv 93$ $3^4 \equiv 9^2 \equiv 81$ $3^{64} \equiv 18^2 \equiv 324$ $3^{1024} \equiv 93^2 \equiv 759$ $3^8 \equiv 81^2 \equiv 249$ $3^{128} \equiv 324^2 \equiv 39$ $3^{16} \equiv 249^2 \equiv 459$ $3^{256} \equiv 39^2 \equiv 732$

$$1234 = 1024 + 128 + 64 + 16 + 2 \qquad (10011010010)_2$$
$$3^{1234} \equiv 3^{(1024+128+64+16+2)} \equiv (((759 \cdot 39) \cdot 324) \cdot 459) \cdot 9 \equiv 105 \pmod{789}$$

Exponentiation in Z_m (cont'd)

calculate X^{y} (mod m) where $y = b_0 \cdot 2^2 + b_1 \cdot 2 + b_2$

♦ Method 1:

$$x^{b_2} \Longrightarrow (x^{b_2}) \cdot (x^2)^{b_1} \Longrightarrow (x^{b_2} \cdot (x^2)^{b_1}) \cdot (x^4)^{b_0}$$
square
square

♦ Method 2:

$$x^{b_0} \Longrightarrow (x^{b_0})^2 \cdot x^{b_1} \Longrightarrow (x^{2 \cdot b_0 + b_1})^2 \cdot x^{b_2}$$
square square

square and multiply log y times

Exponentiation in Z_m (cont'd)

Method 1:

```
1234 = 1024 + 128 + 64 + 16 + 2 (10011010010)<sub>2</sub>
3^{1234} \equiv 3^{0+2(1+2(0+2(0+2(1+2(0+2(1+2(0+2(0+2(1)))))))))}
        = 9 \cdot 9^{2(0+2(0+2(1+2(0+2(1+2(0+2(0+2(1))))))))}
        = 9 \cdot 81^{2(0+2(1+2(0+2(1+2(0+2(0+2(1)))))))}
        \equiv 9 \cdot 249^{2(1+2(0+2(1+2(0+2(0+2(1))))))}
        = 9 \cdot 459 \cdot 459 \cdot 20 + 2(1 + 2(1 + 2(0 + 2(0 + 2(1)))))
        = 9 \cdot 459 \cdot 18^{2(1+2(1+2(0+2(0+2(1)))))}
        \equiv 9 \cdot 459 \cdot 324 \cdot 324^{2(1+2(0+2(0+2(1))))}
        \equiv 9 \cdot 459 \cdot 324 \cdot 39 \cdot 39^{2(0+2(0+2(1)))}
        \equiv 9 \cdot 459 \cdot 324 \cdot 39 \cdot 732^{2(0+2(1))}
        \equiv 9 \cdot \overline{459 \cdot 324} \cdot 39 \cdot 93^{2} (1)
        \equiv 9 \cdot 459 \cdot 324 \cdot 39 \cdot 759 \mod{789}
```

Exponentiation in Z_m (cont'd)

```
Method 2: 1234 = 1024 + 128 + 64 + 16 + 2 (10011010010)<sub>2</sub>
               3^{1234} \equiv 3^{0+2(1+2(0+2(0+2(1+2(0+2(1+2(0+2(0+2(1)))))))))}
                     \equiv (3 \cdot 3^{2(0+2(1+2(0+2(1+2(0+2(0+2(1)))))))})^{2}
                     = (3 \cdot (3^{2(1+2(0+2(1+2(1+2(0+2(0+2(1))))))})^{2})^{2}
                     = (3 \cdot ((3 \cdot 3^{2(0+2(1+2(1+2(0+2(0+2(1))))))})^{2})^{2})^{2}
                     = (3 \cdot ((3 \cdot (3^{2(1+2(1+2(0+2(0+2(1))))})^2)^2)^2)^2
                     = (3 \cdot ((3 \cdot ((3 \cdot 3^{2(1+2(0+2(0+2(1))))})^{2})^{2})^{2})^{2})^{2})^{2}
                     = (3 \cdot ((3 \cdot ((3 \cdot ((3^{2(1)})^2)^2)^2)^2)^2)^2)^2)^2)^2)^2
```

 \forall i≠j∈{1,2,...k}, gcd(r_i , r_j) = 1, 0 ≤ m_i < r_i Is there an m that satisfies simultaneously the following set of congruence equations?

$$\mathbf{m} \equiv \mathbf{m}_1 \pmod{\mathbf{r}_1}$$

$$\equiv \mathbf{m}_2 \pmod{\mathbf{r}_2}$$

$$\bullet \bullet \bullet$$

$$\equiv \mathbf{m}_k \pmod{\mathbf{r}_k}$$

ex:
$$m \equiv 1 \pmod{3}$$

 $\equiv 2 \pmod{5}$
 $\equiv 3 \pmod{7}$
Note: $gcd(3,5) = 1$
 $gcd(3,7) = 1$
 $gcd(5,7) = 1$

◆ 韓信點兵: 三個一數餘一, 五個一數餘二, 七個一數 餘三, 請問隊伍中至少有幾名士兵?

first solution:

```
n = r_1 r_2 \cdot \cdot \cdot r_k
            z_i = n / r_i
            \exists ! \ \mathbf{s}_i \in \mathbf{Z}_{\mathbf{r}_i}^* \ \text{s.t.} \ \mathbf{s}_i \cdot \mathbf{z}_i \equiv 1 \pmod{\mathbf{r}_i} \text{ (since } \gcd(\mathbf{z}_i, \mathbf{r}_i) = 1)
            m \equiv \sum_{i=1}^{n} z_i \cdot s_i \cdot m_i \pmod{n}
                                                                      Unique solution in Z_n?
\Rightarrow ex: n = 3 · 5 · 7
            m_1=1, m_2=2, m_3=3
            r_1=3, r_2=5, r_3=7
            z_1=35, z_2=21, z_3=15
            s_1=2, s_2=1, s_3=1
            m \equiv 35 \cdot 2 \cdot 1 + 21 \cdot 1 \cdot 2 + 15 \cdot 1 \cdot 3 \equiv 157 \equiv 52 \pmod{105}
```

- ♦ Uniqueness:
 - 1. If there exists $m' \in Z_n \neq m$ also satisfies the previous k congruence relations, then $\forall i, m'-m\equiv 0 \pmod{r_i}$.
 - 2. This is equivalent to $\forall i, m' = m + k_i \cdot r_i$

$$m' = m + k \cdot lcm(r_1, r_2...r_k) = m + k \cdot n$$

$$m' \notin Z_n$$
 for all $k \neq 0$ contradiction!

$$R_i = r_1 \, r_2 \, \cdots \, r_{i-1}$$

$$\exists ! \, t_i \in Z_{r_i}^* \, \text{ s.t. } t_i \cdot R_i \equiv 1 \pmod{r_i} \text{ (since gcd}(R_i, r_i) = 1)$$

$$\hat{m}_1 = m_1 \quad \text{satisfies the first i-1 congruence relations}$$

$$\hat{m}_i = \hat{m}_{i-1} + R_i \cdot (m_i - \hat{m}_{i-1}) \cdot t_i \pmod{R_{i+1}} \quad i \geq 2$$

$$m = \hat{m}_k \quad m_1 = 1, m_2 = 2, m_3 = 3$$

$$r_1 = 3, r_2 = 5, r_3 = 7$$

Note that
$$\hat{m}_i \equiv m_1 \pmod{r_1}$$

$$\equiv m_2 \pmod{r_2}$$

$$\bullet \bullet \bullet$$

$$\equiv m_i \pmod{r_i}$$

$$m_1=1, m_2=2, m_3=3$$
 $r_1=3, r_2=5, r_3=7$
 $R_2=3, R_3=15, R_4=105$
 $t_2=2, t_3=1$
ex: $\hat{m}_1 \equiv 1$
 $\hat{m}_2 \equiv 1+3\cdot(2-1)\cdot 2=7$
 $\hat{m} \equiv m_3 \equiv 7+15\cdot(3-7)\cdot 1$
 $\equiv -53 \equiv 52 \pmod{105}$

⇒ special case:

2

step

```
X \equiv m \pmod{r_1} \equiv m \pmod{r_2} \cdot \cdot \cdot \equiv m_n \pmod{r_n} \Longrightarrow X \equiv m \pmod{r_1 r_2 \cdot \cdot \cdot r_n}
```

♦ insight of the second solution: every step satisfies one more requirement

$$\begin{cases} x \equiv m_1 \pmod{r_1} & & & \\ \text{let } \hat{m}_1 = m_1 & & \hat{m}_1 & r_1 & \hat{m}_1 + r_1 & 2r_1 \\ m_1 \text{ is the only solution for x in } Z_{R_2}^* & & \\ \text{general solution of x must be } \hat{m}_1 + k R_2 \text{ for some k} \end{cases}$$

$$x \equiv m_1 \pmod{r_1}$$

$$\equiv m_2 \pmod{r_2}$$

$$\stackrel{\wedge}{m_2}$$

$$r_2r_1 \quad \stackrel{\wedge}{m_2} + r_2r_1 \quad 2r_2r_1$$

$$R_3 = r_2r_1$$

let $\hat{m}_2 \equiv \hat{m}_1 + k^* R_2 \pmod{R_3}$ where $k^* = t_2(m_2 - \hat{m}_1)$ and $t_2 R_2 \equiv 1 \pmod{r_2}$ m_2 is the only solution for x in $Z_{R_3}^*$ general solution of x must be $\hat{m}_2 + k R_3$ for some k

 \Rightarrow Applications: solve $x^2 \equiv 1 \pmod{35}$

```
*35 = 5 \cdot 7
```

* x^* satisfies $f(x^*) \equiv 0 \pmod{35} \Leftrightarrow$ x^* satisfies both $f(x^*) \equiv 0 \pmod{5}$ and $f(x^*) \equiv 0 \pmod{7}$

Proof:

 (\Leftarrow)

$$f(x^*) = k_1 \cdot p$$
 and $f(x^*) = k_2 \cdot q$ imply that $f(x^*) = k \cdot lcm(p \cdot q) = k \cdot p \cdot q$ i.e. $f(x^*) \equiv 0 \pmod{p \cdot q}$

 (\Rightarrow)

$$f(x^*) = k \cdot p \cdot q$$
 implies that
 $f(x^*) = (k \cdot p) \cdot q = (k \cdot q) \cdot p$ i.e. $f(x^*) \equiv 0 \pmod{p}$
 $\equiv 0 \pmod{q}$

* since 5 and 7 are prime, we can solve $x^2 \equiv 1 \pmod{5}$ and $x^2 \equiv 1 \pmod{7}$ Why? far more easily than $x^2 \equiv 1 \pmod{35}$ $\Rightarrow x^2 \equiv 1 \pmod{5}$ has exactly two solutions: $x \equiv \pm 1 \pmod{5}$ $\Rightarrow x^2 \equiv 1 \pmod{7}$ has exactly two solutions: $x \equiv \pm 1 \pmod{7}$ * put them together and use CRT, there are four solutions $\Rightarrow x \equiv 1 \pmod{5} \equiv 1 \pmod{7} \Rightarrow x \equiv 1 \pmod{35}$ $\Rightarrow x \equiv 1 \pmod{5} \equiv 6 \pmod{7} \Rightarrow x \equiv 6 \pmod{35}$ $\Rightarrow x \equiv 4 \pmod{5} \equiv 1 \pmod{7} \Rightarrow x \equiv 29 \pmod{35}$ $\Rightarrow x \equiv 4 \pmod{5} \equiv 6 \pmod{7} \Rightarrow x \equiv 34 \pmod{35}$

Matlab tools

```
format rat format long format long
                       inv(A)
matrix inverse
matrix determinant
                       det(A)
p = q d + r
                       r = mod(p, d) or r = rem(p, d)
                       q = floor(p/d)
                       g = gcd(a, b)
g = a s + b t
                       [g, s, t] = \gcd(a, b)
factoring
                       factor(N)
prime numbers \leq N primes(N)
test prime
                       isprime(p)
mod exponentiation * powermod(a,b,n)
find primitive root *
                       primitiveroot(p)
crt *
                       crt([a_1 \ a_2 \ a_3...], [m_1 \ m_2 \ m_3...])
\phi(N) *
                       eulerphi(N)
```

Field

- ♦ Field: a set that has the operation of addition, multiplication, subtraction, and division by nonzero elements. Also, the associative, commutative, and distributive laws hold.
- ♦ Ex. Real numbers, complex numbers, rational numbers, integers mod a prime are fields
- ♦ Ex. Integers, 2×2 matrices with real entries are not fields

$$\Rightarrow \text{Ex. GF}(4) = \{0, 1, \omega, \omega^2\}$$

$$\Rightarrow 0 + x = x$$
• Addition

$$x + x = 0$$

$$\Rightarrow 1 \cdot x = x$$

$$\Rightarrow \omega + 1 = \omega^2$$

- Addition and multiplication are commutative and associative, and the distributive law x(y+z)=xy+xz holds for all x, y, z
- $x^3 = 1$ for all nonzero elements

Galois Field

- ♦ Galois Field: A field with finite element, finite field
- ♦ For every power pⁿ of a prime, there is exactly one finite field with pⁿ elements (called GF(pⁿ)), and these are the only finite fields.
- \Rightarrow For n > 1, {integers (mod p^n)} do not form a field.
 - * Ex. p · x \equiv 1 (mod pⁿ) does not have a solution (i.e. p does not have multiplicative inverse)

How to construct a GF(pⁿ)?

- \Rightarrow Def: $Z_2[X]$: the set of polynomials whose coefficients are integers mod 2
 - * ex. 0, 1, $1+X^3+X^6$...
 - * add/subtract/multiply/divide/Euclidean Algorithm: process all coefficients mod 2

$$\Rightarrow$$
 (1+X²+X⁴) + (X+X²) = 1+X+X⁴ bitwise XOR

$$\Rightarrow (1+X+X^3)(1+X) = 1+X^2+X^3+X^4$$

$$\Leftrightarrow X^4 + X^3 + 1 = (X^2 + 1)(X^2 + X + 1) + X \qquad \text{long division}$$
can be written as

$$X^4 + X^3 + 1 \equiv X \pmod{X^2 + X + 1}$$

How to construct $GF(2^n)$?

- \Rightarrow Define $Z_2[X]$ (mod X^2+X+1) to be $\{0, 1, X, X+1\}$
 - * addition, subtraction, multiplication are done mod X²+X+1
 - * $f(X) \equiv g(X) \pmod{X^2 + X + 1}$
 - \Rightarrow if f(X) and g(X) have the same remainder when divided by X^2+X+1
 - \Rightarrow or equivalently $\exists h(X)$ such that $f(X) g(X) = (X^2 + X + 1) h(X)$
 - \Rightarrow ex. $X \cdot X = X^2 \equiv X+1 \pmod{X^2+X+1}$
 - * if we replace X by ω , we can get the same $\overline{GF(4)}$ as before
 - * the modulus polynomial X^2+X+1 should be irreducible

Irreducible: polynomial does not factor into polynomials of lower degree with mod 2 arithmetic ex. X^2+1 is not irreducible since $X^2+1=(X+1)(X+1)$

How to construct GF(pⁿ)?

- $\Rightarrow Z_p[X]$ is the set of polynomials with coefficients mod p
- ♦ Choose P(X) to be any one irreducible polynomial mod p of degree n (other irreducible P(X)'s would result to isomorphisms)
- \Leftrightarrow Let GF(pⁿ) be $Z_p[X] \mod P(X)$
- \Rightarrow An element in $Z_p[X] \mod P(X)$ must be of the form $a_0 + a_1 X + ... + a_{n-1} X^{n-1}$ each a_i are integers mod p, and have p choices, hence there are p^n possible elements in $GF(p^n)$
- → multiplicative inverse of any element in GF(pⁿ) can be found using extended Euclidean algorithm (over polynomial)

$GF(2^8)$

- \Rightarrow AES (Rijndael) uses GF(2⁸) with irreducible polynomial $X^8 + X^4 + X^3 + X + 1$
- \Rightarrow each element is represented as $b_7 X^7 + b_6 X^6 + b_5 X^5 + b_4 X^4 + b_3 X^3 + b_2 X^2 + b_1 X + b_0$ each b_i is either 0 or 1
- ♦ elements of GF(2⁸) can be represented as 8-bit bytes
 b₇b₆b₅b₄b₃b₂b₁b₀
- → mod 2 operations can be implemented by XOR in H/W

$GF(p^n)$

- \diamond Definition of generating polynomial g(X) is parallel to the generator in Z_p :
 - * every element in GF(pⁿ) (except 0) can be expressed as a power of g(X)
 - * the smallest exponent k such that $g(X)^k \equiv 1$ is $p^n 1$
- ♦ Discrete log problem in GF(pⁿ):
 - * given h(X), find an integer k such that $h(X) \equiv g(X)^k \pmod{P(X)}$
 - * believed to be very hard in most situations