Number Theory for Cryptography
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Congruence

<~ Modulo Operation:
x Question: What 1s 12 mod 9?
* Answer: 12 mod 9=3or 12 =3 (mod 9)
“12 1s congruent to 3 modulo 9”

< Definition: Leta, r, m € Z (where Z is the set of all

integers) and m > 0. We write

x a=r(modm)ifmdividesa—r (i.e.m|a-r)
x M is called the modulus

x I 1s called the remainder
x

a=qg-m+r 0<r<m
< Example: a = 42 and m=9
*x 42=4 -9+ 6 therefore 42 = 6 (mod 9)




Greatest Common Divisor

+~ GCD of a and b is the largest positive integer
dividing both a and b

+ gcd(a, b) or (a,b)
+ex. ged(6,4) =2, gcd(5,7) =1

< Euclidean al g()I’lthm remainder—divisor — dividend — ignore

* ex. gcd(482, 1 180) Why does it work?

1180 = 2 482+ Let d = gcd(482, 1180)

g0 = 2 . d|482andd| 1180 = d|216
4 ' because 216 = 1180 -2 - 482
216 and d | 482 = d |50
50andd |216 =d| 16
16 8 2+() = l6andd |50 =d |2

16 =>d=2
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Greatest Common Divisor (cont’d)

<+ Euclidean Algorithm: calculating GCD

2

4

8




49 1\

Greatest Common Divisor (cont’d)
<+ Def: a and b are relatively prime: gcd(a, b) =1

<~ Theorem: Let a and b be two integers, with at least one
of a, b nonzero, and let d = gcd(a,b). Then there exist
integers X, y, gcd(x,y)=1suchthata - x+b-y=d

* Constructive proof: Using Extended Euclidean Algorithm to
findxandy

d=2=50-3-16 N = 1180-2 - 482
= (482 -2 - 216) 3 (216 4 - 50) ~50=482-2-
=eeee=1]30" (29)+482 71 “lo=216-4-50

i -
a x~ by




Extended Euclidean Algorithm
Let gcd(a,b)=d
+ Looking for sand t, gcd(s,t)=1st.a-s+b-t=d
+ Whend=1,t= b! (mod a)

Ex. 1180=2-482+
1180 -2 - 482 =
482 =12 - + 50

4-(2-1180+5 - 482) =16
0-1180-22 - 482 =16
50=316+2
(-2 - 1180 + 5 - 482) -
3-(9- 1180 -22 - 482) =2
29 - 1180+ 71 - 482 =2 ¢




Greatest Common Divisor (cont’d)
x The above proves only the existence of integers x and y

*x How about gcd(x, y)?

d=a-x+b-y

l=a/d-x+b/d-
d = gcd(a, b) — a/d - x y

If ged(x,y)=r then 1=a/d- (x"r)+b/d - (yv.r)/,,/’
te.l=r" (a/d-x' + b/d.y,)é,.,—

which means that r|1 1e. r=1

gcd(x,y) =1 q

Note: gcd(x, y) = 1 but (X, y) 1s not unique
e.g. d=ax+by=a(x-kb)+ b (ytka)




Greatest Common Divisor (cont’d)
Lemma: gcd(a,b) = gcd(x,y) = gcd(a,y) = ged(x,b) =1 <
da,b,x,yst.1=ax+by

pf:(=)
following the previous theorem

(<)

Given a, b, z, if 3 X, y, gcd(X,y)=1 s.t. z=ax + by
then gcd(a, b) | z (also ged(a, y) | z, ged(x, b) | )

(letd = ged(a,b)=>d|aandd|b=d|ax+by=4d|2)

especially, givena,b, 3x,ys.t. 1=ax+by
— gcd(a,b) |1 = ged(a,b) =1




Operations under mod n

% Proposition:
Let a,b,c,d,n be integers with n = 0, suppose
a=Db (mod n) and ¢ = d (mod n) then
at+c=b+d(modn),
a-c=b-d(modn),
arc=b-d (modn)
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% Proposition:
Let a,b,c,n be integers with n # 0 and gcd(a,n) =1.
Ifa-b=a-c(modn)thenb=c (modn)




Operations under mod n

<+ What 1s the multiplicative inverse of a (mod n)?

or a-al=1+k-n

ged(a,n)=1 = Elsandtsuchthata-s+n't=K

1
—a =5 (mOd Il) This egpression also
<+~ a-x=b(modn), ged(a,n)=1,x=7? implies ged(a,n)=1.
x=b-al=b-s(modn)
sa'x=b (mod Il), gcd(a, n) =d> 1, x =9 Are there any solutions?

ifd | b (a/d) - x =(b/d) (mod n/d) gcd(a/d,n/d) =1
X = (b/d) - (a/d)™! (mod n/d)
—> there are d solutions to the equation a - x =b (mod n):
X0s XoT(1/d), ... ,xoH(d-1)-(n/d) (mod n)




Matrix inversion under mod n

% A square matrix 1s invertible mod n 1f and only 1f
its determinant and n are relatively prime

< ex: 1n real field R 1

a b 1 d -b
c d - ad - bc -C a

In a finite field Z (mod n)? we need to find the inverse
for ad-bc (mod n) 1n order to calculate the inverse of the

: -1
matrix a b 4 d b
= (ad —bc) (mod n)
c d -C a




Group

<~ A group G 1s a finite or infinite set of elements and a
binary operation x which together satisty
1. Closure: VabeG axb=ceG ETEAME
2. Associativity: V a,b,c eG (axb)yxc=ax(bxc) &M
3. Identity: VaeG lxa=ax1l=a BEAIITR
4. Inverse: VaeG axal=1=alxa otz

< Abelian group A% VabeG axb=bxa
_.-meansg X gXgX.. Xg

+ Cyclic group G of order m: a %mup defined by an
element g € G such that g, g g , .... g "are all distinct
elements in G (thus cover all elements of G) and g™ =1,
the element g 1s called a generator of G. Ex: Z (or Z/nZl)2




Group (cont’d)

The order of a group: the number of elements 1n a group G, denoted
|G|. If the order of a group 1s a finite number, the group 1s said to be a
finite group, note gl¢/ = 1 (the identity element).

The order of an element g of a finite group G 1s the power
m such that g = 1 (the identity element), denoted by ords(g)

ex: Z: additive group modulo n 1s the set {0, 1, ..., n-1}

binary operation: + (mod n) size of Z_isn
identity: O : :

mverse: -X = n-x (mod n)

g+g+...+g =0 (mod n)

eX: Z:: multiplicative group modulo n 1s the set {1:0<i<n, gcd(1,n)=1}

binary operation: x (mod n) size of Z: 1s ¢(n),

identity: 1 gd)(n) = ] (mod n)

1

inverse. X - can be found using extended Euclidean Algorithm




Ring Z

< Definition: The ring Z_ consists of
* ThesetZ_ =1{0,1,2,...,m-1}

* Two operations “+ (mod m)” and “x (mod m)”
for all a, b € Z_ such that they satisfy the
properties on the next slide

<~ Example:m=9 7, =1{0,1,2,3,4,5,6,7, 8}
6 +8=14=5(mod9)
6 x 8§ =48 =3 (mod 9)
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Properties of the ring Z
< Consider thering Z__ = {0, 1, ..., m-1}

& The additive identity “0”: a + 0 = a (mod m)

& The additive inverse of a: -a=m —as.t. a + (-a) = 0 (mod m)

% Addition is closed i.eifa,b e Z_ thena+b e Z

& Addition is commutative a + b =b + a (mod m)

& Addition is associative (a + b) + c=a + (b + ¢) (mod m)

& Multiplicative 1dentity “1”: a x 1 = a (mod m)

& The multiplicative inverse of a exists only when gcd(a,m) =1
and denoted asa™' st.a' xa=1 (mod M) might or might not exist

% Multiplication is closed i.e. ifa,b € Z  thenaxb € Z

& Multiplication is commutative a x b =b x a (mod m)

& Multiplication is associative (a x b) x c=a x (b x ¢) (mod m)
15




Some remarks on the ring Z

% A ring 1s an Abelian group under addition and a
semigroup under multiplication.

+ A semigroup 1s defined for a set and a binary operator in
which the multiplication operation is associative. No
other restrictions are placed on a semigroup; thus a
semigroup need not have an identity element and 1ts
elements need not have inverses within the semigroup.
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Some remarks on the ring Z_ (cont’d)

<~ Roughly speaking a ring 1s a mathematical structure in
which we can add, subtract, multiply, and even sometimes
divide. (A ring in which every element has multiplicative
inverse 1s called a field.)
& Example: Is the division 4/15 (mod 26) possible?
In fact, 4/15 mod 26 =4 x 157 (mod 26)
Does 157! (mod 26) exist ?
It exists only 1f gcd(15, 26) = 1.
151 =7 (mod 26) therefore,
4/15mod 26 =4 x 7=28 =2 mod 26




S
m

QPSR i P o 4 ~AnA 7
DOLIC ICITIAIKS OIl LNC Z10up 4L - allu L
< The modulo operation can be applied whenever we want

under Z_
(a + b) (mod M) = [(a (mod M)) + ((b mod M)) | (mod M)

under Z_*
(@ x b) (mod M) = [(a (mod M)) x ((b mod M)) | (mod M)

aP (mod m) = (a (mod M))? (mod M)

s~ Question? aP (mod m)-(=Z od m)




Exponentiation in Z_

+ Example: 38 (mod 7) = ?
38 (mod 7) = 6561 (mod 7) =2 since 6561 =937 x 7 +2 or
38 (mod 7) = 3% x 3*(mod 7) = 32 x 32 x 32 x 3% (mod 7)
= (32 (mod 7))x(3? (mod 7))x(3% (mod 7))x(3% (mod 7))
=2x2x2x2(mod7)=16(mod7)=2

¢ The cyclic group Z_* and the modulo arithmetic is of
central importance to modern public-key cryptography.
In practice, the order of the integers involved in PKC are
in the range of [2100, 21924] Perhaps even larger.




Exponentiation in Z_ (cont’d)

+ How do we do the exponentiation efficiently?

¢ 31234 (mod 789) many ways to do this

a. do 1234 times multiplication and then calculate remainder
b. repeat 1234 times (multiplication by 3 and calculate remainder)

c. repeated | log 1234 ] times (square, multiply and calculate
remainder)

ex. first tabulate
32=9(mod 789)  332=459%=18 3212 = 7322 =93
34=92=38] 364=182= 324  31024-932=759
38 =812=249 3128 = 3942 = 39
316 =2492=459  3256=392=732
1234 =1024 + 128 + 64 + 16 + 2 (10011010010),
31234 = 3(1024+128+64416%2) — (759 « 39) « 324) » 459) « 9 = 105 (mod 789)
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Exponentiation in Z_ (cont’d)

calculate X7 (mod m) where y=b, 22+b, 2 +b,
+ Method 1:

X% =2 (X72) (X)) =2 (X7 (X)) ()™

Tsquare " T~ square

Xbo — (Xb0)2 -Xbl — (X2'b0+b1)2.Xb2

Ssquare —" S square_—

square and multiply |_10g yJ times
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Method 1:
1234=1024 + 128 + 64 + 16 + 2 (10011010010),
31234 _ 30+2(1+2(0+2(0+2(1+2(0+2(1+2(1+2(0+2(0+2(1))))))))))
—0. 92(0+2(0+2(1+2(O+2(1+2(1+2(O+2(O+2(1)))))))))
—0. 812(0+2(1+2(0+2(1+2(1+2(O+2(0+2(1))))))))
— 0.9 492(1+2(O+2(1+2(1+2(0+2(0+2(1)))))))
_ 0« 459 « 450 2(0+2(1+2(1+2(0+2(0+2(1))))))
_ 0450 . 18 2(1+2(1+2(0+2(0+2(1)))))
=9« 459 « 324 « 3242(1+2(0+2(0+2(1))))
=9+ 459 « 324 « 39 » 392(0+2(0+2(1)))
=9 « 459 « 324 « 39 « 7322(0+2(1))
=9+459+324+39.932(D)
=9+ 459 « 324 + 39 « 759 mod 789
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Exponentiation in Z _ (cont’d

Method 2: 1234=1024 + 128 +64 + 16 +2 (10011010010),
31234 _ 304+2(14+2(0+2(0+2(1+2(0+2(1+2(1+2(0+2(0+2(1)))))))

_ (3 . 32(O+2(1+2(O+2(1+2(1+2(0+2(0+2(1)))))))))2
= (3+(3207 0+2(1+2(1+2(o+2(0+2(1))))))))2)2

_ (3,((3,32( o+2(1+2(1+2(0+2(0+2(1)))))))2)2)2
_ (3,((3,(32(1+2(1+2(0+2(o+2(1))))))2)2 )2)2

_ (3,((3,((3,32(1+2(0+2(o+2(1)))))2)2 )2)2)2

_ (3,((3,((3,(3,32(o+2(0+2(1))))2 12)2 )2)2)2

= (3+((3+((3+(3+(3%(0T2(N)2 )2)2)2 )2)2y2

= (3+((3+((3-B+(3*)* yH)H2 )2 )H?)?

= (3+((3+(B-3-((B1HY*)*)HH*)*)H?)?




Chinese Remainder Theorem (CR

>V 1¢J€ {1,2,1(}, ng(I‘i, I‘J) — 1, 0< ml < I‘i
Is there an m that satisfies simultaneously the following
set of congruence equations?

m=m,; (mod 1) ex: m= 1 (mod 3)
=m, (mod r,) =2 (mod >)
e =3 (mod 7)
:ged(3,5) =1
gcd(3,7) =1
gcd(5,7) =1

¢ FE(ERLT =B —Bwr—, AE—BEr—, TE—%
BR =, an R (B  2/ 0 8t 2

= mk (mOd I‘k)




Chinese Remainder Theorem

< first solution:
Z: =1 / r;

3!'s; lel s.t. s; -z =1 (modr;) (since ged(z;, ;) = 1)

m = Zz ' m; (mod n)
1=1
:n=3-5"-7

Unique solution in Z _?

m=1, my,=2, m3=3

r1=3, r1,=5, r3=7

21=35, 2y=21, z3=15

$1=2, s,=1, s3=1
m=35-2-1+21-1'2+15-1-3=157 =52 (mod 105)




Chinese Remainder Theorem (CR

<> Uniqueness:

1. If there exists m'eZ_ (# m) also satisties the
previous k congruence relations, then
V1, m'-m=0 (mod r,).
2. Thisis equivalentto Vi,m'=m+k. - r,

m+rj m+2rj
| | | i |

m m-+r; m+2r;

—> m'=m+k-lem(r,r,..)=m+k-n
——> m'e¢Z forallk=#0

contradiction!




Chinese Remainder Theorem

& second solution:

Ri=Ti Ty 'ri-l
Nt eZe st Ry=1 (mod r;) (since gcd(R;, 1) = 1)

satisfies the first i-1 congruence relations

[ m1 ml
// mi_l) 't (modRy ) 122

< 1N — mk m1=13 1’112:23 m3=_3

1'1:3, 1'2:5, r3=7
R2:3, R3:15, R4:105
t2:2, t3:1

Note that m; = m; (mod r,)
=m, (mod r,)

/\
ex: my =1

1'/1\12 = 1+3:(2-1)-2=7
-53 =52 (mod 105)
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Chinese Remainder Theorem (CR'T
< special case:

X=m(modr;)=m(modr,)***=m_(modr,) = X=m(modr;ry**°r,)

every step satisfies one

<> 1n81ght of the second solution: more requirement
rx=m, (modry) | |

O |
U

VAN =
1‘1 m1—|— rl 21‘1 R2 rl

/\V —
DI Myt ror 2151 Ry =11,

let 1/1\12 = 1/1\11+ k' R, (mod Rj) Where k"= ty(m,-m,) and t, R, = 1 (mod r,)

m, 1s the only solution for x 1n Z
_general solution of x must be m2 +k R, for some k




Chinese Remainder Theorem (CR

<~ Applications: solve x? = 1 (mod 35)
*35=5"-7

* x* satisfies f(x*) =0 (mod 35) <
x* satisfies both f(x*) = 0 (mod 5) and f(x*) = 0 (mod 7)

Proof:

(<)
f(x*) =k, - p and 1(x*) =k, - q imply that
f(x*)=k-lem(p-q)=k-p-q e f(x*)=0(modp - q)

(=)
f(x*) =k - p - q umplies that
f(x*)=(k-p)-q=(k-q p tre f(x*)=0(modp)
=0 (mod q)

29




Chinese Remainder Theorem

x since 5 and 7 are prime, we can solve
=1 (mod 5) and x* = 1 (mod 7)
far more easily than x% =1 (mod 35)

Why?

o x? = 1 (mod 5) has exactly two solutions: x = £1 (mod 5)
= | (mod 7) has exactly two solutions: x = +1 (mod 7)

* put them together and use CRT, there are four solutions
#X=1(mod35)=1(mod7)=x=1(mod 35)
X =1 (mod 5) =6 (mod7) = x=6 (mod 3)5)
X =4 (mod5)=1 (mod7) = x=29 (mod 35)
& X =4 (mod 5) =6 (mod 7) = x = 34 (mod 35)




Matlab tools

format rat format long format long
matrix inverse inv(A)
matrix determinant  det(A)
p=qd-+r r = mod(p, d) or r = rem(p, d)
q=floor(p/d)
g = gcd(a, b)
g=as+bt [g, s, t] = gcd(a, b)
factoring factor(N)
prime numbers <N  primes(N)
test prime 1sprime(p)
mod exponentiation * powermod(a,b,n)
find primitive root * primitiveroot(p)
crt * crt([a; a, a5...], [m; m, mj;...])
O(N) * culerphi(N)




Field

< Field: a set that has the operation of addition,
multiplication, subtraction, and division by nonzero
elements. Also, the associative, commutative, and
distributive laws hold.

<+ Ex. Real numbers, complex numbers,
rational numbers, integers mod a prime are fields

<+ EX. Integers, 2X2 matrices with real entries are not fields
+ Ex. GF(4) = {0, 1, ®, ®*}

a 0+x=Xx

* Addition and multiplication are commutative and
& X +Xx=0

associative, and the distributive law x(y+z)=xy+xz
] x=x holds for all x, y, z
s o+ 1= e x3 =1 for all nonzero elements
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Galois Field

< Galois Field: A field with finite element, finite field

< For every power p" of a prime, there 1s exactly one
finite field with p” elements (called GF(p")), and
these are the only finite fields.

<~ Forn> 1, {integers (mod p")} do not form a field.

* Ex. p - x=1 (mod p") does not have a solution
(i.e. p does not have multiplicative inverse)




How to construct a GF(p™)?
< Det: Z,[X]: the set of polynomials whose coefficients
are integers mod 2

xex. 0, 1, 1+X3+X°. ..
* add/subtract/multiply/divide/Euclidean Algorithm:

process all coefficients mod 2
o (1+X2+XY) + (X+X?) = 1+X+X*  bitwise XOR
o (1+X+X3)(1+X) = 1+X24+X3+X4
o XHXC+] = (XP41)(X?+X+1) + X long division
can be written as
XH4X3+1 =X (mod X?+X+1)




How to construct GF(2")?

¢ Define Z,[X] (mod X*+X+1) to be {0, 1, X, X+1}
* addition, subtraction, multiplication are done mod X*+X+1
* f(X) = g(X) (mod X?+X+1)
% 1f f(X) and g(X) have the same remainder when divided by X2+X+1
& or equivalently 3 h(X) such that f{X) - g(X) = (X*+X+1) h(X)
s ex. X'X = X% = X+1 (mod X>+X+1)
x 1f we replace X by o, we can get the same GF(4) as before
* the modulus polynomial X*+X+1 should be irreducible

Irreducible: polynomial does not factor into polynomials

of lower degree with mod 2 arithmetic
ex. X?+1 is not irreducible since X*+1 = (X+1)(X+1)




How to construct GF(p™)?

~ < Z,|X] 1s the set of polynomials with coetticients mod p

<+ Choose P(X) to be any one 1rreducible polynomial mod
p of degree n (other 1irreducible P(X)’s would result to
1Isomorphisms)
_ ¢ Let GF(p") be Z [X] mod P(X)

¢ An element in Z [ X] mod P(X) must be ot the form
a,+a, X+ ...+a X!
each a. are integers mod p, and have p choices, hence
there are p" possible elements in GF(p®)

< multiplicative inverse of any element in GF(p") can be

found using extended Euclidean algorithm (over polynomial)
36




+ AES (Rijndael) uses GF(2%) with irreducible polynomial
X3+ X+ X3+ X +1
+ each element 1s represented as

b, X'+ be X® + bs X° + by X* + by X° + b, X*+b,; X +b,
each b; 1s either O or 1

+ elements of GF(2%) can be represented as 8-bit bytes
b,bsbsb,bsb,b b,
+ mod 2 operations can be implemented by XOR in H/'W




< Definition of generating polynomial g(X) 1s
parallel to the generator in Z :

x every element in GF(p") (except 0) can be expressed
as a power of g(X)

* the smallest exponent k such that g(X)ksl 1s p" -1

+ Discrete log problem in GF(p"):

* given h(X), find an integer k such that
h(X) = g(X)* (mod P(X))

x believed to be very hard in most situations




