Number Theory for Cryptography
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Congruence

< Modulo Operation:

* Question: What is 12 mod 9?

* Answer: 12 mod 9 =3 or 12 =3 (mod 9)

“12 1s congruent to 3 modulo 9”
< Definition: Leta, r,m € Z (where Z is the set of all
integers) and m > 0. We write

* a=r(modm)ifmdividesa—r (i.e.m|a-r)

* M is called the modulus

* I is called the remainder

*x a=(g-m+r 0<r<m
<+ Example: a = 42 and m=9

*x 42 =4 -9+ 6 therefore 42 = 6 (mod 9)

Greatest Common Divisor

+ GCD of a and b 1s the largest positive integer
dividing both a and b

% ged(a, b) or (a,b)
+ex. ged(6,4)=2,gcd(5,7)=1

4+ Euclidean algorithm remainder—divisor — dividend — ignore
* ex. gcd(482, 1 180) Why does it work?

n-ramie R,
,.482< ,_,2 216+50 482 and d| 1180 = d|

because 216 =1180-2 - 482
d|216andd|482 = d]|50
50-'—‘3 16+ 2 <. d|50andd|216=4d]|16

16 82+ 0 r\gcd d|16andd|50=d|2
2]16=>d=2

Greatest Common Divisor (cont’d)

< Euclidean Algorithm: calculating GCD

gcd(1180, 482)

(P An % %)
21482 |1180| 2
432 | 964
3150 |216 |4
48 | 200
AE
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Greatest Common Divisor (cont’d)
< Def: a and b are relatively prime: gcd(a, b) = 1

<+ Theorem: Let a and b be two integers, with at least one
of a, b nonzero, and let d = gcd(a,b). Then there exist
integers x, y, ged(x,y) =1 suchthata-x+b-y=d

* Constructive proof: Using Extended Euclidean Algorithm to

findxandy
d=2= 501 3 lé ( \\\216 =1180-2 - 482
=(482-2- 2f6) -3-(216-4 - 5’0) 50=482-2-216
:...':1180(-29)"‘48271 ~16=216-4-50
o a-rd
a x by

Extended Euclidean Algorithm

Let gcd(a,b)=d
<+ Looking for s and t, gcd(s,t)=1s.t.a-s+b-t=d
+ Whend=1,t= b (mod a)

Ex. 1180=2-482+216

a=q -b-+r 1180 -2 - 482 =216
-7 482=2-216+50
R 482 -2 - (1180 - 2 - 482) =50
b 7q 1 tn 2 - 1180+ 5 - 482 =50
@/ -7 /0 216=4-50+16
I, :,’q3 . r2z+ I3 (1180 -2 - 482) -
G /6 4-(2-1180+5 - 482) = 16
U 9-1180-22 - 482 =16
=041 50=3-16+2

(-2 1180+ 5 - 482) -
B 3-(9- 1180-22 - 482) =2
r;=qs-d+0 291180+ 71 -482=2 ¢

Greatest Common Divisor (cont’d)

* The above proves only the existence of integers x and y
* How about ged(x, y)? e eZ\

d=a-x+b-y i )

d =gcd(a, b) \)

If ged(x,y)=r then 1=a/d-(x"r)+b/d- (y’-r)’_/,/"/

ie. 1=r-(a/dx +b/dyy

= l=a/d-x+b/d-y

which means that r|1 1ie. r=1
gedx,y)=1 ¢

Note: gcd(x, y) = 1 but (x, y) is not unique
e.g. d=ax+by=a(x-kb)+ b (y+ka)

Greatest Common Divisor (cont’d)

Lemma: gcd(a,b) = ged(x,y) = ged(a,y) = ged(x,b) =1 <
Ja,b,x,yst.1=ax+by
pf:(=)
following the previous theorem
(<)
Givena, b, z, if 3 x, y, ged(x,y)=1 s.t. z=ax + by
then gcd(a, b) | z (also ged(a, y) | z, ged(x, b) | z)
(letd=gcd(a,b)=>d|aandd|b=>d|ax+by=d|z)

especially, givena, b, 3x,yst. 1 =ax+by
= gcd(a,b)|1 = ged(a,b)=1




Operations under mod n

< Proposition:
Let a,b,c,d,n be integers with n # 0, suppose
a=b (mod n) and ¢ =d (mod n) then
a+c=b+d(modn),
a-c=b-d(modn),
a-c=b-d (modn)
< Proposition:
Let a,b,c,n be integers with n # 0 and gcd(a,n) =1.
Ifa-b=a- c(modn)thenb=c (modn)

Operations under mod n

< What is the multiplicative inverse of a (mod n)?
ie.a-al=1(modn) or a-a'l=1+k-n
ged(a,n)=1 = Fsandtsuchthata-s+n-t=1
= a-l =S (mOd n) This expression also
+a-x=b(modn), ged(a,n)=1,x=7? implies ged(a,n)=1.
x=b-al=b-s(modn)
$a-x=b (mod Il), gcd(a, n) =d> 1, x=? Are there any solutions?

ifd| b (a/d) - x =(b/d) (mod n/d) ged(a/d,n/d) =1
X = (b/d) - (a/d)™! (mod n/d)
= there are d solutions to the equation a - x = b (mod n):
Xg» Xot(0/d), ... ,Xg(d-1)-(n/d) (mod n)

Matrix mversion under mod n
< A square matrix is invertible mod n if and only if

its determinant and n are relatively prime
% ex: in real field R 1

a b 1 d -b
c d a ad - bc -C a

In a finite field Z (mod n)? we need to find the inverse
for ad-bc (mod n) in order to calculate the inverse of the

: -1
matrix a b G d b
= (ad—bc) (mod n)
c d -c a

Group

<+ A group G is a finite or infinite set of elements and a
binary operation x which together satisfy

1. Closure: VabeG axb=ceG EIEAM:
2. Associativity: V a,b,c €G (axb)xc=ax (bxc) &E&atE
3. Identity: VaeG 1xa=axl=a HArTER
4. Inverse: VaeG axal=1=alxa SOt

< Abelian group ZZHAFE VabeG axb=bxa
_.-means g XgXgX..Xg

% Cyclic group G of order m: a %mup defined by an
element g € G such that g, g g , .... g™ are all distinct
elements in G (thus cover all elements of G)and g" =1,
the element g is called a generator of G. Ex: Z, (or Z/nZl)2




Group (cont’d)

< The order of a group: the number of elements in a group G, denoted
|G|. If the order of a group is a finite number, the group is said to be a
finite group, note gl = 1 (the identity element).
<+ The order of an element g of a finite group G is the smallest power
m such that g™ = 1 (the identity element), denoted by ord(g)
+ ex: Z,: additive group modulo n is the set {0, 1, ..., n-1}
binary operation: + (mod n)
identity: O

inverse: -x = n-x (mod n)

size of Z  is n,
gtg+...+g =0 (mod n)
\_Y_J

+ ex: Z : multiplicative group modulo n is the set {i:0<i<n, gcd(i,n)=1}
binary operation: x (mod n) size of Z: is ¢(n),
identity: 1 ¢®™ =1 (mod n)

1

inverse. X can be found using extended Euclidean Algorithm
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Ring Z

< Definition: The ring Z_, consists of
*ThesetZ = 1{0,1,2,...,m-1}
* Two operations “+ (mod m)” and “x (mod m)”

for all a, b € Z_, such that they satisfy the
properties on the next slide

<~ Example: m=9 Z, ={0,1,2,3,4,5,6,7, 8}
6+8=14=5(mod9)
6 x8=48 =3 (mod9)

Properties of the ring Z

< Consider thering Z_, = {0, 1, ..., m-1}
« The additive identity “0”: a + 0 = a (mod m)
« The additive inverse of a: -a = m—as.t. a + (-a) = 0 (mod m)
@ Addition is closed i.eifa,b € Z , thena+b e Z
« Addition is commutative a + b = b + a (mod m)
« Addition is associative (a + b) + c=a + (b + ¢) (mod m)
« Multiplicative identity “1”: a x 1 = a (mod m)

« The multiplicative inverse of a exists only when ged(a,m) =1
and denoted asa” ' s.t.alxa=1 (mod M) might or might not exist

% Multiplication is closed i.e. ifa,b € Z thenaxb e Z
« Multiplication is commutative @ x b = b x a (mod m)

« Multiplication is associative (a x b) x c=a x (b x ¢) (mod m)
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Some remarks on the ring Z_

< A ring is an Abelian group under addition and a
semigroup under multiplication.

< A semigroup is defined for a set and a binary operator in

which the multiplication operation is associative. No
other restrictions are placed on a semigroup; thus a
semigroup need not have an identity element and its

elements need not have inverses within the semigroup.




Some remarks on the ring Z _ (cont’d)

< Roughly speaking a ring is a mathematical structure in
which we can add, subtract, multiply, and even sometimes
divide. (A ring in which every element has multiplicative
inverse is called a field.)
« Example: Is the division 4/15 (mod 26) possible?
In fact, 4/15 mod 26 =4 x 15! (mod 26)
Does 157! (mod 26) exist ?
It exists only if ged(15, 26) = 1.
151=7 (mod 26) therefore,
4/15mod 26 =4 x 7=28 =2 mod 26
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Some remarks on the group Z_andZ_*

<+ The modulo operation can be applied whenever we want

under Z_
(a + b) (mod m) = [(a (mod M)) + ((b mod M)) | (mod M)

%
under Z

(a x b) (mod m) = [(a (mod M)) x ((b mod mM)) | (mod M)
aP (mod m) = (a (mod m))° (mod m)

&>~ Question? aP (mod m); @ od m)

Exponentiation in Z

<+ Example: 3% (mod 7) =?
38 (mod 7) = 6561 (mod 7) = 2 since 6561 =937 x 7 + 2 or
38 (mod 7) = 3% x 3*(mod 7) = 3% x 32x 32 x 32 (mod 7)
= (3% (mod 7))x(32 (mod 7))x(3? (mod 7))x(3% (mod 7))
=2x2x2x2(mod7)=16(mod7)=2

+ The cyclic group Z " and the modulo arithmetic is of
central importance to modern public-key cryptography.

In practice, the order of the integers involved in PKC are
in the range of [2169, 21924], Perhaps even larger.

Exponentiation in Z_ (cont’d)

<+ How do we do the exponentiation efficiently?
+ 31234 (mod 789) many ways to do this

a. do 1234 times multiplication and then calculate remainder
b. repeat 1234 times (multiplication by 3 and calculate remainder)

c. repeated | log 1234] times (square, multiply and calculate
remainder)

ex. first tabulate
32=9(mod 789)  332=4592=18 3312=7322=93
34=92=381 304=182= 324  31024-932=759
38=812=249 312823242 =39
31622492 =459  3256=392=732
1234=1024+ 128 + 64 + 16 +2 (10011010010),
31234 2 3(I024H12816441612) — (((759 » 39) » 324) + 459) » 9 = 105 (mod 789)

20




Exponentiation in Z_ (cont’d)

calculate XY (mod m) where y=b,- 22+b,-2+b,
< Method 1:
X" = () (X) = (X () )(x)”
< Method 2:

Xb0 —> (Xbo)z_-Xbl — (Xz-boerl)z_.Xb2
SSsquare " S square—

square and multiply |_10g yJ times
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Exponentiation in Z_ (cont’d)

Method 1:
1234=1024 + 128 + 64+ 16 +2 (10011010010),
3 1234 _ 30+2(1+2(0+2(0+2(1+2(0+2(1+2(1+2(0+2(0+2(1))))))))))
=9. 92(0+2(0+2(1+2(0+2(1+2(1+2(0+2(0+2(1)))))))))
=9. 812(0+2(l+2(0+2(1+2(1+2(O+2(0+2(l))))))))
= 9 « 2492(1+2(0+2(1+2(1+2(0+2(0+2(1)))))))
= 0« 459 « 459 2(0F2(1+2(1+2(0+2(0+2(1))))))
=9« 459 « 18 2(12(1+2(0+2(0+2(1))))
20+ 459 « 304 « 3242(1+2(0+2(0+2(1)))
=9+ 459 « 324 + 39 « 392(0+2(0+2(1)))
=9+ 459 « 324 + 39 » 7322(072(1))
=9+459+324+39.932(D
=9+459+324+39 +759 mod 789
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Exponentiation in Z_ (cont’d)

Method 2: 1234=1024+128+64+16+2 (10011010010),
31234 _ 30+2(142(0+2(0+2(1+2(0+2(1+2(1+2(0+2(0+2(1)))))

= (3 32(o+2(1+2(0+2(1+2(1+2(0+2(o+2(1)))))))))2
= (3,(32( 1+2( 0+2( 1+2(1+2(0+2(0+2(1))))))))2)2

= (3,((3,32( 0+2(1+2(1+2(o+2(0+2(1)))))))2)2)2
- (3,((3,(32(1+2(1+z(o+2(0+2(1))))))2)2 )2)2

= (3,((3,((3,32(1+2(0+2(0+2(1)))))2)2 )2)2)2

= (3o((3+((3+(3+32(02(0+2(1))))2 )2)2 429292

= (3+((3+((3+(3+(320F 22 )2)2)2 )2)2y2

= (3(B(BB(B* N2 )2 )P

= (3+(B(BB(BY)*)HH*)? P>

23

Chinese Remainder Theorem (CRT)

+ Vizge{l,2,. .k}, ged(r, rj) =1,0<m;<r;
Is there an m that satisfies simultaneously the following

set of congruence equations?

m=m; (modr;) ex: m=1 (mod 3)

= ) 223
_ o Note: ged(3,5) =1
= my (mod ry) ged(3,7) =1

gcd(5,7)=1

& FE(SHRhI =B — 8k —, Tl —8Er—, 2
gR=, LT E A&

24




Chinese Remainder Theorem (CRT)

< first solution:
Zi =n / I'i

1

d!'s; le{ZTi s.t. s; - z;=1 (mod r;) (since ged(z;, 1;) = 1)

m = lei ©s;-m; (modn)  ynique solution in Z,?
1:
+-€eX:n=3-5-7
m;=1, my=2, m3=3
r1=3, r2=5, r3=7
Z1:35, Z2:21, Z3:15
51:2, S2:1, S3:1
m=35-2-1+21-1-2+15-1-3 =157 =52 (mod 105)
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Chinese Remainder Theorem (CRT)

<> Uniqueness:

1. If there exists m'eZ, (# m) also satisfies the
previous k congruence relations, then
V1, m'-m=0 (mod r,).
2. Thisis equivalentto Vi m'=m +k; - ;

mr; m+2ri
| L L !

m m+r; m+2r; m'

—> m=m+k-lem(r,r,..n)=m+k-n
——> m'¢Z forallk=0

contradiction!
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Chinese Remainder Theorem (CRT)

< second solution:

Ri=11, "1

3t eZTi s.t.t. - Ry =1 (mod r;) (since ged(R;, ;) = 1)

1

I/ﬁl = ml satisfies the first i-1 congruence relations

A A A .

m=m; 7+ R,-(m;-m; ) t;(modR; ;) 122
A

m= mk m1=l, m2=2, m3=3

=3, 1y=5, 13=7
Note that i, = m; (mod r,) IR

=m, (mod r,) L 72 37l
e ex: my =1
My = 143(2-1)-2=7
=m, (mod ;) f=my=7+15(3-7)1

=-53 =52 (mod 105)

R2:3, R3:1 5, R4=105
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Chinese Remainder Theorem (CRT)

% special case:
X=m(modrj)=m (modr,)***=m,(modr)= X=m(modr;ry*e*er))

every step satisfies one

< insight of the second solution: more requirement

fXE/{nl(modrl) | | |
let m; =m, I/l\ll I ﬁl1+ I 2r, Ry=r1
m, is the only solution for x in Z:z

- general solution of x must be 1/1\11+ k R, for some k

step 1
A

p
x=m, (modr;) | | |

= A Hr, A 21,1 Ry =r,r

=m, (mod r,) m, 2" mytrrp “2h 37020

let r/ﬁ2 = r/r\11+ K" R, (mod Ry) where k"= t,(m,- i) and t, R, = 1 (mod r,)

step 2
N

m, is the only solution for x in Zf:
. A 3
\general solution of x must be m, +k R for some k

28




Chinese Remainder Theorem (CRT)

< Applications: solve x?> =1 (mod 35)

*35=5-7

* x* satisfies f(x*) = 0 (mod 35) <
x* satisfies both f(x*) = 0 (mod 5) and f(x*) = 0 (mod 7)
Proof:

Chinese Remainder Theorem (CRT)

* since 5 and 7 are prime, we can solve
x2=1 (mod 5) and x2 = 1 (mod 7)
far more easily than  x% =1 (mod 35)

2 x2 = 1 (mod 5) has exactly two solutions: x = £1 (mod 5)

Why?

% x? = 1 (mod 7) has exactly two solutions: x = £1 (mod 7)

* put them together and use CRT, there are four solutions

(<) . . . ax=1(mod5)=1(mod7) = x = 1 (mod 35)
f(x*) =k; - pand f(x*) =k, - q imply that ex =1 (mod 5) =6 (mod 7) = x = 6 (mod 35)
fx*) =k -lem(p-q) =k -p-q ie fx*)=0(modp - q) sx =4 (mod 5) = 1 (mod 7) = x = 29 (mod 35)
=) % x =4 (mod 5) = 6 (mod 7) = x = 34 (mod 35)
f(x*) =k - p - q implies that
fx*)=(k-p)-q=(k-q  p ie f{x*)=0(modp)
=0 (mod q)
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Matlab tools Field
formatrat format long format long < Field: a set that has the operation of addition,
matrix inverse inv(A) multiplication, subtraction, and division by nonzero
matrix determinant  det(A) elements. Also, the associative, commutative, and
pad+r r=mod(p, d) orr = rem(p, d) distributive laws hold
q=floor(p/d) )
g = ged(a, b) < Ex. Real numbers, complex numbers,
g=as+bt [g, s, t] = ged(a, b) rational numbers, integers mod a prime are fields
factoring factor(N)

prime numbers <N  primes(N)

test prime isprime(p)

mod exponentiation * powermod(a,b,n)

find primitive root *  primitiveroot(p)

crt * crt([a; a, a;...], [m; my m;...])

O(N) * eulerphi(N) .

<+ Ex. Integers, 2X2 matrices with real entries are not fields
+ Ex. GF(4) = {0, 1, ®, ©®?}

s (0+x=Xx

* Addition and multiplication are commutative and
aXx+x=0

associative, and the distributive law x(y+z)=xy+xz
« ]l x=x holds for all x, y, z

s o+ 1= « x3 =1 for all nonzero elements

32




Galois Field

% Galois Field: A field with finite element, finite field

< For every power p" of a prime, there is exactly one
finite field with p" elements (called GF(p")), and
these are the only finite fields.

<+ Forn> 1, {integers (mod p")} do not form a field.

* Ex. p - x =1 (mod p") does not have a solution
(i.e. p does not have multiplicative inverse)

33

How to construct a GF(p")?

< Def: Z,[X]: the set of polynomials whose coefficients
are integers mod 2

xex. 0, 1, 1+X>+X°. ..

* add/subtract/multiply/divide/Euclidean Algorithm:
process all coefficients mod 2
o (14X24XY) + (X+X?) = [+X+X4
% (1+X+X3)(1+X) = 1+X2+X3+X*
o XX+ = (X2+1)(X*+X+1)+ X long division
can be written as
XHX3+1 = X (mod X*+X+1)

bitwise XOR

34

How to construct GF(2")?

<+ Define Z,[X] (mod X*+X+1) to be {0, 1, X, X+1}
* addition, subtraction, multiplication are done mod X*+X+1
* f(X) = g(X) (mod X*+X+1)
« if f(X) and g(X) have the same remainder when divided by X2+X+1
% or equivalently 3 h(X) such that f(X) - g(X) = (X>+X+1) h(X)
& ex. XX = X% = X+1 (mod X>+X+1)
* if we replace X by ®, we can get the same GF(4) as before
* the modulus polynomial X?>+X+1 should be irreducible

Irreducible: polynomial does not factor into polynomials
of lower degree with mod 2 arithmetic
ex. X?+1 is not irreducible since X?+1 = (X+1)(X+1)

35

How to construct GF(p™)?

¢ Z,[X] is the set of polynomials with coefficients mod p

<+ Choose P(X) to be any one irreducible polynomial mod
p of degree n (other irreducible P(X)’s would result to
isomorphisms)

<+ Let GF(p") be Z [X] mod P(X)

¢ An element in Z [X] mod P(X) must be of the form
ay,+a, X+.. +a X"
each a; are integers mod p, and have p choices, hence
there are p" possible elements in GF(p®)

<+ multiplicative inverse of any element in GF(p™) can be

found using extended Euclidean algorithm (over polynomial)
36




GF(2%)

+ AES (Rijndael) uses GF(2®) with irreducible polynomial
X3+ XX+ X +1

< each element is represented as
b, X’ + by X®+ b X + by X* + by X2 + b, X*+b; X + by
each b; is either 0 or 1

+ elements of GF(2%) can be represented as 8-bit bytes
b-bsbsb,bsb,bb,

<+ mod 2 operations can be implemented by XOR in H/'W

37

GF(p")

< Definition of generating polynomial g(X) is
parallel to the generator in Z:

* every element in GF(p™) (except 0) can be expressed
as a power of g(X)

* the smallest exponent k such that g(X)kEI 1sp" -1

< Discrete log problem in GF(p"):

* given h(X), find an integer k such that
h(X) = g(X)* (mod P(X))
x believed to be very hard in most situations

38

Recursive GCD

01 int ged(int p, int ) // assume p >= q
02 {
03 intans;
04
05 if(p%q==0)
08 © S:ns = gcd(q, p % q); 01 int ged(int p, int q)
(138 02 {

return ans; ot 1 = 0%d:
11} 03 ?ntr p%aq;

04 if(r==0)

05 return q;
06 return ged(q, 1);
07}
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Recursive Extended GCD

+ Given a>b>0, find g=GCD(a,b) and x,ys.t.ax+by=g
where [x|<b+1 and |y|<a+1

+ Leta=qb+r,b>r20=>(qb+r)x+by=g¢g
=>b(gx+ty) +trx=g
=>by +rx =g, wherey'=qx+y
< This means that if we can find y' and x satisfying b y' + (a%b) x =g
thenxandy=y'—qx=y'—(a/b) x satisfiesax +by=g
Note that in this way r will eventually be 0
01 void extged(int a, int b, int *g, int *x, int *y) { //a>b>=0
02 if(b==0)
03 *g=a, *x=1,*y=0;
04 else {
05 extged(b, a%b, g, y, X);
06 *y =%y - (a/b)*(*x);
07 1}
08 } 40




