

7

Greatest Common Divisor (cont'd)

∈Z

- * The above proves only the existence of integers x and y
- * How about gcd(x, y)?

$$d = a \cdot x + b \cdot y$$

$$d = \gcd(a, b) \implies 1 = a/d \cdot x + b/d \cdot y$$

If $\gcd(x, y) = r$ then $1 = a/d \cdot (x' \cdot r) + b/d \cdot (y' \cdot r)$
i.e. $1 = r \cdot (a/d \cdot x' + b/d \cdot y')^{e'}$
which means that $r \mid 1$ i.e. $r = 1$
 $\gcd(x, y) = 1$

Note: gcd(x, y) = 1 but (x, y) is not unique

e.g.
$$d = a x + b y = a (x-kb) + b (y+ka)$$

Greatest Common Divisor (cont'd)

Lemma: $gcd(a,b) = gcd(x,y) = gcd(a,y) = gcd(x,b) = 1 \Leftrightarrow$ $\exists a, b, x, y \text{ s.t. } 1 = a x + b y$

pf:(⇒)

following the previous theorem

 (\Leftarrow)

Given a, b, z, if $\exists x, y, \gcd(x,y)=1$ s.t. z = ax + bythen $\gcd(a, b) \mid z$ (also $\gcd(a, y) \mid z, \gcd(x, b) \mid z$) (let $d = \gcd(a, b) \Rightarrow d \mid a$ and $d \mid b \Rightarrow d \mid a x + b y \Rightarrow d \mid z$) especially, given a, b, $\exists x, y$ s.t. 1 = a x + b y $\Rightarrow \gcd(a, b) \mid 1 \Rightarrow \gcd(a, b) = 1$

Operations under mod n

♦ Proposition:

Let a,b,c,d,n be integers with $n \neq 0$, suppose $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then $a + c \equiv b + d \pmod{n}$, $a - c \equiv b - d \pmod{n}$, $a \cdot c \equiv b \cdot d \pmod{n}$

♦ Proposition:

Let a,b,c,n be integers with $n \neq 0$ and gcd(a,n) = 1. If $a \cdot b \equiv a \cdot c \pmod{n}$ then $b \equiv c \pmod{n}$

Matrix inversion under mod n

 A square matrix is invertible mod n if and only if its determinant and n are relatively prime

 \diamond ex: in real field R

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)^{-1} = \frac{1}{ad - bc} \left(\begin{array}{cc} d & -b \\ -c & a \end{array}\right)$$

9

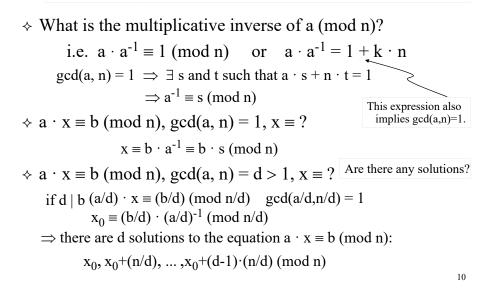
11

∻

∻

In a finite field Z (mod n)? we need to find the inverse for ad-bc (mod n) in order to calculate the inverse of the matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} \equiv (ad - bc)^{-1} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \pmod{n}$

Operations under mod n



Group

A group G is a finite or infinite set of elements and a binary operation × which together satisfy

1. Closure:	$\forall a, b \in G$	$a \times b = c \in G$	封閉性		
2. Associativity	$\forall a,b,c \in G$	$(a \times b) \times c = a \times (b \times c)$	結合性		
3. Identity:	$\forall \ a \in G$	$1 \times a = a \times 1 = a$	單位元素		
4. Inverse:	$\forall \ a \in G$	$\mathbf{a} \times \mathbf{a}^{-1} = 1 = \mathbf{a}^{-1} \times \mathbf{a}$	反元素		
Abelian group	交換群	$\forall a,b \in G \qquad a \times b = b \times a$	a		
Cyclic group G of order m: a group defined by an element $g \in G$ such that g, g^2, g^3, \dots, g^m are all distinct					
element $a \in G$ such that $a = a^2 a^3 = a^m$ are all distinct					
$ chemican g \subset G such mat g, g, g, \dots, g are an distinct $					

elements in G (thus cover all elements of G) and $g^m = 1$, the element g is called a generator of G. Ex: Z_n (or Z/nZ)

Group (cont'd)

- ♦ The order of a group: the number of elements in a group G, denoted |G|. If the order of a group is a finite number, the group is said to be a finite group, note $g^{|G|} = 1$ (the identity element).
- ♦ The order of an element g of a finite group G is the smallest power m such that $g^m = 1$ (the identity element), denoted by $ord_G(g)$
- $\begin{array}{l} \diamond \ \text{ex: } \mathbf{Z_n}: \ \text{additive group modulo n is the set } \{0, 1, \dots, n\text{-}1\} \\ & \text{binary operation: } + (\text{mod n}) \\ & \text{identity: } 0 \\ & \text{inverse: } \text{-x} \equiv n\text{-x} \ (\text{mod n}) \end{array} \qquad \begin{array}{l} \text{size of } Z_n \ \text{is n,} \\ g + g + \dots + g \equiv 0 \ (\text{mod n}) \end{array}$
- $\Rightarrow ex: \mathbf{Z}_{\mathbf{n}}^{*}: \text{ multiplicative group modulo n is the set } \{i:0 < i < n, gcd(i,n) = 1\}$ binary operation: × (mod n) identity: 1 $g^{\phi(n)} \equiv 1 \pmod{n}$

inverse: x⁻¹ can be found using extended Euclidean Algorithm

13

Properties of the ring Z_m

♦ Consider the ring Z_m = {0, 1, ..., m-1}
★ The additive identity "0": $a + 0 \equiv a \pmod{m}$ ★ The additive inverse of $a: -a - m - a \operatorname{s.t.} a + (-a) \equiv 0 \pmod{m}$ ★ Addition is closed i.e if $a, b \in Z_m$ then $a + b \in Z_m$ ★ Addition is commutative $a + b \equiv b + a \pmod{m}$ ★ Addition is associative $(a + b) + c \equiv a + (b + c) \pmod{m}$ ★ Multiplicative identity "1": $a \times 1 \equiv a \pmod{m}$ ★ The multiplicative inverse of a exists only when gcd(a,m) = 1and denoted as a^{-1} s.t. $a^{-1} \times a \equiv 1 \pmod{m}$ ★ Multiplication is closed i.e. if $a, b \in Z_m$ then $a \times b \in Z_m$ ★ Multiplication is commutative $a \times b \equiv b \times a \pmod{m}$ ★ Multiplication is commutative $a \times b \equiv b \times a \pmod{m}$ ★ Multiplication is associative $(a \times b) \times c \equiv a \times (b \times c) \pmod{m}$

Ring Z_m

- Definition: The ring Z_m consists of
 The set Z_m = {0, 1, 2, ..., m-1}
 Two operations "+ (mod m)" and "× (mod m)"
 - for all $a, b \in \mathbb{Z}_m$ such that they satisfy the properties on the next slide
- $\Rightarrow Example: m = 9 \ Z_9 = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$ 6 + 8 = 14 = 5 (mod 9) 6 × 8 = 48 = 3 (mod 9)

Some remarks on the ring Z_m

- A ring is an Abelian group under addition and a semigroup under multiplication.
- A semigroup is defined for a set and a binary operator in which the multiplication operation is <u>associative</u>. No other restrictions are placed on a semigroup; thus a semigroup <u>need not have an identity</u> element and its elements need not have **inverses** within the semigroup.

Some remarks on the ring Z_m (cont'd)

♦ Roughly speaking a ring is a mathematical structure in which we can add, subtract, multiply, and even sometimes divide. (A ring in which every element has multiplicative inverse is called a field.)

> **★ Example:** Is the division 4/15 (mod 26) possible? In fact, $4/15 \mod 26 \equiv 4 \times 15^{-1} \pmod{26}$ Does $15^{-1} \pmod{26}$ exist? It exists only if gcd(15, 26) = 1. $15^{-1} \equiv 7 \pmod{26}$ therefore, $4/15 \mod 26 \equiv 4 \times 7 \equiv 28 \equiv 2 \mod 26$

Some remarks on the group $Z_m and Z_m^*$

♦ The modulo operation can be applied whenever we want

under Z_m $(a + b) \pmod{m} \equiv [(a \pmod{m}) + ((b \mod{m}))] \pmod{m}$

under Z_m^* $(a \times b) \pmod{m} \equiv [(a \pmod{m})) \times ((b \mod{m}))] \pmod{m}$ $a^b \pmod{m} \equiv (a \pmod{m})^b \pmod{m}$

$$\mathcal{A} \qquad \text{Question? } a^b \pmod{m} \stackrel{?}{\equiv} a^{(b \mod m)} \pmod{m}$$

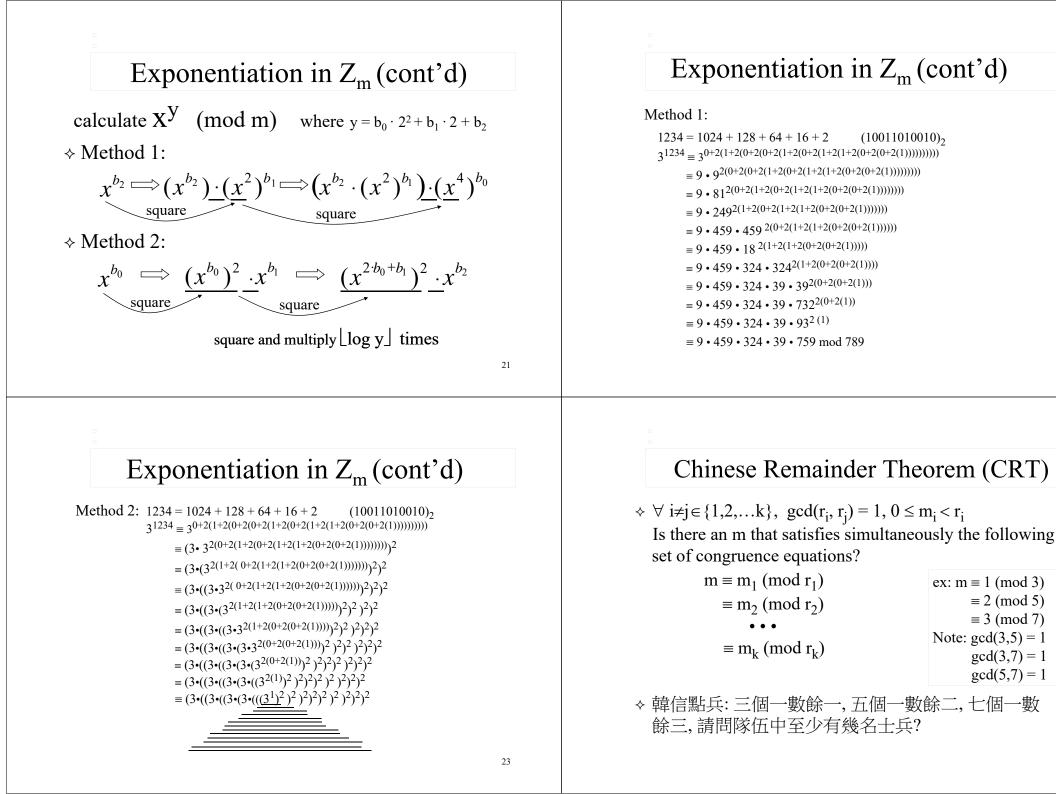
17

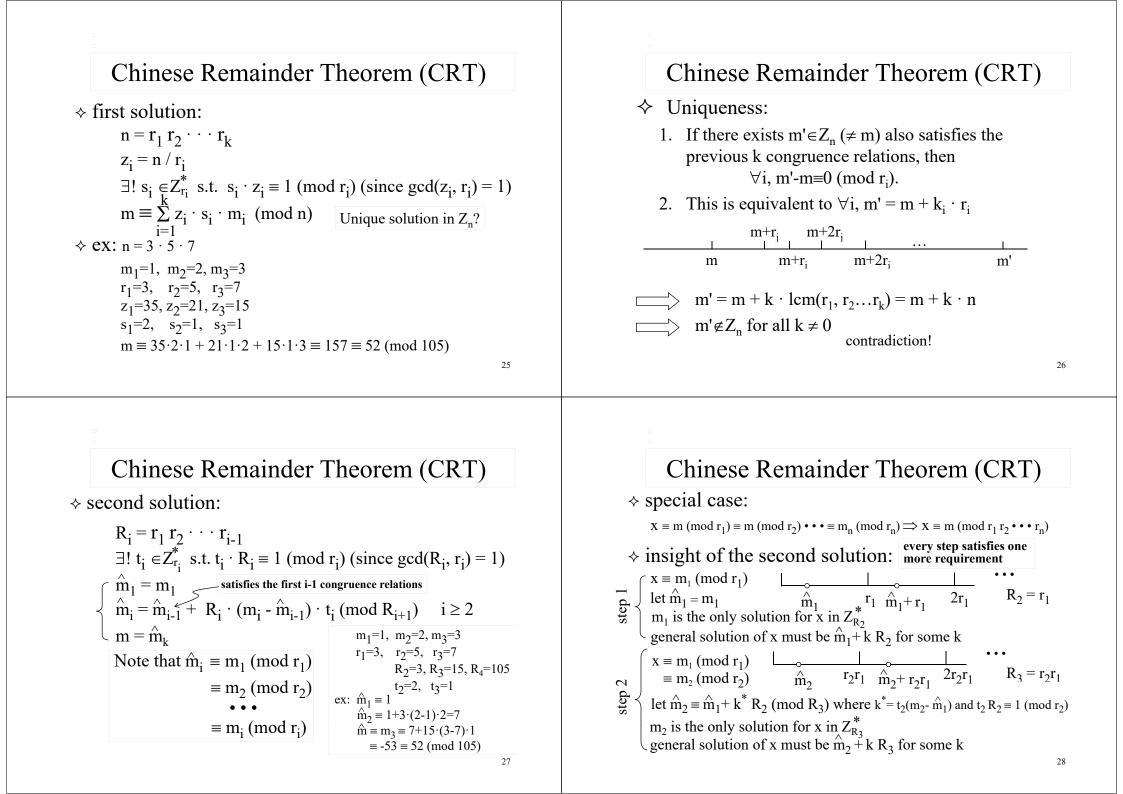
Exponentiation in Z_m

- \Leftrightarrow Example: $3^8 \pmod{7} \equiv ?$
 - $3^8 \pmod{7} \equiv 6561 \pmod{7} \equiv 2 \text{ since } 6561 \equiv 937 \times 7 + 2$ or $3^8 \pmod{7} \equiv 3^4 \times 3^4 \pmod{7} \equiv 3^2 \times 3^2 \times 3^2 \times 3^2 \pmod{7}$ $\equiv (3^2 \pmod{7}) \times (3^2 \pmod{7}) \times (3^2 \pmod{7}) \times (3^2 \pmod{7})$ $\equiv 2 \times 2 \times 2 \times 2 \pmod{7} \equiv 16 \pmod{7} \equiv 2$
- \diamond The cyclic group Z_m^* and the modulo arithmetic is of central importance to modern public-key cryptography. In practice, the order of the integers involved in PKC are in the range of $[2^{160}, 2^{1024}]$. Perhaps even larger.

Exponentiation in Z_m (cont'd)

How do we do the exponentiation efficiently?					
$\Rightarrow 3^{1234} \pmod{789}$ many ways to do this					
a. do 1234 times multiplication and then calculate remainder					
b. repeat 1234 times (multiplication by 3 and calculate remainder)					
c. repeated log 1234 times (square, multiply and calculate remainder)					
ex. first tabulate					
$3^2 \equiv 9 \pmod{789}$ $3^{32} \equiv 459^2 \equiv 18$ $3^{512} \equiv 732^2 \equiv 93$					
$3^4 \equiv 9^2 \equiv 81$ $3^{64} \equiv 18^2 \equiv 324$ $3^{1024} \equiv 93^2 \equiv 759$					
$3^8 \equiv 81^2 \equiv 249 \qquad \qquad 3^{128} \equiv 324^2 \equiv 39$					
$3^{16} = 249^2 = 459$ $3^{256} = 39^2 = 732$					
$1234 = 1024 + 128 + 64 + 16 + 2 \qquad (10011010010)_2$ $3^{1234} \equiv 3^{(1024+128+64+16+2)} \equiv (((759 \cdot 39) \cdot 324) \cdot 459) \cdot 9 \equiv 105 \pmod{789}$					





Chinese Remainder Theorem (CRT)				
\diamond Applications: solve $x^2 \equiv 1 \pmod{35}$				
$*35 = 5 \cdot 7$				
* x* satisfies $f(x^*) \equiv 0 \pmod{35} \iff$				
x* satisfies both $f(x^*) \equiv 0 \pmod{5}$ and $f(x^*) \equiv 0 \pmod{7}$				
Proof: (⇐)				
	$f(x^*) = k_1 \cdot p \text{ and } f(x^*) = k_2 \cdot q \text{ imply that}$ $f(x^*) = k \cdot \operatorname{lcm}(p \cdot q) = k \cdot p \cdot q \text{ i.e. } f(x^*) \equiv 0 \pmod{p \cdot q}$			
(\Rightarrow)				
	$f(x^*) = k \cdot p \cdot q \text{ implies that}$ $f(x^*) = (k \cdot p) \cdot q = (k \cdot q) \cdot p \text{i.e. } f(x^*) \equiv 0 \pmod{p}$ $\equiv 0 \pmod{q}$ ²⁹			

Matlab tools

format rat format long format long matrix inverse inv(A) matrix determinant det(A) r = mod(p, d) or r = rem(p, d)p = q d + rq = floor(p / d)g = gcd(a, b)g = a s + b t[g, s, t] = gcd(a, b)factoring factor(N) prime numbers < N primes(N) isprime(p) test prime mod exponentiation * powermod(a,b,n) find primitive root * primitiveroot(p) crt * $crt([a_1 a_2 a_3...], [m_1 m_2 m_3...])$ eulerphi(N) $\phi(N)$ *

Chinese Remainder Theorem (CRT)

★ since 5 and 7 are prime, we can solve				
$x^2 \equiv 1 \pmod{5}$ and $x^2 \equiv 1 \pmod{7}$	W/har?			
far more easily than $x^2 \equiv 1 \pmod{35}$	Why?			
$x^2 \equiv 1 \pmod{5}$ has exactly two solutions: $x \equiv \pm 1 \pmod{5}$				
$angle x^2 \equiv 1 \pmod{7}$ has exactly two solutions: $x \equiv \pm 1 \pmod{7}$				
* put them together and use CRT, there are four solutions				
$\Rightarrow x \equiv 1 \pmod{5} \equiv 1 \pmod{7} \Rightarrow x \equiv 1 \pmod{35}$				
$\Rightarrow x \equiv 1 \pmod{5} \equiv 6 \pmod{7} \Rightarrow x \equiv 6 \pmod{35}$				
$\Rightarrow x \equiv 4 \pmod{5} \equiv 1 \pmod{7} \Longrightarrow x \equiv 29 \pmod{35}$				
$\Rightarrow x \equiv 4 \pmod{5} \equiv 6 \pmod{7} \Rightarrow x \equiv 34 \pmod{35}$				

30

Field

- ♦ Field: a set that has the operation of addition, multiplication, subtraction, and division by nonzero elements. Also, the associative, commutative, and distributive laws hold.
- ♦ Ex. Real numbers, complex numbers, rational numbers, integers mod a prime are fields
- \diamond Ex. Integers, 2×2 matrices with real entries are not fields

$$\Rightarrow \text{ Ex. GF}(4) = \{0, 1, \omega, \omega^2\}$$

$\Rightarrow 0 + x = x$	• Addition and multiplication are commutative and
$\Rightarrow x + x = 0$	associative, and the distributive law $x(y+z)=xy+xz$
$\Rightarrow 1 \cdot \mathbf{x} = \mathbf{x}$	holds for all x, y, z
$\Rightarrow \omega + 1 = \omega^2$	• $x^3 = 1$ for all nonzero elements

Galois Field

- Galois Field: A field with finite element, finite field
- For every power pⁿ of a prime, there is exactly one finite field with pⁿ elements (called GF(pⁿ)), and these are the only finite fields.
- $\Rightarrow \ For \ n \geq 1, \ \{integers \ (mod \ p^n)\} \ do \ not \ form \ a \ field.$
 - * Ex. $p \cdot x \equiv 1 \pmod{p^n}$ does not have a solution (i.e. p does not have multiplicative inverse)

How to construct a $GF(p^n)$?

- ♦ Def: Z₂[X]: the set of polynomials whose coefficients are integers mod 2
 - * ex. 0, 1, $1+X^3+X^6...$
 - * add/subtract/multiply/divide/Euclidean Algorithm: process all coefficients mod 2

 $\Rightarrow (1+X^2+X^4) + (X+X^2) = 1+X+X^4$ bitwise XOR

 $\Rightarrow (1+X+X^3)(1+X) = 1+X^2+X^3+X^4$

 $\Rightarrow X^4 + X^3 + 1 = (X^2 + 1)(X^2 + X + 1) + X$ long division can be written as $X^4 + X^3 + 1 \equiv X \pmod{X^2 + X + 1}$

33

How to construct $GF(2^n)$?

- $\diamond \text{ Define } Z_2[X] \pmod{X^2+X+1} \text{ to be } \{0, 1, X, X+1\}$
 - * addition, subtraction, multiplication are done mod $X^{2}+X+1$
 - * $f(X) \equiv g(X) \pmod{X^2 + X + 1}$
 - ★ if f(X) and g(X) have the same remainder when divided by X²+X+1
 ★ or equivalently ∃ h(X) such that f(X) g(X) = (X²+X+1) h(X)
 ★ ex. X · X = X² ≡ X+1 (mod X²+X+1)
 - * if we replace X by ω , we can get the same GF(4) as before
 - * the modulus polynomial $X^{2}+X+1$ should be irreducible

Irreducible: polynomial does not factor into polynomials of lower degree with mod 2 arithmetic ex. $X^{2}+1$ is not irreducible since $X^{2}+1 = (X+1)(X+1)$

How to construct $GF(p^n)$?

- $\Rightarrow Z_p[X]$ is the set of polynomials with coefficients mod p
- Choose P(X) to be any one irreducible polynomial mod p of degree n (other irreducible P(X)'s would result to isomorphisms)
- $\checkmark \text{ Let } GF(p^n) \text{ be } Z_p[X] \mod P(X)$
 - ♦ An element in $Z_p[X] \mod P(X)$ must be of the form $a_0 + a_1 X + ... + a_{n-1} X^{n-1}$ each a_i are integers mod p, and have p choices, hence
 - there are p^n possible elements in $GF(p^n)$
 - * multiplicative inverse of any element in GF(pⁿ) can be found using extended Euclidean algorithm(over polynomial)

$GF(2^8)$

- ♦ AES (Rijndael) uses $GF(2^8)$ with irreducible polynomial $X^8 + X^4 + X^3 + X + 1$
- \diamond each element is represented as $b_7 X^7 + b_6 X^6 + b_5 X^5 + b_4 X^4 + b_3 X^3 + b_2 X^2 + b_1 X + b_0$ each b_i is either 0 or 1
- \diamond elements of GF(2⁸) can be represented as 8-bit bytes $b_7b_6b_5b_4b_3b_2b_1b_0$
- \diamond mod 2 operations can be implemented by XOR in H/W

37

39

$GF(p^n)$

 \diamond Definition of generating polynomial g(X) is parallel to the generator in Z_p : \star every element in GF(pⁿ) (except 0) can be expressed as a power of g(X)* the smallest exponent k such that $g(X)^{k} \equiv 1$ is $p^{n} - 1$ \diamond Discrete log problem in GF(pⁿ): \star given h(X), find an integer k such that $h(X) \equiv g(X)^k \pmod{P(X)}$ * believed to be very hard in most situations 38 **Recursive Extended GCD** \Leftrightarrow Given a>b≥0, find g=GCD(a,b) and x, y s.t. a x + b y = g where $|x| \le b+1$ and $|y| \le a+1$ ♦ Let a = q b + r, $b > r \ge 0 \implies (q b + r) x + b y = g$ \Rightarrow b (q x + y) + r x = g \Rightarrow b y' + r x = g, where y' = g x + y \Rightarrow This means that if we can find y' and x satisfying b y' + (a%b) x = g then x and y = y' - q x = y' - (a/b) x satisfies a x + b y = gNote that in this way r will eventually be 0 01 void extgcd(int a, int b, int *g, int *x, int *y) $\{ // a > b >= 0$ 02 if (b == 0)*g = a, *x = 1, *y = 0;04 else { extgcd(b, a%b, g, y, x);05 *y = *y - (a/b)*(*x);06 07 08 } 40

Recursive GCD

01 in 02 {	t gcd(int p, int q) // assume p	>= q		
02 1 03 04	int ans;			
05 06 07 08 09 10 11 }	if (p % q == 0) ans = q;			
	else ans = gcd(q, p % q);	01 int gcd(int p, int q) 02 {		
	return ans;	$ \begin{array}{l} 02 \\ 03 & \text{int } r = p\%q; \\ 04 & \text{if } (r == 0) \\ 05 & \text{return } q; \\ 06 & \text{return } \gcd(q, r); \\ 07 \\ \end{array} $		