- •
- •
- •
- •

- •

Prime Numbers

۲

密碼學與應用 海洋大學資訊工程系 丁培毅

Prime Numbers

Prime number: an integer p>1 that is divisible only by 1 and itself, ex. 2, 3,5, 7, 11, 13, 17...

Composite number: an integer n>1 that is not prime

✦ Fact: there are infinitely many prime numbers. (by Euclid)

pf: \Rightarrow on the contrary, assume a_n is the largest prime number \Rightarrow let the finite set of prime numbers be $\{a_0, a_1, a_2, \dots, a_n\}$

 \Rightarrow the number $b = a_0^* a_1^* a_2^* \dots^* a_n + 1$ is not divisible by any a_i

i.e. b does not have prime factors $\leq a_n$

2 cases: > if b has a prime factor d, b>d> a_n, then "d is a prime number that is larger than a_n" ... contradiction
> if b does not have any prime factor less than b, then "b is a prime number that is larger than a_n" ... contradiction

Prime Number Theorem

♦ Prime Number Theorem:

* Let $\pi(x)$ be the number of primes less than x

* Then

$$\pi(\mathbf{x}) \approx \frac{\mathbf{x}}{\ln \mathbf{x}}$$

in the sense that the ratio $\pi(x) / (x/\ln x) \rightarrow 1$ as $x \rightarrow \infty$

* Also,
$$\pi(x) \ge \frac{x}{\ln x}$$
 and for $x \ge 17$, $\pi(x) \le 1.10555 \frac{x}{\ln x}$

♦ Ex: number of 100-digit primes

$$\pi(10^{100}) - \pi(10^{99}) \approx \frac{10^{100}}{\ln 10^{100}} - \frac{10^{99}}{\ln 10^{99}} \approx 3.9 \times 10^{97}$$

3

Factors

Every composite number can be expressible as a product a·b of integers with 1 < a, b< n</p>

Every positive integer has a unique representation as a product of prime numbers raised to different powers.

 \Rightarrow Ex. 504 = 2³ · 3² · 7, 1125 = 3² · 5³

Factors

♦ Lemma: p is a prime number and p | a·b ⇒ p | a or p | b, more generally, p is a prime number and p | a·b·...·z
⇒ p must divide one of a, b, ..., z

***** proof:

- \Rightarrow case 1: p | a
- \Rightarrow case 2: p \nmid a,
 - ightarrow p/a and p is a prime number \Rightarrow gcd(p, a) = 1 \Rightarrow 1 = a x + p y
 - > multiply both side by b, $b = \underline{b \ a} \ x + b \ \underline{p} \ y$

 \succ p | a b \Rightarrow p | b

☆ In general: if p | a then we are done, if p / a then p | bc...z, continuing this way, we eventually find that p divides one of the factors of the product

Factorization into primes

Theorem: Every positive integer is a product of primes.
 This factorization into primes is unique, up to

reordering of the factors.

* Proof: product of primes

- Empty product equals 1.
- Prime is a one factor product.
- ★ assume there exist positive integers that are not product of primes

☆ let n be the smallest such/integer

- \Rightarrow since n can not be 1 or a prime, n must be composite, i.e. $n = a \cdot b$
- \Rightarrow since n is the smallest, both a and b must be products of primes.
- $aigeta n = a \cdot b$ must also be a product of primes, contradiction
- * Proof: uniqueness of factorization
 - $\Rightarrow \text{ assume } n = r_1^{c_1} r_2^{c_2} \cdots r_k^{c_k} p_1^{a_1} p_2^{a_2} \cdots p_s^{a_s} = r_1^{c_1} r_2^{c_2} \cdots r_k^{c_k} q_1^{b_1} q_2^{b_2} \cdots q_t^{b_t}$ where p_i , q_j are all distinct primes.
 - $\Rightarrow \text{ let } \mathbf{m} = \mathbf{n} / (\mathbf{r}_1^{c_1} \mathbf{r}_2^{c_2} \cdots \mathbf{r}_k^{c_k})$
 - ★ consider p_1 for example, since p_1 divide $m = q_1q_1..q_1q_2...q_t$, p_1 must divide one of the factors q_j , contradict the fact that " p_i , q_j are distinct primes"

("Fair-MAH")

Fermat's Little Theorem

 \Rightarrow If p is a prime, p / a then $a^{p-1} \equiv 1 \pmod{p}$ $\Rightarrow \text{let S} = \{1, 2, 3, ..., p-1\} (Z_p^*), \text{ define } \psi(x) \equiv a \cdot x \pmod{p} \text{ be}$ Proof: a mapping $\psi: S \rightarrow Z$ $\Rightarrow \forall x \in S, \psi(x) \neq 0 \pmod{p} \Rightarrow \forall x \in S, \psi(x) \in S, i.e. \psi: S \rightarrow S$ if $\psi(x) \equiv a \cdot x \equiv 0 \pmod{p} \implies x \equiv 0 \pmod{p}$ since $gcd(a, p) \equiv 1$ $\Leftrightarrow \forall x, y \in S, \text{ if } x \neq y \text{ then } \psi(x) \neq \psi(y) \text{ since }$ if $\psi(x) \equiv \psi(y) \Rightarrow a \cdot x \equiv a \cdot y \Rightarrow x \equiv y$ since gcd(a, p) = 1 \Rightarrow from the above two observations, $\psi(1)$, $\psi(2)$,... $\psi(p-1)$ are distinct elements of S $\Rightarrow 1 \cdot 2 \cdot \dots \cdot (p-1) \equiv \psi(1) \cdot \psi(2) \cdot \dots \cdot \psi(p-1) \equiv (a \cdot 1) \cdot (a \cdot 2) \cdot \dots \cdot (a \cdot (p-1))$ $\equiv a^{p-1} (1 \cdot 2 \cdot ... \cdot (p-1)) \pmod{p}$ \Rightarrow since gcd(j, p) = 1 for $j \in S$, we can divide both side by 1, 2, 3, ... p-1, and obtain $a^{p-1} \equiv 1 \pmod{p}$

Fermat's Little Theorem

♦ Ex: $2^{10} = 1024 \equiv 1 \pmod{11}$ $2^{53} = (2^{10})^5 2^3 \equiv 1^5 2^3 \equiv 8 \pmod{11}$ i.e. $2^{53} \equiv 2^{53 \mod 10} \equiv 2^3 \equiv 8 \pmod{11}$

♦ if n is prime, then $2^{n-1} \equiv 1 \pmod{n}$ i.e. if $2^{n-1} \neq 1 \pmod{n}$ then n is not prime ←(*) usually, if $2^{n-1} \equiv 1 \pmod{n}$, then n is prime * exceptions: $2^{561-1} \equiv 1 \pmod{561}$ although $561 = 3 \cdot 11 \cdot 17$ $2^{1729-1} \equiv 1 \pmod{1729}$ although $1729 = 7 \cdot 13 \cdot 19$ * (*) is a quick test for eliminating composite number

<u>Euler's Totient Function $\phi(n)$ </u> $\diamond \phi(n)$: the number of integers $1 \le a \le n$ s.t. gcd(a,n) = 1* ex. n=10, $\phi(n)=4$ the set is {1,3,7,9} \diamond properties of $\phi(\bullet)$ $\star \phi(p) = p-1$, if p is prime $\star \phi(p^r) = p^r - p^{r-1} = (1 - 1/p) \cdot p^r$, if p is prime $\star \phi(n \cdot m) = \phi(n) \cdot \phi(m)$ if gcd(n,m) = 1排容原理 n m - (n- $\phi(n)$) m - (m- $\phi(m)$) n + (n- $\phi(n)$) (m- $\phi(m)$) = $\phi(n) \phi(m)$ $\star \phi(n \cdot m) =$ $\phi((d_1/d_2/d_3)^2) \cdot \phi(d_2^3) \cdot \phi(d_3^3) \cdot \phi(n/d_1/d_2) \cdot \phi(m/d_1/d_3)$ if $gcd(n,m)=d_1$, $gcd(n/d_1,d_1)=d_2$, $gcd(m/d_1,d_1)=d_3$ $\star \phi(n) = n \operatorname{Pr}(1-1/p)$

 \Rightarrow ex. $\phi(10) = (2-1) \cdot (5-1) = 4 \quad \phi(120) = 120(1-1/2)(1-1/3)(1-1/5) = 32$

How large is $\phi(n)$?

 $\Rightarrow \phi(n) \approx n \cdot 6/\pi^2$ as n goes large

Probability that a prime number p is a factor of a random number r is 1/p

♦ Probability that two independent random numbers r₁ and r₂ both have a given prime number p as a factor is $1/p^2$

♦ The probability that they do not have p as a common factor is thus $1 - 1/p^2$

♦ The probability that two numbers r₁ and r₂ have no common prime factor is P = (1-1/2²)(1-1/3²)(1-1/5²)(1-1/7²)...

Pr{
$$r_1$$
 and r_2 relatively prime }
 \Rightarrow Equalities:
 $\frac{1}{1-x} = 1+x+x^2+x^3+...$
 $1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+...=\pi^2/6$
 \Rightarrow P = $(1-1/2^2)(1-1/3^2)(1-1/5^2)(1-1/7^2)\cdot...$
 $= ((1+1/2^2+1/2^4+...)(1+1/3^2+1/3^4+...)\cdot...)^{-1}$
 $= (1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+...)^{-1}$
 $= 6/\pi^2$
 ≈ 0.61

۲

each positive number has a unique prime number factorization ex. $45^2 = 3^4 \cdot 5^2$

How large is $\phi(n)$?

 $\Rightarrow \phi(n)$ is the number of integers less than n that are relative prime to n

- $\Rightarrow \phi(n)/n$ is the probability that a randomly chosen integer is relatively prime to n
- ♦ Therefore, $\phi(n) \approx n \cdot 6/\pi^2$
- $P_n = Pr \{ n \text{ random numbers have no common factor } \}$
 - n independent random numbers all have a given prime p as a factor is 1/pⁿ
 - * They do not all have p as a common factor $1 1/p^n$
 - * $P_n = (1+1/2^n+1/3^n+1/4^n+1/5^n+1/6^n+...)^{-1}$ is the Riemann zeta function $\zeta(n)$ http://mathworld.wolfram.com/RiemannZetaFunction.html * Ex. n=4, $\zeta(4) = \pi^4/90 \approx 0.92$

Euler's Theorem This is true even when $n = p^2$ \Rightarrow If gcd(a,n)=1 then $a^{\phi(n)} \equiv 1 \pmod{n}$ **Proof:** \Rightarrow let S be the set of integers $1 \le x \le n$, with gcd(x, n) = 1, define $\psi(x) \equiv a \cdot x \pmod{n}$ be a mapping $\psi: S \rightarrow Z$ $\Rightarrow \forall x \in S \text{ and } gcd(a, n) = 1, \quad \text{if } \psi(x) \equiv a \cdot x \equiv 0 \pmod{n} \Rightarrow x \equiv 0 \pmod{n}$ $gcd(\psi(x), n) = 1 \quad \forall x \in S, \ \psi(x) \in S, \ i.e. \ \psi: S \rightarrow S$ $\Leftrightarrow \forall x, y \in S, \text{ `if } x \neq y \text{ then } \psi(x) \not\equiv \psi(y) \pmod{n}$ ' $- if \psi(x) \equiv \psi(y) \Rightarrow a \cdot x \equiv a \cdot y \Rightarrow x \equiv y \text{ since } gcd(a, n) = 1$ \Rightarrow from the above two observations, $\forall x \in S, \psi(x)$ are distinct elements of S (i.e. $\{\psi(x) \mid \forall x \in S\}$ is S) $\prod x \equiv \prod \psi(x) \equiv a^{\phi(n)} \prod x \pmod{n}$ $x \in S$ $x \in S$ x∈S \Rightarrow since gcd(x, n) = 1 for x \in S, we can divide both side by x \in S one after another, and obtain $a^{\phi(n)} \equiv 1 \pmod{n}$ 13

Euler's Theorem

♦ Example: What are the last three digits of 7⁸⁰³?
i.e. we want to find 7⁸⁰³ (mod 1000) $1000 = 2^3 \cdot 5^3$, $\phi(1000) = 1000(1-1/2)(1-1/5) = 400$ $7^{803} \equiv 7^{803 \pmod{400}} \equiv 7^3 \equiv 343 \pmod{1000}$

♦ Example: Compute $2^{43210} \pmod{101}$? $101 = 1 \cdot 101, \qquad \phi(101) = 100$ $2^{43210} \equiv 2^{43210} \pmod{100} \equiv 2^{10} \equiv 1024 \equiv 14 \pmod{101}$

A second proof of Euler's Theorem Euler's Theorem: $\forall a \in Z_n^*, a^{\phi(n)} \equiv 1 \pmod{n}$

 \diamond We have proved the above theorem by showing that the function $\psi(x) \equiv a \cdot x \pmod{n}$ is a permutation. ♦ We can also prove it through Fermat's Little Theorem consider $\mathbf{n} = \mathbf{p} \cdot \mathbf{q}$, $\forall a \in Z_p^*, a^{p-1} \equiv 1 \pmod{p} \Longrightarrow (a^{p-1})^{q-1} \equiv a^{\phi(n)} \equiv 1 \pmod{p}$ $\forall a \in Z_q^*, a^{q-1} \equiv 1 \pmod{q} \Rightarrow (a^{q-1})^{p-1} \equiv a^{\phi(n)} \equiv 1 \pmod{q}$ from CRT, $\forall a \in \mathbb{Z}_n^*$ (i.e. p / a and q / a), $a^{\phi(n)} \equiv 1 \pmod{n}$ note: the above proof is not valid when p=q

Carmichael Theorem

Carmichael's Theorem:

 $\forall a \in \mathbb{Z}_{n}^{*}, a^{\lambda(n)} \equiv 1 \pmod{n} \text{ and } a^{n \cdot \lambda(n)} \equiv 1 \pmod{n^{2}}$ where n=p·q, p ≠ q, $\lambda(n) = \operatorname{lcm}(p-1, q-1), \lambda(n) | \phi(n)$

♦ like Euler's Theorem, we can prove it through Fermat's Little Theorem, consider n = p · q, where p≠q, ∀a∈Z_p*, a^{p-1} ≡ 1 (mod p) ⇒ (a^{p-1})^{(q-1)/gcd(p-1,q-1)} ≡ a^{λ(n)} ≡ 1 (mod p) ∀a∈Z_q*, a^{q-1} ≡ 1 (mod q) ⇒ (a^{q-1})^{(p-1)/gcd(p-1,q-1)} ≡ a^{λ(n)} ≡ 1 (mod q) from CRT, ∀a ∈ Z_n* (i.e. p∤ a and q∤a), a^{λ(n)} ≡ 1 (mod n) therefore, ∀a∈Z_n*, a^{λ(n)} = 1 + k · n raise both side to the n-th power, we get a^{n·λ(n)} = (1 + k · n)ⁿ, ⇒ a^{n·λ(n)} = 1 + n·k·n + ... ⇒ ∀a ∈ Z_n* (or Z_n*), a^{n·λ(n)} ≡ 1 (mod n²)

Basic Principle to do Exponentiation

♦ Let a, n, x, y be integers with n≥1, and gcd(a,n)=1 if x ≡ y (mod $\phi(n)$), then a^x ≡ a^y (mod n).

♦ If you want to work mod n, you should work mod $\phi(n)$ or $\lambda(n)$ in the exponent.

Primitive Roots modulo p

♦ When p is a prime number, a primitive root modulo p is a number whose powers yield every nonzero element mod p. (equivalently, the order of a primitive root is p-1)
♦ ex: 3¹=3, 3²=2, 3³=6, 3⁴=4, 3⁵=5, 3⁶=1 (mod 7)

3 is a primitive root mod 7

\$ sometimes called a multiplicative generator
\$ there are plenty of primitive roots, actually φ(p-1)
* ex. p=101, φ(p-1)=100·(1-1/2)·(1-1/5)=40 p=143537, φ(p-1)=143536·(1-1/2)·(1-1/8971)=71760

Primitive Testing Procedure

How do we test whether h is a primitive root modulo p?
* naïve method:

go through all powers h^2 , h^3 , ..., h^{p-2} , and make sure $\neq 1$ modulo p

* faster method:

assume p-1 has prime factors $q_1, q_2, ..., q_n$, for all q_i , make sure $h^{(p-1)/q_i}$ modulo p is not 1, then h is a primitive root

Intuition: let $h \equiv g^{a} \pmod{p}$, if gcd(a, p-1)=d (i.e. g^{a} is not a primitive root), $(g^{a})^{(p-1)/q_{i}} \equiv (g^{a/q_{i}})^{(p-1)} \equiv 1 \pmod{p}$ for some $q_{i} \mid d$

Primitive Testing Procedure (cont'd)

\diamond Procedure to test a primitive g:

assuming p-1 has prime factors $q_1, q_2, ..., q_n$, (i.e. p-1 = $q_1^{r_1}...q_n^{r_n}$) for all q_i , make sure $g^{(p-1)/q_i} \pmod{p}$ is not 1 Proof:

(a) by definition, g^{ord_p(g)} ≡ 1 (mod p), g^{φ(p)} ≡ 1 (mod p) therefore ord_p(g) ≤ φ(p) if φ(p) = ord_p(g) * k + s with s < ord_p(g) g^{φ(p)} ≡ g<sup>ord_p(g) * k g^s ≡ g^s ≡ 1 (mod p), but s < ord_p(g) ⇒ s = 0 ⇒ ord_p(g) | φ(p) and ord_p(g) ≤ φ(p)
(b) assume g is not a primitive root i.e ord_p(g) < φ(p)=p-1 then ∃ i, such that ord_p(g) | (p-1)/q_i i.e. g^{(p-1)/q_i} ≡ 1 (mod p) for some q_i
(c) if for all q_i, g<sup>(p-1)/q_i ≠ 1 (mod p) then ord_p(g) = φ(p) and g is a primitive root modulo p
</sup></sup>

Number of Primitive Root in Z_p*

 \Rightarrow Why are there $\phi(p-1)$ primitive roots? \star let g be a primitive root (the order of g is p-1) an integer less than p-1 * g, g^2 , g^3 , ..., g^{p-1} is a permutation of 1,2,...p-1 * if gcd(a, p-1)=d, then $(g^{a})^{(p-1)/d} \equiv (g^{a/d})^{(p-1)} \equiv 1 \pmod{p}$ which says that the order of g^a is at most (p-1)/d, therefore, g^a is not a primitive root \Rightarrow There are at most $\phi(p-1)$ primitive roots in Z_{p}^{*} * For an element g^a in Z_p^* where gcd(a, p-1) = 1, it is guaranteed that $(g^a)^{(p-1)/q_i} \neq 1 \pmod{p}$ for all q_i (q_i is factors or p-1) assume that for a certain q_i , $(g^a)^{(p-1)/q_i} \equiv 1 \pmod{p}$ \Rightarrow p-1 | a · (p-1) / q_i $\Rightarrow \exists \text{ integer } k, a \cdot (p-1) / q_i = k \cdot (p-1) \text{ i.e. } a = k \cdot q_i$ $\Rightarrow q_i \mid a$ $\Rightarrow q_i | gcd(a, p-1) contradiction$

Multiplicative Generators in Z_n*

- ♦ How do we define a multiplicative generator in Z_n^* if n is a composite number?
 - * Is there an element in Z_n^* that can generate all elements of Z_n^* ?
 - * If $n = p \cdot q$, the answer is negative. From Carmichael theorem, $\forall a \in Z_n^*$, $a^{\lambda(n)} \equiv 1 \pmod{n}$, gcd(p-1, q-1) is at least 2, $\lambda(n) = lcm(p-1, q-1)$ is at most $\phi(n) / 2$. The size of a maximal possible multiplicative subgroup in Z_n^* is therefore less than $\lambda(n)$.
 - * How many elements in Z_n^* can generate the maximal possible subgroup of Z_n^* ?

Finding Square Roots mod n

 \diamond For example: find x such that $x^2 \equiv 71 \pmod{77}$ * Is there any solution? * How many solutions are there? * How do we solve the above equation systematically? \diamond In general: find x s.t. $x^2 \equiv b \pmod{n}$, where $b \in QR_n$, $n = p \cdot q$, and p, q are prime numbers ♦ Easier case: find x s.t. $x^2 \equiv b \pmod{p}$, where p is a prime number, $b \in QR_p$

Note: QR_n is "Quadratic Residue in Z_n "" to be defined later

Finding Square Root mod p

 \Leftrightarrow Given $y \in \mathbb{Z}_p^*$, find x, s.t. $x^2 \equiv y \pmod{p}$, p is prime Two cases: $p \equiv 1 \pmod{4}$ (i.e. p = 4k + 1) : probabilistic algorithm $p \equiv 3 \pmod{4}$ (i.e. p = 4k + 3) : deterministic algorithm \diamond Is there any solution? check $y^{\frac{p-1}{2}} \not\supseteq 1 \pmod{p}$ Is y a QR_p? $\diamond p \equiv 3 \pmod{4}$ p+1 $x \equiv \pm y^{\frac{1}{4}} \pmod{p}$ (p+1)/4 = (4k+3+1)/4 = k+1 is an integer $x^2 = v^{(p+1)/2} = v^{(p-1)/2} \cdot v \equiv v \pmod{p}$

Finding Square Root mod p

$\diamond p \equiv 1 \pmod{4}$

* Peralta, Eurocrypt'86, $p = 2^{s} q + 1$ * 3-step probabilistic procedure $\begin{cases}
1. Choose a random number r, if <math>r^{2} \equiv y \pmod{p}, \text{ output } x = r \\
2. Calculate <math>(r + z)^{(p-1)/2} \equiv u + v z \pmod{f(z)}, \quad f(z) = z^{2} - y \\
3. If u = 0 \text{ then output } x \equiv v^{-1} \pmod{p}, \text{ else goto step 1}
\end{cases}$

note: $(b+cz)(d+ez) \equiv (bd+ce z^2) + (be+cd) z$ $\equiv (bd+ce y) + (be+cd) z \pmod{z^2-y}$ use square-multiply algorithm to calculate $(r+z)^{(p-1)/2}$

* the probability to successfully find *x* for each $r \ge 1/2$

Finding Square Root mod p

♦ ex: finding x such that $x^2 \equiv 12 \pmod{13}$ solution:

Why does it work??? Why is the success probability $> \frac{1}{2}$???

Finding Square Roots mod n

 \diamond Now we return to the question of solving square roots in Z_n^* , i.e. for an integer $y \in QR_n$, find $x \in \mathbb{Z}_n^*$ such that $x^2 \equiv y \pmod{n}$ \diamond We would like to transform the problem into solving square roots mod p. \diamond Question: for n=p·q Is solving " $x^2 \equiv y \pmod{n}$ " equivalent to solving " $x^2 \equiv y \pmod{p}$ and $x^2 \equiv y \pmod{q}$ "???

Finding Square Roots mod p.q

\Rightarrow find x such that $x^2 \equiv 71 \pmod{77}$

- $\star 77 = 7 \cdot 11$
- * "x* satisfies $f(x^*) \equiv 71 \pmod{77}$ " \Leftrightarrow "x* satisfies both $f(x^*) \equiv 1 \pmod{7}$ and $f(x^*) \equiv 5 \pmod{11}$ "
- * since 7 and 11 are prime numbers, we can solve $x^2 \equiv 1 \pmod{7}$ and $x^2 \equiv 5 \pmod{11}$ far more easily than $x^2 \equiv 71 \pmod{77}$

 $x^2 \equiv 1 \pmod{7}$ has two solutions: $x \equiv \pm 1 \pmod{7}$

 $x^2 \equiv 5 \pmod{11}$ has two solutions: $x \equiv \pm 4 \pmod{11}$

* put them together and use CRT to calculate the four solutions

 $\begin{array}{l} x \equiv 1 \pmod{7} \equiv 4 \pmod{11} \Rightarrow x \equiv 15 \pmod{77} \\ x \equiv 1 \pmod{7} \equiv 7 \pmod{11} \Rightarrow x \equiv 29 \pmod{77} \\ x \equiv 6 \pmod{7} \equiv 4 \pmod{11} \Rightarrow x \equiv 48 \pmod{77} \\ x \equiv 6 \pmod{7} \equiv 7 \pmod{11} \Rightarrow x \equiv 62 \pmod{77} \end{array}$

Computational Equivalence to Factoring

Previous slides show that once you know the factoring of *n* to be *p* and *q*, you can easily solve the square roots of *n*Indeed, if you can solve the square roots for one single quadratic residue mod n, you can factor n.

★ from the four solutions ±a, ±b on the previous slide
x ≡ c (mod p) ≡ d (mod q) ⇒ x ≡ a (mod p·q)
x ≡ c (mod p) ≡ -d (mod q) ⇒ x ≡ b (mod p·q)
x ≡ -c (mod p) ≡ d (mod q) ⇒ x ≡ -b (mod p·q)
x ≡ -c (mod p) ≡ -d (mod q) ⇒ x ≡ -a (mod p·q)
we can find out a ≡ b (mod p) and a ≡ -b (mod q)
(or equivalently a ≡ -b (mod p) and a ≡ b (mod q))
★ therefore, p | (a-b) i.e. gcd(a-b, n) = p (ex. gcd(15-29, 77)=7)

q | (a+b) i.e. gcd(a+b, n) = q (ex. gcd(15+29, 77)=11)

Quadratic Residues

- ♦ Consider y∈Z^{*}_n, if ∃ x ∈Z^{*}_n, such that x² ≡ y (mod n), then y is called a quadratic residue mod n, i.e. y∈QRⁿ
 ♦ If the modulus is a prime number p, there are (p-1)/2
 - quadratic residues in Z_{p}^{*}
 - * let g be a primitive root in Z_p^* , $\{g, g^2, g^3, ..., g^{p-1}\}$ is a permutation of $\{1, 2, ..., p-1\}$
 - * in the above set, $\{g^2, g^4, \dots, g^{p-1}\}$ are quadratic residues (QR_p)
 - * $\{g, g^3, ..., g^{p-2}\}$ are quadratic non-residues (QNR_p), out of which there are $\phi(p-1)$ primitive roots

Quadratic Residues in Z_{p}^{*}

1st proof:

- ★ For each $x \in Z_p^*$, $p-x \neq x \pmod{p}$ (since if x is odd, p-x is even), it's clear that x and p-x are both square roots of a certain $y \in Z_p^*$,
- * Because there are only p-1 elements in Z_p^* , we know that $|QR_p| \le (p-1)/2$
- * Because $|\{g^2, g^4, ..., g^{p-1}\}| = (p-1)/2$, there can be no more quadratic residues outside this set. Therefore, the set $\{g, g^3, ..., g^{p-2}\}$ contains only quadratic nonresidues

Quadratic Residues in Z_p*

2nd proof:

- * Because the squares of x and p-x are the same, the number of quadratic residues must be less than p-1 (i.e. some element in Z_p^* must be quadratic non-residue)
- * Consider this set $\{g, g^3, ..., g^{p-2}\}$ directly
- * If $g \in QR_p$, then g cannot be a primitive (because g^k must all be quadratic residues)
- * If $g^{2k+1} \equiv g^{2k} \cdot g \in QR_p$, then there exists an $x \in Z_p^*$ such that $x^2 \equiv g^{2k} \cdot g \pmod{p}$
- * Because $gcd(g^{2k}, p)=1$, $g \equiv x^2 \cdot (g^{2k})^{-1} \equiv (x \cdot (g^{-1})^k)^2 \in QR_p$ contradiction
- * i.e. $g^{2k+1} \in QNR_p$

$$(g^{2k})^{-1}(g^{2k}) \equiv (g^{2k})^{-1}g \cdot g \cdot \dots \cdot g \equiv 1 \pmod{p}$$

$$\Rightarrow (g^{2k})^{-1} \equiv g^{-1} \cdot g^{-1} \cdot \dots \cdot g^{-1} \equiv (g^{-1})^{2k} \equiv ((g^{-1})^k)^2$$

Quadratic Residues in Z_n \diamond ex. p=143537, p-1=143536=2⁴ · 8971, $\phi(p-1)=2^4\cdot 8971\cdot (1-1/2)\cdot (1-1/8971)=71760$ primitives, $(p-1)/2=71768 \text{ QR}_{p}$'s and 71768 QNR_{p} 's * Note: if g is a primitive, then $g^3, g^5 \dots$ are also primitives except the following 8 numbers g^{8971} , $g^{8971\cdot 3}$,..., $g^{8971\cdot 15}$ * Elements in Z_{p}^{*} can be classified further according to their order $\frac{\operatorname{since}_{1}}{2} = \frac{1}{4} = \frac{1}{8} = \frac{1}{16} = \frac{1}{8} = \frac{1}{16} = \frac{1}{8} = \frac{1}{16} = \frac{1}{8} = \frac{1}{8} = \frac{1}{16} = \frac{1}{8} =$ ord_p(x) p-QR_p QR_p QR_p QNR_p QR_p QNR_p QR_p QR_p QR_n QR_n **φ**(*p*-1) 8 #

Composite Quadratic Residues

 \Rightarrow If y is a quadratic residue modulo n, it must be a quadratic residue modulo all prime factors of n. $\exists x \in Z_n^*$ s.t. $x^2 \equiv y \pmod{n} \Leftrightarrow x^2 \equiv k \cdot n + y \equiv k \cdot p \cdot q + y$ \Rightarrow x² \equiv y (mod p) and x² \equiv y (mod q) \Rightarrow If y is a quadratic residue modulo p and also a quadratic residue modulo q, then y is a quadratic residue modulo n. $\exists r_1 \in \mathbb{Z}_p^* \text{ and } r_2 \in \mathbb{Z}_q^* \text{ such that} \\ y \equiv r_1^2 \pmod{p} \equiv (r_1 \mod{p})^2 \pmod{p}$ $\equiv r_2^2 \pmod{q} \equiv (r_2 \mod q)^2 \pmod{q}$ from CRT, $\exists ! r \in \mathbb{Z}_n^*$ such that $r \equiv r_1 \pmod{p} \equiv r_2 \pmod{q}$ therefore, $y \equiv r^2 \pmod{p} \equiv r^2 \pmod{q}$ again from CRT, $y \equiv r^2 \pmod{p \cdot q}$

Legendre Symbol

Legendre symbol L(a, p) is defined when a is any integer, p is a prime number greater than 2

 $\star L(a, p) = 0 \text{ if } p \mid a$

- * L(a, p) = 1 if a is a quadratic residue mod p
- * L(a, p) = -1 if a is a quadratic non-residue mod p

 \diamond Two methods to compute (a/p)

- $\star (a/p) = a^{(p-1)/2} \pmod{p}$
- * recursively calculate by $L(a \cdot b, p) = L(a, p) \cdot L(b, p)$
 - 1. If a = 1, L(a, p) = 1
 - 2. If a is even, $L(a, p) = L(a/2, p) \cdot (-1)^{(p^2-1)/8}$

3. If a is odd prime, $L(a, p) = L((p \mod a), a) \cdot (-1)^{(a-1)(p-1)/4}$

♦ Legendre symbol L(a, p) = -1 if a ∈ QNR_p
L(a, p) = 1 if a ∈ QR_p

Legendre Symbol $y \in QR_p \Leftrightarrow y^{(p-1)/2} \equiv 1 \pmod{p}$ (\Longrightarrow) * If $y \in QR_p$ * Then $\exists x \in Z_p^*$ such that $y \equiv x^2 \pmod{p}$ * Therefore, $y^{(p-1)/2} \equiv (x^2)^{(p-1)/2} \equiv x^{(p-1)} \equiv 1 \pmod{p}$ (\Leftarrow) * If $y \notin QR_p$ i.e. $y \in QNR_p$ * Then $y \equiv g^{2k+1} \pmod{p}$ * Therefore, $y^{(p-1)/2} \equiv (g^{2k} \cdot g)^{(p-1)/2} \equiv g^{k(p-1)} g^{(p-1)/2} \equiv g^{(p-1)/2} \equiv 1 \pmod{p}$ $\operatorname{ord}_{p}(g) = p-1$

Jacobi Symbol

 Jacobi symbol J(a, n) is a generalization of the Legendre symbol to a composite modulus n

- ♦ If n is a prime, J(a, n) is equal to the Legendre symbol i.e. J(a, n) = $a^{(n-1)/2} \pmod{n}$
- A Jacobi symbol can not be used to determine whether a is a quadratic residue mod n (unless n is a prime)
 - ex. $J(7, 143) = J(7, 11) \cdot J(7, 13) = (-1) \cdot (-1) = 1$ however, there is no integer x such that $x^2 \equiv 7 \pmod{143}$

Calculation of Jacobi Symbol

The following algorithm computes the Jacobi symbol J(a, n), for any integer a and odd integer n, recursively:

- * Def 1: J(0, n) = 0 also If n is prime, J(a, n) = 0 if n|a
- * Def 2: If n is prime, J(a, n) = 1 if $a \in QR_n$ and J(a, n) = -1 if $a \notin QR_n$
- * Def 3: If n is a composite, $J(a, n) = J(a, p_1 \cdot p_2 \dots \cdot p_m) = J(a, p_1) \cdot J(a, p_2) \dots \cdot J(a, p_m)$
- * Rule 1: J(1, n) = 1
- * Rule 2: $J(a \cdot b, n) = J(a, n) \cdot J(b, n)$
- * Rule 3: J(2, n) = 1 if $(n^2-1)/8$ is even and J(2, n) = -1 otherwise
- * Rule 4: $J(a, n) = J(a \mod n, n)$
- Rule 5: J(a, b) = J(-a, b) if a <0 and (b-1)/2 is even, J(a, b) = -J(-a, b) if a<0 and (b-1)/2 is odd</p>
- * Rule 6: $J(a, b_1 \cdot b_2) = J(a, b_1) \cdot J(a, b_2)$
- ★ Rule 7: if gcd(a, b)=1, a and b are odd

 \Rightarrow 7a: J(a, b) = J(b, a) if (a-1)·(b-1)/4 is even

 \Rightarrow 7b: J(a, b) = -J(b, a) if (a-1)·(b-1)/4 is odd

QR_n and Jacobi Symbol

♦ Consider n = p · q, where p and q are prime numbers
∀x ∈ Z_n*, x ∈ QR_n
⇔ x ∈ QR_p and x ∈ QR_q
⇔ J(x, p) = x^{(p-1)/2} ≡ 1 (mod p) and J(x, q) = x^{(q-1)/2} ≡ 1 (mod q)
⇒ J(x, n) = J(x, p) · J(x, q) = 1

	J(x, p)	J(x,q)	J(x, n)	
Q ₀₀	1	1	1	$x \in QR_n$
Q ₀₁	1	-1	-1	$x \in \text{QNR}_n$
Q ₁₀	-1	1	-1	$x \in \text{QNR}_n$
Q ₁₁	-1	-1	1	$x \in \text{QNR}_n$

Wilson's Theorem $(p-1)! \equiv -1 \pmod{p}$

Proof:

- Goal: $(p-1)! \equiv 1 \cdot 2 \cdot 3 \cdot \cdots (p-1) \equiv -1 \equiv (p-1) \pmod{p}$
- * Since gcd(p-1, p) = 1, the above is equivalent to $(p-2)! \equiv 1 \pmod{p}$ * e.g. p = 5, $3 \cdot 2 \cdot 1 \equiv 1 \pmod{5}$

p = 7, $5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \equiv 1 \pmod{7}$

* We know that $1^{-1} \equiv 1 \pmod{p}$ and $(-1)^{-1} \equiv -1 \pmod{p}$

- * Claim: $\forall i \in \mathbb{Z}_{p}^{*} \setminus \{1, -1\}, i^{-1} \neq i \text{ (pf: if } i^{-1} \neq i \text{ then } i^{2} \equiv 1, i \in \{1, -1\})$
- * Claim: $\forall i_1 \neq i_2 \in \mathbb{Z}_p^* \setminus \{1, -1\}, i_1^{-1} \neq i_2^{-1} \text{ (pf: if } i_1^{-1} \equiv i_2^{-1} \text{ then } i_1 \cdot i_2^{-1} \equiv 1$ i.e. $i_1 \equiv i_2$, contradiction)
- * Out of the set $\{2, 3, \dots, p-2\}$, we can form (p-3)/2 pairs such that $i \cdot j \equiv 1 \pmod{p}$, multiply them together, we obtain $(p-2)! \equiv 1$

Another Proof $y \in QR_p \Leftrightarrow y^{(p-1)/2} \equiv 1 \pmod{p}$

- ★ If $y \in QR_p$
- * Then $\exists x \in Z_p^*$ such that $y \equiv x^2 \pmod{p}$
- * Therefore, $y^{(p-1)/2} \equiv (x^2)^{(p-1)/2} \equiv x^{(p-1)} \equiv 1 \pmod{p}$
- (\Leftarrow)

 (\Longrightarrow)

- * Since $\forall i \in \mathbb{Z}_p^*$, gcd(i, p)=1, $\exists j$ such that $i \cdot j \equiv y \pmod{p}$
- ★ If $y \notin QR_p$, the congruence $x^2 \equiv y \pmod{p}$ has no solution, therefore, $j \neq i \pmod{p}$
- ★ We can group the integers 1, 2, ..., p-1 into (p-1)/2 pairs (i, j), each satisfying i · j = y (mod p)
- * Multiply them together, we have $(p-1)! \equiv y^{(p-1)/2} \pmod{p}$
- * From Wilson's theorem, $y^{(p-1)/2} \equiv -1 \pmod{p}$

Exactly Two Square Roots Every $y \in QR_p$ has exactly two square roots i.e. x and p-x such that $x^2 \equiv y \pmod{p}$

pf: * QR_p = { $g^2, g^4, ..., g^{p-1}$ }, $|Z_p^*| = p-1$, and $|QR_p| = (p-1)/2$

- ★ For each $y \equiv g^{2k}$ in QR_p, there are at least two distinct $x \in Z_p^*$ s.t. $x^2 \equiv y \pmod{p}$, i.e., g^k and $p g^k$ (if one is even, the other is odd)
- * Since $|QR_p| = (p-1)/2$, we can obtain a set of p-1 square roots S={g, p-g, g², p-g²,...,g^{(p-1)/2}, p-g^{(p-1)/2}}
- ★ Claim: the elements of S are all distinct (1. gⁱ ≠ g^j (mod p) when i≠j since g is a primitive, 2. gⁱ ^{*}/_{*}-g^j (mod p) when i≠j, otherwise (gⁱ+g^j)(gⁱ-g^j)≡g²ⁱ-g^{2j}≡0 (mod p) implies i≡j (mod (p-1)/2), 3. gⁱ ≠ -gⁱ (mod p) since if one is even, the other is odd)
- ★ If there is one more square root z of $y \equiv g^{2k}$ which is not g^k and $-g^k$, it must belong to S (which is Z_p^*), say g^j , $j \neq k$, which would imply that $g^{2j} \equiv g^{2k}$ (mod p), and leads to contradiction

Order q Subgroup G_q of Z_p^*

 \diamond Let p be a prime number, g be a primitive in Z_p^2 \Rightarrow Let $p = k \cdot q + 1$ i.e. $q \mid p-1$ where q is also a prime number $♦ Let G_a = \{g^k, g^{2k}, ..., g^{q^k} \equiv 1\}$ \diamond Is G_a a subgroup in Z_p^{*}? YES $\forall x, y \in G_a, it is clear that z \equiv g^{i \cdot k} \equiv x \cdot y \equiv g^{(i_1 + i_2) \cdot k} \pmod{p}$ is also in G_q , where $i \equiv i_1 + i_2 \pmod{q}$ \diamond Is the order of the subgroup G_a q? YES $\forall i_1, i_2 \in \mathbb{Z}_q, i_1 \neq i_2, g^{i_1 + k} \neq g^{i_2 + k} \pmod{p}$ otherwise g is not a primitive in Z_p^* , also $g^{q+k} \equiv 1 \pmod{p}$ ♦ How many generators are there in G_q ? $\phi(q)=q-1$ a. there are $\phi(p-1)$ generators in $Z_p^* = \{g^1, g^2, \dots, g^x, \dots, g^{p-1}\}$, since gcd(p-1, x) = d > 1 implies that $ord_p(g^x) = (p-1)/d$

Order q Subgroup G_q (cont'd)

also $(g^x)^y \equiv 1 \pmod{p}$ and $g^{p-1} \equiv 1 \pmod{p}$ implies that either x · y | p-1 or p-1 | x · y, gcd(x, p-1) = 1 implies that p-1 | y therefore, $\operatorname{ord}_p(g^x) = p-1$

b. there are $\phi(q)$ primitives in $G_q = \{g^k, g^{2k}, ..., g^{q+k} \equiv 1\}$ since q is also a prime number

♦ Is G_q a unique order q subgroup in Z_p*? YES Let S be an order-q cyclic subgroup, S= {g, g², ..., g^q≡1}. Since p is prime, ∃ a unique k-th root g₁ ∈ Z_p*, s.t. g ≡ g₁^k (mod p) Let g₁ ≠ g be another primitive, clearly g₁ ≡ g^s (mod p), Is the set S= {g₁^k, g₁^{2k}, ..., g₁^{q+k}≡1} different from G_q? let x ∈ S, i.e. x ≡ g₁^{i₁·k} (mod p), i₁ ∈ Z_q x ≡ g₁^{i₁·k} ≡ g^{s·i₁·k} ≡ g^{i·k} (mod p) where i ≡ s · i₁ (mod q), i.e. S ⊆ G_q The proof is similar for G_q ⊆ S. Therefore, S = G_q

Gauss' Lemma

<u>**Lemma**</u>: let p be a prime, a is an integer s.t. gcd(a, p)=1,

define $\alpha_j \equiv j \cdot a \pmod{p}$ $_{j=1,\ldots,(p-1)/2}$,

let n be the number of α_j 's s.t. $\alpha_j > p/2$ then L(a, p) = (-1)^n

pf.

★ α_j ∈ {r₁, ..., r_n} if α_j > p/2 and α_j ∈ {s₁, ..., s_{(p-1)/2-n}} if α_j < p/2
★ Since gcd(a, p)=1, r_i and s_i are all distinct and non-zero

* Clearly, $0 < p-r_i < p/2$ for i=1,...,n

★ no p-r_i is an s_j: if p-r_i=s_j then s_j ≡ -r_i (mod p) rewrite in terms of a: u a ≡ -v a (mod p) where $1 \le u, v \le (p-1)/2$ $\Rightarrow u \equiv -v \pmod{p}$ where $1 \le u, v \le (p-1)/2 \Rightarrow$ impossible

 $\Rightarrow \{s_1, \dots, s_{(p-1)/2-n}, p-r_1, \dots, p-r_n\} \text{ is a reordering of } \{1, 2, \dots, (p-1)/2\}$ * Thus, $((p-1)/2)! \equiv s_1 \cdots s_{(p-1)/2-n} \cdot (-r_1) \cdots (-r_n) \equiv (-1)^n s_1 \cdots s_{(p-1)/2-n} \cdot r_1 \cdots r_n$ $\equiv (-1)^n ((p-1)/2)! a^{(p-1)/2} \pmod{p} \Rightarrow L(a, p) = (-1)^n$

$$\begin{array}{l} \hline \label{eq:constraint} \textbf{Theorem: J(2, p)} = (-1)^{(p^2-1)/8} \\ \hline \textbf{Theorem: let p be a prime, gcd(a, p) = 1 then L(a, p) = (-1)^t \\ & \text{where } t = \sum_{j=1}^{(p-1)/2} \lfloor j \cdot a/p \rfloor. \ \text{Also L}(2, p) = (-1)^{(p^2-1)/8} \\ \hline \textbf{pf.} \\ & \textbf{*} \ \alpha_j \in \{r_1, \ldots, r_n\} \ \text{if} \ \alpha_j > p/2 \ \text{and} \ \alpha_j \in \{s_1, \ldots, s_{(p-1)/2-n}\} \ \text{if} \ \alpha_j < p/2 \\ & \textbf{*} \ \textbf{j} \ a = p \lfloor j \cdot a/p \rfloor + \alpha_j \ \text{for } j = 1, \ldots, (p-1)/2 \\ & \implies \sum_{j=1}^{(p-1)/2} j \ a = \sum_{j=1}^{(p-1)/2} p \lfloor j \cdot a/p \rfloor + \sum_{j=1}^n r_j + \sum_{j=1}^{(p-1)/2-n} s_j \\ & \textbf{*} \ \{s_1, \ldots, s_{(p-1)/2-n}, p \cdot r_1, \ldots, p \cdot r_n\} \ \text{is a reordering of } \{1, 2, \ldots, (p-1)/2\} \\ & \implies \sum_{j=1}^{(p-1)/2} j = \sum_{j=1}^n (p \cdot r_j) + \sum_{j=1}^{(p-1)/2-n} s_j = np - \sum_{j=1}^n r_j + \sum_{j=1}^{(p-1)/2-n} s_j \\ & \textbf{* Subtracting the above two equations, we have} \\ & (a \cdot 1)^{\binom{(p-1)/2}{j-1}j} = p \left(\sum_{j=1}^{(p-1)/2} \lfloor j \cdot a/p \rfloor - n \right) + 2 \sum_{j=1}^n r_j \end{array}$$

lacksquare

46

$$J(2, p) = (-1)^{(p^2-1)/8} (\text{cont'd})$$

* $\sum_{j=1}^{(p-1)/2} j = 1 + ... + (p-1)/2 = (p-1)/2 (1 + (p-1)/2) / 2 = (p^2-1)/8$
* Thus, we have (a-1) $(p^2-1)/8 \equiv \sum_{j=1}^{(p-1)/2} \lfloor j \cdot a/p \rfloor$ - n (mod 2)

★ If a is odd, n = ∑_{j=1}^{(p-1)/2} ↓ j·a/p↓
★ If a = 2, ↓ j·2/p↓ = 0 for j=1, ..., (p-1)/2, n ≡ (p²-1)/8 (mod 2)
therefore, J(2, p) = (-1)^{(p²-1)/8}

Lemma. ord-k elements in $Z_{p}^{*} \leq \phi(k)$

Lemma. There are at most $\phi(k)$ ord-k elements in Z_p^* , k | p-1 pf.

- $\diamond Z_p^*$ is a field $\Rightarrow x^k 1 \equiv 0 \pmod{p}$ has at most k roots
- ♦ if *a* is a nontrivial root (*a*≠1), then {*a*⁰, *a*¹, *a*², ..., *a*^{k-1}} is the set of the k distinct roots.
- ♦ In this set, those a^ℓ with gcd(ℓ, k) = d > 1 have order at most k/d.
- \diamond Only those a^{ℓ} with $gcd(\ell, k) = 1$ might have order k.
- ♦ Hence, there are at most $\phi(k)$ elements (out of k elements) that have order equal to k.

Lemma. $\Sigma_{k|p-1} \phi(k) = p-1$

<u>Lemma</u>. $\Sigma_{k|p-1} \phi(k) = p-1$

pf.

 $p-1 = \sum_{k|p-1} (\# a \text{ in } Z_p^* \text{ s.t. } gcd(a, p-1) = k)$ = $\sum_{k|p-1} (\# b \text{ in } \{1, \dots, (p-1)/k\} \text{ s.t. } gcd(b, (p-1)/k) = 1)$ = $\sum_{k|p-1} \phi((p-1)/k)$ = $\sum_{k|p-1} \phi(k)$

ex. { $\phi(1$ }, $\phi(2)$, $\phi(3)$, $\phi(4)$, $\phi(6)$, $\phi(12)$ }, p=13

 Z_{p}^{*} is a cyclic group **Theorem**: Z_p^* is a *cyclic* group for a prime number p pf. Lemma 1: # of ord-k elements in $Z_p^* \le \phi(k)$, where k | p-1 Lemma 2: $\Sigma_{k|p-1} \phi(k) = p-1$ The order k of every element in Z_{p}^{*} divides p-1 $\Rightarrow \Sigma_{k|p-1}$ (# of elements with order k) = p-1 $\Rightarrow \Sigma_{k|p-1} \phi(k) \ge p-1$, combined with lemma 2, we know that # of ord-k elements in $Z_{p}^{*} = \phi(k)$ \Rightarrow # of ord-(p-1) elements in $Z_p^* = \phi(p-1) > 1$ \Rightarrow There is at least one generator in Z_p^* , i.e. Z_p^* is cyclic Ex. p=13, $p-1 = |\{1,5,7,11\}| + |\{2,10\}| + |\{3,9\}| + |\{4,8\}| + |\{6\}|$ k=250

Generators in QR_n

♦ Number of generators in Z_p^* : $\phi(p-1)$ Let g be a primitive, $Z_{p}^{*} = \langle g \rangle = \{g, g^{2}, g^{3}, ..., g^{k}, ..., g^{p-1}\}$ if $gcd(k, p-1) = d \neq 1$ then g^k is not a primitive since $(g^k)^{(p-1)/d} = (g^{k/d})^{p-1} = 1$, i.e. $\operatorname{ord}_p(g^k) \le (p-1)/d$ if gcd(k, p-1) = 1 and g^k is not a primitive, then $d=ord_p(g^k) < p-1$, i.e. $(g^k)^d = 1$; g is a primitive $\Rightarrow p-1 | k d \Rightarrow p-1 | d$ contradiction. \Rightarrow Z_n^{*} is not a cyclic group (n = p q, p=2p'+1, q=2q'+1, \lambda(n)=2p'q') Since $x^{\lambda(n)} \equiv 1 \pmod{n}$, there is no generator that can generate all members in Z_n^* \Rightarrow QR_n is a cyclic group of order $\lambda(n)/2 = lcm(p-1, q-1)/2 = p'q'$ $\forall x \in Z_n^*, x^{\lambda(n)} \equiv 1 \pmod{n}$ Carmichael's Theorem clearly, $(x^2)^{\lambda(n)/2} \equiv 1 \pmod{n}$, $QR_n = \{x^2 \mid \forall x \in Z_n^*\}$ i.e. $\forall y \in QR_n$, $ord_n(y) | p' q' (ord_n(y) \in \{1, p', q', p'q'\})$

Generators in QR_n (cont'd) cyclic? $\exists x^* \in Z_n^* \text{ ord}_n(x^*) = \lambda(n) = 2 p' q' \Rightarrow$ $\exists y^* (=(x^*)^2) \in QR_n \text{ s.t. } ord_n(y^*) = \lambda(n)/2 = p' q'$ \diamond Let y be a random element in QR_n, the probability that y is a generator is close to 1 Let y^* be a generator of QR_n , $|QR_n = \langle y^* \rangle = \{y^*, (y^*)^2, (y^*)^3, \dots, (y^*)^k, \dots, (y^*)^{p'q'}\}$ if $gcd(k, p'q') = d \neq 1$ then $(y^*)^k$ is not a generator since $((y^*)^k)^{p'q'/d} = ((y^*)^{k/d})^{p'q'} = 1$, i.e. $\operatorname{ord}_p((y^*)^k) \le (p'q')/d$ $\phi(p'q') = \phi(p') \phi(q') = (p'-1)(q'-1) = p'q' - p' - q' + 1$ = p'q' - (p'-1) - (q'-1) - 1 $\forall x \in \{(y^*)^{q'}, (y^*)^{2q'}, \dots, (y^*)^{(p'-1)q'}\} \text{ ord}_n(x) = p'$ $\forall x \in \{(y^*)^{p'}, (y^*)^{2p'}, \dots, (y^*)^{(q'-1)p'}\} \text{ ord}_n(x) = q'$ $ord_{n}(1) = 1$ $\Pr{x \text{ is a generator } | x \in QR_n} = \phi(p'q') / (p'q') \text{ is close to } 1$ 52

Subgroups in Z_n*

Consider n = p q, p=2p'+1, q=2q'+1, m=p'q', $\lambda(n) = lcm(p-1, q-1)=2m$, $\phi(n) = (p-1)(q-1) = 4m$

 $\mathbf{Z}_{\mathbf{n}}^{*}$ is not a cyclic group

* Carmichael's theorem asserts that no element in Z_n^* can generate all elements in Z_n^* . (maximum order is 2m instead of 4m)

- * However, Z_n^* is still a group over modulo n multiplication.
- ♦ QR_n is a cyclic subgroup of order m = λ(n)/2, QR_n = {x² | ∀ x ∈ Z_n^{*}}
 ★ J₀₀ = {x ∈ Z_n^{*} | J(x,p)=1 and J(x,q)=1}
 - * If there exists an element in Z_n^* whose order is 2m, then QR_n is clearly a cyclic group. (Will the precondition be true?)
 - ★ $\forall x \in Z_n^* x^{2m} \equiv 1 \pmod{n}$ implies that $\forall y \in QR_n \operatorname{ord}_n(y) | p'q'$ i.e. $\operatorname{ord}_n(y)$ is either 1, p', q', or p'q' (if there is one y s.t. $\operatorname{ord}_n(y)=m$ then y is a generator and QR_n is cyclic). Let's construct one.

Subgroups in Z_n^* (cont'd)

Let g_1 be a generator in Z_p^* , and g_2 be a generator in Z_q^* Let $\mathbf{g} \equiv \mathbf{g}_1 \pmod{\mathbf{p}} \equiv \mathbf{g}_2 \pmod{\mathbf{q}}$, (note that $J(g, n) = 1, g \in J_{11}$) $g^{p-1} \equiv g^{2p'} \equiv g_1^{2p'} \equiv 1 \pmod{p}, g^{q-1} \equiv g^{2q'} \equiv g_2^{2q'} \equiv 1 \pmod{q}$ \Rightarrow g^{2p'q'} \equiv 1 (mod p) and g^{2q'p'} \equiv 1 (mod q) i.e. g^{2p'q'} \equiv 1 (mod n) if there exists a $k \in \{1, 2, p', q', 2p', 2q', p'q'\}$ s.t. $g^k \equiv 1 \pmod{n}$ then $\operatorname{ord}_{n}(g)$ is not 2p'q'1. k=1: \Rightarrow g₁ = 1 (mod p) contradict with $ord_p(g_1) = p-1$ 2. k=p': \Rightarrow g^{p'} \equiv g₁^{p'} \equiv 1 (mod p) contradict with ord_p(g₁) = 2p' 3. $k=q': \Rightarrow g^{q'} \equiv g_2^{q'} \equiv 1 \pmod{q}$ contradict with $\operatorname{ord}_q(g_2) = 2q'$ 4. k=2: $\Rightarrow g_1^2 \equiv 1 \pmod{p}$ contradict with $\operatorname{ord}_p(g_1) = p-1$ 5. k=2p': $\Rightarrow g^{2p'} \equiv g_2^{2p'} \equiv 1 \pmod{q}$ contradict with $\operatorname{ord}_q(g_2) = 2q'$ 6. k=2q': \Rightarrow g^{2q'} \equiv g₁^{2q'} \equiv 1 (mod p) contradict with ord_p(g₁) = 2p'

Subgroups in Z_n^* (cont'd) 7. $k=p'q' \Rightarrow g^{p'q'} \equiv g_1^{p'q'} \equiv 1 \pmod{p}$ since $g_1^{2p'} \equiv 1 \pmod{p}$ and $gcd(q', 2) = 1 \implies \exists a, b s.t. a q' + b 2 = 1$ $\Rightarrow g_1^{p'} \equiv g_1^{p'} (a q' + b 2) \equiv (g_1^{p' q'})^a (g_1^{2 p'})^b \equiv 1 \pmod{p}$ contradict with $\operatorname{ord}_{p}(g_{1}) = 2p'$ $1 \sim 7$ implies that $\operatorname{ord}_{n}(g) = 2p'q'$, i.e. $QR_{o} = \{g^{2}, g^{4}, \dots, g^{p'q'}\}$

and QR_n is a cyclic group.

* Pr{Elements in QR_n being a generator} = $\phi(p'q') / (p'q')$ ♦ J_n is a cyclic subgroup of order $2m = \lambda(n)$, J_n = {x ∈ Z_n^{*} | J(x,n)=1} * $J_{11} = \{x \in Z_n^* \mid J(x,p) = -1 \text{ and } J(x,q) = -1\}$ * The above proof also shows that $J_n = \{g, g^2, ..., g^{2p'q'}\}$ is cyclic * Pr{Elements in J_n being a generator} = $\phi(p'q') / (2p'q')$ $\downarrow J_{01} \cup J_{10} = Z_n^* \setminus \{J_{00} \cup J_{11}\}$ is not a subgroup in Z_n^* * if $x \in J_{01}$ then $x * x \in J_{00}$

Generator in QR_n

- \Rightarrow n = p q, p=2p'+1, q=2q'+1
- \diamond Find a generator in QR_n
 - 1. Find a generator g_1 of Z_p^* (i.e. $Z_p^* = \langle g_1 \rangle$) and g_2 of Z_q^* (i.e. $Z_q^* = \langle g_2 \rangle$)
 - 2. Calculate the generator $h_1 \equiv g_1^2 \pmod{p}$ of QR_p and $h_2 \equiv g_2^2 \pmod{1}$ of QR_q
 - 3. Let $h \equiv h_1 \pmod{p} \equiv h_2 \pmod{q}$.

It is clear that $h \equiv g^2 \pmod{n}$, i.e. $h \in QR_n$, where $g \equiv g_1 \pmod{p} \equiv g_2 \pmod{q}$. Claim: h is a generator of QR_n

pf.

$$y \in QR_n \Rightarrow y \in QR_p \text{ and } y \in QR_q$$

i.e. $\exists x_1 \in Z_{p'} \text{ and } x_2 \in Z_{q'}, y \equiv h_1^{x_1} \pmod{p} \equiv h_2^{x_2} \pmod{q}$
 $\Rightarrow y \equiv g_1^{2x_1} \pmod{p} \equiv g_2^{2x_2} \pmod{q}$
 $\Rightarrow y \equiv g^{2x} \pmod{n} \text{ if } 2x \equiv 2x_1 \pmod{p-1} \equiv 2x_2 \pmod{q-1}$
a unique $x \in Z_{p'q'}$ exists by CRT since $gcd(p-1, q-1) \equiv gcd(2p', 2q') \equiv 2$
 $\Rightarrow y \equiv h^x \pmod{n}$

Generate Elements in Z_n*

- $Z_{n}^{*} = \{ g^{a} u^{-e b_{1}} (-1)^{b_{2}} | g \text{ is a generator in } QR_{n}, gcd(e, \phi(n)) = 1, \\ u \in_{R} Z_{n}^{*} \text{ and } J(u,n) = -1, \\ a \in \{0, \dots, m-1\}, b_{1} \in \{0,1\}, \text{ and } b_{2} \in \{0,1\} \} \}$
- Note: 1. J(-1, n) = 1 and $-1 \in J_n \setminus QR_n$ since $(-1)^{(p-1)/2} \equiv (-1)^{p'} \equiv -1 \pmod{p}$ 2. e is odd, $\phi(n)$ -e is also odd, $J(u^{-e}, n) = J(u, n) = -1$ \diamond We can view the above as 4 parts

1. J_{00} (QR_n): $b_1 = b_2 = 0$, $J_{00} = \{g^a \mid a \in \{0, ..., m-1\}\}$ 2. J_{11} ($J_n \setminus QR_n$): $b_1 = 0$, $b_2 = 1$, $J_{11} = \{-g^a \mid a \in \{0, ..., m-1\}\}$ Assume that J(u, p) = -1 and J(u, q) = 13. J_{01} : $b_1 = 1$, $b_2 = 0$, $J_{01} = \{g^a u^{-e} \mid a \in \{0, ..., m-1\}\}$ 4. J_{10} : $b_1 = 1$, $b_2 = 1$, $J_{01} = \{-g^a u^{-e} \mid a \in \{0, ..., m-1\}\}$

•				
•				

Lagrange's Theorem: for any finite group G, the order (number of elements) of every subgroup H of G divides the order of G.

★ proof sketch: divide G into left cosets H – equivalence classes, and show that they have the same size.

◇ It implies that: the order of any element *a* of a finite group (i.e. the smallest positive integer number *k* with *a^k* = 1) divides the order of the group. Since the order of *a* is equal to the order of the cyclic subgroup generated by *a*. Also, a^{|G|} = 1 since order of *a* divides |G|.