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< Prime number: an integer p>1 that is divisible only by 1
and 1itself, ex. 2, 3.5, 7, 11, 13, 17...

<~ Composite number: an integer n>1 that is not prime

< Fact: there are infinitely many prime numbers. (by Euclid)
pf: #=on the contrary, assume a, is the largest prime number
& ]et the finite set of prime numbers be {a,, a;, a,, .... a_}
& the number b = aj*a; *a,*...*a_+ 1 1s not divisible by any a;
1.e. b does not have prime factors < a_

2 cases: »if b has a prime factor d, b>d> a_, then “d is a prime
number that 1s larger than a_.” ... contradiction

> 1f b does not have any prime factor less than b, then “b 1s a

prime number that is larger than a_” ... contradiction
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Prime Number Theorem
< Prime Number Theorem:

* Let m(x) be the number of primes less than x

*x Then X

In x
in the sense that the ratio n(x) / (x/Inx) > 1 as x —» «©

T(X) =

T(x) > —— and for x>17, T(x) < 1.10555 —
In x In x

< Ex: number of 100-digit primes

10100 1099
T(101) - T(10%) » 5 - s ~3.9x 107




Factors

<~ Every composite number can be expressible as a
product a'b of integers with 1 <a, b<n

< Every positive integer has a unique representation
as a product of prime numbers raised to different

pOWers.
2 Ex.504=2>-3%-7 1125=3%-5°




Factors

< Lemma: p is a prime number and p|a-b—>p|aorp|b,
more generally, p 1s a prime number and p | a-b-...:Z
—> p must divide one of a, b, ..., z

* proof:
xcase l: p|a

xcase 2: p/fa,
> p/aand p is a prime number = ged(p,a)=1=>1=ax+py
> multiply both side by b, b=bax+bpy
>plab=p|b
% In general: if p | a then we are done, if p/ a then p | bc...z, continuing

this way, we eventually find that p divides one of the factors of the
product




['heorem: Every positive integer 1s a product of primes.
T'his factorization into primes 1s unique, up to

reordering of the factors. « Empty product equals 1.
x Proof: product of primes  Prime 1s a one factor product.

% assume there exist positive uitegers that are not product of primes
% let n be the smallest such/integer

% since n can not be 1 or a prime, n must be composite, i.e. n=a-b
& since n 1s the smallest, both a and b must be products of primes.
% n = a'b must also be a product of primes, contradiction

* Proof: uniqueness of factorization
& assUme N =1y 1, 2 [ kP 1Py 2Py S =1 1T 2 1y K Q1bIQ2b2' ' 'Chbt
where p, q; are all distinct primes.
& letm=n/(r,"1ry, 21, X)
% consider p; for example, since p; divide m = q;q;..q{q,...q;, p; must
divide one of the factors di, contradict the fact that “p;, q; are distinct
primes”




(“Fair-MAH”)

<Ifp1saprime, ptfa then aP =] (mod p)

Proof: %letS={1,2,3,...,p-1} (Z,"), define y(x) =a - x (mod p) be
a mapping y: S—Z

xVX e S, yx) =0 (modp)= Vx € S, y(X) € S, 1.e. y: S>S

C/ ify(x)=a:x=0(modp) = x=0 (mod p) since gcd(a, p) =1

xV X,y € S, 1f x #y then y(X) # y(y) since

ifyx)=y(y) >a-x=a- y=x=ysince gcd(a, p) =1
% from the above two observations, y(1), w(2),... y(p-1) are
distinct elements of S
12 .. (p-D)=vw(l)y2)....yp-1)=(a1)(a2)...-(a(p-1))
=aP!l (12 ... «(p-1)) (mod p)
% since ged(j, p) = 1 forj € S, we can divide both side by 1, 2,
3, ... p-1, and obtain aP'=1 (mod p)




& Ex:219=1024 =1 (mod 11)
223 = (21%°23=1°23 = 8 (mod 11)
i.e. 223 =2>3mod10- 93 =g (1m0d 11)

& if n is prime, then 2" = 1 (mod n)
e if 2%l =1 (mod n) then n 1s not prime <—()
usually, if 21 = 1 (mod n), then n is prime
* exceptions: 22011 (mod 561) although 561 =3-11-17
21729-1 = 1 (mod 1729) although 1729 =7-13-19

* (*) 1S a quick test for eliminating composite number




Euler’s Totient Function o(n

< ¢(n): the number of integers 1<a<n s.t. gcd(a,n)=1
*ex. n=10, ¢(n)=4 the setis {1,3,7,9}

< properties of ¢(°)
* O(p) = p-1, if p 1s prime

* O(pY) = p' - p~=(1-1/p) - p, if p is prime
*p(n'm) = p(n) - ¢(m) 1f gcd(n,m)=1

{ 2~

nm - (n-¢(n)) m - (m-¢p(m)) n + (n-¢p(n)) (m-Pp(m)) =
* (p(n'm) =
d((dy/dy/d3))-0(d,”) d(dy”)-d(n/d,/d,)-d(m/d, /d;)

if ged(n,m)=d,, gcd(n/d,,d,)=d,, gcd(m/d,,d,)=d,
*d(n) =n M (1-1/p)




< d(n) ~ n - 6/7° as n goes large

<~ Probability that a prime number p 1s a factor of a random
number r is 1/p

< Probability that two independent random numbers r, and r,
both have a given prime number p as a factor is 1/p?

{- The probability that they do not have p as a common factor
is thus 1 — 1/p?

< The probability that two numbers r, and r, have no common
prime factor is P = (1-1/2%)(1-1/3%)(1-1/5%)(1-1/7%)...
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Pr{ r, and r, relatively prime |

< Equalities:

1 = [+x+x>+x3+. ..

1 +1/22+1/32+1/4>+ 1/52+ 1/6*> + ... = 7?/6
<% P = (1-1/2)(1-1/3)(1-1/5)(1-1/7) - \
= ((”1/22“/24+°-°)(1*1/32+1/34+...) s
= (1H1/2241/324+1/42+1/52+1/62+..) !

~..each positive number has a unique prime number factorization
ex. 452=3%-52




< ¢(n) 1s the number of integers less than n that are relative
prime to n

< ¢(n)/n 1s the probability that a randomly chosen integer 1s
relatively prime to n

< Therefore, ¢(n) ~ n - 6/7

< P, = Pr { n random numbers have no common factor }

* n independent random numbers all have a given prime p as a

factor is 1/p"
x They do not all have p as a common factor 1 — 1/p"

* P = (1+1/2"+1/3"+1/4"+1/5"+1/6"+...)" is the Riemann zeta
function C(n) http://mathworld.wolfram.com/RiemannZetaFunction.html

* Ex. n=4, {(4) = "/90 =~ 0.92




Euler’s Theorem
111

This is true even when n = p?
$1f gcd(a,n)=1 then 2™ = | (mod n)
Proof: let S be the set of integers 1<x<n, with gcd(x, n) =1,
define y(x) = a - X (mod n) be a mapping y: S—>Z
VX € Sand ged(a,n) =1, |ify(x)=a-x=0(modn)= x=0(modn)
y(x) # 0 (mod n) ged(a, n)=1 and ged(x, n) = 1
gcd(y(x), n) =1 = Vx € S, y(x) € S, 1.e. y: S>S
xV X,y € S, ‘if x #y then y(X) # y(y) (mod n)’
e ifyx)=y(y) >a-x=a-y=x=ysince gcd(a, n) =1

& from the above two observations, VxeS, y(x) are distinct
elements of S (i.e. {y(X) | VxeS} 1s S)

* MIx=llwvx)=za®™[Ix (modn)
XeS  XeS XeS

% since ged(x, n) = 1 for x € S, we can divide both side by x
€ S one after another, and obtain at(M=1 (mod n)




< Example: What are the last three digits of 78039
i.e. we want to find 75 (mod 1000)
1000 =23-5°,  $(1000) = 1000(1-1/2)(1-1/5) = 400
7803 = 7803 (mod 400) — 73 = 343 (mod 1000)

<- Example: Compute 43210 (mod 101)?
101=1- 101, d(101) = 100




Euler’s Theorem: VaeZ , a o) = 1 (mod n)

< We have proved the above theorem by showing that the
function y(x) = a - x (mod n) 1s a permutation.

< We can also prove 1t through Fermat’s Little Theorem

considern=p - q,

s 1
V“EZp ,ab =
Van

from CRT, Vae Z “(i.e.pfaandqj)a),
a®™ = 1 (mod n)
note: the above proof 1s not valid when p=q




Carmichael Theorem

Carmichael’s Theorem:
VaeZ. " a*"™ =1 (mod n) and a"™" =1 (mod n?)
where , p %, Mn) =lem(p-1, g-1), A(n) | ¢(n)

$- like Euler’s Theorem, we can prove 1t through Fermat’s

Little Theorem, consider n =p * q, where p=q,
VaeZS, aP! = 1 (mod p) = (2P 1)@VeedP-La-h) = M) = | (;mod p)
VaeZ/, a%! = 1 (mod q) = (2% ")P-Veedp-La-h) = M) = | (;med q)
from CRT, Va € Z “(i.e. pfaand q}a), aMn) = | (mod n)
therefore, VaeZ *, a"V =1 +k - n
raise both side to the n-th power, we get a® *™ = (1 + k - n)",

—a" =] 4t nkn+..=Vae Z " (or Z ,*), a" M) = 1 (mod n?)
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< Let a, n, X, y be integers with n>1, and gcd(a,n)=1
if X =y (mod ¢(n)), then a* = a’ (mod n).

< If you want to work mod n, you should work mod
¢(n) or A(n) 1in the exponent.




—— =

<- When p 1s a prime number, a primitive root
modulo p 1s a number whose powers yield every
nonzero element mod p. (equivalently, the order of
a primitive root 1s p-1)

sex: 31=3,3%=2, 33=6, 3%=4, 3°=5, 3°=1 (mod 7)
3 1s a primitive root mod 7

<-sometimes called a multiplicative generator

$-there are plenty of primitive roots, actually ¢(p-1)

* ex. p=101, d(p-1)=100-(1-1/2)-(1-1/5)=40
p=143537, d(p-1)=143536-(1-1/2)-(1-1/8971)=71760




< How do we test whether h is a primitive root modulo p?

* naive method:
o0 through all powers h2, h3, ..., h*, and make sure # 1
modulo p

* faster method:
assume p-1 has prime factors q;, q,, ..., q,,,
for all q;, make sure h®"% modulo p is not 1,
then h 1s a primitive root

Intuition: let h = g*(mod p), if gcd(a, p-1)=d (i.e. g" isnot a
primitive root), (g%) @i = (¢¥%)P-D) = 1 (mod p) for

some q. | d




<~ Procedure to test a primitive g:

assuming p-1 has prime factors q,, q,, ..., q,, (1.e. p-1 =q,"...q,")

for all q;, make sure g® % (mod p) is not 1

Proof:

(a) by definition, g”%® = 1 (mod p), g?® = 1 (mod p) therefore ord (g) < ¢(p)
if ¢(p) = ord (g) * k +s with s <ord|(g)
gf®) = @ K o8 = o5 = | (mod p), but s < ord (g) =>s=0
= ord,(g) | $(p) and ord,(g) < 4(p)
(b) assume g is not a primitive root i.e ord (g) < ¢(p)=p-1
then 3 i, such that ordy(g) | (p-1)/q; i.e. g ®"4i=1 (mod p) for some q.
(c) if for all q;, g ®V4i = 1 (mod p)

then ord (g) = ¢(p) and g is a primitive root modulo p




< Why are there ¢(p-1) primitive roots?

" o oo . an integer
let g2 be3a prlmltlve root (the order of g 1s p-1) . less than p-1
* g) g b g >

* if gcd(a, p-l)—d, then (g®) P14 = (g@‘/d)<10 b = 1 (mod p) which
says that the order of g* is at most (p-1)/d, therefore, g* is not a
primitive root = There are at most ¢(p-1) primitive roots in Z, :

x For an element g" in Z where gcd(a, p-1) =1, 1t 1s guaranteed
that (g%)PV% = 1 (mod p) for all q, (q; is factors or p-1)

assume that for a certain ¢, (g HP-D% = 1 (mod p)

=p-l1]a-(p-1)/q,
— dintegerk,a - (p-1)/q. =k - (p-1) 1e.a=k-q

=q.|a
= q. | ged(a, p-1) contradiction




Multiplicative Generators in Z_~

1V 1 LJn

< How do we define a multiplicative generator in
Z._" if n is a composite number?

x [s there an element in Z " that can generate all elements
of 77

* [fn=p - q, the answer 1s negative. From Carmichael
theorem, VaeZ ", aMn) = | (mod n), gcd(p-1, g-1) 1s at
least 2, A(n) = lcm(p-1, g-1) 1s at most ¢(n) / 2. The
size of a maximal possible multiplicative subgroup in
Z. " is therefore less than A(n).

* How many elements in Z_* can generate the maximal
possible subgroup of Z *?




Findi S R I n
< For example: find x such that x* = 71 (mod 77)

Is there any solution?

How many solutions are there?

How do we solve the above equation systematically?

& In general: find x s.t. x> = b (mod n),

where b € QR , n =p-q, and p, g are prime numbers

+ Easier case: find x s.t. x> = b (mod p),

where p 1s a prime number, b € QR

Note: QR is “Quadratic Residue in Z_*” to be defined later




: % 2 : :
<+ Given yeZ 7, tind x, s.t. x“ = y (mod p), p 18 prime
>»p=1(mod4) (1.e. p =4k + 1) : probabilistic algorithm

T ;
WO cases >p =3 (mod4) (i.e. p =4k + 3) : deterministic algorithm

< Is there any solutionl?
p-1
check y 2 21 (modp) [syaQR}?

<>p =3 (mOd 4) pt1

x=ty 4 (mod p)
% (pt+1)/4 = (4k+3+1)/4 = k+1 1s an integer

£ x2 :y(p+l)/2 :y(p-l)/z Y=y (mOdp)




Finding Square Root mod p
$p=1(mod4)
* Peralta, Eurocrypt’86, p=2"¢g + 1

* 3-step probabilistic procedure
{ 1. Choose a random number r, if 7> = y (mod p), output x = r

2. Calculate ( + 2)@ D2 =y + v z (mod f(2)), f(z) =z%-y
3. If u = 0 then output x = yl (mod p), else goto step 1

note: (b+cz)(d+ez) = (bd+ce z%) + (be+cd) z
= (bd+ce y) + (betcd) z (mod z%-)

use square-multiply algorithm to calculate (r + z)@-1/2

* the probability to successfully find x for each » > 1/2




+ex: finding x such that x*> = 12 (mod 13)

solution:
x13 =1 (mod4)
&choose 7r=3,32=9 =12

63 +2)13D2=3+20=124+0z (modz3-12)

&choose r=7,72=10= 12

(7 +2)13D2=(74+20=0+8z (modz3-12)
—x=81=5 (mod 13)

Why does it work???
Why 1s the success probability > 12 277




Findi S R I n
< Now we return to the question of solving square
roots in Z_°, i.e.

for an integer yeQR_,
find xeZ_* such that x* =y (mod n)

<~ We would like to transform the problem into
solving square roots mod p.

< Question: for n=p-q
Is solving “x* =y (mod n)” equivalent to solving

“x? =y (mod p) and x* = y (mod ¢)”?2?
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4 find x such that x> = 71 (mod 77)
*x 77="T-11
* “x* satisfies f(x*) = 71 (mod 77)” < “x* satisfies both
f(x*) =1 (mod 7) and {(x*) =5 (mod 11)”
* since 7 and 11 are prime numbers, we can solve x> = 1 (mod 7)
and x2 = 5 (mod 11) far more easily than x* = 71 (mod 77)
x% = 1 (mod 7) has two solutions: x = £1 (mod 7)
x“ = 5 (mod 11) has two solutions: x = 4 (mod 11)
* put them together and use CRT to calculate the four solutions
x= 1(mod7)= 4(mod 11) = x= 15 (mod 77)
x= 1(mod7)= 7(mod 11) = x= 29 (mod 77)

x= 6(mod7)= 4(mod 11) = x= 48 (mod 77)
x= 6(mod7)= 7(mod 11) = x= 62 (mod 77)




<~ Previous slides show that once you know the factoring of
n to be p and ¢, you can easily solve the square roots of n

<~ Indeed, if you can solve the square roots for one single
quadratic residue mod n, you can factor n.

* from the four solutions *a, b on the previous slide
x= ¢ (modp)= d(modq) = x= a(modp-q)
Xx= ¢ (modp)= -d (mod q) = x= b (modp-q)
X = -¢c (mod p)= d (mod q) = x= -b (mod p-q)
X = -¢c (mod p) = -d (mod q) = x = -a (mod p-q)
we can find out a= b (mod p) and a= -b (mod q)
(or equivalently a = -b (mod p) and a= b (mod q))

* therefore, p | (a-b) 1.e. gcd(a-b, n) =p (ex. gcd(15-29, 77)=7)
q | (atb)i.e. gcd(a+b, n) =q (ex. gcd(15+29, 77)=11)
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< Consider yeZ ", if A x €Z_, such that x* = y (mod n),

then y 1s called a quadratic residue mod n, 1.e. yeQR,

< If the modulus 1s a prime number p, there are (p-1)/2
quadratic residues in Z

x let g be a primitive root in Zp*, fg, g% 2, ..., isa
permutation of {1,2,...p-1}

x in the above set, {g°, g*,..., ¢!} are quadratic

residues (QR,)

x {g, &,..., g"*} are quadratic non-residues (QNR)),
out of which there are ¢(p-1) primitive roots




° ° ° r7>x<
Quadratic Residues in Z;

15t proof:

* For each xeZ ", p-x # x (mod p) (since if x is odd,
p-X 1s even), 1t’s clear that x and p-x are both square
roots of a certain yeZ ",

* Because there are only p-1 elements 1n Zp*, we know
that [QR )| < (p-1)/2

x Because | {g°, g%,..., g} | = (p-1)/2, there can be no
more quadratic residues outside this set. Therefore,

the set {g, g°,..., "%} contains only quadratic non-
residues




° ° ° r7>x<
Quadratic Residues in Z;

* Because the squares of x and p-x are the same, the number of
quadratic residues must be less than p-1 (1.e. some element in Zp*
must be quadratic non-residue)

214 proof:

* Consider this set {g, g°,..., g**} directly

* [t geQR, then g cannot be a primitive (because g must all be
quadratic residues)

* If g?k+1=g’k - geQR |, then there exists an xeZ * such that x?=g?<-
g (mod p)

* Because ged(g?, p)=1, g= x> (g =(x"(g)*)? eQR,
contradiction AN

vie g 1cQNR, | (€9'(@)=(@)'gg...;g= 1 (modp)
= (g =ghg g = (g = (g
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Quadratic Residues n Zp*
& ex. p=143537, p-1=143536=24-8971,
d(p-1)=2%-8971-(1-1/2)(1-1/8971)=71760
primitives,
(p-1)/2=71768 QR ’s and 71768 QNR s
* Note: if g 1s a primitive, then g3 : g5 ... are also primitives

except the following 8 numbers g®77!, g8713 | 87115

* Elements n Zp* can be classified further according to their order

sl (6] ifcp MxeZ), Qe (%) || psh, we gan list glh passiple otders |
: 2 | 4 | 8 |16 | 8971 | 89712 | 89714 | 8971-8 |8ITI-16

QR,| QR,| QR QR QNR,| OQR, | QR, | OQR, | OR,
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D Jadra
< If y 1s a quadratic residue modulo 7, 1t must be a
quadratic residue modulo all prime factors of n.

dxeZ” s.t. X2 —y(modn)<:>x =kn+y= kpq+y

— x% = y (mod p) and X° = =y (mod q)

< If y 1s a quadratic residue modulo p and also a quadratic
residue modulo g, then y 1s a quadratic residue modulo 7.

EI rleZ and r,eZ " such that
= 1,2 (mod p) = (r, mod p)? (mod p)
=1,” (mod q) = (r, mod q)* (mod q)
from CRT, 3! r €Z_such that r =, (mod p) =1, (mod q)
therefore, y = r? (mod p) = r? (mod q)
again from CRT, y =r? (mod p-q)




Legendre Symbol
1
< Legendre symbol L(a, p) 1s defined when a 1s any integer,

p 1s a prime number greater than 2
* [(a,p)=01fp|a
* [(a, p) =1 1f a 1s a quadratic residue mod p
* [(a, p) = -1 1f a 1s a quadratic non-residue mod p

<~ Two methods to compute (a/p)
x (a/p) = a2 (mod p)

* recursively calculate by L(a - b, p) = L(a, p) - L(b, p)
l.Ifa=1,L(a,p)=1
2. Ifais even, L(a, p) = L(a/2, p)-(-1)®*1/8
3. If ais odd prime, L(a, p) = L((p mod a), a)-(-1)@DE-D/4

< Legendre symbol L(a, p) =-11fa € QNR,
L(a,p)=11fa € QR,




yeQR < y®12=1 (mod p)

(=)
* [fyeQR,
* Then 3xeZ " such that y=x* (mod p)
x Therefore, yP-D2= (x2)P-D2 = xP-D= 1 (mod p)
(<)
* [fygQR i.e. yeQNR,
* Then y=g?*! (mod p)
* Therefore, yP-D2= (g2 - g)P-D2 = gk(p-1) g(b-1)2= o(-D2 ] (mod p)

Y,

ord (g) = p-1




<-Jacobi symbol J(a, n) is a generalization of the
Legendre symbol to a composite modulus n

< If n 1s a prime, J(a, n) 1s equal to the Legendre
symbol i.e. J(a, n) = a®Y2(mod n)

<~ Jacobi symbol can not be used to determine
whether a 1s a quadratic residue mod n (unless n
1S a prime)
ex. J(7,143) = J(7, 11)-J(7, 13) = (-1)-(-1) = 1
however, there 1s no integer x such that
x? =7 (mod 143)




$- The following algorithm computes the Jacobi symbol J(a, n), for any
integer a and odd integer n, recursively:

* Def 1:J(0,n)=0 also If n 1s prime, J(a, n) =0 1f n|a
Def 2: Ifnis prime, J(a,n)=11fae QR, and J(a,n)=-1ifa ¢ QR
Def 3: If n 1s a composite, J(a, n) = J(a, p;p,..- Py = J(@,p,)J(ap,)...-J(a,p,,)
Rule 1: J(I,n) =1

Rule 2: J(a-b, n) = J(a, n) - J(b, n)
Rule 3: J(2, n) =1 if (n?-1)/8 is even and J(2, n) = -1 otherwise
Rule 4: J(a, n) = J(a mod n, n)
Rule 5: J(a, b) =J(-a, b) if a <0 and (b-1)/2 1s even,
J(a, b) =-J(-a, b) 1f a<0 and (b-1)/2 1s odd
Rule 6: J(a, b;"b,) =J(a, b,) - J(a, b,)
Rule 7: if gcd(a, b)=1, a and b are odd

x 7a: J(a, b) =J(b, a) if (a-1)-(b-1)/4 1s even
x 7b: J(a, b) =-J(b, a) 1f (a-1)(b-1)/4 1s odd




QR and Jacobt Symbol

<~ Consider n = p-q, where p and g are prime numbers
VxeZ, ,x eQR,
< x €QR,and x eQR,
< J(x, p) =xP D2 =1 (mod p) and J(x, g) =x¢D? =1 (mod g)
= Jx,n)=Jx,p) Jx, g)=1

Jx, p) | J(x, q)




Wilson’s Theorem
\AY 11

(p-1)! =-1 (mod p)

Proof:
Goal: (p-1)!=1-2-3 - (p-1)=-1=(p-1) (mod p)
* Since ged(p-1, p) = 1, the above 1s equivalent to (p-2)!=1(mod p)
xeg.p=5 3:-2-1=1(mod)3)
p=7, 5-4-3-2-1=1(mod7)
* We know that 1™ = 1 (mod p) and (-1)"' = -1 (mod p)
* Claim: VieZ "\{1,-1},i" =i (pf: if i #ithen i’ =1,ie{1,-1})
* Claim: Vi #i,€Z "\{1,-1}, i, = i, (pf: if i;"'=i," then i) - i, = 1
1.e. i;=i, , contradiction)

* Out of the set {2, 3, ... p-2}, we can form (p-3)/2 pairs such that
i - j =1 (mod p), multiply them together, we obtain (p-2)! = 1




Another Proof
yeQR < y®D2=1 (mod p)
(=) &

* [fyeQR,

* Then 3xeZ " such that y=x* (mod p)

*x Therefore, yP-D2= (x2)P-D2 =xP-D= 1 (mod p)
(<)

* Since VieZ ", ged(i, p)=1, 3j such that i-j = y (mod p)

* It yz QR , the congruence x? =y (mod p) has no solution,
therefore, j # 1 (mod p)

* We can group the integers 1, 2, ..., p-1 into (p-1)/2 pairs (1, J),
each satisfying 1) = y (mod p)
* Multiply them together, we have (p-1)! = y®*-D2 (mod p)

* From Wilson’s theorem, y®-12 = -1 (mod p)




Every yeQRp has exactly two square roots
1.e. X and p-x such that x’=y (mod p)
pf x QRp — {gza g RRRE) p 1}9 |Zp | _p_la and |QRp| _ p_l)/z
* For each y=g** in QR , there are at least two distinct xeZ " s.t.
x?=y (mod p), i.e., g€ and p-g* (if one is even, the other is odd)

* Since |QR [ = (p- 1)/2 we can obtain a set of p-1 square roots

S={g, p-g, &, p-g°,....8° "%, p-g %}

* Claim: the elements of S are all distinct (1. g' # @ (mod p) when
i#j since g is a primitive, 2. g' #k-g (mod p) when i#j, otherwise
(g-+g))(g-g)=g*-g%=0 (mod p) implies i=j (mod (p-1)/2),

3. g' # -g' (mod p) since if one is even, the other is odd)

* If there 1s one more square root z of y—ng which is not gk and
-gk it must belong to S (which is Z, "), say g, j#zk, which would
imply that g% = g?¢ (mod p), and leads to contradiction




Order q Subgroup G, of Z
<~ Let p be a prime number, g be a primitive in Zp*
- Letp=k-q+1 1e. q|p-1 whereqisalsoaprime number
< Let G, = (" g* ..., g% *=1)
¢ Is G, a subgroup in Z*? YES
i - k

. 1 = 1 +1)k
V X,y € G itisclearthat z= g 2

=X"y= g(ll
is also in G, where 1=1, + 1, (mod q)
< Is the order of the subgroup G, q? YES

Vi, iy € Z,i; #1), g ¥ g2 *(mod p) otherwise g is not a

(mod p)

primitive in Z ", also g’ ¥=1 (mod p)

< How many generators are there in G;? ¢(q)=q-1
a. there are ¢(p-1) generators in Zp*={g1, g’ ...g5, ....g"), since
gcd(p-1, x) =d > 1 implies that ordp(gx) = (p-1)/d




Order g Subgroup 4, (cor "C
also (£°)Y = 1 (mod p) and g = 1 (mod p) implies that either
X y|p-1 or p-1|x -y, ged(x, p-1)=1 implies that p-1 |y
therefore, ord (g") = p-1

b. there are ¢(q) primitives in G, = fg* o® ... g9 %=1} since
q is also a prime number

< Is G, a unique order q subgroup in Z,* ? YES
Let S be an order-q cyclic subgroup, S= {g, >, ..., g%=1}. Since
p is prime, 3 a unique k-th root g, € Z°, s.t. g=g,* (mod p)
Let g, # g be another primitive, clearly g, = g’ (mod p),
Is the set S={g ", g, >, ..., g, =1} different from G,?
letx € S,1.e.x= glil'k (mod p), 1, € Z,

Sll

X = glll =g ¢'* (mod p) wherei=s - 1, (mod q), 1.e. S € G
The proof is 81m11ar for G, < S. Therefore, S =G,




Gauss’ Lemma
1d

Lemma: let p be a prime, a 1s an integer s.t. gcd(a, p)=1,

pf.

define o; =j-a (mod p)ji; (p-1)25
let n be the number of a;’s s.t. o, > p/2 then L(a, p) = (-1)"

* o € {1y, ..., I 1T oy >p/2and oy € {sy, ..., S, 1y 1T O <p/2

* Since ged(a, p)=1, r; and s, are all distinct and non-zero

x Clearly, 0 <p-r,<p/2 fori=1,...,n

* no p-ryisans;:  if p-r;=s; then s, = -r; (mod p)
rewrite 1in terms of a: ua=-va (mod p) where 1 <u, v<(p-1)/2
= u =-v (mod p) where 1 <u, v < (p-1)/2 = impossible

= {815 -+ Sp-1y2-00 PT5 ---5 PI, 18 @ reordering of {1, 2,..., (p-1)/2}

= (-1 ((p-1)/2)! a®D™ (mod p) = L(a, p) = (-1)"
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Theorem: J(2, p) = (-1
Theorem: let p be a prime, gcd(a, p) = 1 then L(a, p) = (-1)!

(p-1)/2
where t = _21 I_J -a/pj, Also L(2, p) = (_1)(p2-1)/8
i=

pf.
* o € {1y, ..., Iy 1T oy >p/2and oy € {8y, ..., Sy qyqs 1T <p/2

xja=plj-apl+a forj=1, ..., (p-1)2
:>(p%)/2j a= (pZ)/z I_J a/pJ + 2 r; + (p i/z :

=1 J=1

* {81, o> S(p-1)2.m0 P- rl, e P15 1S areordermg of {1, 2,..., (p-1)/2}
(pz?/2J _ Z (p r +(p ﬁ/Zn n (p ﬁ/2n

=1 =1 J

J

* Subtracting the above two equations, we have

(p: )/

(a- 1)“”23 - p(2

Lj'a/pJ -n ) +2 » I,
=1




}(AP? (-1)®*D’8 (cont’d)

L+ (-2 = (p-1)2 (1 + (p-1)/2) / 2 = (p2-1)/8
(p-1)/2

* Thus, we have (a-1) (p*>-1)/8 = Z |_J°a/pJ - n (mod 2)

(p- 1)/2

(p- 1)/2 |_

*x [faisodd, n= JapJ

* [fa=2, Lj-z/pj = o for j=1, ..., (p-1)/2, n=(p>1)/8 (mod 2)




Lemma. There are at most ¢(k) ord-k elements in Zp*, k|p-1
pf.

¢ 7, isafield = x*-1=0 (mod p) has at most k roots

< if a is a nontrivial root (a=1), then {a’, a!, a2, ..., a<!} is the

set of the k distinct roots.

< In this set, those a‘’ with gcd(/, k) = d > 1 have order at most
k/d

< Only those a‘ with ged(/, k) = 1 might have order k.

<~ Hence, there are at most ¢(k) elements (out of k elements)
that have order equal to k.




Lemma. 2, ¢(k) = p-1

Lemma. %, ¢(k) = p-1

pf.
p-1=2,,, (#ainZs.t. ged(a, p-1) = k)
=2 o1 F#bin {1,..(p-1)/k} s.t. ged(b, (p-1)/k) = 1)
=2 p1 O((p-1)/k)
=2 p1 (k)

eX. 10(15, 0(2), 6(3), 6(4), 6(6), 6(12)}, p=13




f7 >X< ° °
L, Isa Ty clic group

Theorem: Zp* is a cyclic group for a prime number p

pf.
Lemma 1: # of ord-k elements in Z * < ¢(k), where k | p-1

Lemma 2: %, | (k) = p-1
The order k of every element 1n Zp* divides p-1

= X .1 (# of elements with order k) = p-1

= X 1 9(K) = p-1, combined with lemma 2, we know that
# of ord-k elements in Z~ = ¢(k)

— # of ord-(p-1) elements in Z~ = ¢(p-1) > 1

—> There is at least one generatorin Z 7, i.e. Z " is cyclic

Ex. p=13, p-1 =[11,5, 7,11} + [12,10§| + [{3,9}| + [14.8}] + |16}
k=1 k=2 k=3 k=4 k=6




< Number of generators in Z*: ¢(p-1)
Let g be a primitive, Z~ = <g>= {g, g%, g°, ..., g ..., g}

if gcd(k, p-1) =d # 1 then gX is not a primitive
since (g4)P-Vd = (g¥)p-t =1, i.e. ord (g*) < (p-1)/d
if gcd(k, p-1) = 1 and g* is not a primitive, then d=0rdp(gk) <p-1, 1.e.
(g5)d=1; g is a primitive = p-1 | k d = p-1 | d contradiction.
< Z_"is not a cyclic group (n=p q, p=2p'+1, ¢=2q'+1, A(n)=2p'q")
Since x*™ = 1 (mod n), there is no generator that can generate
all members in Z_"
$ QR 1s a cyclic group of order A(n)/2 = lem(p-1, g-1)/2= p' ¢
VxeZ ', x*=1(modn) Carmichael’s Theorem
clearly, (x?)*™?2 =1 (modn), QR, = {x* |V x € Z_*}
Le. Vy e QR ord(y) [p'q" (ord,(y)eil,p' q\,p'q'})
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Generators in QR (cont’d)
cyclic? 3Ix"eZ  ord (x)=An)=2p'q =
3y" (=(x7)) € QR s.t. ord,(y") =AMn)2=p'q
$ Lety be a random element in QR_, the probability that y 1s a generator
1s close to 1

Let y”* be a generator of QR_,
QR, =<y™>={y", )%, ') -0, ) oo, P}

if gcd(k, p'q') =d # 1 then (y*)k 1S not a generator

since ((y") )P = ((y")/9)P9 = 1, i.e. ord ((y")") < (p'q')/d
o(p'q) = o(p) ¢(q) = (@-1)(q-1)=p'q-p'-q +1

=p'q-(-1)-(q-1)-1
vV x e {7 ), ..., (7)Y ord, (x) = p!
Vxe {y), )P, ..., )"} ord,(x) = ¢
ord (1) =1
Pr{x is a generator | xey QR .} = ¢0(p'q’) / (p'q’) 1s close to 1




7 %
Subgroups in Z
Consider n=p q, p=2p'+1, g=2q'+1, m=p'q’, A(n) = lcm(p-1, q-1)=2m,
o(n) = (p-1)(g-1) = 4m
< Z._° is not a cyclic group
* Carmichael’s theorem asserts that no element in Z * can generate
all elements in Z_*. (maximum order is 2m instead of 4m)

* However, Z " is still a group over modulo n multiplication.
< QR, is a cyclic subgroup of order m = A(n)/2, QR = {x* |V x € Z_"}
* I = {x € Z,” | J(x,p)=1 and J(x,q)=1}

x If there exists an element in Z_* whose order is 2m, then QR _ is
clearly a cyclic group. (Will the precondition be true?)

*x V xeZ " x?™ =1 (mod n) implies that V ye QR ord (y) | p'q'
1.e. ord (y) 1s either 1, p', ¢, or p'q' (if there 1s one y s.t. ord (y)=m

then y 1s a generator and QR 1s cyclic). Let’s construct one. “




Let g, be a generator in Zp*, and g, be a generator in Zq*
Let g =g, (mod p) =g, (mod q), (note that J(g,n)=1,g € J;,)
ghl =g =g’ =1 (modp), g' = g*¥ =g, =1 (mod q)
= g?Pd=1 (mod p) and g?9?' = 1 (mod q) i.e. g??9 =1 (mod n)
if there exists ak € {1, 2, p', q', 2p’, 29", p'q'} s.t. g<=1 (mod n)
then ord (g) 1s not 2p'q'
1. k=1: = g, = 1 (mod p) contradict with ord (g;) = p-1

2. k=p': = gP = g,* = 1 (mod p) contradict with ord (g,) = 2p'

3.k=q": = g¥ =g,% =1 (mod q) contradict with ord (g,) = 2q'

4. k=2: = g,> =1 (mod p) contradict with ord,(g,) = p-1
5.k=2p". = g* = g,* = 1 (mod q) contradict with ord (g,) = 2q'
6. k=2q": = g*¥ = g,*? = 1 (mod p) contradict with ord (g,) = 2p'
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7. k=p'q: = gP9 =g,P9 =1 (mod p)
since g,?? = 1 (mod p) and
gcd(q,2)=1= da,bst.aq +b2=1
= gP'=g,P@a+b2 = (gr'd)" (g,27)° = 1 (mod p)
contradict with ord (g,) = 2p'
1~7 implies that ord_(g) =2p'q', i.e. QR = {g?, g%, ..., gP4}
and QR 1s a cyclic group.
* Pr{Elements in QR being a generator} = ¢(p'q’) / (p'q")
< J_is a cyclic subgroup of order 2m = A(n), J_ = {x € Z " | J(x,n)=1}
x J,,={x e Z | Jx,p)=-1and J(x,q)=-1}

* The above proof also shows that J_ = {g, g2, ..., g??9} is cyclic

* Pr{Elements in J  being a generator} = ¢(p'q') / (2p'q’)
< Jg 0 =2\ {Jy o]} is not a subgroup in Z_°
x1fx € J,, thenx *x € J,




> n=pq, p=2p+1, g=2q'+1
< Find a generator in QR
1. Find a generator g, of Z " (i.e. Z," = <g,>) and g, of Z " (i.e. Z;" = <g,>)
2. Calculate the generator h; = g,* (mod p) of QR and h, = g,* (mod 1) of QR
3. Let h=h, (mod p) = h, (mod q).
It is clear that h = g (mod n), i.e. heQR_, where g = g, (mod p) = g, (mod q).
Claim: h 1s a generator of QR
pf.

y € QR, = y € QR,andy € QR
i.e. 3x,€ Z,and x,€ Z,,y =h,"" (mod p) = h,™ (mod q)

= y=g,’" (mod p) = g,”* (mod q)

= y=g°*(modn)if2x=2x, (modp-1)=2x, (mod g-1)
a unique X € Z. exists by CRT since ged(p-1, q-1) = ged(2p', 2q') =2
— y=h" (mod n)




< Z_ " is NOT a cyclic group (n=p q, p=2p'+1, g=2q'+1, m=p' q')
< How do we generate random elements in Z_*?

Z*={g*u*" (-1)*| gis a generator in QR , gcd(e, d(n)) = 1,
ueg Z. " and J(u,n) = -1,
ae{0,....m-1},b,€{0,1}, and b,e{0,1} }

Note: 1. J(-1,n) =1 and -1 € J \QR,, since (-1)®-2=(-1)P'=-1 (mod p)

2. e i1s odd, ¢p(n)-¢ is also odd, J(u™, n) = J(u, n) = -1
< We can view the above as 4 parts
1. Jpo (QR,): b, =b, =0, Jgp = {g* [ a€{0,...,m-1}}
2.J,;J\QR): b, =0,b,=1,J,, = {-g2 | ae {0,...,m-1}}
Assume that J(u, p) =-1 and J(u, q) =1
3.Jy:b,=1,b,=0,J,, = {g?u” | ae{0,...,m-1}}
4.J,0:b,=1,b,=1,J,, = {-g*u™ | ae{0,...,m-1}}







< Lagrange’s Theorem: for any finite group G, the
order (number of elements) of every subgroup H

of G divides the order of G.

* proof sketch: divide G into left cosets H —
equivalence classes, and show that they have the

same Size.

< It implies that: the order of any element a of a
finite group (1.e. the smallest positive integer
number k£ with a* = 1) divides the order of the
group. Since the order of a 1s equal to the order
of the cyclic subgroup generated by a. Also,
albl = 1 since order of a divides |G].




