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Prime Numbers

< Prime number: an integer p>1 that is divisible only by 1
and 1itself, ex. 2, 3,5, 7, 11, 13, 17...

< Composite number: an integer n>1 that is not prime
< Fact: there are infinitely many prime numbers. (by Euclid)

pf: #=on the contrary, assume a, is the largest prime number
% et the finite set of prime numbers be {a, a;, a,, .... a,}
% the number b = ay*a,*a,*...*a, + 1 is not divisible by any a;
i.e. b does not have prime factors <a,

2 cases: »if b has a prime factor d, b>d> a,, then “d is a prime
number that is larger than a,” ... contradiction
> 1f b does not have any prime factor less than b, then “b is a

prime number that is larger than a” ... contradiction
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Prime Number Theorem

< Prime Number Theorem:

* Let (x) be the number of primes less than x
* Then

Tx) ~ In x

in the sense that the ratio n(x) / (x/Inx) > 1 as x —> o

* Also, T(x) > —— and for x>17, T(x) < 1.10555 —
In x In x
< Ex: number of 100-digit primes
710199 - (109 ~ L0 107 39107

In 10100 In 10

Factors

< Every composite number can be expressible as a
product a'b of integers with 1 <a, b<n

< Every positive integer has a unique representation
as a product of prime numbers raised to different

powers.
s Ex. 504=23-32-7 1125=32-53




Factors

< Lemma: p is a prime number andp | a-b=>p|aorp|b,
more generally, p is a prime number and p | a-b-...'z
—> p must divide one of a, b, ..., z
* proof:

wcase l: p|a

wcase2: pfa,
> pfaand p is a prime number = ged(p,a)=1 = 1=ax+py
> multiply both side by b, b=bax+bpy
>plab=plb

% In general: if p | a then we are done, if p{ a then p | be...z, continuing
this way, we eventually find that p divides one of the factors of the
product

Factorization into primes

< Theorem: Every positive integer is a product of primes.
This factorization into primes is unique, up to

reordering of the factors. « Empty product equals 1.

% let n be the smallest suclyinteger

& since n can not be 1 or 8" prime, n must be composite, i.e. n=ab

% since n is the smallest, both a and b must be products of primes.

% n = a'b must also be a product of primes, contradiction

* Proof: uniqueness of factorization

% assume n = 1,1, 2 1k p, Ipy 2 pgs = 1y 2 'rkck%bl(hbz' : 'qut
where p;, q; are all distinct primes.

& letm=n/(r,r, 2 1,%)

% consider p; for example, since p; divide m = q,q;..q;9q;...q;, p; must
divide one of the factors q;, contradict the fact that “p;, q; are distinct
primes”

* Proof: product of primes * Prime is a one factor product.
% assume there exist positivef/@s that are not product of primes

(“Fair-MAH”)

Fermat’s Little Theorem

< Ifpisaprime, pfa then aP'=1 (mod p)
Proof: #letS={1,2,3,...,p-1} (Zp*), define y(x) =a - x (mod p) be
a mapping y: S—>Z
aVx € S, y(x)#0 (mod p) = Vx € S, y(x) € S, i.e. y: S>S
ify(x)=a-x=0(modp) = x=0 (mod p) since ged(a, p) =1 ‘
uV x,y €S, if x #y then y(x) # y(y) since

ify(x)=y(y)=a-x=a-y=x=ysince gcd(a, p) = 1‘
% from the above two observations, y(1), y(2),... y(p-1) are
distinct elements of S
12 (p-D)=y(1)y(2) ... y(p-1) = (a-1)-(a-2) ...~ (a:(p-1))
=aP! (12 ... “(p-1)) (mod p)
wsince ged(j, p) = 1 for j € S, we can divide both side by 1, 2,
3, ... p-1, and obtain aP'=1 (mod p)

Fermat’s Little Theorem

+ Ex:2'19=1024 =1 (mod 11)
233 =(219%23 = 1°23 = 8 (mod 11)
fe. 233 =233mod 1093 -8 (mod 11)

4 if n is prime, then 2" = 1 (mod n)
fe. if2"1=1 (mod n) then n is not prime <—(*)
usually, if = (mod n), then n is prime
* exceptions: 23611 = (mod 561) although 561 =3-11-17
2172912 1 (mod 1729) although 1729 =7-13-19

* (*) is a quick test for eliminating composite number




Euler’s Totient Function ¢(n)
< ¢(n): the number of integers 1<a<n s.t. gcd(a,n)=1
*xex. n=10, ¢(n)=4 thesetis {1,3,7,9}
< properties of ¢(*)
* O(p) = p-1, if p is prime
*d(p") = p - p"=(1-1/p) - p', if p is prime

*O(n'm) = ¢(n) - ¢(m) 1f gcd(n,m)=1 Pz e
nm - (n-¢(n)) m - (m-¢(m)) n + (n-¢(n)) (m-¢(m)) = ¢(n) ¢(m)
*¢(nm) -

o((d,/dy/d5))-0(dy™)-(ds ) d(n/d, /d,)- d(m/d,/dy)
if ged(n,m)=d,, ged(n/d,,d,)=d,, ged(m/d,,d,)=d,
*d(n) =n MP(1-1/p)

<> eX. o(10)=(2-1)-(5-1=4  &(120)=120(1-1/2)(1-1/3)(1-1/5)=32 ’

How large 1s ¢(n)?
< ¢(n) = n - 6/7 as n goes large

< Probability that a prime number p is a factor of a random
number r is 1/p

< Probability that two independent random numbers r, and r,
both have a given prime number p as a factor is 1/p?

< The probability that they do not have p as a common factor
is thus 1 — 1/p?

< The probability that two numbers r, and r, have no common
prime factor is P = (1-1/22)(1-1/32)(1-1/5%)(1-1/7?)...
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Pr{ r, and r, relatively prime }

< Equalities: |

T 1-x
1+1/22+1/32+ 1/4> + 1/52 + 1/6> + ... = 1%/6

Tt P = (1-1/22)(1-1/32)(1-1/53)(1-1/72) - ... :
T (1224124 ) (1417324 1/34+.) - L)t
= (122417324 /42 4+1/52+1/6%+..) ! |

= IHx+xHx3+...

~..each positive number has a unique prime number factorization
ex. 452=34-52

How large 1s ¢(n)?
< ¢(n) 1s the number of integers less than n that are relative
prime to n

< ¢(n)/n is the probability that a randomly chosen integer is
relatively prime to n

% Therefore, ¢p(n) ~ n - 6/7?

< P, = Pr { n random numbers have no common factor }

* n independent random numbers all have a given prime p as a
factor is 1/p"

* They do not all have p as a common factor 1 — 1/p"

* P = (1+1/2"+1/3"+1/4"+1/5"+1/6"+...)" is the Riemann zeta
function (n) http://mathworld.wolfram.com/RiemannZetaFunction.html

* Ex. n=4, {(4) =1"90 ~ 0.92




Euler’s Theorem

This is true even when n = p?

< If ged(a,n)=1 then a®™ =1 (mod n)

Proof: % let S be the set of integers 1<x<n, with gcd(x, n) =1,
define y(x) = a - x (mod n) be a mapping y: S—>Z

% Vx € Sand ged(a,n)=1, |ify(y=a-x=0(modn)=x=0(modn)|
W(X) #0 (mod Il) ged(a, n)=1 and ged(x, n) =1 ‘
ged(y(x), n) =1 = Vx e S, yx) € S,i.e y: SS

@V X,y €8, ‘if x#y then y(x) # y(y) (mod n)’
ify(x)=y(y) >a-x=a-'y=x=ysince gcd(a,n) = 1‘
« from the above two observations, VxeS, y(x) are distinct
elements of S (i.e. {y(x)| VxeS} is S)

* [Ix=I1 yx) = a®™ st (mod n)

xeS xeS

usince ged(x, n) =1 for x € S, we can divide both side by x
€ S one after another, and obtain adM=1 (mod n)

Euler’s Theorem

< Example: What are the last three digits of 7502
i.e. we want to find 75%3 (mod 1000)
1000 =23-53,  $(1000) = 1000(1-1/2)(1-1/5) = 400
7803 = 7803 (Md 400) — 73 = 343 (mod 1000)

< Example: Compute 43210 (mod 101)?
101=1- 101, ®(101) = 100

A second proof of Euler’s Theorem

Euler’s Theorem: VaeZ *, a®™ =1 (mod n)

< We have proved the above theorem by showing that the
function y(x) = a - x (mod n) is a permutation.
< We can also prove it through Fermat’s Little Theorem
considern=p - q,
VaeZ/, aP! = 1 (mod p) = @ H*" = a®™ = 1 (mod p)
VaeZ/, a%!' =1 (mod q) = (2¥1)*! = a®™ = 1 (mod q)
from CRT, Va € Z " (i.e. pfa and q ya),
a®™ = 1 (mod n)
note: the above proof is not valid when p=q

Carmichael Theorem
Carmichael’s Theorem:
VaeZ * a*" =1 (modn) and a"*" =1 (mod n?)
where n=p-q, p # g, A(n) = lem(p-1, g-1), A(n) | ¢(n)
< like Euler’s Theorem, we can prove it through Fermat’s
Little Theorem, consider n=p - q, where p=q,
VaeZ), aP! =1 (mod p) = (aP1)@Veede-1aD) = g1 = 1 (mod p)
VaeZ/, a%! =1 (mod q) = (a%)PVeede-1aD) = g1 = | (mod q)
from CRT, Va € Z " (i.e. pfaand q fa), a*™ =1 (mod n)
therefore, VaeZ *, a*™ =1 +k - n
raise both side to the n-th power, we get a" *™ = (1 + k - n)",

= a" W =1+nkn+.. = VaeZ (orZ,*),a "™ =1 (modn?)
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Basic Principle to do Exponentiation

< Let a, n, X, y be integers with n>1, and gcd(a,n)=1
if x =y (mod ¢(n)), then a* = a¥ (mod n).

< If you want to work mod n, you should work mod
d(n) or A(n) in the exponent.

Primitive Roots modulo p

< When p is a prime number, a primitive root
modulo p is a number whose powers yield every
nonzero element mod p. (equivalently, the order of
a primitive root is p-1)
sex: 3'=3, 3222, 33=6, 3*=4, 3°=5, 3°=1 (mod 7)
3 is a primitive root mod 7
<-sometimes called a multiplicative generator

<-there are plenty of primitive roots, actually ¢(p-1)

* ex. p=101, ¢(p-1)=100-(1-1/2)-(1-1/5)=40
p=143537, ¢(p-1)=143536-(1-1/2)-(1-1/8971)=71760

Primitive Testing Procedure

< How do we test whether h is a primitive root modulo p?
* naive method:

go through all powers h2, b3, ..., h"?, and make sure # 1
modulo p
* faster method:
assume p-1 has prime factors q;, q,, ..., q,»

for all q;, make sure h® 4 modulo p is not 1,
then h is a primitive root

Intuition: let h = g%(mod p), if gcd(a, p-1)=d (i.e. g* isnot a
primitive root), (g%) P14 = (g¥/%)®D = | (mod p) for
some q, | d

Primitive Testing Procedure (cont’d)

< Procedure to test a primitive g:

assuming p-1 has prime factors q,, q,, ..., qp, (i.e. p-1 =q,"...q,)

for all q;, make sure g® % (mod p) is not 1
Proof:
(a) by definition, g”%® = 1 (mod p), g® = 1 (mod p) therefore ord (g) < ¢(p)

if §(p) = ord (g) *k +s with s <ord,(g)
gtb(p) = gordp(g) *k g'=g’=1 (modp), buts < Ordp(g) —s=0

= ord,(g) | (p) and ord,(g) < ¢(p)
(b) assume g is not a primitive root i.e ord,(g) < ¢(p)=p-1

then 3 i, such thatord (g) | (p-1)/q;  i.e. g ®D4i=1 (mod p) for some q,
(c) if for all q;, g ®-D4i = 1 (mod p)
then ord,(g) = ¢(p) and g is a primitive root modulo p
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Number of Primitive Root in Zp*

< Why are there ¢(p-1) primitive roots?

* let g be a primitive root (the order of g is p-1) o itlﬁt;r%%rl

* if ged(a, p-1)=d, then (g%) @4 = (g¥H®D = | (mod p) which
says that the order of g? is at most (p-1)/d, therefore, g is not a
primitive root = There are at most ¢(p-1) primitive roots in Z*

* For an element g° in Z," where ged(a, p-1) = 1, it is guaranteed
that (g*)P"% % 1 (mod p) for all q; (q; is factors or p-1)

assume that for a certain q, ()P4 = 1 (mod p)
=p-lla-(p-1)/q

= Jintegerk,a - (p-1)/q,=k - (p-1) ie.a=k-q,
=q|a

= q; | gcd(a, p-1) contradiction
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Multiplicative Generators in Z_*

< How do we define a multiplicative generator in
Z,” if n is a composite number?

* Is there an element in Z " that can generate all elements
of Z,*?

*Ifn=p - q, the answer is negative. From Carmichael
theorem, VaeZ , a*™ = 1 (mod n), ged(p-1, g-1) is at
least 2, A(n) = lcm(p-1, g-1) is at most ¢(n) / 2. The
size of a maximal possible multiplicative subgroup in
Z." is therefore less than A(n).

* How many elements in Z_* can generate the maximal
possible subgroup of Z_*?

22

Finding Square Roots mod n

< For example: find x such that x*> = 71 (mod 77)
* [s there any solution?
* How many solutions are there?

* How do we solve the above equation systematically?

< In general: find x s.t. x*> = b (mod n),
where b € QR, , n =p-q, and p, g are prime numbers
< Easier case: find x s.t. x*> = b (mod p),

where p is a prime number, b € QR

Note: QR, is “Quadratic Residue in Z_ ™ to be defined later
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Finding Square Root mod p

+GivenyeZ, find x, s.t. x* =y (mod p), p is prime
»>p=1(mod4) (i.e. p =4k + 1) : probabilistic algorithm
»>p =3 (mod 4) (i.e. p =4k + 3) : deterministic algorithm
< Is there any solutionl?
b
check y 2 21 (modp) IsyaQR,?

<p=3(mod4) ptl

x=t+y 4 (modp)
% (pt+1)/4 = (4k+3+1)/4 = k+1 is an integer
o 2 :y(p+l)/2 :y(p-l)/2 .y=y (mod p)

Two cases:
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Finding Square Root mod p

$p=1(mod 4)
* Peralta, Eurocrypt’86, p=2"¢g + 1
* 3-step probabilistic procedure
1. Choose a random number 7, if 7% = y (mod p), output x = r
{ 2. Calculate (r + 2)? D2 = 4y + v z (mod f(z)), f(z) =22y
3. If u = 0 then output x = v'! (mod p), else goto step 1

note: (b+cz)(d+ez) = (bd+ce z2) + (be+cd) z
= (bd+ce y) + (beted) z (mod z2-y)
use square-multiply algorithm to calculate (» + z)?-1/2

* the probability to successfully find x for each » > 1/2
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Finding Square Root mod p

+ex: finding x such that x* = 12 (mod 13)

solution:
%13=1(mod4)
wchoose r=3,32=9=12
6(3+2)13D2=3+20=12+0z (modz3-12)
wchoose r=7,72=10# 12
5(7+2)13D2=7+20=0+8z (modz*-12)
= x=8"1=5 (mod 13)

Why does it work???
Why is the success probability > 2 777
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Finding Square Roots mod n

< Now we return to the question of solving square
roots in Z_*, i.e.
for an integer yeQR,,
find xeZ_* such that x> = y (mod n)

< We would like to transform the problem into
solving square roots mod p.

< Question: for n=p-q
Is solving “x*> =y (mod n)” equivalent to solving
“x?> =y (mod p) and x*> = y (mod ¢)”???
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Finding Square Roots mod p-q

< find x such that x> = 71 (mod 77)
*77="7-11
* “x* satisfies f(x*) =71 (mod 77)” < “x* satisfies both
f(x*)=1 (mod 7) and f(x*) =5 (mod 11)”
* since 7 and 11 are prime numbers, we can solve x2 = 1 (mod 7)
and x2 =5 (mod 11) far more easily than x2 = 71 (mod 77)
x2 = 1 (mod 7) has two solutions: x = 1 (mod 7)
x2 = 5 (mod 11) has two solutions: x = +4 (mod 11)
* put them together and use CRT to calculate the four solutions
x=1(mod7)= 4 (mod 11) = x = 15 (mod 77)
x=1(mod7)= 7 (mod 11) = x = 29 (mod 77)

x= 6 (mod7)= 4 (mod 11) = x = 48 (mod 77)
x= 6(mod7)= 7 (mod 11) = x= 62 (mod 77)
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Computational Equivalence to Factoring

< Previous slides show that once you know the factoring of
n to be p and ¢, you can easily solve the square roots of n

< Indeed, if you can solve the square roots for one single
quadratic residue mod n, you can factor n.

* from the four solutions +a, +b on the previous slide
x= ¢ (modp)= d(mod q) = x= a(mod p-q)
x= ¢ (modp)= -d (mod q) = x= b (mod p-q)
x= -c (mod p)= d (mod q) = x= -b (mod p-q)
x= -c (modp)= -d (mod q) = x= -a(mod p-q)
we can find out a= b (mod p) and a= -b (mod q)
(or equivalently a= -b (mod p) and a= b (mod q))

* therefore, p | (a-b) i.e. gcd(a-b, n) =p (ex. ged(15-29, 77)=7)
q| (atb) i.e. ged(at+b, n) =q (ex. ged(15+29, 77)=11)
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Quadratic Residues

< Consider yeZ ", if 3 x €Z_", such that x* = y (mod n),
then y is called a quadratic residue mod n, i.e. yeQR,

< If the modulus is a prime number p, there are (p-1)/2
quadratic residues in Z

* let g be a primitive root in Zp*, {g,8% &, ...,g8Visa
permutation of {1,2,...p-1}

x in the above set, {g°, g%,..., g"!} are quadratic
residues (QR,)

x {g, &,..., 2"} are quadratic non-residues (QNR)),
out of which there are ¢(p-1) primitive roots
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Quadratic Residues in Z

15t proof:

* For each XeZp*, p-x # X (mod p) (since if x is odd,
p-Xx is even), it’s clear that x and p-x are both square
roots of a certain yeZp*,

* Because there are only p-1 elements in Zp*, we know
that QR | < (p-1)/2

* Because | {g%, g*,..., "'} | = (p-1)/2, there can be no
more quadratic residues outside this set. Therefore,
the set {g, g°,..., g%} contains only quadratic non-
residues
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Quadratic Residues in Z
214 proof:

* Because the squares of x and p-x are the same, the number of
quadratic residues must be less than p-1 (i.e. some element in Z*
must be quadratic non-residue)

* Consider this set {g, g°,..., g%} directly

* If geQR,, , then g cannot be a primitive (because g* must all be
quadratic residues)

* If g?*1=g- geQR , then there exists an xeZ  such that x?=g?* -

g (mod p)

* Because ged(g%, p)=1, g=x2- (g9 =(x-(g)*? €QR,
contradiction N

* ie. g1 €QNR, (@ '(g) = () 'g'g"...-g =1 (mod p)

=)' =gl gl gl = (@)= (g2
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Quadratic Residues in Z

¢ ex. p=143537, p-1=143536=24-8971,
d(p-1)=2%-8971-(1-1/2)(1-1/8971)=71760
primitives,
(p-1)/2=71768 QRp’S and 71768 QNRp’S
* Note: if g is a primitive, then g3 , g ... are also primitives
except the following 8 numbers g8971, g8971 3. g8971'15
* Elements in Zp* can be classified further according to their order
sir(ip_lv xrglzp*p_qrdn(_)i) | HD'-I" we gan list gl], possip_le 01de1i§_ |
2 4

ordy(x) p-1 8 | 16 | 8971 | 89712 | 89714 | 89718 | 597116

QNR,[ QR,| QR, QR QR ONR,| QR, QR, QR, QR,
#  |o(-D 8
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Composite Quadratic Residues

< If y is a quadratic residue modulo #, it must be a
quadratic residue modulo all prime factors of n.
dxeZ st x* =y (modn) & x>=kn+y=kp q+y
= x> =y (mod p) and x> =y (mod q)
< If y 1s a quadratic residue modulo p and also a quadratic
residue modulo ¢, then y is a quadratic residue modulo 7.

EI reZ *and r,eZ *such that
= 1,2 (mod p) = (r, mod p)? (mod p)
= 12 (mod q) = (r, mod )’ (mod q)
from CRT, 3! r €Z_"such that r =, (mod p) =r, (mod q)
therefore, y = r> (mod p) = 1? (mod q)
again from CRT, y = r? (mod p-q)
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Legendre Symbol

< Legendre symbol L(a, p) is defined when « is any integer,

p 1s a prime number greater than 2
*L(a,p)=0ifp|a
* L(a, p) = 1 if a is a quadratic residue mod p
* L(a, p) = -1 if a is a quadratic non-residue mod p

< Two methods to compute (a/p)
* (a/p) = a® D2 (mod p)
* recursively calculate by L(a - b, p) = L(a, p) - L(b, p)
l.Ifa=1,L(a,p)=1
2. Ifais even, L(a, p) = L(a2, p)-(-1)®>1/8
3. If ais odd prime, L(a, p) = L((p mod a), a)-(-1)@De-1/4
% Legendre symbol L(a, p) = -1 if a € QNR,
L(a,p)=1ifa e QR,

35

Legendre Symbol
yeQR, < y®D2=1 (mod p)

=)

* If yeQR,

* Then 3xeZ" such that y=x* (mod p)

* Therefore, y?P-12= (x2)P-12 = xP-D= 1 (mod p)
(<)

* IfyzQR, i.e. yeQNR,

* Then y=g?*! (mod p)

* Therefore, yo-)2= (g2 - g)p-D2 = ghtv-D) g>-D2= g>-D2 X1 (mod p)

ord,(g) = p-1

36




Jacob1 Symbol

< Jacobi symbol J(a, n) is a generalization of the
Legendre symbol to a composite modulus n

< If n is a prime, J(a, n) 1s equal to the Legendre
symbol i.e. J(a, n) = a®D?(mod n)
< Jacobi symbol can not be used to determine
whether a 1s a quadratic residue mod n (unless n
1s a prime)
ex. J(7, 143) = 1(7, 11)-3(7, 13) = (-1)-(-1) = 1
however, there is no integer x such that
x2 =7 (mod 143)
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Calculation of Jacobi Symbol

< The following algorithm computes the Jacobi symbol J(a, n), for any
integer a and odd integer n, recursively:

* Def 1:J(0, n) =0 also If n is prime, J(a, n) = 0 if n|a
Def 2: If nis prime, J(a,n)=1ifa e QR, and J(a,n)=-1ifa¢ QR,
Def 3: If nis a composite, J(a, n) =J(a, p;"p,-.- Py = J(@,p)) I (a,p,)-.. J(a,p,)
Rule 1: J(1,n) =1
Rule 2: J(a'b, n) = J(a, n) - J(b, n)
Rule 3: J(2, n) = 1 if (n2-1)/8 is even and J(2, n) = -1 otherwise
Rule 4: J(a, n) = J(a mod n, n)
Rule 5: J(a, b) = J(-a, b) if a <0 and (b-1)/2 is even,
I(a, b) =-J(-a, b) if a<0 and (b-1)/2 is odd

Rule 6: J(a, b;b,) =J(a, b)) - J(a, b,)
* Rule 7: if ged(a, b)=1, a and b are odd

% 7a: J(a, b) = J(b, a) if (a-1)-(b-1)/4 is even

% 7b: J(a, b) =-J(b, a) if (a-1)-(b-1)/4 is odd

L I S S S S

¥
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QR and Jacobi Symbol

< Consider n = p-gq, where p and ¢ are prime numbers
VxeZ,’, x eQR,
<x eQR,and x eQR,
< J(x, p) =xPD2=1 (mod p) and J(x, g) =x@2 =1 (mod q)
= Jx, n)=1x,p) Jx,q)=1

Jo,p) | J&x, q) | J(x, n)
Qu | 1 1 1 xeQR,
Qo 1 -1 -1 xeQNR,
Qp | -1 1 -1 xeQNR,
Qi -1 -1 1 xeQNR,,
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Wilson’s Theorem

(p-1)! =-1 (mod p)
Proof:
Goal: (p-I)!'=1-2-3 - (p-1)=-1=(p-1) (mod p)
* Since ged(p-1, p) = 1, the above is equivalent to (p-2)!=1(mod p)
*xeg.p=5 3-2-1=1(mod)5)
p=7 5-4-3-2-1=1(mod?7)
* We know that 1" = 1 (mod p) and (-1)" = -1 (mod p)
* Claim: VieZ,"\{1,-1},i"'=i (pfifi'#itheni’=1,ie{l,-1})
* Claim: Vi#i,eZ "\{1,-1}, it iy (pf: if i, '=i, ! thend, - i, =1
i.e. i,=i, , contradiction)

* Out of the set {2, 3, ... p-2}, we can form (p-3)/2 pairs such that

i -j =1 (mod p), multiply them together, we obtain (p-2)! =1
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Another Proof
o) yeQR, < y®D2=1 (mod p)
=

* If yeQR,

* Then 3xeZ" such that y=x* (mod p)

* Therefore, yP-D2= (x2)P-12 = xP-D= 1 (mod p)

(<)

* Since VieZ,", ged(i, p)=1, 3j such that ij = y (mod p)
* IfyzQR,, the congruence x? =y (mod p) has no solution,
therefore ,j#1(mod p)

* We can group the integers 1, 2, ..., p-1 into (p-1)/2 pairs (i, j),
each satisfying i-j = y (mod p)

* Multiply them together, we have (p-1)! = y®D?2 (mod p)

* From Wilson’s theorem, y® 1’2 = -1 (mod p)
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Exactly Two Square Roots

Every yeQRp has exactly two square roots
1.e. x and p-x such that x?>=y (mod p)

pf: * QRp= {gz’g EARRE) gp 1}’ |Zp |_p'1: and |QRp| (p'l)/z

* For each y=gZ* in QR,, there are at least two distinct xeZ st
x’=y (mod p), i.e., g€ and p-g* (if one is even, the other is odd)

* Since |QR | = (p-1)/2, we can obtain a set of p-1 square roots
S={g. p-g. &% p-g*.....g"""?, p-g "}

* Claim: the elements of S are all distinct (1. g' # gl (mod p) when
i#j since g is a primitive, 2. g' %-gl (mod p) when i#j, otherwise
(g+g))(g-g))=g*-g?=0 (mod p) implies i=j (mod (p-1)/2),

3. gl # -g' (mod p) since if one is even, the other is odd)

* If there is one more square root z of y—ng which is not gk and
-gk | it must belong to S (which is Z, "), say g, j#k, which would
imply that g% = g* (mod p), and leads to contradiction

4

Order q Subgroup G, of Z*

< Let p be a prime number, g be a primitive in Zp*
< Letp=k-q+1 1ie. q|p-1 whereqisalsoa prime number
+ LetGy = (", & gt k=1
<+ Is G, a subgroup in Z,"? YES
V X,y € G, it is clear that z = gi Kex-y= g(il+i2) " (mod p)
is also in G, where i =1, + 1, (mod q)
< Is the order of the subgroup G, q? YES
Vipi, € Zy, i) #1y, g *# g2 ¥ (mod p) otherwise g is not a
primitive in Z*, also g%’ k=1 (mod p)
< How many generators are there in G,? ¢(q)=q-1
a. there are ¢(p-1) generators in Zp*={g1, g .gs g, since
ged(p-1, x) = d > 1 implies that ord (g") = (p-1)/d
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’
Order q Subgroup G, (cont’d)
also (g°)Y = 1 (mod p) and g”' = 1 (mod p) implies that either
X y|p-1 or p-1|x-y,gecd(x, p-1) =1 implies that p-1 | y
therefore, ord (g") = p-1
b. there are ¢(q) primitives in G, = {g", &, ..., g% *=1} since
q is also a prime number
< Is G, a unique order q subgroup in Zp* ? YES
Let S be an order-q cyclic subgroup, S= {g, g°, ..., g%=1}. Since
p is prime, 3 a unique k-th root g, € Z*, s.t. g =g;* (mod p)
Let g, # g be another primitive, clearly g, = g° (mod p),
Is the set S={g,*, g,*, ..., g,4 =1} different from G,?
letx € S,i.e.x= gl""k (mod p), i, € Z,
x=g,1%=g"1""= g™ (mod p) where i =s - i, (mod q), i.e. S G,
The proof'is s1m11ar for Gq < S. Therefore, S = Gq
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Gauss’ Lemma
Lemma: let p be a prime, a is an integer s.t. gcd(a, p)=1,
define Q = j-a (mod p)}j:1 ’’’’ (p-1)/20
" let n be the number of o;’s s.t. o, > p/2 then L(a, p) = (-1)"
* oy € {ry, ..., 1} ifo;>p/2and o € {sy, ..., S, 1)t if Oy <p/2
* Since ged(a, p)=1, r; and s, are all distinct and non-zero
* Clearly, 0 <p-r;<p/2 fori=1,...,n
*no p-r;isans;:  if p-r=s; then s; = -r; (mod p)
rewrite in terms of a: ua=-va (mod p) where 1 <u, v<(p-1)/2
= u=-v(mod p) where 1 <u, v < (p-1)/2 = impossible
= {81, -+ Sp-1)2-0 PT15 -5 P-T,} 18 @ reordering of {1, 2,..., (p-1)/2}
* Thus, ((p-1)/2)! = 81781y (1) (1) = D) 8178 )0 T T,
= (D" ((p-1)/2)! a®D? (mod p) = L(a, p) = (-1)"

2.
Theorem: J(2, p) = (-1)®P=-1D/8
Theorem: let p be a prime, gcd(a, p) = 1 then L(a, p) = (-1)!
(r-1)2
where t = 21 Lj-a/pl. Also L(2, p) = (-1)®*D8
pf. :
* oy € {ry, ..., 1} if oy >p/2and o € {8y, ..., S, yn0) 1T 0y <p/2
xja=pljapl+aforj=1, ..., (p-1)2
:(pi)/Zj 4= (P'zll)/z p Lja/pJ n i rj + (p'li@-n Sj
j=1 =1 j=1 =1
* {815 -+os S(p1y2m PTps -0, P-T,) 18 @ reordering of {1, 2,..., (p-1)/2}
= (p-i)/z j= ) (p1;) +(p_§/2-n s;=np - ) I -i-(p-li/z-nsj
=1 i=1 =1 =1 =1
* Subtracting the above two equations, we have

(p1)2,

(a-1)xj= p((p_Ell)/2 lj-alp] -n) +2 ¥ I
=1 =1 =1
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2.
J2,p) = (-1)P"D’% (cont’d)
* (pgzj =14 .+ (p-1)2=(p-1)2 (1 +(p-1)/2) / 2 = (p>-1)/8
* Thus, we have (a-1) (p>-1)/8 = (pglj/z Lj-a/p] - n (mod 2)

x Ifaisodd, n= (pii/z lj-a/p]
pu

*xIfa=2, [j2/pl=0forj=1, ..., (p-1)/2, n=(p*-1)/8 (mod 2)
therefore, J(2, p) = (-1)®*>1’8
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Lemma. ord-k elements in Z * < ¢(k)

Lemma. There are at most ¢(k) ord-k elements in Zp*, k|p-1

pf.

< Zp* is a field = x*-1=0 (mod p) has at most k roots

% if a is a nontrivial root (a#1), then {a% a!, @, ..., ak!} is the
set of the k distinct roots.

% In this set, those a’ with gcd(/, k) = d > 1 have order at most
k/d.

< Only those a’ with ged(/, k) = 1 might have order k.

< Hence, there are at most ¢(k) elements (out of k elements)
that have order equal to k.
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Lemma. X, ¢(k) = p-1
Lemma. %, , ¢(k) = p-1
pf.
p-1=2,,, #ainZs.t ged(a, p-1) =k)
=%, Gbin {1,...(p-1)/k} s.t. ged(b, (p-1)/k) = 1)
=2 gp-1 §((p-1)/k)
=2 1 9(K)

ex. {0(1}, 6(2), 6(3), 6(4), 9(6), ¢(12)}, p=13
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Z, 1s a cyclic group

Theorem: Zp* is a cyclic group for a prime number p
pf.

Lemma 1: # of ord-k elements in Zp* < o(k), where k| p-1
Lemma 2: %, ; (k) = p-1
The order k of every element in Z ™ divides p-1

= X yp.1 (# of elements with order k) = p-1

= X p1 ¢(k) 2 p-1, combined with lemma 2, we know that
# of ord-k elements in Z " = ¢(k)

= # of ord-(p-1) elements in Z* = ¢(p-1) > 1

— There is at least one generator in Z 7, i.e. Z," is cyclic

k=1 k=2 k= k=4 k=6 50

Generators in QR |

< Number of generators in Z": ¢(p-1)
Let g be a primitive, Z *=<g>= {g, g% g ..., gk ..., g}
if ged(k, p-1) = d # 1 then g* is not a primitive
since (gk)®P-Dd = (g¥d)p-1 = 1, i.e. ord (") < (p-1)/d
if ged(k, p-1) = 1 and g* is not a primitive, then d=ord (g") < p-1, i.e.
(g4 =1; gis aprimitive = p-1 |k d = p-1 | d contradiction.
< Z."is not a cyclic group (n = p q, p=2p'+1, ¢=2q'+1, M(n)=2p'q")
Since x*™ = 1 (mod n), there is no generator that can generate
all members in Z *
< QR, is a cyclic group of order A(n)/2 = lcm(p-1, g-1)/2= p'q'
VxeZ ,x*W=1(modn) Carmichael’s Theorem
clearly, (x?)*™2 =1 (mod n), QR, = {x*> |V x € Z,"}
ie.Vye QR ord(y)|p'q (ord(y)e{l,p\q,p'q})
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Generators in QR (cont’d)

cyclic? 3Ix*eZ ord (x)=An)=2p'q =
Jy* (=(x")?) € QR, s.t. ord (Y)=A(n)/2=p'q'
< Lety be a random element in QR,, the probability that y is a generator
is close to 1

Let y* be a generator of QR ,
QR,=<y">={y", ¥V, vV, ... ) ..., ()P}
if ged(k, p'q") =d # 1 then (y*)k is not a generator
since ((y"))P94 = ((y") 4P =1, i.e. ord ((y")") < (p'q)/d
o('q) = ¢(p") ¢(qa) = (p-1)(q-1)=p'q'-p'-q'+ 1
=pq-(-D-(q-1)-1
Vx e ()% )9, .., ()P ord,(x) = p'
Vx e {y), ), ..., ¢y} ord, (x) =
ord (1)=1
Pr{x is a generator | xezQR,} = ¢(p'q") / (p'q) is close to 1 5




. *
Subgroups in Z,,
Consider n =p q, p=2p'+1, g=2q'+1, m=p'q', M(n) = lcm(p-1, q-1)=2m,
¢(n) = (p-1)(g-1) = 4m
< Z," is not a cyclic group
* Carmichael’s theorem asserts that no element in Z_* can generate
all elements in Z_*. (maximum order is 2m instead of 4m)
* However, Z " is still a group over modulo n multiplication.
<+ QR, is a cyclic subgroup of order m = A(n)/2, QR, = {x?* |V x € Z"}
*x Joo={x € Z," | J(x,p)=1 and J(x,q)=1}
* If there exists an element in Z," whose order is 2m, then QR, is
clearly a cyclic group. (Will the precondition be true?)
* V xeZ " x* =1 (mod n) implies that V yeQR,, ord (y) | p'q’
1.e. ord, (y) is either 1, p', q', or p'q' (if there is one y s.t. ord (y)=m

then y is a generator and QR is cyclic). Let’s construct one. 5

. % )
Subgroups in Z " (cont’d)
Let g, be a generator in Zp*, and g, be a generator in Zq*
Let g =g, (mod p) =g, (mod q), (note thatJ(g,n)=1,g € J))
gl =g =g 2" =1 (mod p), g = g2 = g,2¢ = 1 (mod q)
= g9 =1 (mod p) and g2 = 1 (mod q) i.e. g??9 =1 (mod n)
if there exists ak € {1, 2,p', q, 2p", 24, p'q'} s.t. g¢=1 (mod n)
then ord,(g) is not 2p'q’
1. k=1: = g, = 1 (mod p) contradict with ord (g,) = p-1
2.k=p": = g =g,P =1 (mod p) contradict with ord (g,) = 2p'
3.k=q": = g¥=g,9 = 1 (mod q) contradict with ord(g,) = 2q'
4.k=2: = g, =1 (mod p) contradict with ord (g,) = p-1
5.k=2p": = g¥ = g, = 1 (mod q) contradict with ord (g,) = 2¢'
6. k=2q": = g?¥ =g, = 1 (mod p) contradict with ord (g,) = 2p'
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Subgroups in Z_* (cont’d)
7.k=p'q": = gP'v =g,P4 =1 (mod p)
since g,%*' = 1 (mod p) and
ged(q,2)=1= Ja,bst.aq+b2=1
=g =gP@arbD = (gr'e) (g,2%)° =1 (mod p)
contradict with ord (g,) = 2p'
1~7 implies that ord (g) = 2p'q|, i.e. QR, = {g?, g* ..., g}
and QR is a cyclic group.
* Pr{Elements in QR being a generator} = ¢(p'q") / (p'q")
< J, is a cyclic subgroup of order 2m = A(n), J, = {x € Z,* | J(x,n)=1}
xJ,,={x e Z, | Ix,p)=-1 and J(x,q)=-1}
* The above proof also shows that J, = {g, g%, ..., g2} is cyclic
* Pr{Elements in J, being a generator} = ¢(p'q’) / (2p'q")
& T D0 =27\ {JpoWJ,,} is not a subgroup in Z_*
*x if x € Jj, thenx * x € ], 55

Generator in QR

<+ n=pq, p=2p+1, g=2q'+1
< Find a generator in QR
1. Find a generator g; of Z," (i.e. Z," = <g;>) and g, of Z" (i.e. Z;" = <g,>)
2. Calculate the generator h, = g;* (mod p) of QR and h, = g,* (mod 1) of QR
3. Leth=h, (mod p) = h, (mod q).
It is clear that h = g2 (mod n), i.e. heQR, where g = g, (mod p) = g, (mod q).
Claim: h is a generator of QR
pf.
y€QR, = ye QR andy € QR
ie. 3x,€ Z and x,€ Z,, y =h," (mod p) = h,"™ (mod q)
= y=g, " (mod p) = g,”* (mod q)
=y=g?*(modn)if2x=2x, (modp-1)=2x, (mod g-1)
aunique X € Z,, exists by CRT since ged(p-1, g-1) = ged(2p', 2q') =2
= y=h"(modn)
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Generate Elements in Z_°
< Z."is NOT a cyclic group (n=p q, p=2p'+1, ¢=2q'+1, m=p' q")
< How do we generate random elements in Z_*?
Z."={g"u® (-1)™| g is a generator in QR_, gcd(e, d(n)) = 1,
uer Z." and J(u,n) = -1,
ae{0,...,m-1}, b,€{0,1}, and b, {0,1} }
Note: 1. J(-1,n) =1 and -1 € J,\QR, since (-1)-D2 = (-1) = -1 (mod p)
2. e is odd, ¢p(n)-¢ is also odd, J(u™®, n) = J(u, n) = -1
< We can view the above as 4 parts
1. Joo (QR,): by =b, =0, Jyy = {g* | a€{0,....m-1}}
2.J,,J\QR): b, =0,b,=1,J,, = {-g* | a€{0,....m-1}}
Assume that J(u, p) =-1 and J(u, q) =1
3.J:b,=1,b,=0,J,, = {g?u*® | ae{0,...,m-1}}
4.J,0:b,=1,b,=1,]), = {-g*u* | ae{0,....m-1}}
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< Lagrange’s Theorem: for any finite group G, the
order (number of elements) of every subgroup H
of G divides the order of G.

* proof sketch: divide G into left cosets H —
equivalence classes, and show that they have the
Same S1z¢€.

< It implies that: the order of any element a of a
finite group (i.e. the smallest positive integer
number &k with ¢* = 1) divides the order of the
group. Since the order of a 1s equal to the order
of the cyclic subgroup generated by a. Also,
albl = 1 since order of a divides |G].
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