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Prime NumbersPrime Numbers
 Prime number: an integer p>1 that is divisible only by 1 

and itself, ex. 2, 3,5, 7, 11, 13, 17…
 Composite number: an integer n>1 that is not primep g p
 Fact: there are infinitely many prime numbers.  (by Euclid)

on the contrary assume a is the largest prime numberpf: on the contrary, assume an is the largest prime number
 let the finite set of prime numbers be {a0, a1, a2, …. an}
 the n mber b a *a *a * *a + 1 is not di isible b an a

pf:

 the number b = a0*a1*a2*…*an + 1 is not divisible by any ai
i.e. b does not have prime factors  an
 if b h i f t d b>d> th “d i i2  if b has a prime factor d,  b>d> an, then “d is a prime 

number that is larger than an” … contradiction
 if b does not have any prime factor less than b then “b is a

2 cases:
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 if b does not have any prime factor less than b, then b is a 
prime number that is larger than an” … contradiction

Prime Number TheoremPrime Number Theorem
 Prime Number Theorem:e Nu be eo e :

 Let (x) be the number of primes less than x
 Then x Then

in the sense that the ratio (x) / (x/ln x)  1 as x 

(x)   x
ln x

in the sense that the ratio (x) / (x/ln x)  1 as x 

 Also and for x17(x)  x (x)  1 10555 x
 Also,                          and for x17,

 Ex: number of 100 digit primes

(x)   ln x (x)   1.10555 ln x

 Ex: number of 100-digit primes

(10100) (1099)  10100 1099
 3 9  1097
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(10100) - (1099) 
ln 10100 ln 1099-  3.9  10

FactorsFactors

Every composite number can be expressible as a 
product aꞏb of integers with 1 < a, b< n

Every positive integer has a unique representation 
as a product of prime numbers raised to different 
powers.p

Ex. 504 = 23 ꞏ 32 ꞏ 7,  1125 = 32 ꞏ 53
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FactorsFactors
Lemma: p is a prime number and p | aꞏb p | a or p | bLemma: p is a prime number and p | a b       p | a or p | b, 

more generally, p is a prime number and p | aꞏbꞏ...ꞏz 
p must divide one of a b zp must divide one of a, b, …, z

 proof:
case 1: p | acase 1:  p | a
case 2:  p | a,

 p | a and p is a prime number  gcd(p a) = 1  1 = a x + p y p | a and p is a prime number  gcd(p, a) = 1  1 = a x + p y
 multiply both side by b,  b = b a x + b p y
 p | a b  p | b

 In general: if p | a then we are done, if p | a then p | bc…z, continuing 
this way, we eventually find that p divides one of the factors of the 
product
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product

Factorization into primesFactorization into primes
 Theorem: Every positive integer is a product of primes.  

This factorization into primes is unique, up to 
reordering of the factors. • Empty product equals 1.

P i i f t d t Proof: product of primes
 assume there exist positive integers that are not product of primes
 let n be the smallest such integer

• Prime is a one factor product.

 let n be the smallest such integer
 since n can not be 1 or a prime, n must be composite, i.e. n = aꞏb
 since n is the smallest, both a and b must be products of primes.
 n = aꞏb must also be a product of primes contradiction n = a b must also be a product of primes, contradiction

 Proof: uniqueness of factorization
 assume n = r1

c1r2
c2ꞏꞏꞏrk

ck p1
a1p2

a2ꞏꞏꞏps
as = r1

c1r2
c2ꞏꞏꞏrk

ck q1
b1q2

b2ꞏꞏꞏqt
bt

where pi, qj are all distinct primes. 
 let m = n / (r1

c1r2
c2ꞏꞏꞏrk

ck)
 consider p1 for example, since p1 divide m = q1q1..q1q2…qt, p1 must 
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1 1 1 1 1 2 t 1
divide one of the factors qj, contradict the fact that “pi, qj are distinct 
primes”

Fermat’s Little Theorem
(“Fair-MAH”)

Fermat s Little Theorem
 If p is a prime p | a then ap-11 (mod p) If p is a prime, p | a  then  a 1 (mod p)

 let S = {1, 2, 3, …, p-1} (Zp
*), define (x)  a ꞏ x (mod p) be 

a mapping : SZ
Proof:

a mapping : SZ
x  S, (x)  0 (mod p) x  S, (x)  S, i.e. : SS 

if (x)  a ꞏ x  0 (mod p)   x  0 (mod p) since gcd(a, p) = 1

 x, y  S, if x  y then (x)  (y) since
( ) ( p) ( p) g ( , p)

if (x)  (y)  a ꞏ x  a ꞏ y  x  y since gcd(a, p) = 1
 from the above two observations, (1), (2),... (p-1) are 

distinct elements of S
1 2 ( 1) (1) (2) ( 1) ( 1) ( 2) ( ( 1))1ꞏ2 ꞏ... ꞏ(p-1)  (1)ꞏ(2)ꞏ...ꞏ(p-1)  (aꞏ1)ꞏ(aꞏ2)ꞏ…ꞏ(aꞏ(p-1))

 ap-1 (1ꞏ2 ꞏ... ꞏ(p-1)) (mod p)
since gcd(j p) = 1 for j  S we can divide both side by 1 2
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since gcd(j, p) = 1 for j  S, we can divide both side by 1, 2, 
3, … p-1, and obtain ap-11 (mod p)

Fermat’s Little TheoremFermat s Little Theorem
 Ex: 210 = 1024  1 (mod 11)( )

253 = (210)523  1523  8 (mod 11)
i.e. 253  253 mod 10  23  8 (mod 11)( )

 if n is prime then 2n-1  1 (mod n) if n is prime, then 2  1 (mod n)
i.e. if 2n-1  1 (mod n) then n is not prime ()
usually if 2n-1  1 (mod n) then n is primeusually, if 2  1 (mod n), then n is prime
 exceptions: 2561-1  1 (mod 561) although 561 = 3ꞏ11ꞏ17

1729 121729-1  1 (mod 1729) although 1729 = 7ꞏ13ꞏ19
 () is a quick test for eliminating composite number
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Euler’s Totient Function (n)Euler s Totient Function (n)
(n): the number of integers 1a<n s.t. gcd(a,n)=1
ex. n=10, (n)=4     the set is {1,3,7,9}

properties of (•)p p ( )
(p) = p-1, if p is prime
(pr) = pr - pr-1=(1-1/p) ꞏ pr if p is prime(p ) = p - p =(1-1/p)  p , if p is prime
(nꞏm) = (n) ꞏ (m)  if  gcd(n,m)=1                排容原理

n m (n (n)) m (m (m)) n + (n (n)) (m (m)) = (n) (m)n m - (n-(n)) m - (m-(m)) n + (n-(n)) (m-(m)) = (n) (m)
(nꞏm) =
((d /d /d )2)ꞏ(d 3)ꞏ(d 3)ꞏ(n/d /d )ꞏ(m/d /d )((d1/d2/d3) ) (d2 ) (d3 ) (n/d1/d2) (m/d1/d3)

if  gcd(n,m)=d1, gcd(n/d1,d1)=d2, gcd(m/d1,d1)=d3

( )  (1 1/ )p|n
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(n) = n   (1-1/p)

 ex. (10)=(2-1)ꞏ(5-1)=4     (120)=120(1-1/2)(1-1/3)(1-1/5)=32

p|n

How large is (n)?How large is (n)?
(n)  n ꞏ 6/2 as n goes large
 Probability that a prime number p is a factor of a random 

number r is 1/pu be s /p

p 2p 3p 4p

 Probability that two independent random numbers r1 and r2
b h h i i b i / 2

p       2p       3p      4p

both have a given prime number p as a factor is 1/p2

 The probability that they do not have p as a common factor 
is thus 1 – 1/p2

 The probability that two numbers r1 and r2 have no common 
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p y 1 2
prime factor is  P = (1-1/22)(1-1/32)(1-1/52)(1-1/72)…

Pr{ r and r relatively prime }Pr{ r1 and r2 relatively prime }
 Equalities: 1

1 + 1/22 + 1/32 + 1/42 + 1/52 + 1/62 + = 2/6

= 1+x+x2+x3+…1
1-x

 P = (1-1/22)(1-1/32)(1-1/52)(1-1/72) ꞏ ...
((1+1/22+1/24+ )(1+1/32+1/34+ ) )-1

1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + …   /6

= ((1+1/22+1/24+...)(1+1/32+1/34+...) ꞏ ...) 1

= (1+1/22+1/32+1/42 +1/52 +1/62+…)-1

= 6/2

 0.610.61
each positive number has a unique prime number factorization
ex 452 = 34 ꞏ 52
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ex.    45 = 3  5

How large is (n)?How large is (n)?
 (n) is the number of integers less than n that are relative 

prime to n
 (n)/n is the probability that a randomly chosen integer is ( ) p y y g

relatively prime to n
 Therefore, (n)  n ꞏ 6/2 Therefore, (n) n  6/
 Pn = Pr { n random numbers have no common factor } 

 n independent random numbers all have a given prime p as a n independent random numbers all have a given prime p as a 
factor is 1/pn

 They do not all have p as a common factor 1 – 1/pn They do not all have p as a common factor 1 – 1/p
 Pn = (1+1/2n+1/3n+1/4n +1/5n +1/6n+…)-1 is the Riemann zeta 

function (n) http://mathworld.wolfram.com/RiemannZetaFunction.html
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function (n) http://mathworld.wolfram.com/RiemannZetaFunction.html

 Ex. n=4, (4) = 4/90  0.92



Euler’s TheoremEuler s Theorem
 If gcd(a,n)=1  then  a(n)  1 (mod n)

This is true even when n = p2

g ( , ) ( )
 let S be the set of integers 1x<n, with gcd(x, n) = 1,

define (x)  a ꞏ x (mod n) be a mapping : SZ
Proof:

x  S and gcd(a, n) = 1, 
(x)  0 (mod n) 

d( ( ) ) 1  S ( ) S i S S

if (x)  a ꞏ x  0 (mod n)  x  0 (mod n)

gcd(a, n)=1 and gcd(x, n) = 1
gcd((x), n) = 1       x  S, (x)  S, i.e. : SS

 x, y  S, ‘if x  y then (x)  (y) (mod n)’
if ( ) ( ) i d( ) 1

 from the above two observations, xS, (x) are distinct 
elements of S (i.e. {(x) | xS} is S)

if (x)  (y)  a ꞏ x  a ꞏ y  x  y since gcd(a, n) = 1

elements of S (i.e. {(x) | xS} is S)
  x   (x)  a(n)  x    (mod n)

xS xS xS
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since gcd(x, n) = 1 for x  S, we can divide both side by x 
 S one after another, and obtain a(n)1 (mod n)

Euler’s TheoremEuler s Theorem
Example: What are the last three digits of 7803?Example: What are the last three digits of 7 ?

i.e. we want to find 7803 (mod 1000)
1000 23 53 (1000) 1000(1 1/2)(1 1/5) 4001000 = 23ꞏ53,    (1000) = 1000(1-1/2)(1-1/5) = 400
7803  7803 (mod 400)  73  343 (mod 1000)

Example: Compute 243210 (mod 101)?
101 = 1 ꞏ 101,            (101) = 100
243210  243210 (mod 100)  210  1024  14 (mod 101)( )
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A second proof of Euler’s TheoremA second proof of Euler s Theorem
Euler’s Theorem:  aZn

*, a(n)  1 (mod n)n , ( )

 We have proved the above theorem by showing that the We have proved the above theorem by showing that the 
function (x)  a ꞏ x (mod n) is a permutation.

 We can also prove it through Fermat’s Little Theorem We can also prove it through Fermat s Little Theorem
consider n = p ꞏ q,  
aZ * ap-1  1 (mod p)  (ap-1)q-1  a(n)  1 (mod p)aZp , a  1 (mod p)  (a )  a  1 (mod p) 
aZq

*, aq-1  1 (mod q)  (aq-1)p-1  a(n)  1 (mod q) 
from CRT, a  Z * (i.e. p | a and q | a),from CRT, a  Zn (i.e. p | a and q | a),

a(n)  1 (mod n)
note: the above proof is not valid when p=q
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note: the above proof is not valid when p=q

Carmichael TheoremCarmichael Theorem
Carmichael’s Theorem:  
aZn

*, a(n)  1 (mod n)  and anꞏ(n)  1 (mod n2)
where n p q p q (n) lcm(p 1 q 1) (n) | (n)where n=pꞏq, p  q, (n) = lcm(p-1, q-1), (n) | (n)

 like Euler’s Theorem, we can prove it through Fermat’s 
Little Theorem, consider n = p ꞏ q, where pq,  
aZp

*, ap-1  1 (mod p)  (ap-1)(q-1)/gcd(p-1,q-1)  a(n)  1 (mod p) p

aZq
*, aq-1  1 (mod q)  (aq-1)(p-1)/gcd(p-1,q-1)  a(n)  1 (mod q) 

from CRT, a  Zn
* (i.e. p | a and q | a), a(n)  1 (mod n)n

therefore, aZn
*, a(n) = 1 + k ꞏ n

raise both side to the n-th power, we get anꞏ(n) = (1 + k ꞏ n)n,
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p g ( )
 anꞏ(n) = 1 + nꞏkꞏn + ... a  Zn

* (or Zn2*), anꞏ(n)  1 (mod n2)



Basic Principle to do ExponentiationBasic Principle to do Exponentiation

Let a, n, x, y be integers with n1, and gcd(a,n)=1 
if x  y (mod (n)), then ax  ay (mod n).

 If you want to work mod n, you should work mod 
(n) or (n) in the exponent.
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Primitive Roots modulo pPrimitive Roots modulo p
When p is a prime number a primitive rootWhen p is a prime number, a primitive root 

modulo p is a number whose powers yield every 
nonzero element mod p (equivalently the order ofnonzero element mod p. (equivalently, the order of 
a primitive root is p-1)

ex:  313, 322, 336, 344, 355, 361 (mod 7)
3 is a primitive root mod 73 is a primitive root mod 7

 sometimes called a multiplicative generator
 there are plenty of primitive roots, actually (p-1)

 ex. p=101, (p-1)=100ꞏ(1-1/2)ꞏ(1-1/5)=40
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p=143537, (p-1)=143536ꞏ(1-1/2)ꞏ(1-1/8971)=71760

Primitive Testing ProcedurePrimitive Testing Procedure
 How do we test whether h is a primitive root modulo p?

 naïve method: 
go through all powers h2, h3, …, hp-2, and make sure  1 

modulo pmodulo p
 faster method: 

assume p-1 has prime factors q1, q2, …, qn,assume p 1 has prime factors q1, q2, …, qn,
for all qi, make sure h(p-1)/qi modulo p is not 1, 
then h is a primitive rootp

Intuition: let h  ga(mod p), if gcd(a, p-1)=d (i.e. ga is not a 
( )/ / ( )primitive root), (ga) (p-1)/qi  (ga/qi)(p-1)  1 (mod p) for

some qi | d
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Primitive Testing Procedure (cont’d)Primitive Testing Procedure (cont d)
 Procedure to test a primitive g:

assuming p-1 has prime factors q1, q2, …, qn, (i.e. p-1 =q1
r1...qn

rn)
for all q i, make sure g(p-1)/qi (mod p) is not 1qi, g ( p)

Proof:
(a) by definition, gordp(g)  1 (mod p), g(p)  1 (mod p) therefore ord (g)  (p)(a) by definition, g p 1 (mod p), g 1 (mod p) therefore ordp(g)  (p)

if (p) = ordp(g) * k + s  with  s < ordp(g)
g(p)  gordp(g) * k gs  gs  1 (mod p), but s < ordp(g)  s = 0 p

 ordp(g) | (p) and ordp(g)  (p)
(b) assume g is not a primitive root i.e ordp(g) < (p)=p-1 

th  i h th t d ( ) | ( 1)/ i (p 1)/q 1 ( d ) fthen  i,  such that ordp(g) | (p-1)/q i         i.e. g (p-1)/q i  1 (mod p) for some q
i

(c) if for all q i, g (p-1)/q i  1 (mod p) 
then ord (g) = (p) and g is a primitive root modulo p
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then ordp(g) (p) and g is a primitive root modulo p



Number of Primitive Root in Z *Number of Primitive Root in Zp
 Why are there (p-1) primitive roots?

 let g be a primitive root (the order of g is p-1)
 g, g2, g3, …, gp-1 is a permutation of 1,2,…p-1

( 1)/d /d ( 1)

an integer 
less than p-1

 if gcd(a, p-1)=d, then (ga) (p-1)/d  (ga/d)(p-1)  1 (mod p) which
says that the order of ga is at most (p-1)/d, therefore, ga is not a 
primitive root  There are at most (p 1) primitive roots in Z *primitive root  There are at most (p-1) primitive roots in Zp

 For an element ga in Zp
* where gcd(a, p-1) = 1, it is guaranteed 

that (ga)(p-1)/qi  1 (mod p) for all q (q is factors or p-1)that (g ) i  1 (mod p) for all qi (qi is factors or p-1)
assume that for a certain qi, (g

a)(p-1)/qi  1 (mod p)
 p-1 | a ꞏ (p-1) / qip | (p ) qi
  integer k, a ꞏ (p-1) / qi = k ꞏ (p-1)   i.e. a = k ꞏ qi
 qi | a 
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 qi | gcd(a, p-1)  contradiction

Multiplicative Generators in Z *Multiplicative Generators in Zn
How do we define a multiplicative generator in 

Zn
* if n is a composite number?

Is there an element in Z * that can generate all elementsIs there an element in Zn that can generate all elements 
of Zn

*?
If n = p q the answer is negative From CarmichaelIf n = p ꞏ q, the answer is negative.  From Carmichael 

theorem, aZn
*, a(n)  1 (mod n), gcd(p-1, q-1) is at 

least 2 (n) = lcm(p 1 q 1) is at most (n) / 2 Theleast 2, (n) = lcm(p-1, q-1) is at most (n) / 2.  The 
size of a maximal possible multiplicative subgroup in 
Z * is therefore less than (n)Zn is therefore less than (n).

How many elements in Zn
* can generate the maximal 

ibl b f Z *?
22

possible subgroup of Zn
*?

Finding Square Roots mod nFinding Square Roots mod n
For example: find x such that x2  71 (mod 77)For example: find x such that x  71 (mod 77)
Is there any solution?

l i hHow many solutions are there?
How do we solve the above equation systematically?

 In general: find x s.t. x2  b (mod n), 
h b QR d i bwhere b  QRn , n = pꞏq, and p, q are prime numbers

Easier case: find x s.t. x2  b (mod p), ( p)
where p is a prime number, b  QRp
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Note: QRn is “Quadratic Residue in Zn
*” to be defined later

Finding Square Root mod pFinding Square Root mod p
Gi Z * fi d t 2 ( d ) i iGiven yZp

*, find x, s.t. x2  y (mod p), p is prime
p  1 (mod 4) (i.e. p = 4k + 1) : probabilistic algorithm

Two cases:
p  3 (mod 4) (i.e. p = 4k + 3) : deterministic algorithm

 Is there any solution?

Two cases:

y

check      y       1 (mod p)          Is y a QRp??
p-1
2

p  3 (mod 4)
 ( d )

p+1
4x   y      (mod p) 

 (p+1)/4 = (4k+3+1)/4 = k+1 is an integer
2 ( +1)/2 ( 1)/2

4
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 x2 = y(p+1)/2 = y(p-1)/2 ꞏ y  y (mod p)



Finding Square Root mod pFinding Square Root mod p
p  1 (mod 4)p  1 (mod 4)
Peralta, Eurocrypt’86, p = 2s q + 1
3 t b bili ti d3-step probabilistic procedure

1. Choose a random number r, if r2  y (mod p), output x = r
2 Calc late ( + )(p-1)/2 + (mod f( )) f( ) 22. Calculate (r + z)(p 1)/2  u + v z (mod f(z)),   f(z) = z2-y
3. If u = 0 then output x  v-1 (mod p), else goto step 1

note:  (b+cz)(d+ez)  (bd+ce z2) + (be+cd) z
 (bd+ce y) + (be+cd) z (mod z2-y) (bd+ce y) + (be+cd) z (mod z y)

use square-multiply algorithm to calculate (r + z)(p-1)/2
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 the probability to successfully find x for each r  1/2

Finding Square Root mod p
ex: finding x such that x2  12 (mod 13)

Finding Square Root mod p
ex:   finding x such that x  12 (mod 13)

solution:
13 1 ( d 4)13  1 (mod 4)

choose  r = 3, 32 = 9  12
( )(13 1)/2 ( )6 ( d 2 ) (3 + z)(13-1)/2 = (3 + z)6  12 + 0 z    (mod z2-12)

choose  r = 7, 72  10  12
(13 1)/2 6 2 (7 + z)(13-1)/2 = (7 + z)6  0 + 8 z (mod z2-12)

 x = 8-1 = 5  (mod 13)

Why does it work???
Wh i h b bili ½ ???
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Why is the success probability > ½ ???

Finding Square Roots mod nFinding Square Roots mod n
Now we return to the question of solving squareNow we return to the question of solving square 

roots in Zn
*, i.e. 

for an integer yQRn, 
find xZ * such that x2  y (mod n)find xZn such that x  y (mod n)

We would like to transform the problem into 
l i dsolving square roots mod p.

Question: for  n=pꞏqQ p q
Is solving “x2  y (mod n)” equivalent to solving 

2 2
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“x2  y (mod p) and x2  y (mod q)”??? 

Finding Square Roots mod p qFinding Square Roots mod pꞏq
 find x such that x2  71 (mod 77) find x such that x  71 (mod 77)

 77 = 7 ꞏ 11 
 “x* satisfies f(x*)  71 (mod 77)”  “x* satisfies both x  satisfies f(x )  71 (mod 77)    x  satisfies both 

f(x*)  1 (mod 7) and f(x*)  5 (mod 11)”
 since 7 and 11 are prime numbers, we can solve x2  1 (mod 7) p ( )

and x2  5 (mod 11) far more easily than x2  71 (mod 77)
x2  1 (mod 7) has two solutions: x  1 (mod 7) 
x2  5 (mod 11) has two solutions: x  4 (mod 11)x2  5 (mod 11) has two solutions: x  4 (mod 11) 

 put them together and use CRT to calculate the four solutions
x  1 (mod 7)  4 (mod 11)  x  15 (mod 77) 
x  1 (mod 7)  7 (mod 11)  x  29 (mod 77) 
x  6 (mod 7)  4 (mod 11)  x  48 (mod 77) 
x  6 (mod 7)  7 (mod 11)  x  62 (mod 77) 
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Computational Equivalence to FactoringComputational Equivalence to Factoring
 Previous slides show that once you know the factoring of ev ous s des s ow t at o ce you ow t e acto g o

n to be p and q, you can easily solve the square roots of n
 Indeed if you can solve the square roots for one single Indeed, if you can solve the square roots for one single 

quadratic residue mod n, you can factor n.
 from the four solutions a b on the previous slide from the four solutions a, b on the previous slide

x  c (mod p)  d (mod q)  x  a (mod pꞏq) 
x  c (mod p)  -d (mod q)  x  b (mod pꞏq) 
x  -c (mod p)  d (mod q)  x  -b (mod pꞏq) 
x  -c (mod p)  -d (mod q)  x  -a (mod pꞏq)

we can find out a  b (mod p) and a  -b (mod q)we can find out a b (mod p) and  a b (mod q)
(or equivalently a  -b (mod p) and  a  b (mod q))

 therefore, p | (a-b) i.e. gcd(a-b, n) = p  (ex. gcd(15-29, 77)=7)
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q | (a+b) i.e. gcd(a+b, n) = q  (ex. gcd(15+29, 77)=11)

Quadratic ResiduesQuadratic Residues
 Consider yZn

*, if  x Zn
*, such that x2  y (mod n), Consider yZn , if  x Zn , such that x y (mod n), 

then y is called a quadratic residue mod n,  i.e. yQRn

 If the modulus is a prime number p there are (p 1)/2 If the modulus is a prime number p, there are (p-1)/2
quadratic residues in Zp

*

 l t b i iti t i Z * { 2 3 p-1} i let g be a primitive root in Zp
*, {g, g2, g3, …, gp 1} is a 

permutation of {1,2,…p-1}
2 4 1 in the above set, {g2, g4,…, gp-1} are quadratic 

residues (QRp)
{g, g3,…, gp-2} are quadratic non-residues (QNRp),  

out of which there are (p-1) primitive roots
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Quadratic Residues in Z *Quadratic Residues in Zp
1st proof:
For each xZp

*, p-x  x (mod p) (since if x is odd, 
p-x is even), it’s clear that x and p-x are both square p s eve ), t s c ea t at a d p a e bot squa e
roots of a certain yZp

*, 
Because there are only p-1 elements in Z * we knowBecause there are only p-1 elements in Zp , we know 

that |QRp|  (p-1)/2
Beca se | { 2 4 p-1} | (p 1)/2 there can be noBecause | {g2, g4,…, gp 1} | = (p-1)/2, there can be no 

more quadratic residues outside this set.  Therefore, 
the set { 3 p-2} contains only quadratic nonthe set {g, g3,…, gp 2} contains only quadratic non-
residues 
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Quadratic Residues in Z *Quadratic Residues in Zp
2nd proof:

 Because the squares of x and p-x are the same, the number of 
quadratic residues must be less than p-1 (i.e. some element in Zp

*

t b d ti id )must be quadratic non-residue)
 Consider this set {g, g3,…, gp-2} directly

f Q h b i i i (b k ll b If gQRp , then g cannot be a primitive (because gk must all be 
quadratic residues)

 If 2k+1 2k QR th th i t Z * h th t 2 2k If g2k+1g2k ꞏ gQRp , then there exists an xZp such that x2g2k ꞏ 
g (mod p)

 Because gcd(g2k p)=1 g x2 ꞏ (g2k)-1 (xꞏ(g-1)k)2 QR Because gcd(g2k, p)=1, g x2 ꞏ (g2k) (xꞏ(g 1)k)2 QRp
contradiction

 i e g2k+1 QNR (g2k)-1(g2k)  (g2k)-1gꞏgꞏ…ꞏg  1 (mod p)
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 i.e. g QNRp
(g ) (g ) (g ) g g g ( p)
 (g2k)-1  g-1ꞏg-1ꞏ…ꞏg-1  (g-1)2k  ((g-1)k)2



Quadratic Residues in Z *Quadratic Residues in Zp
 ex. p=143537, p-1=143536=24ꞏ8971, 

(p-1)=24ꞏ8971ꞏ(1-1/2)ꞏ(1-1/8971)=71760 
primitives, p ,

(p-1)/2=71768 QRp’s  and 71768 QNRp’s
 Note: if g is a primitive, then g3, g5 … are also primitivesg p , g , g p

except the following 8 numbers g8971, g8971ꞏ3,... g8971ꞏ15

 Elements in Zp
* can be classified further according to their order Elements in Zp can be classified further according to their order

since xZp
*, ordp(x) | p-1, we can list all possible orders

ordp(x) p-1 p-1
2

p-1
4

p-1
8

p-1
16

p-1
8971

p-1
8971ꞏ2

p-1
8971ꞏ4

p-1
8971ꞏ8

p-1
8971ꞏ16

QNRp QNRpQRp QRpQRpQRp QRp QRp QRp QRp
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(p-1) 8#

Composite Quadratic ResiduesComposite Quadratic Residues
 If y is a quadratic residue modulo n, it must be a If y is a quadratic residue modulo n, it must be a 

quadratic residue modulo all prime factors of n.
 xZn

*  s.t. x2  y (mod n)  x2 = kꞏn + y = kꞏpꞏq + yn y ( ) y p q y
 x2  y (mod p) and x2  y (mod q)

 If y is a quadratic residue modulo p and also a quadratic 
residue modulo q, then y is a quadratic residue modulo n.

 r1Zp
* and r2Zq

* such that 
2 ( d ) ( d )2 ( d )y  r1
2 (mod p)  (r1 mod p)2 (mod p)  

 r2
2 (mod q)  (r2 mod q)2 (mod q)

from CRT ! r Z * such that r  r1 (mod p)  r2 (mod q)from CRT, ! r Zn such that r  r1 (mod p)  r2 (mod q)
therefore, y  r2 (mod p)  r2 (mod q)
again from CRT, y  r2 (mod pꞏq)
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g , y ( p q)

Legendre SymbolLegendre Symbol
 Legendre symbol L(a, p) is defined when a is any integer, 

p is a prime number greater than 2
 L(a, p) = 0 if p | a
 L( ) 1 if i d ti id d L(a, p) = 1 if a is a quadratic residue mod p
 L(a, p) = -1 if a is a quadratic non-residue mod p

 T th d t t ( / ) Two methods to compute (a/p)
 (a/p) = a(p-1)/2 (mod p)

i l l l b ( b ) ( ) (b ) recursively calculate by L(a ꞏ b, p) = L(a, p) ꞏ L(b, p)
1. If a = 1, L(a, p) = 1
2 If a is even L(a p) = L(a/2 p)ꞏ( 1)(p2-1)/82. If a is even, L(a, p) = L(a/2, p) (-1)(p 1)/8

3. If a is odd prime, L(a, p) = L((p mod a), a)ꞏ(-1)(a-1)(p-1)/4

 Legendre symbol L(a p) = 1 if a  QNR
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 Legendre symbol L(a, p) = -1 if a  QNRp 

L(a, p) = 1 if a  QRp 

Legendre SymbolLegendre Symbol
yQRp  y(p-1)/21 (mod p)

()
 If yQRpy Q p

 Then xZp
* such that yx2 (mod p)

 Therefore, y(p-1)/2  (x2)(p-1)/2  x(p-1)  1 (mod p), y ( ) ( p)
()

 If yQR i e yQNR If yQRp i.e. yQNRp

 Then yg2k+1 (mod p)
 Therefore y(p-1)/2  (g2k ꞏ g)(p-1)/2  gk(p-1) g(p-1)/2 g(p-1)/2 1 (mod p) Therefore, y(p 1)/2  (g2k ꞏ g)(p 1)/2  gk(p 1) g(p 1)/2 g(p 1)/2 1 (mod p)
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ordp(g) = p-1



Jacobi SymbolJacobi Symbol
 Jacobi symbol J(a, n) is a generalization of the 

Legendre symbol to a composite modulus n
 If n is a prime J(a n) is equal to the Legendre If n is a prime, J(a, n) is equal to the Legendre 

symbol i.e. J(a, n)  a(n-1)/2(mod n)
 Jacobi symbol can not be used to determine 

whether a is a quadratic residue mod n (unless n q (
is a prime)
ex J(7 143) = J(7 11)ꞏJ(7 13) = (-1)ꞏ(-1) = 1ex. J(7, 143)  J(7, 11) J(7, 13)  ( 1) ( 1)  1

however, there is no integer x such that 
x2  7 (mod 143)
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x  7 (mod 143)

Calculation of Jacobi SymbolCalculation of Jacobi Symbol
 The following algorithm computes the Jacobi symbol J(a, n), for any 

integer a and odd integer n, recursively:integer a and odd integer n, recursively:
 Def  1: J(0, n) = 0 also If n is prime, J(a, n) = 0 if n|a
 Def  2: If n is prime, J(a, n) = 1 if a QRn and  J(a, n) = -1 if a QRn

 Def  3: If n is a composite, J(a, n) = J(a, p1ꞏp2…ꞏpm) = J(a,p1)ꞏJ(a,p2)…ꞏJ(a,pm)
 Rule 1: J(1, n) = 1
 Rule 2: J(aꞏb, n) = J(a, n) ꞏ J(b, n)
 Rule 3: J(2, n) = 1 if (n2-1)/8 is even and J(2, n) = -1 otherwise
 R l 4 J( ) J( d ) Rule 4: J(a, n) = J(a mod n, n)
 Rule 5: J(a, b) = J(-a, b) if a <0 and (b-1)/2 is even, 

J(a, b) = -J(-a, b) if a<0 and (b-1)/2 is odd
 Rule 6: J(a, b1ꞏb2) = J(a, b1) ꞏ J(a, b2)
 Rule 7: if gcd(a, b)=1, a and b are odd

( b) (b ) if ( 1) (b 1)/4 i
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 7a: J(a, b) = J(b, a) if (a-1)ꞏ(b-1)/4 is even
 7b: J(a, b) = -J(b, a) if (a-1)ꞏ(b-1)/4 is odd 

QR and Jacobi SymbolQRn and Jacobi Symbol
 Consider n = pꞏq, where p and q are prime numbers

xZn
*, x QRn

 x QRp and x QRqQ p Q q

 J(x, p) = x(p-1)/2  1 (mod p) and  J(x, q) = x(q-1)/2  1 (mod q)
 J(x, n) = J(x, p) ꞏ J(x, q) = 1( , ) ( , p) ( , q)

J(x p) J(x q) J(x n)J(x, p) J(x, q)

1 1Q00

J(x, n)
1 xQRn

QNR-11
1-1

Q01

Q10

-1
-1

xQNRn

xQNRn

39

-1 -1Q11 1 xQNRn

Wilson’s TheoremWilson s Theorem
(p-1)!  -1 (mod p)

Proof:
Goal: (p-1)!  1 ꞏ 2 ꞏ 3 ꞏ ꞏ ꞏ (p-1)  -1  (p-1) (mod p)Goal: (p 1)! 1 2 3    (p 1) 1 (p 1) (mod p)
 Since gcd(p-1, p) = 1, the above is equivalent to (p-2)!1(mod p)
 e g p = 5 3 ꞏ 2 ꞏ 1  1 (mod 5) e.g. p  5,   3  2  1  1 (mod 5)

p = 7,    5 ꞏ 4 ꞏ 3 ꞏ 2 ꞏ 1  1 (mod 7)
We know that 1-1  1 (mod p) and (-1)-1  -1 (mod p)We know that 1  1 (mod p) and (-1)  -1 (mod p)
 Claim: iZp

*\{1,-1}, i-1  i (pf: if i-1  i then i2  1, i{1,-1})
 Claim: i i Z *\{1 1} i -1  i -1 (pf: if i -1i -1 then i ꞏ i -1 1 Claim: i1i2Zp \{1,-1}, i1  i2 (pf: if i1 i2 then i1  i2  1 

i.e. i1i2 , contradiction)
 Out of the set {2 3 p-2} we can form (p-3)/2 pairs such that
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 Out of the set {2, 3, … p 2}, we can form (p 3)/2 pairs such that
i ꞏ j  1 (mod p), multiply them together, we obtain (p-2)!  1



Another ProofAnother Proof
()

yQRp  y(p-1)/21 (mod p)
()

 If yQRp

Th  Z * h h 2 ( d ) Then xZp
* such that yx2 (mod p)

 Therefore, y(p-1)/2  (x2)(p-1)/2  x(p-1)  1 (mod p)
()()

 Since iZp
*, gcd(i, p)=1, j such that iꞏj  y (mod p)

 If QR th 2 ( d ) h l ti If yQRp, the congruence x2  y (mod p) has no solution, 
therefore, j  i (mod p)

We can group the integers 1 2 p 1 into (p 1)/2 pairs (i j)We can group the integers 1, 2, …, p-1 into (p-1)/2 pairs (i, j), 
each satisfying iꞏj  y (mod p)

Multiply them together we have (p-1)!  y(p-1)/2 (mod p)
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Multiply them together, we have (p-1)!  y(p ) (mod p)
 From Wilson’s theorem, y(p-1)/2  -1 (mod p)

Exactly Two Square RootsExactly Two Square Roots
Every yQRp has exactly two square roots

i e x and p x such that x2y (mod p)i.e. x and p-x such that x2y (mod p)
 QRp = {g2, g4,…, gp-1}, |Zp

*| = p-1, and |QRp| = (p-1)/2
 For each yg2k in QR there are at least two distinct xZ * s t

pf:
 For each yg in QRp, there are at least two distinct xZp s.t. 

x2y (mod p), i.e., gk and p-gk (if one is even, the other is odd)
 Since |QRp| = (p-1)/2, we can obtain a set of p-1 square roots |Q p| (p ) , p q

S={g, p-g, g2, p-g2,…,g(p-1)/2, p-g(p-1)/2}
 Claim: the elements of S are all distinct (1. gi  gj (mod p) when 

i j i i i iti 2 i  j ( d ) h i j th iij since g is a primitive, 2. gi -gj (mod p) when ij, otherwise 
(gi+gj)(gi-gj)g2i-g2j0 (mod p) implies ij (mod (p-1)/2), 
3. gi  -gi (mod p) since if one is even, the other is odd)g g ( p) , )

 If there is one more square root z of yg2k which is not gk and 
-gk , it must belong to S (which is Zp

*), say gj, jk, which would 
i l th t 2j 2k ( d ) d l d t t di ti
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imply that g2j  g2k (mod p), and leads to contradiction

Order q Subgroup G of Z *Order q Subgroup Gq of Zp
 Let p be a prime number, g be a primitive in Zp

*

 Let p = k ꞏ q + 1    i.e.  q | p-1     where q is also a prime number
 Let Gq = {gk, g2k, …,gq ꞏ k 1}
 Is Gq a subgroup in Zp

*?  YES
 x, y  Gq, it is clear that z  gi ꞏ k  x ꞏ y  g(i1+i2) ꞏ k (mod p) 
is also in Gq, where i  i1 + i2 (mod q)

 Is the order of the subgroup Gq q?  YES
 i1, i2  Zq, i1  i2,  gi1 ꞏ k  gi2 ꞏ k (mod p) otherwise g is not a 
primitive in Zp

*, also gq ꞏ k 1 (mod p)p

 How many generators are there in Gq?  (q)=q-1
a. there are (p-1) generators in Zp

*={g1, g2, …,gx, …,gp-1}, since 
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p

gcd(p-1, x) = d > 1 implies that ordp(g
x) = (p-1)/d

Order q Subgroup G (cont’d)Order q Subgroup Gq (cont d)
also (gx)y  1 (mod p) and gp-1  1 (mod p) implies that either
x ꞏ y | p-1  or  p-1 | x ꞏ y, gcd(x, p-1) = 1 implies that p-1 | y
therefore, ordp(g

x) = p-1
b h ( ) i i i i G { k 2k q ꞏ k 1} ib. there are (q) primitives in Gq = {gk, g2k, …, gq ꞏ k 1} since

q is also a prime number
 I G i d b i Z * ? YES Is Gq a unique order q subgroup in Zp ? YES

Let S be an order-q cyclic subgroup, S= {g, g2, …, gq 1}.  Since 
p is prime  a unique k th root g  Z * s t g  g k (mod p)p is prime,  a unique k-th root g1  Zp ,  s.t. g  g1

k (mod p)
Let g1  g be another primitive, clearly g1  gs (mod p),
Is the set S={g1

k g1
2k g1

q ꞏ k 1} different from G ?Is the set S {g1 , g1 , …, g1 1} different from Gq?
let x  S, i.e. x  g1

i1ꞏk (mod p), i1  Zq
x  g1

i1ꞏk  gsꞏi1ꞏk  giꞏk (mod p) where i  s ꞏ i1 (mod q), i.e. S  Gq
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g1 g g ( p) 1 ( q),  q
The proof is similar for Gq  S.  Therefore, S = Gq



Gauss’ LemmaGauss  Lemma
Lemma:  let p be a prime, a is an integer s.t. gcd(a, p)=1,

d fi j ( d )}define j  jꞏa (mod p)}j=1,…,(p-1)/2,
let n be the number of j’s s.t. j > p/2 then L(a, p) = (-1)n

pfpf.
 j  {r1, …, rn} if j > p/2 and j  {s1, …, s(p-1)/2-n} if j  p/2
 Since gcd(a p)=1 ri and si are all distinct and non-zero Since gcd(a, p) 1, ri and si are all distinct and non zero
 Clearly, 0 < p-ri  p/2 for i=1,…,n
 no p-ri is an sj: if p-ri=sj then sj  -ri (mod p) no p ri is an sj:     if p ri sj then sj  ri (mod p)

rewrite in terms of a:  u a  -v a (mod p) where 1  u, v  (p-1)/2 
 u  -v (mod p) where 1  u v  (p-1)/2  impossible u  -v (mod p) where 1  u, v  (p-1)/2  impossible

 {s1, …, s(p-1)/2-n, p-r1, …, p-rn} is a reordering of {1, 2,…, (p-1)/2}
 Thus ((p 1)/2)!  s ꞏꞏꞏs ꞏ( r )ꞏꞏꞏ( r )  ( 1)n s ꞏꞏꞏs ꞏr ꞏꞏꞏr
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 Thus, ((p-1)/2)!  s1ꞏꞏꞏs(p-1)/2-nꞏ(-r1)ꞏꞏꞏ(-rn)  (-1)n s1ꞏꞏꞏs(p-1)/2-nꞏr1ꞏꞏꞏrn   

 (-1)n ((p-1)/2)! a(p-1)/2 (mod p)   L(a, p) = (-1)n �

Theorem: J(2 p) = ( 1)(p2-1)/8Theorem: J(2, p) = (-1)(p 1)/8
Theorem: let p be a prime, gcd(a, p) = 1 then L(a, p) = (-1)t

(p-1)/2
where t =  jꞏa/p.  Also L(2, p) = (-1)(p2-1)/8

pf.
j=1

(p-1)/2

p .

 j  {r1, …, rn} if j > p/2 and j  {s1, …, s(p-1)/2-n} if j  p/2
 j a = p jꞏa/p + j for j=1, …, (p-1)/2 j a  p j a/p  j for j 1, …, (p 1)/2

 j a =    p jꞏa/p +  rj +     sj
j=1

(p-1)/2

j=1

(p-1)/2

j=1

n

j=1

(p-1)/2-n

 {s1, …, s(p-1)/2-n, p-r1, …, p-rn} is a reordering of {1, 2,…, (p-1)/2}

 j =  (p-rj) +  sj = np -  rj +  sj
(p-1)/2 n (p-1)/2-n n (p-1)/2-n

 j   (p rj)     sj  np  rj     sj

 Subtracting the above two equations, we have
j=1 j=1 j=1 j=1 j=1
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(a - 1)   j  =  p (    jꞏa/p - n  )  + 2    rj
j=1

(p-1)/2

j=1

(p-1)/2

j=1

n

J(2 p) = ( 1)(p2-1)/8 (cont’d)J(2, p) = (-1)(p 1)/8 (cont d)
  j = 1 + … + (p-1)/2 = (p-1)/2 (1 + (p-1)/2) / 2 = (p2-1)/8

j 1

(p-1)/2
j (p ) (p ) ( (p ) ) (p )

 Thus, we have    (a-1) (p2-1)/8   jꞏa/p - n   (mod 2)
j=1

j=1

(p-1)/2

 If a is odd, n   jꞏa/p
j=1

(p-1)/2

 If a = 2,   jꞏ2/p = 0 for j=1, …, (p-1)/2,  n  (p2-1)/8 (mod 2)

therefore J(2 p) = (-1)(p2-1)/8

j 1

therefore, J(2, p) = (-1)(p )

�
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Lemma ord k elements in Z *  (k)Lemma. ord-k elements in Zp  (k)
h (k) d k l i * k | 1Lemma. There are at most (k) ord-k elements in Zp

*, k | p-1
pf.
 Zp

* is a field   xk-1 0 (mod p) has at most k roots
 if a is a nontrivial root (a1) then {a0 a1 a2 ak-1} is the if a is a nontrivial root (a1), then {a , a , a , …, a } is the 

set of the k distinct roots.
 In this set those a with gcd( k) = d > 1 have order at most In this set, those a with gcd(, k) = d > 1 have order at most 

k/d. 
 O l th  ith d( k) 1 i ht h d k Only those a with gcd(, k) = 1 might have order k.  
 Hence, there are at most (k) elements (out of k elements) 
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�that have order equal to k.                                  



Lemma  (k) = p 1Lemma. k|p-1 (k) = p-1
Lemma. k|p-1 (k) = p-1|p

pf.
( i * d( ) k)p-1 = k|p-1 (# a in Zp

* s.t. gcd(a, p-1) = k)
= k|p 1 (# b in {1,…,(p-1)/k} s.t. gcd(b, (p-1)/k) = 1)k|p-1 ( { , ,(p ) } g ( , (p ) ) )
= k|p-1 ((p-1)/k)
= k|p-1 (k)                                          �

ex. {(1}, (2), (3), (4), (6), (12)}, p=13
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Z * is a cyclic groupZp is a cyclic group
Theorem: Zp

* is a cyclic group for a prime number p
pf.

Lemma 1: # of ord-k elements in Zp
*  (k), where  k | p-1

Lemma 2: k|p-1 (k) = p-1
The order k of every element in Zp

* divides p-1y p p
k|p-1 (# of elements with order k)  =  p-1
 (k)  1 bi d ith l 2 k th tk|p-1 (k)  p-1, combined with lemma 2, we know that

# of ord-k elements in Zp
*  (k)

 # of ord-(p-1) elements in Zp
*  (p-1) > 1

 There is at least one generator in Zp
*, i.e. Zp

* is cyclic
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 There is at least one generator in Zp , i.e. Zp is cyclic �

Ex. p=13, p-1 = |{1,5,7,11}| + |{2,10}| + |{3,9}| + |{4,8}| + |{6}|
k=1               k=2         k=3        k=4      k=6

Generators in QRGenerators in QRn
 Number of generators in Zp

*: (p-1)
L t b i iti Z * < > { 2 3 k p 1}Let g be a primitive, Zp

* = <g> = {g, g2, g3, …, gk, …, gp-1}
if gcd(k, p-1) = d  1 then gk is not a primitive 

since (gk)(p-1)/d = (gk/d)p-1 = 1 i e ord (gk)  (p 1)/dsince (gk)(p 1)/d = (gk/d)p 1 = 1, i.e. ordp(gk)  (p-1)/d 
if gcd(k, p-1) = 1 and gk is not a primitive, then d=ordp(gk)  p-1, i.e.

(gk)d = 1; g is a primitive  p-1 | k d  p-1 | d contradiction(g )  1; g is a primitive  p-1 | k d  p-1 | d  contradiction.
 Zn

* is not a cyclic group (n = p q, p=2p'+1, q=2q'+1, (n)=2p'q')
Since x(n)  1 (mod n), there is no generator that can generateSince x 1 (mod n), there is no generator that can generate
all members in Zn

*

 QRn is a cyclic group of order (n)/2 = lcm(p-1, q-1)/2 =  p' q'Q n y g p ( ) (p , q ) p q
 x  Zn

*, x(n)  1 (mod n)     Carmichael’s Theorem
clearly, (x2)(n)/2  1 (mod n), QRn = {x2 |  x  Zn

*}
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i.e.  y  QRn, ordn(y) | p' q'     (ordn(y){1, p', q', p'q'})

Generators in QR (cont’d)Generators in QRn (cont d)
cyclic?       x*  Zn

* ordn(x*) = (n) = 2 p' q'  
 * ( ( *)2) QR t d ( *) ( )/2 ' ' y* (=(x*)2)  QRn s.t.  ordn(y*) = (n)/2 = p' q'

 Let y be a random element in QRn, the probability that y is a generator 
is close to 1is close to 1

Let y* be a generator of QRn,    
QRn = <y*> = {y*, (y*)2, (y*)3, …, (y*)k, …, (y*)p'q'}Q n y {y , (y ) , (y ) , , (y ) , , (y ) }

if gcd(k, p'q') = d  1 then (y*)k is not a generator 
since ((y*)k)p'q'/d = ((y*)k/d)p'q' = 1, i.e. ordp((y*)k)  (p'q')/d((y ) ) ((y ) ) p((y ) ) (p q )

(p'q') = (p') (q') = (p'-1)(q'-1) = p'q' - p' - q' + 1 
= p'q' - (p'-1) - (q'-1) - 1 

 x  {(y*)q', (y*)2q', …, (y*)(p'-1)q'} ordn(x) = p'
 x  {(y*)p', (y*)2p', …, (y*)(q'-1)p'} ordn(x) = q'
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ordn(1) = 1
Pr{x is a generator | xRQRn} = (p'q') / (p'q') is close to 1



Subgroups in Z *Subgroups in Zn
Consider n = p q, p=2p'+1, q=2q'+1, m=p'q', (n) = lcm(p-1, q-1)=2m,

(n) = (p-1)(q-1) = 4m
 Zn

* is not a cyclic group
 Carmichael’s theorem asserts that no element in Zn

* can generate 
all elements in Zn

*.  (maximum order is 2m instead of 4m)
* However, Zn
* is still a group over modulo n multiplication.

 QRn is a cyclic subgroup of order m = (n)/2, QRn = {x2 |  x  Zn
*}

 J00 = {x  Zn
* | J(x,p)=1 and J(x,q)=1}

 If there exists an element in Zn
* whose order is 2m, then QRn is 

l l li (Will h di i b ?)clearly a cyclic group.  (Will the precondition be true?)
  xZn

* x2m  1 (mod n) implies that  yQRn ordn(y) | p'q' 
i d ( ) i i h 1 ' ' ' ' (if h i d ( )
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i.e. ordn(y) is either 1, p', q', or p'q' (if there is one y s.t. ordn(y)=m
then y is a generator and QRn is cyclic).  Let’s construct one.

Subgroups in Z * (cont’d)Subgroups in Zn (cont d)
Let g1 be a generator in Zp

*, and g2 be a generator in Zq
*

Let g  g1 (mod p)  g2 (mod q), (note that J(g, n) = 1, g  J11)
gp-1  g2p'  g1

2p'  1 (mod p), gq-1  g2q'  g2
2q'  1 (mod q)

 g2p'q'  1 (mod p) and g2q'p'  1 (mod q) i.e. g2p'q'  1 (mod n)
if there exists a k  {1, 2, p', q', 2p', 2q', p'q'} s.t. gk  1 (mod n)

then ordn(g) is not 2p'q'
1. k=1:  g1  1 (mod p) contradict with ordp(g1) = p-1
2. k=p':  gp'  g1

p'  1 (mod p) contradict with ordp(g1) = 2p'
3. k=q':  gq'  g2

q'  1 (mod q) contradict with ordq(g2) = 2q'q

4. k=2:  g1
2  1 (mod p) contradict with ordp(g1) = p-1

5. k=2p':  g2p'  g2
2p'  1 (mod q) contradict with ordq(g2) = 2q'
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q

6. k=2q':  g2q'  g1
2q'  1 (mod p) contradict with ordp(g1) = 2p'

Subgroups in Z * (cont’d)Subgroups in Zn (cont d)
7. k=p'q':  gp'q'  g1

p'q'  1 (mod p)
i 2 ' 1 ( d ) dsince g1

2p'  1 (mod p) and 
gcd(q', 2) = 1   a, b s.t. a q' + b 2 = 1
 g p' g p' (a q' + b 2) g p' q' )a g 2 p')b 1 (mod p) g1

p  g1
p  (a q  + b 2)  g1

p  q  )a g1
2 p )b  1 (mod p)

contradict with ordp(g1) = 2p'
1~7 implies that ord (g) = 2p'q' i e QR = {g2 g4 gp'q'}1~7 implies that ordn(g) = 2p q , i.e.  QRo = {g , g , …, gp q }
and QRn is a cyclic group.

 Pr{Elements in QR being a generator} = (p'q') / (p'q') Pr{Elements in QRn being a generator}  (p q ) / (p q ) 
 Jn is a cyclic subgroup of order 2m = (n), Jn = {x  Zn

* | J(x,n)=1}
 J11 = {x  Zn

* | J(x,p)=-1 and J(x,q)=-1}11 { n | ( ,p) ( ,q) }
 The above proof also shows that Jn = {g, g2, …, g2p'q'} is cyclic
 Pr{Elements in Jn being a generator} = (p'q') / (2p'q') 

55

 J01J10 = Zn
* \ {J00J11} is not a subgroup in Zn

*

 if x  J01 then x * x  J00

Generator in QRGenerator in QRn
 n = p q, p=2p'+1, q=2q'+1
 Find a generator in QRn

1. Find a generator g1 of Zp
* (i.e. Zp

* = <g1>) and g2 of Zq
* (i.e. Zq

* = <g2>)
2 C l l t th t h 2 ( d ) f QR d h 2 ( d 1) f QR2. Calculate the generator h1  g1

2 (mod p) of QRp and h2  g2
2 (mod 1) of QRq

3. Let h  h1 (mod p)  h2 (mod q).  
It is clear that h  g2 (mod n), i.e. hQRn, where g  g1 (mod p)  g2 (mod q).It is clear that h g (mod n), i.e. hQRn, where g g1 (mod p) g2 (mod q).  

Claim: h is a generator of QRn

pf.
y  QRn  y  QRp and y  QRq

i.e.  x1 Zp' and x2 Zq' , y  h1
x1 (mod p)  h2

x2 (mod q)
 2 x1 ( d ) 2 x2 ( d ) y  g1

2 x1 (mod p)  g2
2 x2 (mod q)

 y  g 2 x (mod n) if 2 x  2 x1 (mod p-1)  2 x2 (mod q-1)
a unique x  Zp'q' exists by CRT since gcd(p-1, q-1) = gcd(2p', 2q') = 2
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q p q y g (p , q ) g ( p , q )
 y  h x (mod n)



Generate Elements in Z *Generate Elements in Zn
 Zn

* is NOT a cyclic group (n = p q, p=2p'+1, q=2q'+1, m=p' q')
 H d t d l t i Z *? How do we generate random elements in Zn

*?
Zn

* = { ga u-e b1 (-1)b2 | g is a generator in QRn, gcd(e, (n)) = 1,
u Z * and J(u n) = 1uR Zn and J(u,n) = -1,                                       
a{0,…,m-1}, b1{0,1}, and b2{0,1} }

Note: 1 J(-1 n) = 1 and -1  J \QR since (-1)(p-1)/2  (-1)p'  -1 (mod p)Note: 1. J(-1, n)  1 and -1  Jn\QRn since (-1)(p )  (-1)p  -1 (mod p)
2. e is odd, (n)-e is also odd, J(u-e, n) = J(u, n) = -1

 We can view the above as 4 parts We can view the above as 4 parts
1. J00 (QRn): b1 = b2 = 0, J00 = {ga | a{0,…,m-1}}
2. J11 (Jn\QRn): b1 = 0, b2 = 1, J11 = {-ga | a{0,…,m-1}}11 ( n Q n) 1 , 2 , 11 { g | { , , }}
Assume that J(u, p) = -1 and J(u, q) = 1
3. J01: b1 = 1, b2 = 0, J01 = {ga u-e | a{0,…,m-1}}
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4. J10: b1 = 1, b2 = 1, J01 = {-ga u-e | a{0,…,m-1}}
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Lagrange’s Theorem: for any finite group G, the 
order (number of elements) of every subgroup H 
of G divides the order of G.
proof sketch: divide G into left cosets H –

equivalence classes, and  show that they have the 
same size.

 It implies that: the order of any element a of a p y
finite group (i.e. the smallest positive integer 
number k with ak = 1) divides the order of the )
group.  Since the order of a is equal to the order 
of the cyclic subgroup generated by a.  Also, 
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y g p g y ,
a|G| = 1 since order of a divides |G|.


