RSA Cryptosystem
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< Encryption and decryption algorithm are not the same

< Public/private key pair: private key 1s related to public
key but can not be easily derived from public key

< Illustrating example:

*
me Z,

m* 1 =m(mod1l11l)
RS
m*8*8 =m(mod1l)

encryption 8 1s the public key

% y m * 8 1s the ciphertext
Yo 8" is the private key (if nobody
decryption can derive this from the public
key, then this system is secure)
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+ Merkel and Hellman, “Hiding Information and Signatures
in Trapdoor Knapsacks,” IT-24, 1978

* a good application of an NP problem on designing public key
cryptosystem; no longer secure

% Super-increasing sequence

{a,, a,, ... a_ } such that a, > Z a; ex. 1,3, 5,10, 20, 40
1=0
¢ Note: 1. Given a number c, finding a subset {a;} s.t. c =2 a,
1s an easy problem, ex. 48 =40 + 5 + 3 ]

2. Every subset sum 2 a; <2 - ay; where ay; = max{a;}
]ES JES

3. Every possible subset sum 1s unique

pf: given x, assume x = X’ a;=2. a, where S #T, assume max{a;} # max{a; ....
JES JET JjES jeT
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¢ choose a number b in Z 7, ex. p = 101, b = 23, and convert
the super-increasing sequence to a normal knapsack
sequence B={b,, b,, ..., b, } where
b,=a, - b (modp)
ex. 23, 69, 14, 28, 56, 11
< Since gcd(b, p)=1, this conversion 1s invertible, 1.e.
a,=b; - b (modp)
ex. b''=22 (mod 101) (b b1 =1 (mod p))

¢ Given a number d, finding a subset {b;} B s.t.
d =2 b; (mod p)
]

1s an NP-complete problem, ex. 94 =11 + 14 + 69




Knapsack
< Encryption:
* public key: normal knapsack seq. {23, 69, 14, 28, 56, 11}

* message m, 0 <m < 2°, ex. (60),,=(111100),

*x sum up the corresponding elements of ‘1’ bits, 1.¢.
23+ 69+ 14+ 28 =134 1s the ciphertext

+ Decryption:

* private key: b-'=22, p=101, {1, 3, 5, 10, 20, 40}
* calculate 134 * 22 mod 101 =19

* use the corresponding super-increasing knapsack seq. {1, 3, 5,

10, 20, 40} to decrypt as follows:

& 19 <40, mark a ‘0’
a 19< 20 mark a ‘0’
zcz 19 > 10 mark a ‘1’ and subtract 10 from 19
x 92>35, mark a ‘1’ and subtract 5 from 9
» 4 >3 marka ‘1’ and subtract 3 from 4
» 1 > 1, mark a ‘1’ and subtract 1 from 1

x recovered message 1s (111100), = (60),,
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Knapsack (D1

<+ Why does 1t work?

let the plaintext be (111100),
ciphertextc =b, + b, + b; + b,

=a,b+a,b+a;b+a,b(modp)
decryption: ¢ b! (mod p) =a, + a, + a; + a, (mod p)
1S a subset sum problem of a

super-increasing sequence
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< In the following, we discuss two important
cryptosystems based on the difficulty of integer
factoring (an NP problem)

¢ RSA’s underlying problem ~__—12-F 1

Solving e-th root modulo n 1s difficult

RSA function—
unction y _ Xe (mOd n)

<~ Rabin’s underlying problem

Solving square root modulo n 1s difficult
y = x* (mod n)

Rabin function

both functions are candidates for trapdoor one way function
7
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+ Solving e-th root of y modulo n is difficult!!!
y = X* (mod n), where gcd(e, ¢(n)) =1
Why don’t we take (e’!)-th power of y?
where ¢! - e =1 (mod ¢(n)) Trouble: How do we
ex. n=11-13=143,e=7 know ¢(n) ?
d(n)=10-12=120,e!' =103

% Solving square root of y modulo n 1s difficult!!!
y = x? (mod n)
Why don’t we take (2-1)-th power of y?

where 271 -2 =1 (mod ¢(n)) Remember solving square
ex. n=11: 13 =143 root of y modulo a prime

(I)(n) =10 12 =120, ng(2, (I)(n)) _ 9 number p is very easy
Trouble: d - 2 =1 (mod ¢(n)) has no solution for d




RSA Public Key Cryptosystem

< R. Rivest, A. Shamir and L. Adleman, “A Method for
Obtaining Digital Signatures and Public-Key
Cryptosystems,” Comm. ACM, pp.120-126, 1978

<~ Based on the Integer Factorization problem

~< Choose two large prime numbers: p, g (keep them secret!!)

< Calculate the modulus n = p-q (make 1t public)
< Calculate ®(n) = (p-1)-(g-1) (keep it secret)
< Select a random 1nteger such that e < ® and gcd(e, ®) = 1

< Calculate the unique integer d such that e - d =1 (mod @)
\<- Public key: (n, e) Private key: d




RSA Encrypti

lice wants to encrypt a message M for Bob
lice obtains Bob’s authentic public key (7, e)

lice represents the message as an integer m 1n the
interval [0, n -1]
+ Alice computes the modular exponentiation
¢ = m° (mod n)
< Alice sends the ciphertext ¢ to Bob

+ Bob decrypts ¢ with his private key (n, d)

by computing the modular exponentiation
m = ¢ (mod n)




<> Why does RSA work? (simpler but incomplete proof)
x* Factl:eed=1 (mod ®) = ed=1+kD

*x Fact 2: Vm, gcd(m,n)=1, m® =1 (mod n)
(by Euler’s theorem)

* From Fact 2: Vm , gcd(m,n)=1,

cd: med_ I+k @ — m1+k(p 1)(g-1) =

m (mod n)

note: 1. This only proves that for all m that are not multiples of p
or g can be recovered after RSA encryption and decryption.

2. For those m that are multiples of p or ¢, the Euler’s theorem
simply does not hold because p® = 0 (mod p) and
= 1 (mod g)
which means that p® & 1 (mod »n) from CRT.
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<~ Why does RSA work?
x* Factl:e'd=1 (mod ®) = ed=1+kD

x Fact 2: Vm, gcd(m,p)=1, m P! =1 (mod p)
(by Fermat’s Little theorem)

* From Fact 2: Vm , gcd(m,p)=1
note: this equation is — - 1+k (p-l) (q-l) — (m()d p)

trivially true when
m = kp

* From Fact 2: Vm , gcd(m q)—]
note: this equation is /\

trivially true when
m = kq

* From CRT: Vm ,

c=m =m
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<+ RSA function 1s a permutation: (1-1 and onto, bijective)

<+ Goal: “Vx,, x, €Z_1f x,°=X,° (mod n) then x; = X,”

* Vx#r-p, xP'! =1 (mod p), Vx#s-q, x4 = 1 (mod q)
= Vk,Vx#rp, x¢® =1 (mod p), Vk,Vx#s-q, x® =1 (mod q)
= Vk,Vx, xk™* = x (mod p), Vk,Vx, x*¢®™* = x (mod q)
CRT = Vk,Vx, xk¢0*l = x (mod n)
x gcd(e,p(n))=1 = inverse of € (mod ¢(n)) exists
—> d 1s the inverse s.t. e:d = 1 (mod ¢(n))
* VX, X, €Z, 1f X, =X,° (mod n)
= (x,9° = (x,°)" (mod n)
Note: Euler Thm is valid \ s (x,)1EHO = (5 )M (1m0 )

only when x €Z_*

= X; =X, (mod n)
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Most popular PKC in practice

Tens of dedicated crypto-processors are specifically designed to
perform modular multiplication in a very efficient way.

Disadvantage: long key length,
complex key generation scheme,
deterministic encryption

For acceptable level of security in commercial applications, 1024-
bit (300 digits) keys are used. For a symmetric key system with
comparable security, about 100 bits keys are used.

In constrained devices such as smart cards, cellular phones and
PDA:s, 1t 1s hard to store, communicate keys or handle operations
involving large integers




< rsatest.m
le('p := nextprime(1897345789)")
le('q := nextprime(278478934897)')

* map.

*x may

*x may

* Ma

*x may

* Ma

* Ma

*x may

4_6('11 = p*q'); Very likely to be relatively

vle('x :=101"); / prime with (p-1)(q-1)

le('e := nextprime(12345678)")
ple(d := e&”(;1) mod ((p-1)*(q-1))')
vle('y :=x&”\(e) mod n') L

le("xp := y&”(d) mod n') extended Euclidean algo.



<~ M.O. Rabin, “Digitalized Signatures and Public-key

Functions As Intractable As Factorization”, Tech. Rep.
LCS/TR212, MIT, 1979

+ Choose two large prime numbers: p, g (keep them secret!!)

< Calculate the modulus n = p-g (make it public)

<~ Public Key n
<~ Private Key p, g




D)
<~ Alice want to encrypt a message M (with some fixed
format) for Bob
<+ Alice obtains Bob’s authentic public key n

< Alice represents the message as an iteger m 1n the
interval [0, n -1]

+ Alice computes the modular square
c =m?’ (mod n)
< Alice sends the ciphertext ¢ to Bob

< Bob decrypts c using his private key p and g

/ /)
L/
S

< Bob computes the four square roots tm,, tm, using CRT,
one of them satisfying the fixed message format is the
recovered message




+ The range of the Rabin function 1s not the whole
set of Z * (compare with RSA).

* The range covers all the quadratic residues. (for a prime
modulus, the number of quadratic residues in Zp* 1S
(p-1)/2; for a composite integer n=p-q, the number of quadratic

residues in Z " is (p-1)(q-1)/4)

* In order to let the Rabin function have inverse, it 1s necessary
to make the Rabin function a permutation, 1e. 1-1 and onto.
Therefore, the number of elements in the domain of the Rabin
function should also be (p-1)(g-1)/4 for n=p-q. There are 4
possible numbers with their square equal to y, and we have to
make 3 of them 1illegal.
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< For a prime modulus p: number of QRp S In Z is (p-1)/2
pf: find a primitive g, at least {g?, g%, ... g¥ 1} are QR ’s
assume there are (p+1)/2 QRs,
since there are exactly two square roots of a QR modulo p
there are p+1 square roots for these (p+1)/2 QRs, 1.e. there must

be at least two pairs of square roots are the same (pigeon-hole),
1.e. two out of these (p+1)/2 QRs are the same, contradiction

< For a composite modulus p-q: number of QR11 S In Zp q 18 (p 1)(q 1)/4
pf: find a common primitive 1n Z and Z g, at least {g°, g, ...

oPt g% oMY are QRD S, Where A(n) = lecm(p-1,9- 1) can be
as large as (p 1)(g-1)/2, this set has (p-1)(g-1)/4 distinct elements
assume there are (p-1)(q-1)/4+1 QR ’sin Z_°, since there are
exactly four square roots of a QR modulo p-q, these QR ’s have
(p-1)(q-1)+4 square roots in total, which include repeated
elements, therefore, there are at most (p-1)(q-1)/4 QR ’sin Z *
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maple('p:= nextprime(189734535789)") % 189734535811 =4k +3
maple('p mod 4'")
maple('q:= nextprime(27847815934897)") % 27847815934931 =4k + 3
maple('q mod 4'")
maple('n:=p*q’);
maple('x:=070411111422141711030000") % text2int(‘helloworld’)
maple('c:= x&”*2 mod n')

>

>

maple('cl:=c mod p')
maple('rl:=c1&"((p+1)/4) mod p') % maple('r1 &2 mod p')

maple('c2:= ¢ mod q')
maple('r2:= c2&"((q+1)/4) mod q') % maple('r2&”*2 mod q')

maple('ml:= chrem([rl, r2], [p, q])") % 3704440302544264662351219
maple('m2:= chrem([-r1, 2], [p, q])") % 70411111422141711030000

maple('m3:= chrem(([rl, —r2] [p, q])) % 5213281318342160554284041
maple('m4:= chrem([-r1, -12], [p, q])") % 1579252127220037602962822
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<+ Break RSA means ‘inverting RSA fynction
without knowing the trapdoor’ N y=x° (mod n)

< Factor the modulus = Break RSA

x If we can factor the modulus, we can break RSA

x [f we can break RSA, we don’t know whether w n factor the
m ..open problem (with negative evidences)

<+ Factor the modulus < Calculate private key d

x [f we can factor the modulus, we can calculate the private
exponent d (the trapdoor information).

x If we have the private exponent d, we can factor the modulus.

will be illustrated later after factorization
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< Security of
integer factormg

+ inverting ‘y = f(x) = x?> (mod n)’ without
knowing p and q < factoring n

= l.if you can factor n =p - q in polynomial time

e you can solve y = X, (mod p) and y = X,2 (mod q) easily
e using CRT you can find x which is f ' (y)

e given a quadratic residue y if you can find the four
square roots tx, and tx, for y in polynomial time
* you can factor n by trying gcd(x,-X,, n) and gcd(x,+x,, n)

22
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Basic Factoring P

<+ Letn be an integer and suppose there exist integers x and y with

x? = y? (mod n), but x # £y (mod n). Then @ n is composite,
® both gcd(x-y, n) and ged(x+y, n) are nontrivial factors of n.
Proof:
let d = gcd(x-y, n).
Case 1: assume d =n = x =y (mod n) contradiction
Case 2: assume d 1s 1 (the trivial factor)
x? = y? (mod n) = x? - y* = (x-y)(xt+ty)=k - n
d=1 means gcd(x-y, n)=1 =
n | x+y = x = -y (mod n) contradiction

Case 1 and 2 implies that 1 <d <n
1.e. d must be a nontrivial factor of n




Basic Factoring Pr1
+ x? =y? (mod p) implies x = +y (mod
implies p | (x+y) or p | (X-y),
1.e. X = -y (mod p) or x =y (mod p)
% x? =y? (mod n)
pq | (x+y)(x-y) implies the following 4 possibilities

l. pq | (xty) 1.e. X = -y (mod n)

2.pq | (x-y) 1.e. x =y (mod n)

3.p| (xty) and q | (x-y) 1.e. X = -y (mod p) and x =y (mod q)

4.q|(xty)and p | (x-y) i.e. x =-y (mod q) and x =y (mod p)

* Case 1 and case 2 are useless for factorization

x Case 3 leads to the factorization of n, 1.e. gcd(x+y, n) = p and
ged(x-y,n) =q

x Case 4 leads to the factorization of n, 1.e. gcd(x+y, n) = q and
ged(x-y,n) =p
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% This principle 1s used in almost all factoring algorithms.
<~ Why 1s 1t working?

* take n=p-q (p and q are prime) for example

= y? (mod n) implies x? = y? (mod p) and x? = y? (mod q)

we know ‘x = £y (mod p) are the only solution to x*> = y? (mod p)’
and ‘x = *y (mod q) are the only solution to x* = y? (mod q)

1
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& X =y (mod p) and X =y (mod q)
& X = -y (mod p) and x = -y (mod q)
& X =y (mod p) and x = -y (mod q)
& X = -y (mod p) and x =y (mod q)

as long as we have z (where z £ ty), we can factor n into
gcd(y-z, n) and gcd(y+z, n)
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+ Ex: Consider the roots of 4 (mod 35), 1.¢.
solving x from x* =4 (mod 35)

* try to take square root of both sides,
we find x =+2 or £12

x 1.e. 122 =2? (mod 35), but 12 = £2 (mod 35)
x therefore 35 1s composite

*x gcd(12-2, 35) = 5 1s a nontrivial factor of 35
x gcd(12+2, 35) = 7 1s a nontrivial factor of 35
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Is N a composite number?
Let n > 1 be odd, write n-1 = 2¥ - m with m being odd

Choose a random integer a with 1 <a <n-1 n will pass Fermat test

C()mpute b = gt (mod n) n }s called pseudo prime
with respect to base a

it b, = +1 (mod n), stop, n is probably prime _ ">

Compute b, = b,* (mod n)
itb, =1 (mod n), stop, gcd(by-1, n) 1s a factor ot n
if b = -1 (mod n), stop, n 1s probably prime

Compute b, =b,? (mod n)

Compute b, ; = b, ,* (mod n)
it b, , = 1 (mod n), stop, gcd(b, ,-1, n) 1s a factor of n
it b,_, = -1 (mod n), stop, n 1s probably prime
Compute b, =b,_,* (mod n)
if b, = 1 (mod n), stop, ged(b,_;-1, n) 1s a factor of n
otherwise 7 is composite (Fermat Little Thm, b, = a”! (mod 7))
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b, =a™ (mod n) ® ©® and @ are not true,

b, = q2'm (mod n) i = -1 (mod n), 1=1,2,...k

1=2%.m all subsequent b; = 1 (mod n),
Yol : there is no chance to use

_ 2K.m — n-1 ;
b.=a a”" (mod n). . Basic Factoring Principle, abort
Consider 4 possible cases: “. @& ® ® and ® are not true
® by ==+1 (mod n) % b,=a"" (mod n)

all b; = I (modn), i=1,2,..k  \ pp i prime, b, = 1 (mod n)
there is no chance to use ‘

Basic Factoring Principle, abort :  1.e. 1T by # 1 (mod n) n is composite
( b, =1 (mod n) is covered by @ )
@ O is not true,

b. ; # 1 (mod n) and
b.=1 (modn), 1=1,2,...k
Basic Factoring Principle applied, composite
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< Light changes speed as it moves from
one medium to another, e.g., refraction
caused by a prism

glass prism

& @R WY =W, [ET T, .

% Squaring a number modulo different prime numbers

22 23 24 25 26 27
mod 11 4 8 5 10 9 7
mod 13 4 R} 6 12 11




When/How does Basic Factoring
Principle work in M-R test?

<~ When:
* explicitly: b. , # £1 (mod n) and b;=b?, = 1 (mod n)

If n is not prime, not often when b = a™! (mod n) but often
& How: | when bk = a®® (mod n) in universal exponent factoring

x implicitly: letp|nand q|n (p, q be two factors of n)
b2, =1 (mod p) and b>, = 1 (mod q)
but either b. ;Z 1 (mod p) orb._;# 1 (mod q)
* catching the moment that b, b,, ... behave differently

while taking square in (mod p) component and (mod q)
components




e S T o Format test far all bases
n-1=560=16-35=2%-35
leta=2

b, =2 =263 (mod 561) 2
b, =b,* =2 =166 (mod 561) 1
1

mod 3

b, =b,2=22"%= 67 (mod 561)
b, =b,2=22"2°=1 (mod 561)
561 1s composite (3-11-17),
gcd(b,-1, 561) =33 1s a factor ardl (2):23’
Note: 3-1=2, 11-1=2-5, 17-1=24
®(561)=561(1-1/3)(1-1/11)(1-1/17)=2-10-16
®(561) | n-1 for this special case




Pseudo Prime and Strong Pseudo Prime

< If n is not a prime but satisfies a*! = 1 (mod n) we
say that n 1s a pseudo prime number for base a.

* Ex. 2°0 =1 (mod 561)

<~ If n 1s not a prime but passes the Miller-Rabin test
with base a (without being identified as a
composite), we say that n 1s a strong pseudo prime
number for base a.

< Up to 1010, there are 455052511 primes, there are
14884 pseudo prime numbers for the base 2, and
3291 strong pseudo prime numbers for the base 2




Fermat and Miller-Rabin Test
<~ Both of these two tests are for identifying subsets of

composite numbers SPP,: strong pseudo prime

numbers for base a,
the set of composite n
where M-T test says
‘probably prime’

[: integers

C: composite
numbers

P.: pseudo prime
. numbers for base a,
SPP. — PP the set of composite

n-1__
- mysterious part n where a~ =1(mod n)

not prime, but cannot be 1dentified as composite
33

PP, c SPP,c C
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Note that the M-R test and probably together with the Lucas test
leave the strong pseudo prime number an extremely small set.

In other words, these tests are very close to a real ‘primality test’
between prime numbers and composite numbers.

If you have an RSA modulus n=p-q, you certainly can test it and
find out that 1t 1s actually a composite number.

However, these tests do not necessarily give you the factors of n in
order to tell you that n 1s a composite number. The factors of n, 1.e.
p or q, are certainly a kind of witness about the fact that n 1s
composite.

However, there are other kind of witness that n 1s comp0s1te c.g.,
“2™! (mod n) does not equal to 17 is also a witness that n is
composite.

A composite number will be factored out by the M-R test only 1f it
1s a pseudo prime but it 1s not a strong pseudo prime number.




< primetest(n)

* Miller-Rabin test for 30 randomly chosen base a
x output 0 1f n 1s composite

* output 1 if n 1s prime

* Matlab program can not be used for large n

* use Maple isprime(n), one strong pseudo-primality test and one
Lucas test

< primetest(2563)
ans= ()

<+ factor(2563)
ans =11 233
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Questions
<~ What 1s the probability that Miller-Rabin test fails???

x If n 1s a prime number, 1t will not be recognized as a composite
number

x [fn=p q, but
b,=a"'=1(modn) meets Fermat test (pseudo prime number)
O<1<k b.=1 (modn)and b, ; =-1 (mod n)
meets Miller-Rabin test (strong pseudo prime number)
or b.=1(modn) =1 (modp) =1 (mod q)
{ b.,=-1 (mod n)=-1 (mod p) =-1 (mod q) J

* Note: aP%! = 1 (mod n)
qP-D(@-D) = (mod n)
alem®-1.a-D) = 1 (mod n)




< Primality testing 1s different from factoring

* Kind of interesting that we can tell something 1s composite
without being able to actually factor it

+ Recent result (2002) from IIT trio (Agrawal, Kayal, and
Saxena)
* Recently it was shown that deterministic primality testing could

be done in polynomial time
& Complexity was like O(n'?), though it’s been slightly reduced since then

* Does this meant that RSA was broken?

<+ Randomized algorithms like Rabin-Miller are far more
efficient than the IIT algorithm, so we'll keep using those




< Find a prime of around 100 d1
usage

< Prime number theorem (7(x) ~ X/In(x)) asserts that the
density of primes around x 1s approximately 1/In(x)

<+ x =101 1/In(10199) = 1/230

1f we skip even numbers, the density 1s about 1/115

% pick a random starting point, throw out multiples of 2,
3, 5, 7, and use Miller-Rabin test to eliminate most of
the composites.

< maple('a:=nextprime(189734535789)")
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ractoring

+ General number field sieve (GNFES): fastest
(1 923+0(1))(In(n))"” (In(In(n)))*”
% Quadratic sieve (QS)
+ Elliptic curve method (ECM), Lenstra (1985)
+ Pollard’s Monte Carlo algorithm
% Continued fraction algorithm
< Trial division, Fermat factorization

< Pollard’s p-1 factoring (1974), Williams’s p+1
factoring (1982)

+ Universal exponent factorization, exponent
factorization




< Trial division:
* dividing an integer n by all primes p <\n ... too slow

& Fermat factorization:

* ex. n = 295927 calculate n+12, n+22, n+32... until
finding a square, i.e. x> = n + y?, therefore,
n = (x+ty) (x-y) ... if n = p-q, 1t takes on average
Ip-q|/2 steps ... too slow

assume p>q, nty> =p-q+((p-q)/2)*=(p* +2pq+q*)/4=((p*+q)/2)
* 1n RSA or Rabin, avoid p, q with the same bit length

< By-product of Miller-Rabin primality test:

* 1f n 1s a pseudoprime and not a strong pseudoprime,
Miller-Rabin test can factor 1t. about 10 chance




Universal Expone
I"E (

x 1f we have an exponent 7, s.t.

1t
od

n) for all a gcd(a,n)=1

* write » = 25 - m with m odd I r must be even since we can
ake a=-1 (-1)" =1 (mod n)

* choose a random a, 1<a<n-1 take ,
requires » being even
x 1f gcd(a, n) # 1, we have a fam

* else =+1 do not work

% let b, = a” (mod n), if b, =t1 stop, choose another a
% compute b, , = b ? (mod n) for 0< u <k-1,
% 1f b, ; = -1, stop, choose another a
% 1f b, , = | then ged(b,-1, n) 1s a factor (basic factoring principle)
* Question: How do we find a universal exponent I ??? Hard

x Note: if know ¢(n), then any r =k ¢(n) will do, however, knowing
factors of n 1s a prerequisite of know ¢(n)

* Note: For RSA, if the private exponent d 1s recovered, then
O(n) | d-e-1, d-e-1 1s a universal exponent




n=211463707796206571; e=9007; d=116402471153538991
r=e*d-1=1048437057679925691936; powermod(2,r,n)=1
let r=2°*r1; r1=32763658052497677873
powermod(2,r1,n)=187568564780117371+*1
powermod(2,2*rl,n)=113493629663725812+*1
powermod(2,4*rl,n)=1 => gcd(2*rl-1,n)=885320963 is a factor
< Note: n=211463707796206571 = 238855417 - 885320963

238855417 —1=23-3-73 136333 =2". o

885320963 — 1 =2 - 2069 - 213949 = 2% . d,

This method works only whenk, does not equal k.

<+ Exponent factorization even if r is valid for one a, you can still
try the above procedure
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p-1 1actoring (1/2)

< If one of the prime factors of n has a special property, it 1s

sometimes easier to factor .

* eX. 1f p-1 has only small prime factors
* Pollard 1974

< Algorithm

* Choose an integer a > 1 (often a = 2 1s used)
* Choose a bound B \_I\ have a chance of being larger
, than all the prime factors of p-1
* Compute b = a? as follows:
» b, =a(modn)and b, = b- / (mod n) then b = by (mod n)
x Letd = gcd(b-1, n), 1f 1 < d < n, we have found a factor of n

likel
If B is larger than all the prime factors of p-1 (Very ISSEE p-1|B!
therefore b=a? =(a’-')'=1 (mod p), i.e. p|b-1 Fermat Little’s Thm
‘\/’/

If n=p-q, p-1 and g-1 both have small factors that are less than B, then gcd(b-1,n)=n,
(useless) however, b =a8' =1 (mod n) and we can use the Universal exponent method 13
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< How do we choose B?
* small B will be faster but fails often
x large B will be very slow

<+ In RSA, Rabin, Paillier, or other systems based on
integer factoring, usually n=p-q, we should ensure that

p-1 has at least one large prime factor.

* How do we do this?

ex. we want to choose p around 100 digits
> choose a prime number p, around 40 digits
> look at integer k-p,+1 with k around 60 digits and do primality test

< Generalization:
Elliptic curve factorization method, Lenstra, 1985

< Best records: p-1: 34 digits (113 bits), ECM: 47 digits (143 bits)




N1 vt
(Quadratic

individual factors are small
9398% = 5° - 19 (mod 3837523)

19095*=2%-5- 11 - 13 - 19 (mod 3837523)
1964° =3 - 13° (mod 3837523)
170782 =2°-3% . 11 (inod 3837523) ~  make the number

*x gcd(2230387-2586705, 3837523) = 1093 1s one factor of n
x the other factor 1s 3837523/1093 = 3511




Quadratic Sieve (2/4)
< Quadratic? product of small primes
<+ How do we construct these useful relations systematically?

< Properties of these relations:
* product of small primes called factor base
* make all prime factors appear even times

& Put these relations 1n a matrix
11

e
~J

19

(&
\U'S)
)
~J

V'y

/ Pick rows where sums
Y/ of each column are even
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+ Look for linear dependencies mod 2 among the rows
x Ist+5th+6th=(6,0,6,0,0,2,0,2)=0 (mod 2)
x Ist+2nd + 3rd + 4th=(8, 4, 6,0,2,4,0,2) =0 (mod 2)
x 3rd + 7th=(0, 2,2, 2,0, 4,0,0) =0 (mod 2)
< When we have such a dependency, the product of the
numbers yields a square.

* (9398 - 8077 - 3397 =2°%-5°-132-19°=(2% - 5° - 13 - 19)
* (9398 - 19095 - 1964 - 17078)* = (2> - 3% - 5° - 11 - 13% - 19)?
x (1964 - 14262)*=(3 - 5 - 7 - 13%)°

< Looking for those x> =y’ butx % vy
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Quadratic Sieve (
< How do we find numbers x s.t.
x* = product of small primes?

* produce squares that are slightly larger than a multiple of n
ex. | /i n+j| for small

the square is approximately i-n-+2j/i-n+j?
which is approximately 2 j/i - n + j* (mod n)

8077 = [\ 17n+ 1 Probably because this number
: 1s small, the factors of it should
not be too large. However, there
9398 =|\23n+4 are a lot of exceptions. So it
) : takes time. Also, there are a lot
of other methods to generate
qualified x values.
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<+ 1977 Rivest, Shamir, Adleman US$100
* given RSA modulus n, public exponent e, ciphertext ¢
n=114381625757888867669235779976146612010218296721242362
562561842935706935245733897830597123563958705058989075
147599290026879543541
e = 9007
¢ =968696137546220614771409222543558829057599911245743198

746951209308162982251457083569314766228839896280133919
90551829945157815154

* Find the plaintext message
<+ 1994 Atkins, Lenstra, and Leyland
use 524339 small primes (less than 16333610)
plus up to two large primes (16333610 ~ 239)
1600 computers, 600 people, 7 months

found 569466 ‘x?=small products’ equations, out of which only 205 linear
dependencies were found




Number of digits

1964 20
1974 45

1984 71

1994 129 (429 bits)

1999 155 (515 bits)
2003 174 (576 bits)

Next challenge
RSA-640

31074182404900437213507500358885679300373460228427
277545720161948823206440518081504556346829671723286
78243791627283803341547107310850191954852900733772
4822783525742386454014691736602477652346609
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<+ Break RSA means ‘inverting RSA function

without knowing the trapdoor’ 'R

< Factor the modulus = Break RSA

x If we can factor the modulus, we can break RSA
x [f we can break RSA, we don’t know whether w

y =x° (mod n)

n factor the

.open problem (with negative ev 1depc es)

<+ Factor the modulus < Calculate private key d

x [f we can factor the modulus, we can calculate the private

exponent d (the trapdoor information).

x If we have the private exponent d, we can factor the modulus.




Factoring reduces to RSA key recovery

< DeLaurentis, “A Further Weakness in the Common
Modulus Protocol for the RSA Cryptosystem,”
Cryptologia, Vol. 8, pp. 253-259, 1984

x If you have a pair of RSA public-key/private-key, you can
factoring n=p-q with a probabilistic algorithm.

* An example of the Universal Exponent Factorization method
< Basic 1dea: find a number b, 0<b<n s.t.

b’ =1 (mod n) and b # =1 (mod n) 1.e. 1<b<n-1

* Note: There are four roots to the equation b’=1 (mod n),
+1 are two of them, all satisty (b+1)(b-1) =k-n=k'p-q,
since 0<b-1<b+1<n, we have either (p | b-1 and q | b+1) or
(q | b-1 and p | b+1), therefore, one of the factor can be found
by gcd(b-1,n) and the other by n/gcd(b-1,n) or gcd(b+1,n)




Factoring reduces to RSA key recovery

< Algorithm to find b: Pr{success per repetition} = %
Randomly choose a, 1<a<n-1, such that gcd(a, n) =1

Find miflimal 1, ath = ] (mod n) (where h satisfiese - d- 1= 2th)

b=22""h ifb % -1 (mod n), then gcd(b-1, n) is the result, else
repeat 1-3

¢ Note: If we randomly choose beZ_* and find out that b> = 1 (mod n),
the probability that b=1, b—-l b= c(;t_l) or b=-c(#x1) would be
equal; Pr{success}= Pr{a2 ' ¢+1} 1/2

+ Bx: n—p-=26069, e=7, d=22063
o(n) | ed-1=154440 = 2°%19305,

choose a=3, try j=1 b= g2 'h=319305= 537>
p = gcd(b-1,n) = gcd(5371,26069) = 131, g=n/p =199




Factoring reduces to RSA key recovery

<+ The above result says that “if you can recover a pair of
RSA keys, you can factoring the corresponding n=p - q”
1.e. “once a private key d 1s compromised, you need to
choose a new pair of (n, ¢) instead of changing ¢ only”

< The above result suggests that a scheme using (n, €,), (n,
e,), ... (n, ) with a common n for each k participants
without giving each one the value of p, q 1s insecure.
You should not use the same n as some others even
though you are not explicitly told the value of p and q.




Factoring reduces to RSA key recovery

+ The above result also suggests that i1f you can recover
arbitrary RSA key pair,<you can solve the problem of
factoring n. Whenever you\get an n, you can form an
RSA system with some € (as
use your method to solve the pxivate exponent d without
knowing p and g, after that you ¢an factor n.

< Although factoring 1s believed to b¢ hard, and factoring
breaks RSA, breaking RSA does not simplify factoring.
Trivial non-factoring methods of breaking RSA could

therefore exist. (What does it meairby breaking RSA? plaintext
recovery? key recovery?...)

different things




+~ RSA Cryptosystem 1s a deterministic encryption scheme,
1.e. a plaintext message 1s encrypted to a fixed ciphertext
message

< Suffers from chosen plaintext attack

* an attacker compiles a large codebook which contains the
ciphertexts corresponding to all possible plaintext messages

* 1n a two-message scheme, the attacker can always distinguish
which plaintext was transmitted by observing the ciphertext
(does not satisfy the Semantic Security Notation)

+ Add randomness through padding




L

I\DA PKCS #1 v1.5 pd

+ Ex. k=128 bytes (1024 bits) PKCS#1 v1.5 RSA

* plaintext message M (at most 128-3-8=117 bytes)

* pseudorandom nonzero string PS (at least 8 bytes)

* message to be encrypted m = 00(/02||PS||00{|M

* encryption: ¢ = m® (mod

* decryption: m = ¢4 (mod

n)

1 n)

< ¢ 1s now random corresponding to a fixed m, however,
this only adds difficulties to the compilation of
ciphertexts (a factor of 2% times if PS is 8 bytes)




Padding Operation

DB

\
A
\J

maskedSeed

!

&

Nt

l

maskedDB

M: message (emLen-1-2hLen bytes)
P: encoding parameters,
an octet string

MGF: mask generation function
Hash: selected hash function

(hLen is the output bytes)
DB=Hash(P)||PS||01|M
PS is length emLen-

IM||-2hLen-1 null bytes

Seed: hLen random bytes
dbMask: MGF(seed, emLen-hLen)
maskedDB = DB © dbMask
seedMask:

MFG(maskedDB, hLen)
maskedSeed = seed @ seedMask

EM: encoded message (emLen bytes)
EM = maskedSeed|makedDB
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PKCS

+ Optimal Asymmetric Encryption (OAE)

* M. Bellare, “Optimal Asymmetric Encryption - How to
Encrypt with RSA,” Eurocrypt’94

<+ Optimal Padding in the sense that

* RSA-OAEP 1s semantically secure against adaptive
chosen ciphertext attackers in the random oracle
model

* the message size 1n a k-bit RSA block 1s as large as
possible (make the most advantage of the bandwidth)

+ Following by more efficient padding schemes:
* OAEP", SAEP", REACT




<+ Hybrid system (pubhc key and secret key)

* computation of RSA 1s about 1000 times slower than
DES

* smaller exponent 1s faster (but usually dangerous)

document document document

plaintext ciphertext plaintext

DES, - DES, "

: A

o RSA Enc() RSA RSA Dec() dom

secret ~ encrypted secret
key: k ‘[ secret key T key: k
receiver RSA receiver RSA
public key (n, €) private key (n, d)




n=p-q, p and rime integers
gcd(e, ¢(n)) = 1 st Eld ¢ - d =1 (mod ¢(n))

¢(n) = (p-1)(q-1) 3 <e=<n-1
< Private Key (n, d) or e - dp =1 (mod p-1)

< Public key (n, e)

(n, p, q, dp, dq, qInv) e ch] — (1mOd %_1)
¢ Encryption ¢ =m°® (mod n) q - qlnv =l (mod p)
4 Decryption m = cY (mod n) or

~m, = c% (mod p) = (m®)% = m® = m (mod p)
m, = ¢4 (mod q) m, = (m®)% = m®*9=m (mod q)

> h = qlnv - (m,-m,) (mod p)

" Ym=m,+h-q(modn) m=m,(modq) and

m =m, + qlnv - (m;-m,) - ¢ =m, (mod p)
61




NA--T1: Deescnn ~
IV1Ultl-r1Iiiiic
<~ RSA PKCS#1 v2.0 Amendment 1
< the modulus n may have more than two prime factors
< only private key operations and representations are
affected (p, q, dp, dq, qlnv) (r,, d,, t.)
* N =1,T,...T, k=2, where r; = p, 1r,=q
* ¢ -d=l(modr-1),1=3,.. .k

* I T, ... I t=1 (modr)i1=3,...k
< Decryption:

1. m, = c% (mod p)

2. m, = c% (mod q)

3.ifk>2 m, = c¢% (mod ), i=3,..., k
4. h = (m, - m,) qlnv (mod p)

5.m=m,+q-h
6. 1f k>2, R=r,, for k=3 to k do
a. R=R -1,
b. h=(m;-m) - t, (mod r;)
c. m=m+R-h
+ advantages: lower computational cost for the decryption
(and signature) primitives 1if CRT 1s used (also see 6.8.14)
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Rabin’s variant

of RSA [Rab79] Montgomery’s Method [M85] PKCS

Chinese Remainder
Theorem efficiency
result [QCS82]

RSA Cryptosystem
invented [RSA78]

Bit Security result

Fiat-Shamir ID published

scheme [FS86]

Public Exponent
3 attack [Has88]

1990

RSA Factoring
Challenge started

for RSA [ACGS84] ISO/1

Multiple Polynomial
Quadratic Sieve [Sil87]

published

OAEP invented

[BR94]
#1 vl

Fast Hardware
implementation
of RSA [SV93]

EC 9796

General Number

ANSI X9.31
adopted

PSS invented
[BR96]

Related Message
attack [CFPR96]

Field Sieve [BLP94] ~ PKCS#1v2

[BLZ94]

published
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Alternative PKC’s
<+ ElGamal Cryptosystem (Discrete-log based)

x Also suffers from long keys

<~ NTRU (Lattice based)
x Utilizes short keys
* Proprietary (License i1ssues prevent from wide implementation)

* Recently, a weakness found 1n the signature scheme

< Elliptic Curve Cryptosystems

* Emerging public key cryptography standard for constrained
devices.

< Paillier Cryptosystem (High order composite residue based)
<+ Goldwasser-Micali Cryptosystem (QR based)

* very low efficiency
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<> Why does it work? bottom line of Miller-Rabin test
* if n is prime, "' = 1 (mod n) (Fermat Little theorem) >

* therefore, if b, = a2“m = gn-1 8% (mod #), n must be composite

* however, there are many composite numbers that satisfy
a"! =1 (mod n), Miller-Rabin test can detect many of them

* by, by, ..., b (= a"2 (mod n)) is a sequence s.t. b. ;> = b. (mod n)

* we consider only b, ?=a"!'=1 (modn) «—

n 1s pseudo prime

* if' b; =1 and b, ; % %1, then n is composite +—————_

* 1fb.=1and b, , =1, consider b._, and then b. ,... baosic.feictoring
rif b, = 1, could be prime, no guarantee PTINCIpIc
%

ifb.=1and b, =-1 (b, , * 1), could be prime, no guarantee

there 1s no chance to apply
basic factoring principle




< In summary:
by, b, by, ... b, by, L. by
there are four cases:
& Case l: b, #1 nis a composite number
&« Case 2: b, =1, let 1 be the minimal 1, k>1>0 such that b. = 1
and b, #xl  n1s a composite number (with
nontrivial factors calculated)

&« Case 3: b, = 1, let 1 be the minimal 1, k>1>0 such that b, = 1
and b, , = -1 a pseudo prime number

& Case4:b,=1,b,=1 apseudo prime number

4 possible sequences for by, by, b,, ... b, ;, b, ... b, :

1
342, 22, 5, 1,1,1,1, ..., 1 composite, factored
45, 5634, 325,213, -1, 1, ..., 1 possibly prime
1, 1, 1,..., | possibly prime
214,987, ..., 8931, 321, 134 composite




< consider n belng a prime number D
< p-1is an even number, therefore, let p-1=2¥-m, m is odd

> choose one ae Z , let r be the smallest integer s.t.
a =1 (mod p) 1.e. r 18 the order ot @ modulo p, ord (a)

+ (exercise 3.9) a®' = 1 (mod p) = r | p-1

& because r | p-1 (= 2%'m), one of {m, 2'm, 2°'m, ... 2-m}
mlght ber (probablhty reduces 1f m has many factors)

LT ) SO 99 Hi- 1
V \/dbU l iTr 2Z2 -1 \lUl SOITIC l/U} lb T ) U“ lllUbL UU '1

* 1 is the smallest integer s.t. ' = 1 = square root of ¢' must be —1
*x {am, g?m,. . q?'m} s {?2,7,-1, 1, ...1}
+ Case 2: 1f“none of 2'm is r” or “m is ”’, @2"m must all be 1,

g g a2 mgs {1,1,1,1,...1}
* try some other aeZ
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Miller-Rabin
Why does 1t work??? an inside view
¢+ b, =1 (modn) and b, ; % +1 (mod n) happens when b. = 1 (mod p,)
for all prime factors p; of n and

b., =1 (mod p,) for some prime factors p; but
b., =-1 (mod q;) for other prime factors g

Note: for a prime modulus p, a®%® = 1(mod p)
if ord (a) is even then 2" @ = _1(mod p)

+ ex.n=561=3x11x17, 560=16x35=2%x35
leta=2

b, =263 (mod 561) =-1 (mod 3) =-1 (mod 11) = 8 (mod 17)

b, =166 (mod 561) =1 (mod 3) = 1 (mod 11) = -4 (mod 17)
b, =67 (mod 561) = 1 (mod3) = 1 (mod 11) =-1 (mod 17)
b; =1 (mod 561) l(mod3) = 1(mod 11) =1 (mod 17)

1.e. inconsistent progress w.r.t each prime factor
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< Subset Sum Problem (SSP)

Given a set B of positive numbers and a number d

* Search SSP: find a subset {b;}cBs.t. d=2 b,

* Decision SSP: decide if there exists a subset {b,}cB s.t. d = > b;
* Decision SSP 1s equivalent to Search SSP: (by elimination)

< Subset Sum Problem 1s NP-complete

= m VAN A ™\ :,, \TT\ TN e | e
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* SAT <,, SSP: there exists a poly-time reduction to convert a
formula ¢ to an instance <B,d> of SSP problem

& If the formula ¢ 1s satisfiable, <B,d> € SSP
& If <B,d> € SSP, formula ¢ 1s satisfiable

Therefore, SSP is also NP-complete




SAT <, D-Subset S

uim
< Given a formula ¢ with k clauses C,, C,, ..., C,
and n variables

* For each variable x, create 2 integers n, and n_;
* For each clause C; of lengh /;, create /-1 integers m;,,
my, ...
* Choose t so that T must contain exactly one of each (n,,
or n ) pairs and at least one from each clause
< This construction can be carried out 1n poly-time

< ¢ 1s satisfiable 1ff there exists solution to this SSP
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X y z a
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Encode all
numbers with
a base larger

than all entries
ofte.g. 10
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