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Naïve Public Key SystemNaïve Public Key System
 Encryption and decryption algorithm are not the same Encryption and decryption algorithm are not the same
 Public/private key pair: private key is related to public 

ke b t can not be easil deri ed from p blic kekey but can not be easily derived from public key
 Illustrating example:

*m  Z11
*

m * 1 = m (mod 11)( )
m * 8 * 8-1 = m (mod 11)
encryption

d ti

8 is the public key
m * 8 is the ciphertext
8-1 is the private key (if nobody
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decryption
p y ( y

can derive this from the public 
key, then this system is secure)

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 Merkel and Hellman, “Hiding Information and Signatures 

in Trapdoor Knapsacks,” IT-24, 1978
 a good application of an NP problem on designing public key 

lcryptosystem; no longer secure
 Super-increasing sequence:

i 1
{a1, a2, … an} such that ai >  aj ex. 1, 3, 5, 10, 20, 40


j=0

i-1

 Note: 1. Given a number c, finding a subset {aj} s.t. c =  aj
is an easy problem, ex. 48 = 40 + 5 + 3

2 Every subset sum  a < 2 ꞏ a where a = max{a }
j

2. Every subset sum  aj < 2  aM where aM  max{aj}

3. Every possible subset sum is unique
jS jS
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pf: given x, assume x =  aj = aj, where S T, assume max{aj}  max{aj} ….
jS jT jS jT

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 choose a number b in Zp

*, ex. p = 101, b = 23, and convert p p
the super-increasing sequence to a normal knapsack 
sequence B={b1, b2, …, bn} where 

bi  ai ꞏ b (mod p)
ex. 23, 69, 14, 28, 56, 11

 Since gcd(b, p)=1, this conversion is invertible, i.e.
ai  bi ꞏ b-1 (mod p)

ex. b-1  22 (mod 101)  (b ꞏ b-1  1 (mod p))
 Given a number d, finding a subset {bj}B s.t.j

d =  bj (mod p)

i NP l t bl 94 11 + 14 + 69
j
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is an NP-complete problem, ex. 94 = 11 + 14 + 69



Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 Encryption:

 public key: normal knapsack seq. {23, 69, 14, 28, 56, 11}
 message m, 0  m < 26, ex. (60)10 = (111100)2

th di l t f ‘1’ bit i sum up the corresponding elements of ‘1’ bits, i.e.
23 + 69 + 14 + 28 = 134    is the ciphertext

 Decryption: Decryption:
 private key: b-1=22, p=101, {1, 3, 5, 10, 20, 40} 
 calculate 134 * 22 mod 101 = 19
 use the corresponding super-increasing knapsack seq. {1, 3, 5, 

10, 20, 40} to decrypt as follows:
 19 < 40, mark a ‘0’,
 19 < 20, mark a ‘0’
 19  10,  mark a ‘1’ and subtract 10 from 19
 9  5, mark a ‘1’ and subtract 5 from 9
 4  3, mark a ‘1’ and subtract 3 from 4
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,
 1  1, mark a ‘1’ and subtract 1 from 1

 recovered message is (111100)2 = (60)10

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 Why does it work? Why does it work?

let the plaintext be (111100)2
ciphertext c = b + b + b + bciphertext c = b1 + b2 + b3 + b4

 a1 b + a2 b + a3 b + a4 b (mod p)
decryption: c b-1 (mod p)  a1 + a2 + a3 + a4 (mod p)

is a subset sum problem of ap
super-increasing sequence
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RSA and RabinRSA and Rabin
 In the following, we discuss two important g, p

cryptosystems based on the difficulty of integer 
factoring (an NP problem)g ( p )

 RSA’s underlying problem
l i h d l i diffi l

n = p ꞏ q

Solving e-th root modulo n is difficult
y  xe (mod n)RSA function

 Rabin’s underlying problem
Solving square root modulo n is difficultSolving square root modulo n is difficult

y  x2 (mod n)
Rabin function
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Rabin function

both functions are candidates for trapdoor one way function

RSA and Rabin FunctionRSA and Rabin Function
 Solving e-th root of y modulo n is difficult!!!

T bl H d

y  xe (mod n), where gcd(e, (n)) = 1
Why don’t we take (e-1)-th power of y?

h 1 1 ( d ( )) Trouble: How do we 
know (n) ?

where e-1 ꞏ e  1 (mod (n))
ex.  n = 11 ꞏ 13 = 143, e = 7

(n) = 10 ꞏ 12 = 120 e-1 = 103(n) = 10 12 = 120, e = 103

 Solving square root of y modulo n is difficult!!!
2 ( d )y  x2 (mod n)

Why don’t we take (2-1)-th power of y?
where 2-1 ꞏ 2  1 (mod (n))where 2 1 ꞏ 2  1 (mod (n))
ex.  n = 11 ꞏ 13 = 143

(n) = 10 ꞏ 12 = 120, gcd(2, (n)) = 2

Remember solving square 
root of y modulo a prime 
number p is very easy
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( ) , g ( , ( ))
Trouble: d ꞏ 2  1 (mod (n)) has no solution for d



RSA Public Key CryptosystemRSA Public Key Cryptosystem
 R. Rivest, A. Shamir and L. Adleman, “A Method for R. Rivest, A. Shamir and L. Adleman, A Method for 

Obtaining Digital Signatures and Public-Key 
Cryptosystems,” Comm. ACM, pp.120-126, 1978Cryptosystems,  Comm. ACM, pp.120 126, 1978

 Based on the Integer Factorization problem 
 Ch t l i b (k th t!!) Choose two large prime numbers: p, q  (keep them secret!!)
 Calculate the modulus n = pꞏq            (make it public)
 Calculate (n) = (p-1)ꞏ(q-1) (keep it secret)
 Select a random integer such that e <  and gcd(e, ) = 1g g ( , )
 Calculate the unique integer d such that e ꞏ d  1 (mod )
 Public key: (n e) Private key: d
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 Public key: (n, e)                   Private key: d

RSA Encryption & DecryptionRSA Encryption & Decryption
 Alice wants to encrypt a message m for Bob Alice wants to encrypt a message m for Bob
 Alice obtains Bob’s authentic public key (n, e)

Ali t th i t i th Alice represents the message as an integer m in the 
interval [0, n -1]

 Alice computes the modular exponentiation 
c  me (mod n)( )

 Alice sends the ciphertext c to Bob
B b d t ith hi i t k ( d) Bob decrypts c with his private key (n, d)
by computing the modular exponentiation

d^
10

m  cd (mod n)^

RSA Encryption & DecryptionRSA Encryption & Decryption
 Why does RSA work? (simpler but incomplete proof)

Fact 1: eꞏd  1 (mod )  eꞏd = 1 + k 
Fact 2: m gcd(m n)=1 m  1 (mod n)Fact 2: m, gcd(m,n)=1, m  1 (mod n)  

(by Euler’s theorem)
From Fact 2  d( ) 1From Fact 2: m , gcd(m,n)=1, 

cd  med  m1+k   m1+k (p-1)(q-1)  m (mod n)
note: 1. This only proves that for all m that are not multiples of p

or q can be recovered after RSA encryption and decryption.
2. For those m that are multiples of p or q, the Euler’s theorem

simply does not hold because p  0 (mod p) and 
p  1 (mod q)
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p  1 (mod q)
which means that p  1 (mod n) from CRT.

RSA Encryption & DecryptionRSA Encryption & Decryption
 Why does RSA work? Why does RSA work?

Fact 1: eꞏd  1 (mod )  eꞏd = 1 + k 
Fact 2: m, gcd(m,p)=1, m p-1  1 (mod p)  

(by Fermat’s Little theorem)
From Fact 2: m , gcd(m,p)=1

m 1+k (p-1) (q-1)  m (mod p)note: this equation is
trivially true when m (p ) (q )  m (mod p)
From Fact 2: m , gcd(m,q)=1

1+k ( 1) ( 1)

trivially true when
m = kp

note: this equation is
m 1+k (p-1) (q-1)  m (mod q)

From CRT: m , 

note: this equation is
trivially true when
m = kq
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cd  med  m1+k   m1+k (p-1)(q-1)  m (mod n)



RSA Function is a PermutationRSA Function is a Permutation
 RSA function is a permutation: (1-1 and onto, bijective)
 Goal: “x1, x2 Zn if x1

e  x2
e (mod n) then x1 = x2” 

 xrꞏp, xp-1  1 (mod p), xsꞏq, xq-1  1 (mod q) xr p, x  1 (mod p), xs q, x  1 (mod q)
k,xrꞏp, xk(n)  1 (mod p), k,xsꞏq, xk(n)  1 (mod q)
k,x, xk(n)+1  x (mod p), k,x, xk(n)+1  x (mod q) 
k,x, xk(n)+1  x (mod n)

 gcd(e,(n))=1  inverse of e (mod (n)) exists
CRT

 d is the inverse s.t. eꞏd  1 (mod (n))
 x1, x2 Zn if x1

e  x2
e (mod n)
( )d ( )d ( d ) (x1

e)d  (x2
e)d (mod n)

 (x1)1+k (n)  (x2)1+k (n) (mod n)
( d )

Note: Euler Thm is valid
only when x Zn

*
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 x1  x2 (mod n)

RSA CryptosystemRSA Cryptosystem
 Most popular PKC in practice Most popular PKC in practice
 Tens of dedicated crypto-processors are specifically designed to 

perform modular multiplication in a very efficient wayperform modular multiplication in a very efficient way. 
 Disadvantage: long key length, 

complex key generation schemecomplex key generation scheme,
deterministic encryption

 For acceptable level of security in commercial applications, 1024-p y pp ,
bit (300 digits) keys are used.  For a symmetric key system with 
comparable security, about 100 bits keys are used.

 In constrained devices such as smart cards, cellular phones and 
PDAs, it is hard to store, communicate keys or handle operations 
i l i l i t
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involving large integers

Matlab examplesMatlab examples
 rsatest m rsatest.m

maple('p := nextprime(1897345789)')
maple('q := nextprime(278478934897)')
maple('n := p*q'); Very likely to be relatively 

maple('x := 101');
maple('e := nextprime(12345678)')

y y y
prime with (p-1)(q-1)

maple( e :  nextprime(12345678) )
maple('d := e&^(-1) mod ((p-1)*(q-1))')
maple('y := x&^(e) mod n')
maple('xp := y&^(d) mod n') extended Euclidean algo.
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g

Rabin Cryptosystem (1/3)Rabin Cryptosystem (1/3)
M O R bi “Di it li d Si t d P bli k M.O. Rabin, “Digitalized Signatures and Public-key 
Functions As Intractable As Factorization”, Tech. Rep. 
LCS/TR212 MIT 1979LCS/TR212, MIT, 1979

 Choose two large prime numbers: p, q  (keep them secret!!)
 Calculate the modulus n p q ( k it bli ) Calculate the modulus n = pꞏq            (make it public)
 Public Key n
 Private Key p, q
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Rabin Cryptosystem (2/3)Rabin Cryptosystem (2/3)
 Alice want to encrypt a message m (with some fixed 

format) for Bob
 Alice obtains Bob’s authentic public key n
 Alice represents the message as an integer m in the 

interval [0, n -1]
Ali t th d l Alice computes the modular square 

c  m2 (mod n)
 Alice sends the ciphertext c to Bob Alice sends the ciphertext c to Bob
 Bob decrypts c using his private key p and q

B b t th f t   i CRT Bob computes the four square roots m1, m2 using CRT, 
one of them satisfying the fixed message format is the 

d
17

recovered message

Rabin Cryptosystem (3/3)Rabin Cryptosystem (3/3)
 The range of the Rabin function is not the whole The range of the Rabin function is not the whole 

set of Zn
* (compare with RSA).

 The range covers all the quadratic residues (for a prime The range covers all the quadratic residues. (for a prime 
modulus, the number of quadratic residues in Zp

* is 
(p-1)/2; for a composite integer n=pꞏq, the number of quadratic (p ) ; p g p q, q
residues in Zn

* is (p-1)(q-1)/4)
 In order to let the Rabin function have inverse, it is necessary y

to make the Rabin function a permutation, ie. 1-1 and onto.  
Therefore, the number of elements in the domain of the Rabin 
f ti h ld l b ( 1)( 1)/4 f Th 4function should also be (p-1)(q-1)/4 for n=pꞏq.  There are 4 
possible numbers with their square equal to y, and we have to 
make 3 of them illegal
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make 3 of them illegal.

Number of Quadratic ResiduesNumber of Quadratic Residues
 For a prime modulus p: number of QRp’s in Zp

* is (p-1)/2
f fi d i iti t l t { 2 4 p 1} QR ’pf:   find a primitive g, at least {g2, g4, … gp-1} are QRp’s

assume there are (p+1)/2 QRs,
since there are exactly two square roots of a QR modulo py q Q p
there are p+1 square roots for these (p+1)/2 QRs, i.e. there must    
be at least two pairs of square roots are the same (pigeon-hole),
i e two out of these (p+1)/2 QRs are the same contradictioni.e. two out of these (p+1)/2 QRs are the same, contradiction

 For a composite modulus pꞏq: number of QRn’s in Zpꞏq
* is (p-1)(q-1)/4

pf: find a common primitive in Z * and Z * g at least {g2 g4pf:  find a common primitive in Zp and Zq g, at least {g , g , …,
gp-1 …, gq-1 …, g(n)} are QRn’s, where (n) = lcm(p-1,q-1) can be

as large as (p-1)(q-1)/2, this set has (p-1)(q-1)/4 distinct elements
assume there are (p-1)(q-1)/4+1 QRn’s in Zn

*, since there are
exactly four square roots of a QR modulo pꞏq, these QRn’s have
( 1)( 1)+4 t i t t l hi h i l d t d
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(p-1)(q-1)+4 square roots in total, which include repeated
elements, therefore, there are at most (p-1)(q-1)/4 QRn’s in Zn

*

Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)')       % 189734535811 = 4 k + 3
 maple('p mod 4') maple( p mod 4 )
 maple('q:= nextprime(27847815934897)')   % 27847815934931 = 4 k + 3
 maple('q mod 4')
 maple('n:=p*q'); maple( n: p q );
 maple('x:=070411111422141711030000')   % text2int(‘helloworld’)
 maple('c:= x&^2 mod n')

 maple('c1:= c mod p')
 maple('r1:= c1&^((p+1)/4) mod p')              % maple('r1&^2 mod p')

 maple('c2:= c mod q')
 maple('r2:= c2&^((q+1)/4) mod q')              % maple('r2&^2 mod q')

 maple('m1:= chrem([r1, r2], [p, q])')    % 3704440302544264662351219
 maple('m2:= chrem([-r1, r2], [p, q])')   % 70411111422141711030000
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 maple('m3:= chrem([r1, -r2], [p, q])')   % 5213281318342160554284041
 maple('m4:= chrem([-r1, -r2], [p, q])')  % 1579252127220037602962822



Security of the RSA FunctionSecurity of the RSA Function
B k RSA ‘i ti RSA f ti Break RSA means ‘inverting RSA function
without knowing the trapdoor’ y  xe (mod n)

 Factor the modulus  Break RSA
 If we can factor the modulus we can break RSA If we can factor the modulus, we can break RSA
 If we can break RSA, we don’t know whether we can factor the 

modulus open problem (with negative evidences)modulus…open problem (with negative evidences)

 Factor the modulus  Calculate private key d
 If we can factor the modulus, we can calculate the private 

exponent d (the trapdoor information).
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will be illustrated later after factorization

 If we have the private exponent d, we can factor the modulus.

Security of Rabin FunctionSecurity of Rabin Function
 Security of Rabin function is equivalent to

integer factoring
 inverting ‘y  f(x)  x2 (mod n)’ without inverting y  f(x)  x2 (mod n)  without 

knowing p and q  factoring n
 • if you can factor n = p ꞏ q in polynomial time

• you can solve y  x1
2 (mod p) and y  x2

2 (mod q) easily



• using CRT you can find x which is f -1(y)


• given a quadratic residue y if you can find the four 
square roots x1 and x2 for y in polynomial time

f b i d( ) d d( )
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• you can factor n by trying gcd(x1-x2, n) and gcd(x1+x2, n)

Basic Factoring Principle (1/4)Basic Factoring Principle (1/4)
 Let n be an integer and suppose there exist integers x and y with g pp g y

x2  y2 (mod n), but x  y (mod n).  Then  n is composite, 
 both gcd(x-y, n) and gcd(x+y, n) are nontrivial factors of n.
Proof:

let d = gcd(x-y, n).
C 1 d ( d ) di iCase 1: assume d = n  x  y (mod n) contradiction
Case 2: assume d is 1 (the trivial factor)

x2  y2 (mod n)  x2 y2 = (x y)(x+y) = k ꞏ nx2  y2 (mod n)  x2 - y2 = (x-y)(x+y) = k ꞏ n
d=1 means gcd(x-y, n)=1 
n | x+y  x  -y (mod n) contradiction| y y ( )

Case 1 and 2 implies that 1 < d < n  
i.e.  d must be a nontrivial factor of n
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Basic Factoring Principle (2/4)Basic Factoring Principle (2/4)
 x2  y2 (mod p) implies x  y (mod p) since p | (x+y)(x-y) 

i li | ( + ) | ( )implies p | (x+y) or p | (x-y), 
i.e. x  -y (mod p) or x  y (mod p)

 2 2 ( d ) x2  y2 (mod n)
pq | (x+y)(x-y) implies the following 4 possibilities
1 pq | (x+y) i e x  y (mod n)1. pq | (x+y) i.e. x  -y (mod n)
2. pq | (x-y) i.e. x  y (mod n)
3 p | (x+y) and q | (x-y) i e x  -y (mod p) and x  y (mod q)3. p | (x+y) and q | (x-y) i.e. x  -y (mod p) and x  y (mod q)
4. q | (x+y) and p | (x-y) i.e. x  -y (mod q) and x  y (mod p)
 Case 1 and case 2 are useless for factorization Case 1 and case 2 are useless for factorization
 Case 3 leads to the factorization of n, i.e. gcd(x+y, n) = p and 

gcd(x-y, n) = q
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 Case 4 leads to the factorization of n, i.e. gcd(x+y, n) = q and 
gcd(x-y, n) = p



Basic Factoring Principle (3/4)Basic Factoring Principle (3/4)
 This principle is used in almost all factoring algorithms.p p f g g
 Why is it working?

 take n = pꞏq (p and q are prime) for example take n  p q (p and q are prime) for example
 x2  y2 (mod n) implies x2  y2 (mod p)  and x2  y2 (mod q)
 we know ‘x  y (mod p) are the only solution to x2  y2 (mod p)’ we know x  y (mod p) are the only solution to x2  y2 (mod p)  

and ‘x  y (mod q) are the only solution to x2  y2 (mod q)’
 therefore from CRT we know x2  y2 (mod n) has four solutions therefore, from CRT we know x2  y2 (mod n) has four solutions, 

 x  y (mod p) and x  y (mod q)  x  y (mod n) 
 x  -y (mod p) and x  -y (mod q)  x  -y (mod n) 
 x  y (mod p) and x  -y (mod q)  x  z (mod n)
 x  -y (mod p) and x  y (mod q)  x  -z (mod n) 

 as long as e ha e ( here  ) e can factor n into
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 as long as we have z (where z  y), we can factor n into 
gcd(y-z, n) and gcd(y+z, n)

Basic Factoring Principle (4/4)Basic Factoring Principle (4/4)
E C id h f 4 ( d 35) i Ex: Consider the roots of 4 (mod 35), i.e. 

solving x from x2  4 (mod 35)
 try to take square root of both sides, 

we find x = 2 or 12
 i.e. 122  22 (mod 35), but 12  2 (mod 35)
 therefore 35 is composite therefore 35 is composite
 gcd(12-2, 35) = 5 is a nontrivial factor of 35
 gcd(12+2, 35) = 7 is a nontrivial factor of 35
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Miller Rabin TestMiller-Rabin Test
L 1 b dd i 1 2k i h b i dd

Is n a composite number?
 Let n > 1 be odd, write n-1 = 2k ꞏ m with m being odd
 Choose a random integer a with 1 < a < n-1
 Compute b0  am (mod n)

n will pass Fermat test
n is called pseudo prime Compute b0  a (mod n)

if b0  1 (mod n), stop, n is probably prime
 Compute b1  b0

2 (mod n)
if b 1 ( d ) t d(b 1 ) i f t f

with respect to base a

if b1  1 (mod n), stop, gcd(b0-1, n) is a factor of n
if b1  -1 (mod n), stop, n is probably prime

 Compute b2  b1
2 (mod n)p 2 1 ( )

……..
 Compute bk-1  bk-2

2 (mod n)
if b  1 (mod n) stop gcd(b 1 n) is a factor of nif bk-1  1 (mod n), stop, gcd(bk-2-1, n) is a factor of n
if bk-1  -1 (mod n), stop, n is probably prime

 Compute bk  bk-1
2 (mod n)
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if bk  1 (mod n), stop, gcd(bk-1-1, n) is a factor of n
otherwise n is composite (Fermat Little Thm, bk  an-1 (mod n))

Miller Rabin Test IllustratedMiller-Rabin Test Illustrated
 and are not trueb0  am (mod n)  and  are not true, 

bi  -1 (mod n), i=1,2,…k
all subsequent bj  1 (mod n), n-1 = 2k ꞏ m

b0  a (mod n)
b1  a2ꞏm (mod n)

…

Consider 4 possible cases:

j
there is no chance to use
Basic Factoring Principle, abortbk  a2kꞏm  an-1 (mod n)

Consider 4 possible cases:
 b0  1 (mod n)

all bi  1 (mod n), i=1,2,…k

, , and  are not true, 
bk  an-1 (mod n)
if i i b 1 ( d )all bi 1 (mod n), i 1,2,…k

there is no chance to use
Basic Factoring Principle, abort

if n is prime, bk  1 (mod n)
i.e. if bk  1 (mod n) n is composite
( b  1 (mod n) is covered by )

 is not true, 
bi-1  1 (mod n) and

( bk  1 (mod n) is covered by  )
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bi  1 (mod n), i=1,2,…k
Basic Factoring Principle applied, composite



Uncoordinated BehaviorsUncoordinated Behaviors
 Light changes speed as it moves fromg g p

one medium to another, e.g., refraction
caused by a prismy p

 趣味競賽: 兩人三腳, 同心協力, …

 Squaring a number modulo different prime numbers Squaring a number modulo different prime numbers

22 23 24 25 26 27 28

mod 11 4 8 5 10 9 7 3
mod 13 4 8 3 6 12 11 9
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When/How does Basic Factoring 
P i i l k i M R t t?Principle work in M-R test?

 When: 
 explicitly: bi-1  ±1 (mod n) and bi  bi-1  1 (mod n)2

If i t i t ft h bk n 1 ( d ) b t ft
 How:

If n is not prime, not often when bk  an-1 (mod n) but often
when bk  ar(n) (mod n) in universal exponent factoring

 implicitly: let p | n and q | n    (p, q be two factors of n)
b  1 (mod p) and b  1 (mod q)2 2bi-1  1 (mod p) and bi-1  1 (mod q)

but either bi-1  1 (mod p) or bi-1  1 (mod q)

 catching the moment that b0, b1, … behave differently 
while taking square in (mod p) component and (mod q) 
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components

Miller Rabin Test ExampleMiller-Rabin Test Example
 Ex n = 561 A Carmichael number: pass 

the Fermat test for all bases Ex.  n  561
n-1 = 560 = 16 ꞏ 35 = 24 ꞏ 35
let a = 2

the Fermat test for all bases

mod    3      11     17let a  2
b0  235  263 (mod 561)
b1  b0

2  2235  166 (mod 561) 1 1 13
8102

b1 b0 2 166 (mod 561)
b2  b1

2  22235  67 (mod 561)
b3  b2

2  22335  1 (mod 561)

1 1 13
1 1 16
1 1 1b3 b2 2 1 (mod 561)

561 is composite (3ꞏ11ꞏ17), 
gcd(b2-1, 561) = 33 is a factor

1 1 1

d (2) 23gcd(b2 1, 561)  33 is a factor  
Note: 3-1=2, 11-1=2ꞏ5, 17-1=24

(561) 561(1 1/3)(1 1/11)(1 1/17) 2 10 16

ord17(2)=23
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(561) = 561(1-1/3)(1-1/11)(1-1/17)=2ꞏ10ꞏ16
(561) | n-1 for this special case

Pse do Prime and Strong Pse do PrimePseudo Prime and Strong Pseudo Prime
 If n is not a prime but satisfies an-1  1 (mod n) we If n is not a prime but satisfies a 1 (mod n) we 

say that  n is a pseudo prime number for base a.
E 2560 1 ( d 561)Ex. 2560  1 (mod 561) 

 If n is not a prime but passes the Miller-Rabin test 
with base a (without being identified as a 
composite), we say that n is a strong pseudo primecomposite), we say that n is a strong pseudo prime 
number for base a.   
U t 1010 th 455052511 i th Up to 1010, there are 455052511 primes, there are 
14884 pseudo prime numbers for the base 2, and 
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3291 strong pseudo prime numbers for the base 2



Fermat and Miller Rabin TestFermat and Miller-Rabin Test
 Both of these two tests are for identifying subsets of y g

composite numbers

I: integers

SPPa: strong pseudo prime
numbers for base a,

P: prime

I: integers the set of composite n 
where M-T test says
‘probably prime’

SPPa

P: prime
numbers C: composite

numbers

probably primePPa

I = P  C numbers

PPa: pseudo prime
C = SPPa  SPPa

= PP  PP numbers for base a,
the set of composite
n where an-11(mod n)t i t

 PPa  PPa

SPPa  PPa
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n where a 1(mod n): mysterious part
not prime, but cannot be identified as compositePPa  SPPa  C

Composite WitnessComposite Witness
 Note that the M-R test and probably together with the Lucas test 

leave the strong pseudo prime number an extremely small set.
 In other words, these tests are very close to a real ‘primality test’

between prime numbers and composite numbersbetween prime numbers and composite numbers.
 If you have an RSA modulus n=pꞏq, you certainly can test it and 

find out that it is actually a composite number.y p
 However, these tests do not necessarily give you the factors of n in 

order to tell you that n is a composite number.  The factors of n, i.e. 
t i l ki d f it b t th f t th t ip or q, are certainly a kind of witness about the fact that n is 

composite.  
 However there are other kind of witness that n is composite e g However, there are other kind of witness that n is composite, e.g., 

“2n-1 (mod n) does not equal to 1” is also a witness that n is 
composite.
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 A composite number will be factored out by the M-R test only if it 
is a pseudo prime but it is not a strong pseudo prime number.

Matlab ExampleMatlab Example
 primetest(n)

 Miller-Rabin test for 30 randomly chosen base a
 output 0 if n is composite
 output 1 if n is prime

 Matlab program can not be used for large n Matlab program can not be used for large n
 use Maple isprime(n), one strong pseudo-primality test and one 

Lucas testLucas test
 primetest(2563)

ans= 0ans  0
 factor(2563)

ans 11 233
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ans = 11 233

QuestionsQuestions
 What is the probability that Miller-Rabin test fails???p y

 If n is a prime number, it will not be recognized as a composite 
number

 If n = p ꞏ q, but 
bk  an-1  1 (mod n)     meets Fermat test (pseudo prime number)
0<ik bi  1 (mod n) and bi 1  -1 (mod n)0 ik bi 1 (mod n) and bi-1 1 (mod n)

meets Miller-Rabin test (strong pseudo prime number)
or  bi  1 (mod n)     1 (mod p)  1 (mod q)

b 1 ( d ) 1 ( d ) 1 ( d )bi-1  -1 (mod n)  -1 (mod p)  -1 (mod q)

 Note: apq-1  1 (mod n) Note: apq  1 (mod n)
a(p-1)(q-1)  1 (mod n)
alcm(p-1, q-1)  1 (mod n)
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Note on Primality TestingNote on Primality Testing
 Primality testing is different from factoring Primality testing is different from factoring

 Kind of interesting that we can tell something is composite 
without being able to actually factor itwithout being able to actually factor it

 Recent result (2002) from IIT trio (Agrawal, Kayal, and 
Saxena)Saxena)
 Recently it was shown that deterministic primality testing could 

be done in polynomial timebe done in polynomial time
 Complexity was like O(n12), though it’s been slightly reduced since then

 Does this meant that RSA was broken? Does this meant that RSA was broken?
 Randomized algorithms like Rabin-Miller are far more 

efficient than the IIT algorithm so we’ll keep using those
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efficient than the IIT algorithm, so we ll keep using those

Finding a Random PrimeFinding a Random Prime
 Find a prime of around 100 digits for cryptographic p g yp g p

usage
 Prime number theorem ((x)  x/ln(x)) asserts that the Prime number theorem ((x)  x/ln(x)) asserts that the 

density of primes around x is approximately 1/ln(x)
 x = 10100 1/ln(10100) = 1/230 x = 10100, 1/ln(10100) = 1/230

if we skip even numbers, the density is about 1/115
i k d t ti i t th t lti l f 2 pick a random starting point, throw out multiples of 2, 

3, 5, 7, and use Miller-Rabin test to eliminate most of 
th itthe composites.
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 maple('a:=nextprime(189734535789)') 

FactoringFactoring
 General number field sieve (GNFS): fastest( )

 Quadratic sieve (QS)
e(1.923+O(1))(ln(n))1/3 (ln(ln(n)))2/3

 Quadratic sieve (QS)
 Elliptic curve method (ECM), Lenstra (1985)

P ll d’ M t C l l ith Pollard’s Monte Carlo algorithm
 Continued fraction algorithm
 Trial division, Fermat factorization
 Pollard’s p-1 factoring (1974), Williams’s p+1 p g ( ), p

factoring (1982)
 Universal exponent factorization, exponent 

39

p , p
factorization

Simple Factoring MethodsSimple Factoring Methods
 Trial division:

 dividing an integer n by all primes p n ... too slow
 Fermat factorization: Fermat factorization:

 ex. n = 295927 calculate n+12, n+22, n+32… until 
finding a square i e x2 = n + y2 thereforefinding a square, i.e. x2 = n + y2, therefore,
n = (x+y) (x-y) … if n = pꞏq, it takes on average
|p-q|/2 steps too slow|p q|/2 steps … too slow

 in RSA or Rabin, avoid p, q with the same bit length
assume p>q, n+y2 =pꞏq+((p-q)/2)2=(p2 +2pq+q2)/4=((p+q)/2)2

, p, q g

 By-product of Miller-Rabin primality test:
if i d i d d i
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 if n is a pseudoprime and not a strong pseudoprime, 
Miller-Rabin test can factor it.  about 10-6 chance



Universal Exponent FactorizationUniversal Exponent Factorization
 if we have an exponent r, s.t. ar 1 (mod n) for all a gcd(a,n)=1

it 2k ith dd write r = 2k ꞏ m with m odd
 choose a random a, 1<a<n-1
 if gcd(a n)  1 we have a factor

r must be even since we can 
take a-1  (-1)r 1 (mod n) 
requires r being even

 if gcd(a, n)  1, we have a factor
 else 

 let b0  am (mod n), if b0 1 stop, choose another a
a1 do not work

 let b0 a (mod n), if b0 1 stop, choose another a
 compute bu+1  bu

2 (mod n) for 0 u k-1, 
 if bu+1  -1, stop, choose another a

if b 1 h d(b 1 ) i f (b i f i i i l ) if bu+1  1 then gcd(bu-1, n) is a factor (basic factoring principle)

 Question: How do we find a universal exponent r ??? Hard
N t if k ( ) th k ( ) ill d h k i Note: if know (n), then any r = k (n) will do, however, knowing

factors of n is a prerequisite of know (n)
 Note: For RSA if the private exponent d is recovered then
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 Note: For RSA, if the private exponent d is recovered, then
(n) | dꞏe-1, dꞏe-1 is a universal exponent

Universal Exponent FactorizationUniversal Exponent Factorization
 Ex.

n=211463707796206571; e=9007; d=116402471153538991
r=e*d-1=1048437057679925691936; powermod(2,r,n)=1
let r=25*r1; r1=32763658052497677873
powermod(2,r1,n)=1875685647801173711
powermod(2,2*r1,n)=1134936296637258121
powermod(2,4*r1,n)=1   =>   gcd(2*r1-1,n)=885320963 is a factor

 Note: n = 211463707796206571 = 238855417  885320963
238855417 – 1 = 23  3  73  136333 = 2k1  p1
885320963 1 2 2069 213949 2k885320963 – 1 = 2  2069  213949 = 2k2  q1
This method works only when k1 does not equal k2.
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 Exponent factorization even if r is valid for one a, you can still 
try the above procedure

p 1 factoring (1/2)p-1 factoring (1/2)
 If one of the prime factors of n has a special property, it is p p p p y

sometimes easier to factor n.
 ex. if p-1 has only small prime factors
 Pollard 1974

 Algorithm
 Choose an integer a > 1 (often a = 2 is used)
 Choose a bound B have a chance of being larger 

than all the prime factors of p-1
 Compute b  aB! as follows:

 b1  a (mod n) and bj  bj-1
j (mod n) then b  bB (mod n)

L t d d(b 1 ) if 1 d h f d f t f

than all the prime factors of p 1

 Let d = gcd(b-1, n), if 1 < d < n, we have found a factor of n
If B is larger than all the prime factors of p-1        p-1|B!
therefore baB! (ap-1)k1 (mod p), i.e. p|b-1 Fermat Little’s Thm

(very likely)
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( ) ( p) p|

If n=pꞏq, p-1 and q-1 both have small factors that are less than B, then gcd(b-1,n)=n, 
(useless) however, b aB! 1 (mod n) and we can use the Universal exponent method

p 1 factoring (2/2)p-1 factoring (2/2)
 How do we choose B?

 small B will be faster but fails often
 large B will be very slow

 In RSA, Rabin, Paillier, or other systems based on 
integer factoring, usually n=pꞏq, we should ensure that 
p-1 has at least one large prime factor.
 How do we do this?

ex. we want to choose p around 100 digits
 choose a prime number p0 around 40 digits
 look at integer kꞏp0+1 with k around 60 digits and do primality testg p0 g p y

 Generalization:
Elliptic curve factorization method, Lenstra, 1985
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 Best records: p-1: 34 digits (113 bits), ECM: 47 digits (143 bits)



Quadratic Sieve (1/4)Quadratic Sieve (1/4)
 Example: factor n = 3837523p

 form the following relations
93982  55 ꞏ 19 (mod 3837523)

individual factors are small
( )

190952  22 ꞏ 5 ꞏ 11 ꞏ 13 ꞏ 19 (mod 3837523)
19642  32 ꞏ 133 (mod 3837523)

k h b170782  26 ꞏ 32 ꞏ 11 (mod 3837523)
 multiply the above relations

make the number 
of each factors even

(9398 ꞏ 19095 ꞏ 1964 ꞏ 17078)2  (24 ꞏ 32 ꞏ 53 ꞏ 11 ꞏ 132 ꞏ 19)2

22303872  25867052 hoping they are not equal
 since 2230387  2586705 (mod 3837523)
 gcd(2230387-2586705, 3837523) = 1093 is one factor of n

h h f i 3837523/1093 3511
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 the other factor is 3837523/1093 = 3511

Quadratic Sieve (2/4)Quadratic Sieve  (2/4)
 Quadratic?           x2  product of small primes

d h f l l i i ll ? How do we construct these useful relations systematically?
 Properties of these relations:

d f ll i ll d f b product of small primes called factor base
 make all prime factors appear even times

 Put these relations in a matrix Put these relations in a matrix
2 3 5 7 1311 1917

9398 0 0 5 0 0 0 0 1
add

9398
19095
1964

0 0 5 0 0 0 0 1
2 0 1 0 1 1 0 1
0 2 0 0 0 3 0 0

17078
8077
3397

6 2 0 0 1 0 0 0
1 0 0 0 0 0 0 1
5 0 1 0 0 2 0 0

Pick rows where sums
of each column are even
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3397
14262

5 0 1 0 0 2 0 0
0 0 2 2 0 1 0 0

Quadratic Sieve (3/4)Quadratic Sieve (3/4)
 Look for linear dependencies mod 2 among the rows Look for linear dependencies mod 2 among the rows

 1st + 5th + 6th = (6, 0, 6, 0, 0, 2, 0, 2)  0 (mod 2)
 1st + 2nd + 3rd + 4th = (8 4 6 0 2 4 0 2)  0 (mod 2) 1st + 2nd + 3rd + 4th  (8, 4, 6, 0, 2, 4, 0, 2)  0 (mod 2)
 3rd + 7th = (0, 2, 2, 2, 0, 4, 0, 0)  0 (mod 2)

 When we have such a dependency the product of the When we have such a dependency, the product of the 
numbers yields a square.
 (9398 ꞏ 8077 ꞏ 3397)2  26 ꞏ 56 ꞏ 132 ꞏ 192  (23 ꞏ 53 ꞏ 13 ꞏ 19)2
 (9398  8077 3397)  2 5 13 19  (2 5 13 19)
 (9398 ꞏ 19095 ꞏ 1964 ꞏ 17078)2  (23 ꞏ 32 ꞏ 53 ꞏ 11 ꞏ 132 ꞏ 19)2

 (1964 14262)2 (3 5 7 132)2
 (1964 ꞏ 14262)2  (3 ꞏ 5 ꞏ 7 ꞏ 132)2

 Looking for those x2  y2 but x  y
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Quadratic Sieve (4/4)Quadratic Sieve (4/4)
 How do we find numbers x s.t.  

x2  product of small primes?
 produce squares that are slightly larger than a multiple of np q g y g p

ex.      i ꞏ n + j   for small j
the square is approximately i ꞏ n + 2 j i ꞏ n + j2the square is approximately   i n + 2 j   i n + j
which is approximately 2 j   i ꞏ n + j2 (mod n)

8077 =     17n + 1 Probably because this number
is small, the factors of it should

9398 =     23n + 4

,
not be too large. However, there
are a lot of exceptions.  So it 
takes time.  Also, there are a lot
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of other methods to generate 
qualified x values.



The RSA ChallengeThe RSA Challenge
 1977 Rivest, Shamir, Adleman    US$100

 given RSA modulus n, public exponent e, ciphertext c
n = 114381625757888867669235779976146612010218296721242362

562561842935706935245733897830597123563958705058989075
147599290026879543541

e = 9007
c = 968696137546220614771409222543558829057599911245743198

746951209308162982251457083569314766228839896280133919
90551829945157815154

 Find the plaintext messagep g
 1994 Atkins, Lenstra, and Leyland

 use 524339 small primes (less than 16333610)
l l i ( 30) plus up to two large primes (16333610 ~ 230)

 1600 computers, 600 people, 7 months   
 found 569466 ‘x2small products’ equations, out of which only 205 linear 

49

p q , y
dependencies were found

Factorization RecordsFactorization Records
Year Number of digits

1964 201964
1974
1984

20
45
711984

1994
1999

71
129   (429 bits)
155 (515 bi )1999 155   (515 bits)

2003 174   (576 bits)

31074182404900437213507500358885679300373460228427
27545720161948823206440518081504556346829671723286

Next challenge
RSA-640
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78243791627283803341547107310850191954852900733772
4822783525742386454014691736602477652346609

Security of the RSA FunctionSecurity of the RSA Function
B k RSA ‘i ti RSA f ti Break RSA means ‘inverting RSA function
without knowing the trapdoor’ y  xe (mod n)

 Factor the modulus  Break RSA
 If we can factor the modulus we can break RSA

y ( )

 If we can factor the modulus, we can break RSA
 If we can break RSA, we don’t know whether we can factor the 

modulus open problem (with negative evidences)modulus…open problem (with negative evidences)

 Factor the modulus  Calculate private key d
 If we can factor the modulus, we can calculate the private 

exponent d (the trapdoor information).
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 If we have the private exponent d, we can factor the modulus.

Factoring reduces to RSA key recoveryFactoring reduces to RSA key recovery
 DeLaurentis, “A Further Weakness in the Common 

Modulus Protocol for the RSA Cryptosystem,” 
Cryptologia, Vol. 8, pp. 253-259, 1984
 If you have a pair of RSA public-key/private-key, you can 

factoring n=pꞏq with a probabilistic algorithm.
 An example of the Universal Exponent Factorization method An example of the Universal Exponent Factorization method

 Basic idea: find a number b, 0<b<n s.t.
b2  1 (mod n) and b  1 (mod n) i e 1<b<n 1b  1 (mod n) and b  1 (mod n)     i.e. 1<b<n-1
 Note: There are four roots to the equation b2  1 (mod n),  
1 are two of them all satisfy (b+1)(b-1) = kꞏn = kꞏpꞏq1 are two of them, all satisfy (b+1)(b-1)  k n  k p q, 
since 0<b-1<b+1<n, we have either (p | b-1 and q | b+1) or 
(q | b-1 and p | b+1), therefore, one of the factor can be found 
b d(b 1 ) d h h b / d(b 1 ) d(b 1 )
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by gcd(b-1,n) and the other by n/gcd(b-1,n) or gcd(b+1,n)



Factoring reduces to RSA key recoveryFactoring reduces to RSA key recovery
 Algorithm to find b:  Pr{success per repetition} = ½ g { p p }

1. Randomly choose a, 1<a<n-1, such that gcd(a, n) = 1

2 Find minimal j 2jh 1 (mod n) (where h satisfies e d 1 2th)2. Find minimal j, a2 h  1 (mod n)  (where h satisfies e ꞏ d - 1 = 2th)
3. b = a2j-1h, if b  -1 (mod n), then gcd(b-1, n) is the result, else 

repeat 1-3p

 Note: If we randomly choose bZn
* and find out that b2  1 (mod n), 

the probability that b=1, b=-1, b=c(1), or b=-c(1) would be j 1equal; Pr{success}=Pr{a2j-1h 1}=1/2

 Ex: p=131, q=199, n=pꞏq=26069, e=7, d=22063p q p q
(n)=(p-1)(q-1) =25740=22*6435 | ed-1=154440 = 23*19305,
choose a=3, try j=1 (32119305=1), b= a2j-1h= 319305 = 5372 ( 1)
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choose a 3, try j 1 (3 1), b a  3  5372 ( 1)
p = gcd(b-1,n) = gcd(5371,26069) = 131, q = n/p = 199

Factoring reduces to RSA key recoveryFactoring reduces to RSA key recovery

 The above result says that “if you can recover a pair of 
RSA keys, you can factoring the corresponding n=p ꞏ q” 
i “ i t k d i i d d ti.e. “once a private key d is compromised, you need to 
choose a new pair of (n, e) instead of changing e only”

 The above result suggests that a scheme using (n, e1), (n, 
e2), … (n, ek) with a common n for each k participants 

i h i i h h l f i iwithout giving each one the value of p, q is insecure.  
You should not use the same n as some others even 
though you are not explicitly told the value of p and qthough you are not explicitly told the value of p and q.
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Factoring reduces to RSA key recoveryFactoring reduces to RSA key recovery
 The above result also suggests that if you can recover The above result also suggests that if you can recover 

arbitrary RSA key pair, you can solve the problem of 
factoring n Whenever you get an n you can form anfactoring n.  Whenever you get an n, you can form an 
RSA system with some e (assuming gcd(e, (n))=1), then 
use your method to solve the private exponent d withoutuse your method to solve the private exponent d without 
knowing p and q, after that you can factor n.

 Although factoring is believed to be hard, and factoring 
breaks RSA, breaking RSA does not simplify factoring.  
Trivial non-factoring methods of breaking RSA could 
therefore exist. (What does it mean by breaking RSA? plaintext 
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recovery? key recovery?…)
different things

Deterministic EncryptionDeterministic Encryption
 RSA Cryptosystem is a deterministic encryption scheme RSA Cryptosystem is a deterministic encryption scheme, 

i.e. a plaintext message is encrypted to a fixed ciphertext 
messagemessage

 Suffers from chosen plaintext attack
k il l d b k hi h i h an attacker compiles a large codebook which contains the 

ciphertexts corresponding to all possible plaintext messages
 in a two message scheme the attacker can always distinguish in a two-message scheme, the attacker can always distinguish 

which plaintext was transmitted by observing the ciphertext 
(does not satisfy the Semantic Security Notation)(does not satisfy the Semantic Security Notation)

 Add randomness through padding
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RSA PKCS #1 v1 5 paddingRSA PKCS #1 v1.5 padding
 Ex. k=128 bytes (1024 bits) PKCS#1 v1.5 RSAy ( )

 plaintext message M (at most 128-3-8=117 bytes)p g ( y )
 pseudorandom nonzero string PS (at least 8 bytes)
message to be encrypted m = 00||02||PS||00||Mmessage to be encrypted   m = 00||02||PS||00||M
 encryption: c  me (mod n)
 decryption: m  cd (mod n)

 c is now random corresponding to a fixed m, however, 
this only adds difficulties to the compilation of

57

this only adds difficulties to the compilation of 
ciphertexts (a factor of 264 times if PS is 8 bytes)

PKCS #1 v2 padding OAEPPKCS #1 v2 padding - OAEP
M: message (emLen-1-2hLen bytes)Seed P M
P: encoding parameters,

an octet string
MGF: mask generation functionHash

Padding Operation
Hash: selected hash function

(hLen is the output bytes)
DB=Hash(P)||PS||01||M
PS i l h LPS is length emLen-

||M||-2hLen-1 null bytes
Seed: hLen random bytes
dbM k MGF( d L hL )MGF

DB

 dbMask: MGF(seed, emLen-hLen)
maskedDB = DB  dbMask
seedMask: 

MFG(maskedDB hLen)
maskedDB

MGF

MGF




MFG(maskedDB, hLen)

maskedSeed = seed  seedMask 

EM: encoded message (emLen bytes)

maskedSeed
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EM: encoded message (emLen bytes)
EM = maskedSeed||makedDBEM

PKCS #1 v2 padding OAEPPKCS #1 v2 padding - OAEP

 Optimal Asymmetric Encryption (OAE)
 M. Bellare, “Optimal Asymmetric Encryption - How to 

i hEncrypt with RSA,” Eurocrypt’94
 Optimal Padding in the sense that 

RSA-OAEP is semantically secure against adaptive  
chosen ciphertext attackers in the random oracle 
model

 the message size in a k-bit RSA block is as large as 
possible (make the most advantage of the bandwidth)

 Following by more efficient padding schemes:
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g y p g
OAEP+, SAEP+, REACT

Digital EnvelopDigital Envelop
 Hybrid system (public key and secret key)y y (p y y)

 computation of RSA is about 1000 times slower than 
DES

 smaller exponent is faster (but usually dangerous)
document document documentdocument
plaintext

DESk

document
ciphertext

DESk
-1

document
plaintext

random 
secret 
key: k

RSA Enc() RSA 
encrypted 
secret key

RSA Dec() random 
secret 
key: k
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y secret key
receiver RSA 
private key (n, d)

receiver RSA 
public key (n, e)

y



RSA Fast Decryption with CRTRSA Fast Decryption with CRT
 Public key (n, e) n=pꞏq, p and q are large prime integers

d( ( )) 1 t d d 1 ( d ( ))y ( , )

 Private Key (n d) or

gcd(e, (n)) = 1 s.t. d, e ꞏ d 1 (mod (n))
(n) = (p-1)(q-1)  3  e  n-1

 Private Key (n, d) or
(n, p, q, dp, dq, qInv)

e ꞏ dp 1 (mod p-1)
e ꞏ dq 1 (mod q-1)
q ꞏ qInv 1 (mod p)

 Encryption    c  me (mod n)
 Decryption    m  cd (mod n) or

q  qInv 1 (mod p)

yp ( )
m1  cdp (mod p)
m  cdq (mod q)

m1  (me)dp  meꞏdp  m (mod p)

m2  (me)dq  meꞏdq  m (mod q)m2  cdq (mod q)
h  qInv ꞏ (m1-m2) (mod p)

m2  (m ) q  m q  m (mod q)
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m  m2 + h ꞏ q (mod n)CRT m  m2 (mod q)  and
m  m2 + qInv ꞏ (m1-m2) ꞏ q  m1 (mod p)

Multi Prime RSAMulti-Prime RSA
 RSA PKCS#1 v2.0 Amendment 1
 the modulus n may have more than two prime factors
 only private key operations and representations are 

ff t d ( d d I ) ( d t )affected     (p, q, dp, dq, qInv) (ri, di, ti)
 n = r1ꞏr2ꞏ…ꞏrk, k2, where r1 = p, r2=q
 e ꞏ di1(mod ri-1), i=3,…k e  di 1(mod ri 1), i 3,…k
 r1 ꞏ r2 ꞏ … ꞏ ri-1 ꞏ ti1 (mod ri) i=3,…k

 Decryption:
5 + h

yp
1. m1  cdp (mod p)
2. m2  cdq (mod q)
3 if k>2 m  cdi (mod r ) i=3 k

5. m = m2 + q ꞏ h
6. if k>2, R= r1, for k=3 to k do

a.  R = R ꞏ ri-1

 advantages: lower computational cost for the decryption

3. if k>2 mi  c (mod ri), i 3,…, k
4. h  (m1 - m2) qInv (mod p)

b.  h  (mi-m) ꞏ ti (mod ri)
c.  m = m + R ꞏ h
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 advantages: lower computational cost for the decryption 
(and signature) primitives if CRT is used (also see 6.8.14)

Factoring & RSA TimelineFactoring & RSA Timeline

Rabin’s variant
of RSA [Rab79] Montgomery’s Method [M85]

OAEP invented
[BR94]

Fi t Sh i ID
PKCS #1 v1
published

Fast Hardware
implementation
of RSA [SV93]

Chinese Remainder
Theorem efficiency
result [QC82] Public Exponent

3 attack [Has88] PSS invented
[BR96]

Fiat-Shamir ID
scheme [FS86]

ANSI X9.31
adopted

published

1976 19981980 1990 [BR96]

RSA Cryptosystem
invented [RSA78]

RSA Factoring
Challenge started

Related Message
attack [CFPR96]

Bit Security result
for RSA [ACGS84] ISO/IEC 9796

Multiple Polynomial
Quadratic Sieve [Sil87]

General Number
Field Sieve [BLP94]
[BLZ94]

for RSA [ACGS84]

PKCS #1 v2
published

ISO/IEC 9796
published
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Alternative PKC’sAlternative PKC s
 ElGamal Cryptosystem (Discrete-log based) 

 Also suffers from long keys 
 NTRU (Lattice based)( )

 Utilizes short keys
 Proprietary (License issues prevent from wide implementation) Proprietary (License issues prevent from wide implementation)
 Recently, a weakness found in the signature scheme 

 Elliptic Curve Cryptosystems Elliptic Curve Cryptosystems
 Emerging public key cryptography standard for constrained 

devicesdevices.
 Paillier Cryptosystem (High order composite residue based)

G ld Mi li C
64

 Goldwasser-Micali Cryptosystem (QR based)
 very low efficiency
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67

Miller Rabin Primality TestMiller-Rabin Primality Test
 Why does it work? bottom line of Miller-Rabin test

 if n is prime, an-1  1 (mod n) (Fermat Little theorem)
 therefore, if bk  a2km  an-1  1 (mod n), n must be composite
 however, there are many composite numbers that satisfy 

an-1  1 (mod n), Miller-Rabin test can detect many of them
 b0, b1, …, bk-1 ( a(n-1)/2 (mod n)) is a sequence s.t. bi-1

2  bi (mod n)
 we consider only bk-1

2  an-1  1 (mod n) n is pseudo prime
 if bi  1 and bi-1  1, then n is composite
 if bi  1 and bi-1  1, consider bi-1 and then bi-2… basic factoring 

principleif b0  1, could be prime, no guarantee
 if bi  1 and bi-1  -1 (bi-2  1), could be prime, no guarantee

principle
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there is no chance to apply
basic factoring principle



Miller Rabin Primality TestMiller-Rabin Primality Test
 In summary:

b b b b b bb0, b1, b2, … bi-1, bi, … bk
there are four cases:

 Case 1: bk  1 n is a composite number Case 1: bk  1    n is a composite number
 Case 2: bk = 1, let i be the minimal i, ki>0 such that bi = 1 

and bi-1  1       n is a composite number (with
t i i l f t l l t d)nontrivial factors calculated)

 Case 3: bk = 1, let i be the minimal i, ki>0 such that bi = 1 
and bi-1 = -1        a pseudo prime number

 Case 4: bk = 1, b0 = 1 a pseudo prime number

4 possible sequences for b0, b1, b2, … bi-1, bi, … bk :0 1 2 i 1 i k
342,   22,     5, 1, 1, 1, 1, …,   1            composite, factored
45, 5634, 325, 213, -1, 1, …,  1            possibly prime
1 1 1 1 ibl i
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1,         1,     1, …,                   1            possibly prime
214, 987, …,     8931, 321, 134            composite

M R Test: Prime ModulusM-R Test: Prime Modulus
 consider n being a prime number p

i b h f l k i dd p-1 is an even number, therefore, let p-1=2kꞏm, m is odd
 choose one  aRZp

*, let r be the smallest integer s.t. 
a r 1 (mod p) i e r is the order of a modulo p ord (a)a  1 (mod p), i.e. r is the order of a modulo p, ordp(a)

 (exercise 3.9) ap-1  1 (mod p)  r | p-1
b | 1 ( 2k ) f { 2 22 2k } because r | p-1 (= 2kꞏm), one of {m, 2ꞏm, 22ꞏm, … 2kꞏm} 
might be r (probability reduces if m has many factors)

 Case 1: if “2iꞏm (for some i>0) is r” a2i-1ꞏm must be 1 Case 1: if 2 ꞏm (for some i>0) is r , a2 m must be -1
 r is the smallest integer s.t. ar  1  square root of ar must be –1
 {am , a2ꞏm ,… a2iꞏm} is {?, ?, -1, 1, …1} {a , a ,… a } is {?, ?, 1, 1, …1}

 Case 2: if “none of 2iꞏm is r” or “m is r”, a2iꞏm must all be 1, 
 {am , a2ꞏm ,… a2iꞏm} is {1, 1, 1, 1, …1}
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{ } { }
 try some other aZp

*

Miller Rabin Primality TestMiller-Rabin Primality Test
Why does it work???           an inside view
 bi  1 (mod n) and bi-1  1 (mod n) happens when bi  1 (mod pi) 

for all prime factors pi of n and

y

bi-1  1 (mod pi) for some prime factors pi but
bi-1  -1 (mod qi) for other prime factors qi

Note: for a prime modulus p, aordp(a)  1(mod p)
if ordp(a) is even then aordp(a)/2  -1(mod p)

 ex. n = 561 = 3  11  17,    560 = 16  35 = 24  35
let a = 2
b 263 (mod 561) 1 (mod 3) 1 (mod 11) 8 (mod 17)b0  263 (mod 561)  -1 (mod 3)  -1 (mod 11)  8 (mod 17)
b1  166 (mod 561)  1 (mod 3)  1 (mod 11)  -4 (mod 17)
b2  67 (mod 561)  1 (mod 3)  1 (mod 11)  -1 (mod 17)
b 1 ( d 561) 1 ( d 3) 1 ( d 11) 1 ( d 17)
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b3  1 (mod 561)  1 (mod 3)  1 (mod 11)  1 (mod 17)

i.e. inconsistent progress w.r.t each prime factor

Subset Sum Problem in NP CompleteSubset Sum Problem in NP-Complete
 Subset Sum Problem (SSP)( )

Given a set B of positive numbers and a number d
 Search SSP: find a subset {bj}B s.t. d =  bj Search SSP: find a subset {bj}B s.t. d   bj

 Decision SSP: decide if there exists a subset {bj}B s.t. d =  bj

 Decision SSP is equivalent to Search SSP: (by elimination) Decision SSP is equivalent to Search SSP: (by elimination)
 Subset Sum Problem is NP-complete

 Cook Levin Thm: Satisfiability Problem (SAT) is NP Complete Cook-Levin Thm: Satisfiability Problem (SAT) is NP-Complete
 SAT  SSP: there exists a poly-time reduction to convert a 

formula  to an instance <B d> of SSP problemformula  to an instance <B,d> of SSP problem
 If the formula  is satisfiable, <B,d>  SSP
 If <B,d>  SSP, formula  is satisfiable
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

Therefore, SSP is also NP-complete



SAT  D Subset SumSAT M D-Subset Sum 
 Given a formula  with k clauses C1, C2, …, Ck Given a formula  with k clauses C1, C2, …, Ck

and n variables
 F h i bl t 2 i t d For each variable x, create 2 integers nxt and nxf
 For each clause Cj of lengh j, create j-1 integers mj1, 

mj2, …
Choose t so that T must contain exactly one of each (nxtt

or nxf) pairs and at least one from each clause
 This construction can be carried out in poly-time This construction can be carried out in poly time
  is satisfiable iff there exists solution to this SSP
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SAT  D Subset Sum (cont’d)SAT M D-Subset Sum (cont d)
Example:  (x  y  z)(x  a)(a  b  y  z)

b C C Cx y z a b C1 C2 C3
nxt 1 0 0 0 0 1 0 0
nxf 1 0 0 0 0 0 1 0xf
nyt 1 0 0 0 1 0 0
nyf 1 0 0 0 0 0 1
nzt 1 0 0 1 0 0
n 1 0 0 0 0 1nzf 1 0 0 0 0 1
nat 1 0 0 0 1
naf 1 0 0 1 0
nbt 1 0 0 1bt
nbf 1 0 0 0
m11 1 0 0
m12 1 0 0

Encode all
numbers with12

m21 0 1 0
m31 0 0 1
m32 0 0 1

numbers with
a base larger
than all entries
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32
m33 0 0 1
t 1 1 1 1 1 3 2 4

than all entries
of t e.g. 10


