Data Encryption Standard (DES)

S HLE R
A TR 4
THR




DES

Data Encryption Standard (Data Encryption
Algorithm, DEA)

1973 National Bureau of Standards (NBS) RFP
1974 IBM LUCIFER

National Security Agency (NSA) modified it
1977 NBS officially made 1t a standard

major controversies:
— 56-bit key size too short, 2°°~ 7.2 <1010
— NSA involvement (trapdoor?)

Note: A general purpose computer can do 2 -10° ~ 230 instructions/sec, there are 365*86400~

2249 seconds/year i.e. 2>°-8~6.4 1016 instructions/year )




T\TS A ? S E'J‘ ;i | ( ‘ | AW S
1N
* NSA backdoors in RSA’s BSafe library
— Sept. 2013, RSA denied that “NSA has paid $10M to RSA to
put the probably flawed Dual-EC-DRBG/NIST SP 800-90 as

the default PRNG™. Dual-EC-DRBG algorithm is fatally
flawed, as Ferguson and Shumow pointed out in 2007.

— Jan. 2014, Extended Random protocol (designed by NSA) to
the discredited Dual Elliptic Curve random number generator
- speed up the discovery of keys 65000 times

* Malware -- Regin
— First appeared 2011, Nov. 2014 Kaspersky: The Regin
platform: nation-state ownage of GSM networks

* Worldwide surveillance project: PRISM
— June. 2013, Edward Snowden disclosed NSA’s PRISM




DES

Used extensively in computer network
environments and electronic commerce
Major Attacks:

— Hardware DES crackers: 1977 Diffie and Hellman
1993 Wiener, 1997 Verser, 1998 EFF

— 1990 Biham and Shamir, Differential Cryptanalysis

— 1993 Masui, Linear Cryptanalysis

Five-year reviews: 1982, 1987, 1992 passed
(http://www.itl.nist.gov/fipspubs/fip46-2.htm) , 199777

Replacement: 2000 NIST AES (Ryndael)




* A Block cipher:
— 12-bit message, written 1n the form LyR,, each 6 bits
— 9-bit key K

— n rounds, each round converts L. ;R ; to L:R. using
an 8-bit key K. derived from K (starting from the 1-
th bit of K)

— main part 18 a nonlinear round function (R, |, K.)
which 1s called a Feistel (1973 IBM LUCIFER)
system, commonly used in many symmetric
encryption schemes that maximize the effects of
Shannon’s “Confusion” and “Diffusion”




* f(R, , K,) takes a 6-bit input R, ; and an 8-bit
input K., and produces a 6-bit output

startiflg - Ll — Rl-l and Rl — Ll-l D f(R
from the 1-th

K;)

1-1°

bit of K P T Ky R.
e - 8{ 1-1
£

1
I

an emulated \.
one-time pad




1dentical




e Another view:

!
 Intuitively, f(-) should be designed s.t.

n-1

1). output K' 1s not correlated to L., or R ;

2). K' 1s as random (unpredictable) as possible;

3). K' can not be reproduced from R, (or L ) without knowing K ;
4). given many pairs of (L., R, R ), it should not be easy to

deduce K (f(-) should behave like a one way function w.r.t
input




Feistel Type of Systems

Block Size

64

16

Double-DES

64

32

Triple-DES

64

43

IDEA

64

8

Blowfish

64

16

RCS5

32,64, 128

variable

CAST-128

64

16

RC2

64

16




* (R, K) provides an autokey stream for encrypting L. ,

The expander function E(°)

/NN
1 2 4 3 4 3 5 6
S-boxes (Substitution-boxes)

101 010 001 110 OI1 100 111 000
001 100 110 010 000 111 101 O11

100 000 110 101 111 001 O11 010
101 011 000 111 110 010 OOl 100




Design of f(R;_;, K;)

* What happens if there were no E(-) and S,, S,?
Ki' =1(R; |, K) =R, ® K|
means that once you know a set of L., R, R, you know K.
K=R ,® L ,® R
the overall DES output 1s then a linear function of inputs and

keys K.’s, you can solve system of equations for K.’s if you have
enough pairs of (plaintext, ciphertext)’s.

Vil 11 J Aalv 1
P 1 1, Qz are ]

S, (y) could be one of the 2 pre-im

S (y)=2"y or S, (y)=2"y+1,

if S, '(y)=2'y then KL=ER._ ) ®2:(L._, ® R)-
the overall DES output 1s still a linear function

* S,, S, are transformations requiring table lookup, nonlinear

11




Biham and Shamir, “Differential cryptanalysis of DES-like
cryptosystems,” Crypto90

Probably were known to the designers of DES at IBM and NSA,
Coppersmith.

Compare the differences 1n the plaintexts and the
ciphertexts (XOR) for sultably chosen pa1rs of plaintexts

Note: XOR of two uniformly random bits should be uniformly random
DES can be viewed as a PRNG, its output 1s close to random.

Chosen plaintext attack: have access to an encryption
engine




Differential C -

* Idea 1: The key 1s introduced into the system by
XORing with E(R. ;). It 1s possible to XOR two sets of
outputs to remove the randomness effects introduced by
the key.

-a®b

The eftects of k are removed.




e |dea 2:

— consider a nonlinear function g(-)
— 1nputs x,, X, and outputs y,, y, satisfy
Y1 = 8(X1), Y2 = 8(X,)

— the XOR of inputs x' = x; @ x, and the XOR of outputs y' =y,
@ y, are constrained also by g(-) such that given a pair of x' and
y', there are only a few candidate pairs (X, X,) satisfying the
constraints

* ex: given X' (=x; @ x,) = 010, there are only 8 (out of 64) possible pairs
of (x,, X,)

2] |OOO 100 010 110 001 101 O11 111
4 |010 110 000 100 011 111 001 101

ify' (=y, @ y,) is also given as 101, try listing all g(x,), g(x,) and
see which pairs of input (x,, X,) satisfy the constraint




l

known « Somewhere inside the algorithm,
the key 1s XORed to the data
stream. If we could deduce the

plaintext

DES
Encryption
Algorithm

is pnknown -~

value of some internal data X, we
might be able to deduce the key.

Is there any method we can use
to get more specific about an
unknown internal data X?

plamtext 1 Mplamtext 2

andy ®

i

corresponding

®@calculat¢

plaintexfs and
ciphertekts

W, X

X @ x*
y* from

ciphertext

ciphertext 1

e.g. R=R,"

some relat

©)

—2 —

deduce X

and x*

v
ciphertext 2




L, =R, R, =L, ® (R}, Ky)

L; =R,, Ry =L, ® {(R,, K;)

L,=R3, R,=L; ®1(R;, K)
=L, 1R}, K, @ f(R;, K,)

For another set of input (L, R,"=R,), the output is (L,", R,")
R, =L, ®fR,",K,) ® f(R;", K,)

The difference R,/=R,®R, =L, ®f(L,, K,) ®f(L,,K,) 10K, K,

involved




Rewriteas: R,/ ®L,'=f(L,, K,) @ f(L,", K,)

Ifweknow L, R, L,", R;", L,, R,, L,", R,", we know everything except K,

To find out K,, you can
1) try 256 combinations of K, in a brute-force manner or
2) find out suitable K, such that the input XOR to the S-box is

E(L," and the output XOR of the S-box is R,'® L'

(E(L,) ® K,))E® (E(L,") ® K, )t = E(L,)- = There are only 16 possible input
patterns to both S-boxes.
Find out the exact inputs
S S to S, 1n both cases, and
l l deduce possible K, ’s.
(L, K)t & f(L,", K- =(R,'® L,")" = only some of the above patterns
can produce this output.




3_Re : : :
* Ex. L,=101110" L —0000104  Known fixed values
Input X@R E(L, V= T0tter ,'
Output XOR (R,/®L,"= 100
— possible 16 mput pairs: (1011, 0000) (1010 0001)...

— only (1010, OOOI) and (0001, 1010) produce the
speelﬁed output XOR 100 \

(E(L,) @ K))F = OOOO @ K,t
— K, = OOOl or 1010 repeat the procedure for some other data
can eliminate one of them

— K,R can be found by a similar procedure

— guess the last bit of the key and verify on a (plaintext,
ciphertext) pair




* Characteristics
— chosen plaintext attack
— know the complete algorithm except the key
— probabilistic approach

» weakness in the S-box S,: if we look at the 16
input pairs with XOR equal to 0011, we
discover that 12 of them have output XOR
equal to 011 (on the average, only 2 input pairs
should yield a given output XOR)

similar weakness in the S-box S,: among the
16 input pairs with XOR equal to 1100, there
are 8 output XOR equal to 010




4-Round D1 ntie y plaildly

* Ex. for S;, XOR of mput 0011, XOR of output:

101 010 001 110 OI1 100 111 000

S-box S,
001 100 116 010 000 111 101 011

0000 0001 G010 0011 0100 0101 0110 O111
001D 0010 0001 0000 O111 0110 0101 0100

o1 o011 o011t o011 o011 011 OI1 OIl

1000 1001 1010 1011 1100 1101 1110 1111
1011 1010 1001 1000 1111 1110 1101 1100
olr 010 010 o011 011 010 010 o011l

kness of S-Boxes could waste our 3-round

analysis more time, since a specified output XOR cannot
eliminate as much input candidates.




4-Round D1 . y plaildly

 Idea: using the weakness of the S-boxes to create a

good environment for 3-round cryptanalysis to work,
i.e. choosing L,, Ry, L,", R," s.t. R, =R’

* ¢X. R ZO\OI o = 011
_~E([R,)=0011
Eookoe | Prif(Ry, K) @ f(Ry*, K) =011  }~12/16*8/16=3/8
ERHOK) | U gver 64 possible pairs (R, , Ry*)
Ri" =R, @ R* = (L, ® 1Ry, K))) @ (Ly* ®f(Ry*, K))
=Ly ® (f(Ry, K) @ 1(Ry¥, K,))
Pr{R,'= 000000} =3/8 =Pr{R, =R,"}
{ L,' =R, =001100
3 out of 8 times we can apply 3-round analysis successfully
to get K,. If R,' 1s not 000000, the derived keys are random.

Try all 64 inputs, correct keys should appear more times.
21

{LO=OOOOOO
L,"=011010




* EX. gcontinued)
K,

irst 4 bits  Frequency K, Last4 bits  Frequency

0000 12 0000 14
0001 0001 6
0010 0010 42
0011 0011 10
0100 0100 27
0101 0101 10
0110 0110 8
0111 0111 11
1000 1000 8
1001 1001 16
1010 1010 8
1011 1011 18
1100 1100 8
1101 1101 23
1110 1110 6
1111 1111 17




4-Round D1 | yptanalysis

* Now that we know 8 out of 9 bits of the key K,
1.e. K=k k k,*k,kk k-keko, the last bit (k;) can
be guessed and verified by one (plaintext,
ciphertext) pair.




DES Design Criteria
* NBS suggested the following guidelines in 1973
— High level of security
— Complete specification and easy to understand

— Security must be based on the key, not on the obscurity of the
algorithm

— System 1s available to all users

— Easily adaptable

— Economical 1mplementat10n in electronic devices
— Algorithm must be efficient to use

— Algorithm must be easy to validate

— Algorithm must be exportable




* A Block cipher:
— 64-bit message, written 1n the form LR, each 32 bits

— 56-bit key K, expressed as 64-bit string, 8-th, 16-th,...
bits are parity bits

— 16 rounds, each round converts L; |R; ; to L.R; u

an 48 ]m‘r ]{pv T( API‘1‘TPA from K f\xnﬂq > ]{pv SC he

1A19U111 Aulil O\l I\

— main part is the nonhnear function f(R;_;, K,)




Ciphertext

64 bit

64 — 64 permutation

32 bit Ly, Ry, 48 bit K,

64 — 64 permutation

64 bit




R,
¥ 3

[ Expander ]
ER; )7 48

Permutation

732
f(R, | .K.)




~ MSB :
* Initial Permutation (IP): Input b.g becomes bit, i.e. MSB of L,

S8 50 42 34 26 18 10 60 52 44 36 28 20 12
62 54 46 38 30 22 14 64 56 48 40 32 24 16
57 49 41 33 25 17 9 59 51 43 35 27 19 11
61 53 45 37 29 21 13 63 55 47 39 31 23 15

« Expansion Permutation (EP):

.»32 1 2 3 4 5 4 5 o6 7 8 9
: 8§ 9 10 11 12 13 12 13 14 15 16 17
16 17 18 19 20 21 20 21 22 23 24 2§

'\ 24 25 26 27 28 29 28 29 30 31 32 1
b;, (LSB of R, ;) becomes bit; (to be XORed to MSB of K))




S-Boxes Design Criteria
 [IBM announced in 1990

— Each S-box has 6 input bits and 4 output bits. This was the
largest that could be put on one chip in 1974

— The outputs of the S-boxes should not be close to being
linear function of the inputs.

— Each row of an S-box contains all numbers from 0 to 15

— If two 1mputs to an S-box differ by 1 bit, the outputs must
differ by 2 bits

— If two inputs to an S-box differ in their first 2 bits but have
the same last 2 bits, the outputs must be unequal.

— There are 64 pairs of inputs having a given XOR. For each
of these pairs, compute the XOR of the outputs (out of 16
possibilities) . No more than eight of these output XORs
should be the same.










Permutation after S-Box

* 32 bit permutation: OP

16 7 20 21 29 12 28 17 15 23 26 1 S5 18 31 10
2 8 24 14 32 27 3 9 19 13 30 6 22 11 4 25




‘i"ii‘ v 0T DI

* Small changes 1n plaintext or key cause
significant changes 1n ciphertext (avalanche

effect) ... the expander cause this effect

— Experiment: two plaintexts differ on one bit
0000.....0 and 1000.....0

and using the key
0000001100101101001001100010
0011100001100000111000110010

Round # | # of Bits that differ

|

39
29
30
34




Key Schedule

1. Parity bits are discarded
2. Permutation

57 49 41 33 25 17 9 1 58 50 42 34 26
10 2 59 51 43 35 27 19 11 3 60 52 44
63 55 47 39 31 23 15 7 62 54 46 38 30
14 6 61 53 45 37 29 21 13 5 28 20 12

3. Partition the results into C, D, each has 28 bits

4. G =L5{(Ci;) D;=LS{(Dy,)
i 12345678 910111213141516
LSi|1122222212222221
5. 48 bits K, are chosen from the 56-bit string C.D.
14 17 11 24 1 5 3 28 15 6 21 10
23 19 12 4 26 8 16 7 27 20 13 2

41 52 31 37 47 55 30 40 51 45 33 48
44 49 39 56 34 53 46 42 50 36 29 32

Note: each bit of the 56 bit key is used in approximately 14 of the 16 rounds
34




Linear Cryptanalysis
M. Matsui, “Linear cryptanalysis method for DES
cipher,” Eurocrypt’93

A kind of “known plaintext attack™

Break 8-round DES with 22! known plaintexts
Break 16-round DES with 247 known plaintexts

Break 8-round DES on natural English with 2%°
ciphertext

Note: 2> — 247 256 times saving (1 year — 1.4 days)

* [dea: try to find effective linear approximate equations
= Pl1,,1,,...,1,] @ C[],]2---5]6] = K[k, ks, ..k ]

XOR of a such that they hold with probability p # 1/2 for

plaintext bits

randomly chosen plaintext.




Linear Cryptanalysis

* Once we have a linear approximate equation, it
1s possible to determine the bit K[k, k, ..., k_]
through random experiments:

— Assume p > 1/2

— Obtain N random (plaintext, ciphertext) pairs

— Let T be the number of plaintexts such that the
expression P[1,, 1,, ..., L] @ C[]J{, ]95 ---» )] =0
—1f T > N/2 then guess K[k, k,, ..., k | =
else guess K[k, k,, ..., k. ] =1

Note: as N increases or [p-1/2| increases, the accuracy of
the guess increases




Linear Approximation of S-boxes
» Fora given S-Box S, (a=1,2,...,8), 1<a<63, I<B<I15,

define NS, (a, B) as the number of input patterns (total 64
input X patterns) such that

x[1]a[1] @ x[2]a[2] @ x[3]a[3] @ x[4]a[4] @ x[S]a[5] ® x[6]a[6]

= S, (x)[1]B[1] @ S,(x)[2]B[2] © S,(x)[3]P[3] © S,(x)[4]1B[4]
estimate of the probability that ““a masked XOR value of the input
bits coincides with a masked XOR value of the output bits”

* Ex. From the table on the next slide, NS;(16, 15) =12
= (R [17] ® K ,[26]) @ {(R. ,K))[3,8,14,25] =0

|

- ) - )
Y Y

the 2" input bit to S, output from S.

the 17-th bit of R, ; where )
MSB is the 1st bit, i.e. R, ,[1] with p =12/64=0.19

37







I:meﬁﬁérppf@xmﬁﬁ@fr@%s%exs

K)[3.8,14,25] =

%3 5 Note: MSB of R, ; is R, ;[1]

(R.,[17] ® K,[26]) @ f(R.

1-12

EP 321 2 3 4 5 45 6 7 8 9
8 9 10 11 12 13 12 13 14 15 16 17 [ Expander ] K;[26] is the 26-th bit of K;

16 17 18 19 20 21 20 21 22 23 24 25 E(R. )+ counted starting from MSB
24 25 26 27 28 29 28 29 30 31 32 1 (Ri.)7 48

R,,[17] is the 17-th bit of R, ,

The best linear
2 8 24143227 3 9 191330 6 22 11 4 25 Permutation aPPTOXImatIOH

OP 16 7 20 21 29 12 28 17 15 23 26 1 5 18 31 10

¥32 for S,
f(R;.1,K;)

39




A - N -

« Extended approximation for S-Box to 3-round DES
(P,[17] @ K,[26]) ® Py[3,8,14,25] = x,[3,8,14,25] }

U (canceling common terms) |
p, Py[3,8,14,25] @ P [17]
=K,[26]

(12/64)2 +(1-12/64)> = 0.6953

equal at the © unequal at the
same time same time

This 1s the best linear approximation of

3-round DES cipher. Using this equation
we can deduce K,[26] @ K;[26]




S

L
1.2,

8,14,25]
[3,8,

8,14,25]
[37 9




aVWVavYa A“- - AN a

* For a 5-round DES, we can apply the previous linear
approximation to the 2"¢ and the 4% round:
(x,[ 18] @ K,[26]) @ P,[3,8,14,25] = x;[3,8,14,25]
(x,[ 18] @ K,[26]) @ x4[3,8,14,25] = C,[3.,8,14,25]
And apply the following linear equation (deduced from NS, (27,
4)=22)
X[1,2,4,5] @ f(X,K)[18] =K]2,3,5,6]

to the 1%t and the 5™ round:
P [1,2,4,5] ® K,[2,3,5,6] = P,[18] @ x,[ 18]
xs[1,2,4,5] © K[2,3,5,6] = x,[18] ® Cy[ 18]
combining these four linear equations (canceling common terms)
P,[18] @ P[1,2,3,4,5,8,14,25] ® C,4[18] ® C,[1,2,3.,4,5,8,14,25]
=K,[2,3,5,6] @ K,[26] @ K,[26] @ K,[2,3,5,6]
the success probability 1s shown to be 0.519




Best approximation expressions

Success
probability

P, [3,8,14,25] ® Cy[3,8,14,25] © P, [18] ® C,[18] = K,[26] ® K,[26]

0.5+1.56x2-3

P, [3,8,14,25] © C,[18] ® P, [18] ® C,[1,2,4,5,3,8,14,25] = K,[26] ® K,[26]
@ K,[2,3,5,6]

0.5-1.95%x2-5

P,[18] ® P, [1,2,4,5,3,8,14,25] ® Cy[18] ® C, [1,2,4,5,3,8,14,25] =
K,[2,3,5,6] © K,[26] ® K,[26] ® K,[2,3,5,6]

0.5-1.22x2-6

16

P,[8,14,25] ® P, [16,20] © Cy[17] ® C, [1,2,4,5,3,8,14,25] = K,[25,29] ®
K,[26] ® K,[4] ® K.[26] @ K,[26] ® K,[4] ® K,[26] ® K,,[26] ® K,,[4] ®
K,;[26] ® K,:[26] @ K,([2,3,5,6]

0.5-1.49x2-24

its of 16-round DES can be deduced with high success rate
using |1.49 x 2-242 ~ 247 known-plaintexts




Is DES a group?
* Is DES closed under composition?
* VX, By (Bg,(¥)) # Eg (%)

?
Ex,0 Eq,) — =

—_—

 If 1t were the case, double encryption with DES
1s no more secure than a single DES.




Is DES a group?

Campbell and Wiener, “DES i1s not a group,” Crypto92, pp.512-520.

e Fact: E, (DES encryption with K=°000...0’)

E, (DES encryption with K=111...1°)

repeatedly apply E,E, on a certain P yielded P after many
iterations, 1.e. (E,E,)"(P) = P, where n 1s the smallest
positive integer

e Lemma: If m is the smallest positive integer such that
(E,E,)™(P) = P for all P, and n 1s the smallest positive
integer such that (E,E,)*(P,) = P, for a particular P,,,
then n divides m

— proof: Let m = nq +r, 0<r<n, since (E,E,)(P,) =P,
Py = (E,E)™(Py) = (E,E() (E,E()™(Py) = (E,E()"(Py)
since n 1s the smallest integer s.t. (E,E))"P,)=P,=>r=0

45




Is DES a group?

* Suppose DES 1s closed,
— E\Ey=Ex
— E?, E.’,... are also represented by DES keys

— there are only 2°° possible keys, consider the set {Eg, EKZ,

El.... B2 = 31, j, 1<i<j<25%+1, s.t. EJ =E,/

— for any X, encrypt j times then decrypt 1 times yields x
ie. B =D EJ = D,E, i =1
— therefore, the smallest m such that (E,E,)™(P) =P for all P, m
must be less than or equal to 2°°
* Coppersmith found 33 P, and their corresponding n such

that (E,E,)"(P,) = P,. From the lemma, m must be the
least common multiple of these n’s, which turned out to
be around 10277, Contradiction! DES is not a group!




Double DES

* Fortunately, DES 1s not a group; it makes some
sense to encrypt twice in the hope to increase
the security of the system, however, double
DES 1s still considered not much more secure

than single DES.

2 times computation

EK1() N EKzO I ] EK3()

only a little more secure

e Meet 1n the middle attack reduce the strength of
double DES from a seemingly 112-bit security
to just 57-bit security under some assumptions




Brute-Force Attack
- |

Eq,0 E,()

* A naive brute-force attack can try all possible
combinations of 2°° keys for K, and 2°¢ keys
for K,

» Number of all possible different keys for (K;,
K,) would be 2112

e The attacker has to do 21?2 DES to exhaust all
possible combinations




1-

* (GG1ven a pair of plaintext and ciphertext (m, c),
try to find the key pair K, K, of a double DES
scheme 1n a brute-force way

LS -
m EK1() | Cy

C matching

756 <

- v

257 DES list of ciphertexts list of plaintexts
(2°0)? comparisons




Computation Speed

» Software: =10 Mbits/sec
ex. 1000 blocks/sec PIII 800 crypto++

« Hardware: > 1Gbits/sec




Mode of Operation
1V 1

e Block cipher
— ECB
— CBC

* Stream cipher

— Self-synchronizing stream cipher
 CFB

— Synchronous stream cipher
 OFB
» Counter Mode




_.A‘,

plaintext ciphertext ciphertext plaintext

Pl g EK > Cl Cl :DK
E D

Ex— G C,
channel

Pk

blocks P2

Pn i EK I n Cn : DK

I'he most obvious way to use a block cipher

'he same block of plaintext always map to the same
01pher block (in the codebook).

* Vulnerability 1s greatest at the beginning and end of
messages (easy to locate), or other well formatted

Sess10ns.




_.A‘, aVa

» Padding 1s necessary: fixed pattern of bits or ciphertext
stealing.

If the message have many blocks (encrypted with the
same key) and some of the plaintexts are known, Eve
can compile a codebook to map useful pieces of
plaintext and ciphertext. She can effectively

the content of the message or the message without
knowing the actual key.

Eve can use block-replaying attack to alter part of the
content of an important transaction.




» Take part of the last ciphertext block as the padding

Encryption

P

n-1

P

n

A

E (")

E (")

Decryption

C

n-1

C

n

IDXQ

Dy (")

compare

C!

P

n-1




1

* A single-bit error in the ciphertext affects one block
and one bit of the recovered plaintext.

» Self-recovering from ciphertext error. It doesn’t
recover at all from synchronization errors. (one bit 1s
added or lost 1n the ciphertext stream)




key stream key stream
generator generator

keystream | K. . keystream |K;

i laintext
P :rl\ > P » P

i

i , L :
plaintext ciphertext
Encrypt Decrypt

» Security depends entirely on the insides of the
keystream generator.

» Key stream generator should be deterministic such that
it can be flawlessly reproduced at decryption time.




Internal State

Next-State
Function [

Output Function

|

K.

* Two keystream generators, with the same key and the
same internal state, will produce the same keystream.




Self-Synct

Internal State | + Internal State

! }
Output ) L Output

Functio/‘ K Qction

. ,, | p.
o : D :
1 ) - C, @D -

* Each keystream bit 1s a function of a fixed number of
previous N ciphertext bits.

* The decryption keystream generator will automatically
synchronize with the encryption keystream generator
after receiving N ciphertext bits.




8-byte shift register

8-byte shift register

\ WA
\4

I
1

¥
) |

C 64 bits

4

EK(')
C 64 bits

A

Key K —

/]
/]

Left-most byte

Kﬁ

1,
“\J

C 8 bits

N
4

P.

|

1

8 bits

C 64 bitsel

e

Key K —| Eg(

764 bits

Left-most byte
8 bits 4

7K.
C.

|
~1

C 8 bits

N
4

/
7
C
N

. P.

-1

One bit error in the ciphertext will incorrectly produce n

keystream errors.

Playback attack: Bob will resynchronize automatically.

If IV and plaintext are the same, the key stream and the ciphertext
stream would be the same




The keystream 1s generated independent of the
message stream. (Key Auto-Key (KAK) system)
Do not propagate transmission €rrors.

Deterministic keystream generator: 1t must
generate the same output keystream on both
sides.

The keystream sequence will eventually repeat.
Except one-time pads, all keystream generators
are periodic.




D \ 1~ A~
V1iUU

8-byte shift register 8-byte shift register

INZ - \ W4

1V

C 64 bits 4 C 64 bits
4, 4
Key K EK() bits : bits

& 64 bi

Left-most by

Pi 8bits\ib Ki' Ci

running a block cipher as a synchronous stream cipher

feedback mechanism 1s independent of both the plaintext and the
ciphertext streams

most key generation works can be done offline

IV should be unique but can be public. The same key stream
should not be used twice, e.g. ¢, =p; Dk, ¢, =p, ® k then

p,=¢, ®(c; Dp)




' -~ L AN V= | Al N> \ 1 ~AA-

JLpU 9Je JI D viOC

* A single bit error in the ciphertext causes a single-bit error in the
recovered plaintext.

A loss of synchronization is fatal. A mechanism to detect
“synchronization losses” is required.

OFB should be used only when the feedback size is the same as
the block size for security reasons. (to make the average key

cycle as long as possible, 2%*-1. Ex. assume 1 bit feedback and
IV =1010...10, 1t 1s very likely that the period of K. 1s 2 only)

P0 1- P; Pi+1

|

) 4 v
AR AN
% %

Y
AL
U

\ 4

Co - j Citi




Counter Mode

8-byte shift register 8-byte shift register

IV ) hV

’ 64 bits % % bits ’ 64 bits % 8 bits

K K — e i mod 28 K K — e i mod 28
Y% k(") ey k(")

U 64 bits U 64 bits

Left-most byte Left-most byte

8 bits i Ki 8 bits i K
Pi D > Ci

Just using sequence number as the input to the shift
register (or you can use any random-sequence
generators, whether cryptographically secure or not)




ECB

plaintext

ciphertext

8-byte shift register

V]

& 64 bits

F 64 bits

Left-most byte

K, ?f 8 bits
&

OFB

8-byte shift register

—_—

64 bits

4

Counter

8-byte shift register

CTTIV] L ©

F 64 bits

Key K
EK(')

;f 64 bits

Left-most byte

K, % 8 bits
&

P.

1

% 8 bits

i mod 28




Comparisons - ECB

ECB: Bruce Schneier, “Applied Cryptography”

Efficiency:

+ Speed 1s the same as the block
cipher.

- Ciphertext 1s up to one block longer
than the plaintext, due to padding.

- No preprocessing is possible.

- Processing is parallelizable.

Security:

- Plaintext patterns are not
concealed. (the same plaintext
maps to the same ciphertext.)

- Input to the block cipher is not
randomized; it 1s the same as the
plaintext.

+ More than one message can be
encrypted with the same key.

- Plaintext is easy to manipulate;
blocks can be removed,
repeated or interchanged.

Fault-tolerance:

- A ciphertext error affects one full
block of plaintext.

- Synchronization error 1s
unrecoverable.




Comparisons - CBC

CBC.

Security:

+ Plaintext patterns are concealed by XORing with previous ciphertext
block.

+ Input to the block cipher 1s randomized by XORing with the
previous ciphertext block.

+ More than one message can be encrypted with the same key.

+/- Plaintext 1s somewhat difficult to manipulate.
One bit error in causes an error block and one error bit in the following block.
Removal of ciphertext blocks causes errors of corresponding message blocks.
Insertion of m ciphertext blocks causes m+1 errors in the plaintext blocks.
Repetition is kind of insertion.
Swapping of 2 ciphertext blocks causes 4 blocks of errors.




Comparisons - CBC

Efficiency:
+ Speed 1s the same as the underlying block cipher.
- Ciphertext 1s up to one block longer than the plaintext, not
counting the IV.
- No preprocessing 1s possible.
+/- Encryption 1s not parallelizable, decryption is parallelizable
and has a random-access property.

Fault-tolerance:

- A ciphertext error affects one full block of plaintext and the
corresponding bit in the next block

- Synchronization error is unrecoverable




Comparisons - CFB

CFB.

Security:
+ Plaintext patterns are concealed since the key depends on previous
ciphertext stream.
+ Input to the block cipher is previous ciphertext stream.
+ More than one message can be encrypted with the same key.
If a different IV 1s used, ciphertext stream will not be the same.
+/- Plaintext 1s somewhat difficult to manipulate, blocks can be
removed from the beginning and end of the message, bits of
the first block can be changed, and repetition allows some
controlled changes.
Efficiency:
+ Speed 1s the same as the block cipher.

- Ciphertext 1s the same size as the plaintext, not counting the IV.
68




+/- Encryption 1s not parallelizable, decryption is parallelizable and
has a random-access property.
- Some preprocessing 1s possible before a block is seen; the previous
ciphertext block can be encrypted.
+/- Encryption 1s not parallelizable; decryption is parallelizable and

has a random-access property.

Fault-tolerance:

- A ciphertext error affects the corresponding bit of plaintext and
the next full block.

+ Synchronization errors of full block sizes are recoverable. 1-bit
CFB can recover from the addition or loss of single bits.




Comparisons — OFB/Counter
OFB/Counter:

Security:
+ Plaintext patterns are concealed. Different keys might be used for
the same plaintext.

+ Input to the block cipher 1s previous keystream.

+ More than one message can be encrypted with the same key,
provided that a different IV is used.

- Plaintext 1s very easy to manipulate; any change in ciphertext
directly affects the plaintext.

Efficiency:
+ Speed 1s the same as the clock cipher.

- Ciphertext 1s the same size as the plaintext, not counting the IV.
70




Comparisons — OFB/Counter

+ Processing 1s possible before the message 1s seen
-/+ OFB processing 1s not parallelizable; counter processing is
parallelizable.

Fault-tolerance:
+ A ciphertext error affects only the corresponding bit of plaintext.
- Synchronization error 1s unrecoverable.




Breaking DES

 Brute-force attacks:

— distributive computation

* Rocke Verser: more than 1000 computers on the Internet,
search over 1/4 of the key space for 5 months to find the
1997 RSA Data Security’s DES Challenge for a prize of
US$10000

— custom architecture

 Electronic Frontier Foundation (EFF)’s ‘DES cracker’: 39
days were used to search 85% of the key space to find the
key for RSA Data Security’s DES Challenge II.

* 1 PC, software, 24 search units/chip, 64 chips/board, 12
boards/chassis, 2 chassis (36864 units in total)




Enhanced DES

Double DES

— although 112 bits key were used, the security level 1s
the same as a 57 bit scheme

— meet-in-the-middle attack

Triple DES

— three key system Ex 1(EKz(EK3(m)))
. J_JK 1\DK2\J_4K umn } } } compatibility

;@ (E,(K,&m)) by Rivest

— redesign S-Boxes such that linear approximations are
minimized




* Direct password authentication model

...

u password plaintext 7
] - 4
> - & "

accept/reject

P/

Compare . .
with stored Eve might sneak into the system and

plaintext steal passwords from the system file.
password

counter measure: encrypt the password before storing them




plaintext
password

\/ accept/reject

f(password)

° 1\ ) 1S a sort of one- way function (1‘10L Nnecessary a
permutation); given y = {(x), it’s hard to solve x

* To pass the 1dentification check, a user need to key 1n
the plaintext password. Although Eve might have
access to the system password file, she still does not
know the plaintext password, unless she can invert ()

-~ 4 o ~




* Two types of {(-) function:
— MDS5 hash function:

Unix Password Security
L

Plaintext password ——

— 128-bit hash

collision resistant

— modified DES:

64-bit ‘00000...0° ——

25-round|
DES

— 64-bit cipher

the crypt() function

I key

the first 8-characters
of password, 7 bits/char




Unix Password Security

* Dictionary Attacks:

— people tend to choose meaningful words or their
modification as their password

— greatly reduce the possible set of passwords
958 = 6.6 x 101> = 80000

— although 1t’s hard to invert 1(-); now that we have
the possible set of passwords, we can try every
possible f(password) explicitly, and match with the
user entries in the system file; even use H/'W DES
cracker

— counter measure: salt




Unix Password Security
L

o Salt:

— additional 12 bits (2 characters, each from 64
candidates)

— together with the 8-character password determines
the ciphertext stored in the system file

— two users using the same password would not have
the same ciphertext entry in the system file

— make a general dictionary attack to all user harder,
although 1t 1s the same to attack an individual's

password because the salt value for a particular user
1s publicly known




Unix Password Security
» Usage of the 12-bit salt:
— E(R) 1n the DES round function is a 32—48 bit
mapping
— swap bit 1 and bit 25 if bit 1 of the salt 1s 1, else no
swap

— swap bit 2 and bit 26 if bit 2 of the salt 1s 1, else no
swap

— custom DES algorithm avoids the attack of a
hardware ‘DES cracker’




) AN oo D PaVWare a A a

Y
C VvV U1 U U

* Challenge-Response Protocol

— to avoid transmitting the plaintext password, to
avold the replay attack

SYSTEM USER

choose a random
number r > | Calculate

\ Epassword(r)

Calculate E |, 4(1)
and match with v

passwords %

accept/reject '




a¥a at aVWa Fa ) AN oo D PaVWare at Va A a
(j C 21— ) U C VYV U1 U 9 .

 How do we avoid the attack on the public password file?
Is there a method for the system to compare the response
without storing the passwords for all the users?

SYSTEM USER
H(*) |— password

choose a random v
number r > | Calculate

V= EH(password) (I’)

Calculate Egy,goora)(T) |
and match with v

accept/reject '

H(password)’s%




* A cryptographic collision-resistant hash function H(e)
(ex. MD5, SHAL...) can be used instead of E, (*).

SYSTEM USER

choose a random
number r

Calculate v =
H(H (password)||r)

Calculate H(H (password)||r)
and match with v

T accept/reject
I

H(password)’s




