
Data Encryption Standard (DES)

密碼學與應用
海洋大學資訊工程系

丁培毅丁培毅

1

DESDES
• Data Encryption Standard (Data Encryption• Data Encryption Standard (Data Encryption

Algorithm, DEA)
1973 N ti l B f St d d (NBS) RFP• 1973 National Bureau of Standards (NBS) RFP

• 1974 IBM LUCIFER
• National Security Agency (NSA) modified it
• 1977 NBS officially made it a standard• 1977 NBS officially made it a standard
• major controversies:

56 16– 56-bit key size too short, 256  7.2 ꞏ1016

– NSA involvement (trapdoor?)

2

Note: A general purpose computer can do 2 ꞏ109 ~ 230.9 instructions/sec, there are 365*86400~
224.9 seconds/year i.e. 255.8~6.4 ꞏ1016 instructions/year

NSA’s Evil ClawsNSA s Evil Claws
• NSA backdoors in RSA’s BSafe library

– Sept. 2013, RSA denied that “NSA has paid $10M to RSA to
put the probably flawed Dual-EC-DRBG/NIST SP 800-90 as
the default PRNG”. Dual-EC-DRBG algorithm is fatallythe default PRNG . Dual EC DRBG algorithm is fatally
flawed, as Ferguson and Shumow pointed out in 2007.

– Jan. 2014, Extended Random protocol (designed by NSA) to
the discredited Dual Elliptic Curve random number generator
- speed up the discovery of keys 65000 times

Mal are Regin• Malware -- Regin
– First appeared 2011, Nov. 2014 Kaspersky: The Regin

platform: nation-state ownage of GSM networksplatform: nation state ownage of GSM networks
• Worldwide surveillance project: PRISM

– June 2013 Edward Snowden disclosed NSA’s PRISM

3

June. 2013, Edward Snowden disclosed NSA s PRISM

DESDES
• Used extensively in computer network• Used extensively in computer network

environments and electronic commerce
M j A k• Major Attacks:
– Hardware DES crackers: 1977 Diffie and Hellman

1993 Wiener, 1997 Verser, 1998 EFF
– 1990 Biham and Shamir, Differential Cryptanalysis
– 1993 Masui, Linear Cryptanalysis

• Five-year reviews: 1982, 1987, 1992 passedFive year reviews: 1982, 1987, 1992 passed
(http://www.itl.nist.gov/fipspubs/fip46-2.htm) , 1997??

• Replacement: 2000 NIST AES (Rijndael)

4

• Replacement: 2000 NIST AES (Rijndael)

Simplified DES Type AlgorithmSimplified DES-Type Algorithm
• A Block cipher: p

– 12-bit message, written in the form L0R0, each 6 bits
9 bit key K– 9-bit key K

– n rounds, each round converts Li-1Ri-1 to LiRi using
8 bi k K d i d f K (i f h ian 8-bit key Ki derived from K (starting from the i-

th bit of K)
– main part is a nonlinear round function f(Ri-1, Ki)

which is called a Feistel (1973 IBM LUCIFER)
system, commonly used in many symmetric
encryption schemes that maximize the effects of

5

Shannon’s “Confusion” and “Diffusion”

Feistel SystemFeistel System
• f(R K) takes a 6 bit input R and an 8 bit• f(Ri-1, Ki) takes a 6-bit input Ri-1 and an 8-bit

input Ki, and produces a 6-bit output

Li = Ri-1 and Ri = Li-1  f(Ri-1, Ki) starting
from the i-th

Li-1 Ri-1
Ki

66
8

from the i th
bit of K

f
an emulated
one-time padone time pad

6

Li Ri

Feistel SystemFeistel System
• How to encrypt/decrypt with a Feistel structure?

Ln-1 Rn-1
Kn

L0 R0
K1

f

L R

identical
key

0 0

L1 R1 DESf

f
K2

Ln Rn

Kn

key Ln-1 Rn-1

Ln Rn
f
Kn

f
Rn Ln

Rn-1 Ln-1

Rn Ln

DES-1f
Kn

f
Kn-1

Rn-1 Ln-1
R1 L1

R0 L0
f
K1

7

L0 R0

Feistel SystemFeistel System
• Another view: Ln-1 Rn-1

Kn

K'
f

Rn LnK

f

Kn

L R

K'

• Intuitively, f(ꞏ) should be designed s.t.
1) output K' is not correlated to L or R ;

Ln-1 Rn-1

1). output K is not correlated to Ln-1 or Rn;
2). K' is as random (unpredictable) as possible;
3) K' can not be reproduced from R (or L) without knowing K ;3). K can not be reproduced from Rn-1 (or Ln) without knowing Kn;
4). given many pairs of (Ln-1, Rn, Rn-1), it should not be easy to

deduce K (f(ꞏ) should behave like a one way function w r t

8

deduce Kn (f(ꞏ) should behave like a one way function w.r.t
input

K actually not possible for the limited bit length)

Feistel Type of SystemsFeistel Type of Systems

Block Size Key Size # Rounds
DES 64 56 16
Double-DES 64 112 32
Triple DES 64 168 48Triple-DES 64 168 48
IDEA 64 128 8
Blowfish 64 32..448 16
RC5 32, 64, 128 0..2048 variableC5 3 , 6 , 8 0.. 0 8 va ab e
CAST-128 64 40..128 16
RC2 64 8 1024 16

9

RC2 64 8..1024 16

Design of f(R K)Design of f(Ri-1, Ki)
• f(Ri Ki) provides an autokey stream for encrypting Lif(Ri-1, Ki) provides an autokey stream for encrypting Li-1

The expander function E(•)Ri-1 The expander function E()

1 2 3 4 5 6
E(•)

6bits

1 2 3 4 5 64 3E(Ri-1)

()

8bits

S
101 010 001 110 011 100 111 000

S-boxes (Substitution-boxes)Ki 
4bits 4bits

S1

S

001 100 110 010 000 111 101 011

100 000 110 101 111 001 011 010

S1 S2
3bits3bits

10

S2 101 011 000 111 110 010 001 100f(Ri-1, Ki)

Design of f(R K)Design of f(Ri-1, Ki)
• What happens if there were no E(ꞏ) and S1 S2?What happens if there were no E() and S1, S2?

Ki' = f(Ri-1, Ki) = Ri-1  Ki
means that once you know a set of Li-1 Ri-1 Ri you know Ki

Ki = Ri-1  Li-1  Ri
the overall DES output is then a linear function of inputs and
ke s K ’s o can sol e s stem of eq ations for K ’s if o ha ekeys Ki’s, you can solve system of equations for Ki’s if you have
enough pairs of (plaintext, ciphertext)’s.

• What happens if S S are linear operator like ‘division’?• What happens if S1, S2 are linear operator like division ?
S1

-1(y) could be one of the 2 pre-images x of S1, namely,
S1

-1(y)=2ꞏy or S1
-1(y)=2ꞏy+1, 1 1

if S1
-1(y)=2ꞏy then Ki

L = E(Ri-1)L  2ꞏ(Li-1  Ri)L

the overall DES output is still a linear function

S S f i i i bl l k li
11

• S1, S2 are transformations requiring table lookup, nonlinear

Differential CryptanalysisDifferential Cryptanalysis
• Biham and Shamir, “Differential cryptanalysis of DES-like yp y

cryptosystems,” Crypto90
• Probably were known to the designers of DES at IBM and NSA,

Coppersmith.

• Compare the differences in the plaintexts and the• Compare the differences in the plaintexts and the
ciphertexts (XOR) for suitably chosen pairs of plaintexts
and deduce information about the keyand deduce information about the key.

Note: XOR of two uniformly random bits should be uniformly random

• Chosen plaintext attack: have access to an encryption

y y
DES can be viewed as a PRNG, its output is close to random.

12

engine

Differential CryptanalysisDifferential Cryptanalysis
• Idea 1: The key is introduced into the system byIdea 1: The key is introduced into the system by

XORing with E(Ri-1). It is possible to XOR two sets of
outputs to remove the randomness effects introduced byoutputs to remove the randomness effects introduced by
the key.

a 
k


 a  b

b
k
 The effects of k are removed.

13

Differential CryptanalysisDifferential Cryptanalysis
• Idea 2:

– consider a nonlinear function g(ꞏ)
– inputs x1, x2 and outputs y1, y2 satisfy 1 2 y1 y2 y

y1 = g(x1), y2 = g(x2)
– the XOR of inputs x' = x1  x2 and the XOR of outputs y' = y1
 are constrained also b g() s ch that gi en a pair of ' and y2 are constrained also by g(ꞏ) such that given a pair of x' and
y', there are only a few candidate pairs (x1, x2) satisfying the
constraints

• ex: given x' (= x1  x2) = 010, there are only 8 (out of 64) possible pairs
of (x1, x2) x1 000 100 010 110 001 101 011 111

if y' (= y1  y2) is also given as 101, try listing all g(x1), g(x2) and

1
x2 010 110 000 100 011 111 001 101

14

see which pairs of input (x1, x2) satisfy the constraint

Differential CryptanalysisDifferential Cryptanalysis
• Somewhere inside the algorithm,

the key is XORed to the data
known

plaintext the key is XORed to the data
stream. If we could deduce the
value of some internal data x, we
might be able to ded ce the ke

plaintext

? might be able to deduce the key.
• Is there any method we can use

to get more specific about an
DES

Encryption

?
?

to get more specific about an
unknown internal data x?

x=?

Encryption
Algorithm

key is unknown?
plaintext 1 plaintext 2

x=? fix some relation,
e.g. R1=R1

*


calculate x  x*
and y  y* from

di

x x*
deduce x

d *

plaintexts and
ciphertexts



y y*
sbox sbox

15

corresponding
ciphertext ciphertext 1 ciphertext 2

and x*y y

3 Round Differential Cryptanalysis3-Round Differential Cryptanalysis
L1 R1K2

f

L2 R2K3 L2 = R1, R2 = L1  f(R1, K2)

f

L3 R3K4

2 1 2 1 1 2

L3 = R2, R3 = L2  f(R2, K3)

f

L3 R3K4 L3 R2, R3 L2  f(R2, K3)

L R R L  f(R K)L4 R4 L4 = R3, R4 = L3  f(R3, K4)
= L1  f(R1, K2)  f(R3, K4)

For another set of inp t (L * R * R) the o tp t is (L * R *)For another set of input (L1 , R1 =R1), the output is (L4 , R4)
R4

*= L1
* f(R1

*, K2)  f(R3
*, K4)

Th diff ' * ' * K K

16

The difference R4'= R4  R4
* = L1'  f(L4, K4)  f(L4

*, K4) no K2, K3
involved

3 Round Differential Cryptanalysis3-Round Differential Cryptanalysis
R4' L1' = f(L4 K4)  f(L4

* K4)Rewrite as: R4  L1 f(L4, K4)  f(L4 , K4)
If we know L1, R1, L1

*, R1
*, L4, R4, L4

*, R4
*, we know everything except K4

Rewrite as:

To find out K4, you can
1) try 256 combinations of K4 in a brute-force manner or
2) fi d t it bl K h th t th i t XOR t th S b i2) find out suitable K4, such that the input XOR to the S-box is

E(L4') and the output XOR of the S-box is R4' L1'
(E(L4)  K4)L (E(L4

*)  K4)L = E(L4')L  There are only 16 possible input
patterns to both S-boxes.

Find out the exact inputs
S1

f(L K)L f(L * K)L

S1

 = (R ' L ')L  only some of the above patterns

p
to S1 in both cases, and
deduce possible K4’s.

17

f(L4, K4) f(L4 , K4) = (R4  L1)  only some of the above patterns
can produce this output.

3 Round Differential Cryptanalysis3-Round Differential Cryptanalysis
• Ex. L4 = 101110 L4

* = 000010 Known fixed values
Input XOR E(L4')L = 1011
Output XOR (R4' L1')L = 100Ou pu O (4  1) 00

– possible 16 input pairs: (1011, 0000) (1010, 0001)…
l (1010 0001) d (0001 1010) d th– only (1010, 0001) and (0001, 1010) produce the

specified output XOR 100
(E(L) K)L 1011 K L (E(L *) K)L 0000 K L– (E(L4)  K4)L = 1011  K4

L (E(L4
*)  K4)L = 0000  K4

L

– K4
L = 0001 or 1010, repeat the procedure for some other data

li i t f thcan eliminate one of them
– K4

R can be found by a similar procedure
th l t bit f th k d if (l i t t

18

– guess the last bit of the key and verify on a (plaintext,
ciphertext) pair

4 Round Differential Cryptanalysis4-Round Differential Cryptanalysis
• Characteristics

– chosen plaintext attack
– know the complete algorithm except the key

L0 R0

f

K1

– probabilistic approach
• weakness in the S-box S1: if we look at the 16

L1 R1K2

f

1
input pairs with XOR equal to 0011, we
discover that 12 of them have output XOR

f

L2 R2K3 p
equal to 011 (on the average, only 2 input pairs
should yield a given output XOR)

f

L3 R3K4 y g p)
• similar weakness in the S-box S2: among the

16 input pairs with XOR equal to 1100, there
f

L4 R4

19

16 input pairs with XOR equal to 1100, there
are 8 output XOR equal to 010

4 4

4 Round Differential Cryptanalysis4-Round Differential Cryptanalysis
• Ex. for S1, XOR of input 0011, XOR of output:

S1
101 010 001 110 011 100 111 000
001 100 110 010 000 111 101 011

S-box

x1
x

0000
0011

0001
0010

0010
0001

0011
0000

0100
0111

0101
0110

0110
0101

0111
0100x2 0011 0010 0001 0000 0111 0110 0101 0100

y1y2 011 011 011 011 011 011 011 011
x 1000 1001 1010 1011 1100 1101 1110 1111x1
x2

1000
1011

1001
1010

1010
1001

1011
1000

1100
1111

1101
1110

1110
1101

1111
1100

y1y2 011 010 010 011 011 010 010 011

• The weakness of S-Boxes could waste our 3-round
analysis more time since a specified output XOR cannot

y1 y2 011 010 010 011 011 010 010 011

20

analysis more time, since a specified output XOR cannot
eliminate as much input candidates.

4 Round Differential Cryptanalysis4-Round Differential Cryptanalysis
• Idea: using the weakness of the S-boxes to create a g

good environment for 3-round cryptanalysis to work,
i.e. choosing L0, R0 , L0

*, R0
* s.t. R1 = R1

*

L 000000• ex. R0' = 001100
E(R0') = 00111100

L0' = 011010

E(R  R *)

L0 = 000000
L0

* = 011010

Pr{f(R0, K1)  f(R0*, K1) = 011010}12/16*8/16=3/8

R ' R  R * (L  f(R K))  (L *  f(R * K))

E(R0  R0*)=
(E(R0)K1) 
(E(R0*) K1) over 64 possible pairs (R0 , R0*)

R1' = R1  R1* = (L0  f(R0, K1))  (L0*  f(R0*, K1))
= L0'  (f(R0, K1)  f(R0*, K1))

Pr{R1' = 000000} = 3/8 = Pr{R1 = R1
*}Pr{R1 000000} 3/8 Pr{R1 R1 }

L1' = R0' = 001100
3 out of 8 times we can apply 3-round analysis successfully

K If R ' i 000000 h d i d k d

21

to get K4. If R1' is not 000000, the derived keys are random.
Try all 64 inputs, correct keys should appear more times.

4 Round Differential Cryptanalysis4-Round Differential Cryptanalysis
• Ex. (continued)Ex. (continued)

K4 First 4 bits Frequency
0000 12
0001 7

K4 Last 4 bits Frequency
0000 14
0001 60001 7

0011 15
0010 8

0100 4

0001 6

0011 10
0010 42

0100 27

0110 4
0111 6

0101 3
0110 8
0111 11

0101 10

1000 33
1001 40
1010 35

1000 8
1001 16
1010 8

1011 35

1110 28

1100 59
1101 32

1011 18

1110 6

1100 8
1101 23

22

1110 28
1111 39

1110 6
1111 17

4 Round Differential Cryptanalysis4-Round Differential Cryptanalysis
• Now that we know 8 out of 9 bits of the key K• Now that we know 8 out of 9 bits of the key K,

i.e. K= k0k1k2*k4k5k6k7k8k9, the last bit (k3) can
b d d ifi d b (l ibe guessed and verified by one (plaintext,
ciphertext) pair.

23

DES Design CriteriaDES Design Criteria
• NBS suggested the following guidelines in 1973NBS suggested the following guidelines in 1973

– High level of security
– Complete specification and easy to understandComplete specification and easy to understand
– Security must be based on the key, not on the obscurity of the

algorithmalgorithm
– System is available to all users
– Easily adaptable for diverse applicationsEasily adaptable for diverse applications
– Economical implementation in electronic devices
– Algorithm must be efficient to useAlgorithm must be efficient to use
– Algorithm must be easy to validate
– Algorithm must be exportable

24

– Algorithm must be exportable

DES AlgorithmDES Algorithm

A Bl k i h• A Block cipher:
– 64-bit message, written in the form L0R0, each 32 bits0 0
– 56-bit key K, expressed as 64-bit string, 8-th, 16-th,...

bits are parity bitsp y
– 16 rounds, each round converts Li-1Ri-1 to LiRi using

an 48-bit key Ki derived from K (with a key schedule)an 48 bit key Ki derived from K (with a key schedule)
– main part is the nonlinear function f(Ri-1, Ki)

25

DES AlgorithmDES Algorithm
Plaintext 64 bit

64 64 t tiIP

RL K

64  64 permutation

32 bit L0, R0, 48 bit K1R0

R

L0

L

K1

K

f
0, 0, 1

R1L1 K2
f

R15L15
f

K16

IP-1

L16 R16


32 bit L16, R16, 48 bit K16

64  64 permutation

26
Ciphertext

IP p

64 bit

DES Round Function f(R K)DES Round Function f(Ri-1,Ki)
Ri-1i-1

E(R)
Expander

32

48E(Ri-1)
Ki

48 48

48

B1 B2 B3 B4 B5 B6 B7 B8

S1 S2 S3 S4 S5 S6 S7 S8

6 6 66 6 6 6 6

S1 S2 S3 S4 S5 S6 S7 S8

C1 C2 C3 C4 C5 C6 C7 C8

4 4 4 4 4 4 4 4
C1 C2 C3 C4 C5 C6 C7 C8

Permutation

27
f(Ri-1,Ki)

32

Initial and Expansion PermutationsInitial and Expansion Permutations
• Input: b1 b2 b3 … b32 b33 b34 b35 … b64p 1 2 3 32 33 34 35 64

• Initial Permutation (IP): Input b58 becomes bit1 i.e. MSB of L0

MSB

58 50 42 34 26 18 10 2 60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6 64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1 59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5 63 55 47 39 31 23 15 7

• Expansion Permutation (EP):
32 1 2 3 4 5 4 5 6 7 8 9
8 9 10 11 12 13 12 13 14 15 16 17
16 17 18 19 20 21 20 21 22 23 24 25

28

24 25 26 27 28 29 28 29 30 31 32 1
b32 (LSB of Ri-1) becomes bit1 (to be XORed to MSB of Ki)

S Boxes Design CriteriaS-Boxes Design Criteria
• IBM announced in 1990

– Each S-box has 6 input bits and 4 output bits. This was the
largest that could be put on one chip in 1974

– The outputs of the S-boxes should not be close to being
linear function of the inputs.
Each row of an S box contains all numbers from 0 to 15– Each row of an S-box contains all numbers from 0 to 15

– If two inputs to an S-box differ by 1 bit, the outputs must
differ by 2 bitsy

– If two inputs to an S-box differ in their first 2 bits but have
the same last 2 bits, the outputs must be unequal.

– There are 64 pairs of inputs having a given XOR. For each
of these pairs, compute the XOR of the outputs (out of 16
possibilities) No more than eight of these output XORs

29

possibilities) . No more than eight of these output XORs
should be the same.

S BoxesS-Boxes
14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

S-box 1
14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S-box 2
15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

S-box 3

0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 810 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S-box 4
7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15

13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9

30

10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S BoxesS-Boxes
2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

S-box 5
2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S-box 6
12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6

S-box 7

9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 14 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S-box 8
13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2

31

7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

Permutation after S BoxPermutation after S-Box

• 32 bit permutation: OP

16 7 20 21 29 12 28 17 15 23 26 1 5 18 31 10

2 8 24 14 32 27 3 9 19 13 30 6 22 11 4 252 8 24 14 32 27 3 9 19 13 30 6 22 11 4 25

32

Strong Diffusion Property of DESStrong Diffusion Property of DES
• Small changes in plaintext or key causeSmall changes in plaintext or key cause

significant changes in ciphertext (avalanche
effect) the expander cause this effecteffect) … the expander cause this effect
– Experiment: two plaintexts differ on one bit

0000 0 and 1000 00000…..0 and 1000…..0
and using the key

0000001100101101001001100010
00111000011000001110001100100011100001100000111000110010

Round # # of Bits that differ
0 1
4 39
8 29
12 30

33

12 30
16 34

Key ScheduleKey Schedule
1. Parity bits are discarded
2 P t ti

57 49 41 33 25 17 9 1 3458 50 42 26 18
10 2 59 51 43 35 27 19 5211 3 60 44 36

2. Permutation

63 55 47 39 31 23 15 7 3862 54 46 30 22
14 6 61 53 45 37 29 21 2013 5 28 12 4

3. Partition the results into C0 D0 each has 28 bits3. Partition the results into C0 D0 each has 28 bits
4. Ci = LSi(Ci-1) Di = LSi(Di-1)

1 2 3 4 5 6 7 8 129 10 11 13 14
1 1 2 2 2 2 2 2 21 2 2 2 2

15 16
2 1

i

14 17 11 24 1 5 3 28 1015 6 21

1 1 2 2 2 2 2 2 21 2 2 2 2 2 1LSi
5. 48 bits Ki are chosen from the 56-bit string CiDi

14 17 11 24 1 5 3 28 1015 6 21
23 19 12 4 26 8 16 7 227 20 13
41 52 31 37 47 55 30 40 4851 45 33
44 49 39 56 34 53 46 42 3250 36 29

34

44 49 39 56 34 53 46 42 3250 36 29
Note: each bit of the 56 bit key is used in approximately 14 of the 16 rounds

Linear CryptanalysisLinear Cryptanalysis
• M. Matsui, “Linear cryptanalysis method for DES

i h ” E t’93cipher,” Eurocrypt’93
• A kind of “known plaintext attack”

k d i h 21 k l i• Break 8-round DES with 221 known plaintexts
• Break 16-round DES with 247 known plaintexts
• Break 8-round DES on natural English with 229

ciphertext
N t 255 247 256 ti i (1 1 4 d)Note: 255  247 256 times saving (1 year  1.4 days)

• Idea: try to find effective linear approximate equations

such that they hold with probability p  1/2 forXOR of a

P[i1,i2,…,ia]  C[j1,j2,…,jb] = K[k1,k2,…,kc]

35

such that they hold with probability p  1/2 for
randomly chosen plaintext.

XOR of a
plaintext bits

Linear CryptanalysisLinear Cryptanalysis
• Once we have a linear approximate equation, it

is possible to determine the bit K[k1, k2, …, kc]
through random experiments:through random experiments:
– Assume p > 1/2

Obt i N d (l i t t i h t t) i– Obtain N random (plaintext, ciphertext) pairs
– Let T be the number of plaintexts such that the

expression P[i1, i2, …, ia]  C[j1, j2, …, jb] = 0
– if T > N/2 then guess K[k1, k2, …, kc] = 0g [1 2 c]

else guess K[k1, k2, …, kc] = 1

N N i | 1/2| i h f

36

Note: as N increases or |p-1/2| increases, the accuracy of
the guess increases

Linear Approximation of S boxesLinear Approximation of S-boxes
• For a given S-Box Sa (a=1,2,…,8), 163, 115,

define NSa(, ) as the number of input patterns (total 64
input x patterns) such that

x[1][1]  x[2][2]  x[3][3]  x[4][4]  x[5][5]  x[6][6]
= Sa(x)[1][1]  Sa(x)[2][2]  Sa(x)[3][3]  Sa(x)[4][4]

estimate of the probability that “a masked XOR value of the input
bits coincides with a masked XOR value of the output bits”

• Ex. From the table on the next slide, NS5(16, 15) = 12
 (Ri-1[17]  Ki[26])  f(Ri-1,Ki)[3,8,14,25] = 0

the 2nd input bit to S5 output from S5

37
with p = 12/64=0.19

p 5 p 5
the 17-th bit of Ri-1 where
MSB is the 1st bit, i.e. Ri-1[1]

Linear Approximation of S Box SLinear Approximation of S-Box S5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

NS5(, )-32 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 4 -2 2 -2 2 -4 0 4 0 2 -2 2 -2 0 -4
3 0 -2 6 -2 -2 4 -4 0 0 -2 6 -2 -2 4 -4
4 2 -2 0 0 2 -2 0 0 2 2 4 -4 -2 -2 0
5 2 2 -4 0 10 -6 -4 0 2 -10 0 4 -2 2 4
6 -2 -4 -6 -2 -4 2 0 0 -2 0 -2 -6 -8 2 0
7 2 0 2 -2 8 6 0 -4 6 0 -6 -2 0 -6 -47 2 0 2 -2 8 6 0 -4 6 0 -6 -2 0 -6 -4
8 0 2 6 0 0 -2 -6 -2 2 4 -12 2 6 -4 4
9 -4 6 -2 0 -4 -6 -6 6 -2 0 -4 2 -6 -8 -4
10 4 0 0 -2 -6 2 2 2 2 -2 2 4 -4 -4 0
11 4 4 4 6 2 -2 -2 -2 -2 -2 2 0 -8 -4 0
12 2 0 -2 0 2 4 10 -2 4 -2 -8 -2 4 -6 -4
13 6 0 2 0 -2 4 -10 -2 0 -2 4 -2 8 -6 0
14 -2 -2 0 -2 4 0 2 -2 0 4 2 -4 6 -2 -414 -2 -2 0 -2 4 0 2 -2 0 4 2 -4 6 -2 -4
15 -2 -2 8 6 4 0 2 2 4 8 -2 8 -6 2 0
16 2 -2 0 0 -2 -6 -8 0 -2 -2 -4 0 2 10 -20
17 2 -2 0 4 2 -2 -4 4 2 2 0 -8 -6 2 4

38

18 -2 0 -2 2 -4 -2 -8 4 6 4 6 -2 4 -6 0
19 -6 0 2 -2 4 2 0 4 -6 4 2 -6 4 -2 0

Linear Approximation of S Box SLinear Approximation of S-Box S5
(Ri-1[17]  Ki[26])  f(Ri-1,Ki)[3,8,14,25] = 0

Ri-1

Expander
32

Note: MSB of Ri-1 is Ri-1[1]
Ri-1[17] is the 17-th bit of Ri-1
Ki[26] is the 26-th bit of Ki

(i 1[] i[]) (i 1 i)[]

EP 32 1 2 3 4 5 4 5 6 7 8 9
8 9 10 11 12 13 12 13 14 15 16 17

E(Ri-1)
Ki

p


48 48

48

i[] i
counted starting from MSB16 17 18 19 20 21 20 21 22 23 24 25

24 25 26 27 28 29 28 29 30 31 32 1

B1 B2 B3 B4 B5 B6 B7 B8
6 6 66 6 6 6 6

48 8

S1 S2 S3 S4 S5 S6 S7 S8

4 4 4 4 4 4 4 4
C1 C2 C3 C4 C5 C6 C7 C8

OP
The best linear

i i16 7 20 21 29 12 28 17 15 23 26 1 5 18 31 10

39

Permutation

f(Ri-1,Ki)
32

OP approximation
for S5

7 9 7

2 8 24 14 32 27 3 9 19 13 30 6 22 11 4 25

Linear Approximation of 3 round DESLinear Approximation of 3-round DES
• Extended approximation for S-Box to 3-round DES

(PL[17]  K1[26])  PH[3,8,14,25] = x2[3,8,14,25]
(CL[17]  K3[26])  x2[3,8,14,25] = CH[3,8,14,25]

 (canceling common terms) (canceling common terms)
PH[3,8,14,25]  CH[3,8,14,25]  PL[17]  CL[17]
= K1[26]  K3[26]f

PH PL
K1

[3,8,14,25]
[26]

[17] x1 1[] 3[]

Pr{the above eq. holds | P, C} =
2 2

f

K2

[, , ,] []

(12/64)2 + (1-12/64)2 = 0.6953

This is the best linear approximation of
equal at the
same time

unequal at the
same time

f
x2

This is the best linear approximation of

3-round DES cipher. Using this equationf

K3

x3[3,8,14,25]
[26]

[17]

40

we can deduce K1[26]  K3[26]CH CL

Linear Approximation of 5 round DESLinear Approximation of 5-round DES
PH PL

K1

x1[17] [1 2 4 5]
[2,3,5,6]

f

[26]

x1

K2

[17] [1,2,4,5]

[3,8,14,25]
[26]

[17]
f

x2

K3

f

3

x3

f

K4

x4[3,8,14,25]
[26]

[17]

f

K5

x5[17] [1,2,4,5]
[2,3,5,6]

41

f

CH CL

Linear Approximation of 5 round DESLinear Approximation of 5-round DES
• For a 5-round DES, we can apply the previous linear

approximation to the 2nd and the 4th round:approximation to the 2nd and the 4th round:
(x2[18]  K2[26])  PL[3,8,14,25] = x3[3,8,14,25]
(x4[18]  K4[26])  x3[3,8,14,25] = CL[3,8,14,25]

And apply the following linear equation (deduced from NS1(27,
4) = 22)

X[1 2 4 5]  f(X K)[18] = K[2 3 5 6]X[1,2,4,5]  f(X,K)[18] = K[2,3,5,6]
to the 1st and the 5th round:

PL[1,2,4,5]  K1[2,3,5,6] = PH[18]  x2[18]
x5[1,2,4,5]  K5[2,3,5,6] = x4[18]  CH[18]

combining these four linear equations (canceling common terms)
PH[18]  PL[1,2,3,4,5,8,14,25]  CH[18]  CL[1,2,3,4,5,8,14,25]PH[18]  PL[1,2,3,4,5,8,14,25]  CH[18]  CL[1,2,3,4,5,8,14,25]

= K1[2,3,5,6]  K2[26]  K4[26]  K5[2,3,5,6]
the success probability is shown to be 0.519

42

Best Expressions for DES cipherBest Expressions for DES cipher
round Best approximation expressions Successround Best approximation expressions Success

probability
3 PH[3,8,14,25]  CH[3,8,14,25]  PL[18]  CL[18] = K1[26]  K3[26] 0.5+1.562-3

4 PH[3,8,14,25]  CH[18]  PL[18]  CL[1,2,4,5,3,8,14,25] = K1[26]  K3[26]
 K4[2,3,5,6]

0.5-1.952-5

5 PH[18]  PL[1,2,4,5,3,8,14,25]  CH[18]  CL[1,2,4,5,3,8,14,25] =
2 3 6  26  26  2 3 6

0.5-1.222-6

K1[2,3,5,6]  K2[26]  K4[26]  K5[2,3,5,6]

PH[8,14,25]  PL[16,20]  CH[17]  CL[1,2,4,5,3,8,14,25] = K1[25,29]  0.5-1.492-24

16
H[, ,] L[,] H[] L[, , , , , , ,] 1[,]

K3[26]  K4[4]  K5[26]  K7[26]  K8[4]  K9[26]  K11[26]  K12[4] 
K13[26]  K15[26]  K16[2,3,5,6]

2 key bits of 16-round DES can be deduced with high success rate
?

43

2 key bits of 16 round DES can be deduced with high success rate
using |1.49  2-24|-2  247 known-plaintexts

Is DES a group?Is DES a group?
• Is DES closed under composition?• Is DES closed under composition?
• x, EK2

(EK1
(x)) = EK3

(x)?

?
EK1() EK2() EK3()?

• If it were the case double encryption with DES• If it were the case, double encryption with DES
is no more secure than a single DES.

44

Is DES a group?Is DES a group?
• Campbell and Wiener, “DES is not a group,” Crypto92, pp.512-520.

• Fact: E0 (DES encryption with K=‘000…0’)
E1 (DES encryption with K=‘111…1’)

dl l i i ld d frepeatedly apply E1E0 on a certain P yielded P after many
iterations, i.e. (E1E0)n(P) = P, where n is the smallest
positive integerpositive integer

• Lemma: If m is the smallest positive integer such that
(E E)m(P) P f ll P d i th ll t iti(E1E0)m(P) = P for all P, and n is the smallest positive
integer such that (E1E0)n(P0) = P0 for a particular P0,
then n divides mthen n divides m

– proof: Let m = nq + r, 0r<n, since (E1E0)n(P0) = P0
P0 = (E1E0)m(P0) = (E1E0)r(E1E0)nq(P0) = (E1E0)r(P0)

45

0 (1 0) (0) (1 0) (1 0) (0) (1 0) (0)
since n is the smallest integer s.t. (E1E0)n(P0)= P0  r = 0

Is DES a group?Is DES a group?
• Suppose DES is closed,

– E1E0 = EK
– EK

2, EK
3,… are also represented by DES keys

th l 256 ibl k id th t {E E 2– there are only 256 possible keys, consider the set {EK, EK
2,

EK
3…. EK

256+1}   i, j , 1i<j256+1, s.t. EK
j = EK

i

for any x encrypt j times then decrypt i times yields x– for any x, encrypt j times then decrypt i times yields x
ie. EK

j-i = DK
iEK

j = DK
iEK

i = I
– therefore, the smallest m such that (E1E0)m(P) = P for all P, m , (1 0) () ,

must be less than or equal to 256

• Coppersmith found 33 P0 and their corresponding n such
that (E1E0)n(P0) = P0. From the lemma, m must be the
least common multiple of these n’s, which turned out to
b d 10277 C t di ti ! DES i t !

46

be around 10277. Contradiction! DES is not a group!

Double DESDouble DES
• Fortunately, DES is not a group; it makes some

sense to encrypt twice in the hope to increase
the security of the system, however, doublethe security of the system, however, double
DES is still considered not much more secure
than single DESthan single DES.

E () E () E ()2 times computation

• Meet in the middle attack red ce the strength of

EK1() EK2() EK3()only a little more secure

• Meet in the middle attack reduce the strength of
double DES from a seemingly 112-bit security

47

to just 57-bit security under some assumptions

Brute Force AttackBrute-Force Attack

EK1() EK2()

• A naïve brute-force attack can try all possible
combinations of 256 keys for K and 256 keyscombinations of 256 keys for K1 and 256 keys
for K2

• Number of all possible different keys for (K1,
K2) would be 2112

2)
• The attacker has to do 2112 DES to exhaust all

ibl bi ti
48

possible combinations

Meet In The Middle AttackMeet-In-The-Middle Attack
• Given a pair of plaintext and ciphertext (m, c),Given a pair of plaintext and ciphertext (m, c),

try to find the key pair K1, K2 of a double DES
scheme in a brute force wayscheme in a brute-force way

E () D ()m cc1
c

m1
mEK1() DK2()m cc2

c3

m2
m3

256 256

matching

2 2

list of ciphertexts list of plaintexts257 DES
(256)2 i

49

(256)2 comparisons

Computation SpeedComputation Speed

• Software: 10 Mbits/sec
ex 1000 blocks/sec PIII 800 crypto++ex. 1000 blocks/sec PIII 800 crypto++

• Hardware: > 1Gbits/sec

50

Mode of OperationMode of Operation
• Block cipher• Block cipher

– ECB
– CBC

• Stream cipherp
– Self-synchronizing stream cipher

• CFB• CFB

– Synchronous stream cipher
OFB• OFB

• Counter Mode

51

Electronic CodeBook (ECB) ModeElectronic CodeBook (ECB) Mode
plaintext ciphertext ciphertext plaintext

P1

p

bl k P2

C1

C2

EK

EK

C1

p

C2

P1

p

P2

DK

DKblocks 2

•••

2

•••
•••

K 2

•••

2

•••
•••

K
channel

• The most obvious way to use a block cipher

Pn CnEK Cn PnDK

• The most obvious way to use a block cipher
• The same block of plaintext always map to the same

cipher block (in the codebook)cipher block (in the codebook).
• Vulnerability is greatest at the beginning and end of

messages (easy to locate) or other well formatted

52

messages (easy to locate), or other well formatted
sessions.

Electronic CodeBook (ECB) ModeElectronic CodeBook (ECB) Mode
• Padding is necessary: fixed pattern of bits or ciphertext g y p p

stealing.
• If the message have many blocks (encrypted with the• If the message have many blocks (encrypted with the

same key) and some of the plaintexts are known, Eve
il d b k f l i fcan compile a codebook to map useful pieces of

plaintext and ciphertext. She can effectively decipher
the content of the message or alter the message without
knowing the actual key.g y

• Eve can use block-replaying attack to alter part of the
content of an important transaction

53

content of an important transaction.

Ciphertext stealing in ECB modeCiphertext stealing in ECB mode
• Take part of the last ciphertext block as the padding

Encryption Decryption

Pn-1 Pn C' Cn-1 Cn C'

yp

Ek(ꞏ) Ek(ꞏ) Dk(ꞏ) Dk(ꞏ)

compare

Cn C' Cn-1 Pn C' Pn-1

compare

54

Cipher Block Chaining ModeCipher Block Chaining Mode
Pi+1PiPi-1P0 C0 Ci-1 Ci Ci+1

IV


EkEkEkEk •••
IV 

Dk



Dk



Dk



Dk•••

Ci+1CiCi-1C0 P0



Pi-1



Pi



Pi+1



• A single-bit error in the ciphertext affects one block
and one bit of the recovered plaintext

0 i-1 i i+1

and one bit of the recovered plaintext.
• Self-recovering from ciphertext error. It doesn’t

recover at all from synchronization errors (one bit is

55

recover at all from synchronization errors. (one bit is
added or lost in the ciphertext stream)

Stream CipherStream Cipher
key stream key streamy
generator

y
generator

 
Ci

Ki Ki

Pi Pi
plaintext

keystream keystream

 Pi Pi

Encrypt
ciphertextplaintext

Decrypt

• Security depends entirely on the insides of the
kkeystream generator.

• Key stream generator should be deterministic such that

56

it can be flawlessly reproduced at decryption time.

Key Stream GeneratorKey Stream Generator
Internal StateInternal State

Next-State
FunctionKey K Function

Output Function

Ki

• Two keystream generators, with the same key and the

i

57

same internal state, will produce the same keystream.

Self Synchronizing Stream CipherSelf-Synchronizing Stream Cipher

K

Internal State

Output
Function

Internal State

Output
FunctionKFunction Function

 Ci
Pi  Pi

• Each keystream bit is a function of a fixed number of
previous n ciphertext bits.

• The decryption keystream generator will automatically
synchronize with the encryption keystream generator

58

after receiving n ciphertext bits.

Cipher Feedback (CFB) ModeCipher-Feedback (CFB) Mode
8-byte shift register 8-byte shift registery g

64 bits

y g

64 bits

IV IV

EK(ꞏ)Key K
8 bits64 bits

EK(ꞏ)Key K
64 bits

KiPi Ci
8 bits

Left-most byte

KiCi Pi
8 bits 8 bits

Left-most byte

• One bit error in the ciphertext will incorrectly produce n
k t

Pi Ci Ci Pi

keystream errors.
• Playback attack: Bob will resynchronize automatically.

If IV d l i h h k d h i h

59

• If IV and plaintext are the same, the key stream and the ciphertext
stream would be the same

Synchronous Stream CipherSynchronous Stream Cipher
• The keystream is generated independent of the

message stream. (Key Auto-Key (KAK) system)
• Do not propagate transmission errors• Do not propagate transmission errors.
• Deterministic keystream generator: it must

generate the same output keystream on both
sides.

• The keystream sequence will eventually repeat.
E cept one time pads all ke stream generatorsExcept one-time pads, all keystream generators
are periodic.

60

Output Feedback (OFB) ModeOutput Feedback (OFB) Mode
8-byte shift register 8-byte shift register

IV

E ()Key K 8 bits

64 bits

E ()Key K 8 bits

64 bits
IVIV

EK(ꞏ)Key K 8 bits

64 bits

Left-most byte

EK(ꞏ)Key K 8 bits

64 bits

Left-most byte

Pi Ci
Ki8 bits

y

Ci Pi
Ki8 bits

y

• running a block cipher as a synchronous stream cipher
• feedback mechanism is independent of both the plaintext and the

ciphertext streamsciphertext streams
• most key generation works can be done offline
• IV should be unique but can be public. The same key stream

h ld b d i  k  k h

61

should not be used twice, e.g. c1 = p1  k, c2 = p2  k then
p2 = c2  (c1  p1)

Output Feedback (OFB) ModeOutput Feedback (OFB) Mode
• A single bit error in the ciphertext causes a single-bit error in the

recovered plaintextrecovered plaintext.
• A loss of synchronization is fatal. A mechanism to detect

“synchronization losses” is required.y q
• OFB should be used only when the feedback size is the same as

the block size for security reasons. (to make the average key
l l ibl 264 1 E 1 bi f db k dcycle as long as possible, 264-1. Ex. assume 1 bit feedback and

IV = 1010…10, it is very likely that the period of Ki is 2 only)

IV



Pi-1 Pi Pi+1

 

P0


Ek(ꞏ) Ek(ꞏ) Ek(ꞏ)

 
Ek(ꞏ) •••

62

Ci-1 Ci Ci+1C0

Counter ModeCounter Mode
8-byte shift register 8-byte shift register

EK(ꞏ)Key K
8 bits64 bits

IV

i mod 28
EK(ꞏ)Key K

8 bits64 bits
IV

i mod 28

K()Key K
64 bits

Left-most byte

K()Key K
64 bits

Left-most byte

Pi Ci
Ki8 bits

Ci Pi
Ki8 bits

• Just using sequence number as the input to the shift
i t (dregister (or you can use any random-sequence

generators, whether cryptographically secure or not)

63

Comparisons on Mode of OperationComparisons on Mode of Operation
CBCECB

IV
Pi+1



Pi



Pi-1



P0



plaintext ciphertext
EK(ꞏ)

EK(ꞏ)

P1

P2 C2

C1

Ci+1

EK(ꞏ)

CiCi-1C0

••• EK(ꞏ)EK(ꞏ)EK(ꞏ)•••
•••

•••

K

EK(ꞏ)Pn Cn

CFB Counter
OFB

8-byte shift register
IV

8-byte shift register

E ()Key K
64 bits

IV
8-byte shift register

E ()Key K
64 bits

IV
8 bits

EK(ꞏ)Key K
64 bits

8 bits
64 bits

EK(ꞏ)y

Ki

8 bits64 bits

8 bits

Left-most byte

EK(ꞏ)y

Ki

64 bits

8 bits

Left-most byte

i mod 28

KiPi Ci
8 bits

Left-most byte

64

i
Pi Ci

Ki
Pi Ci

8 bits

Comparisons ECBComparisons - ECB
ECBECB:

Bruce Schneier, “Applied Cryptography”ECBECB:

Security: Efficiency:
+ Speed is the same as the block- Plaintext patterns are not

concealed. (the same plaintext
maps to the same ciphertext)

+ Speed is the same as the block
cipher.

- Ciphertext is up to one block longermaps to the same ciphertext.)
- Input to the block cipher is not

randomized; it is the same as the

than the plaintext, due to padding.
- No preprocessing is possible.
- Processing is parallelizableplaintext.

+ More than one message can be
encrypted with the same key.

Processing is parallelizable.

Fault-tolerance:
A i h ff f llencrypted with the same key.

- Plaintext is easy to manipulate;
blocks can be removed,

d i h d

- A ciphertext error affects one full
block of plaintext.

- Synchronization error is

65

repeated or interchanged. y
unrecoverable.

Comparisons CBCComparisons - CBC
CBCCBC:CBCCBC:

Security:y
+ Plaintext patterns are concealed by XORing with previous ciphertext

block.
I h bl k i h i d i d b XORi i h h+ Input to the block cipher is randomized by XORing with the
previous ciphertext block.

+ More than one message can be encrypted with the same key+ More than one message can be encrypted with the same key.
+/- Plaintext is somewhat difficult to manipulate.

• One bit error in causes an error block and one error bit in the following block.
• Removal of ciphertext blocks causes errors of corresponding message blocks.
• Insertion of m ciphertext blocks causes m+1 errors in the plaintext blocks.
• Repetition is kind of insertion.

66

• Swapping of 2 ciphertext blocks causes 4 blocks of errors.

Comparisons CBCComparisons - CBC
Efficiency:
+ Speed is the same as the underlying block cipher.

Ciphertext is up to one block longer than the plaintext not- Ciphertext is up to one block longer than the plaintext, not
counting the IV.

- No preprocessing is possible.p p g p
+/- Encryption is not parallelizable, decryption is parallelizable

and has a random-access property.

Fault-tolerance:
A ciphertext error affects one full block of plaintext and the- A ciphertext error affects one full block of plaintext and the
corresponding bit in the next block

- Synchronization error is unrecoverable

67

y

Comparisons CFBComparisons - CFB
CFBCFB:CFBCFB:
Security:
+ Plaintext patterns are concealed since the key depends on previous

ciphertext stream.
+ Input to the block cipher is previous ciphertext stream.
+ More than one message can be encr pted ith the same ke+ More than one message can be encrypted with the same key.

If a different IV is used, ciphertext stream will not be the same.
+/- Plaintext is somewhat difficult to manipulate, blocks can be/ Plaintext is somewhat difficult to manipulate, blocks can be

removed from the beginning and end of the message, bits of
the first block can be changed, and repetition allows some
controlled changes.

Efficiency:
+ Speed is the same as the block cipher

68

+ Speed is the same as the block cipher.
- Ciphertext is the same size as the plaintext, not counting the IV.

Comparisons on Mode of OperationComparisons on Mode of Operation
+/- Encryption is not parallelizable decryption is parallelizable and+/ Encryption is not parallelizable, decryption is parallelizable and

has a random-access property.
- Some preprocessing is possible before a block is seen; the previous

ciphertext block can be encrypted.
+/- Encryption is not parallelizable; decryption is parallelizable and

h d thas a random-access property.

Fault-tolerance:Fault tolerance:
- A ciphertext error affects the corresponding bit of plaintext and

the next full block.
+ Synchronization errors of full block sizes are recoverable. 1-bit

CFB can recover from the addition or loss of single bits.

69

Comparisons OFB/CounterComparisons – OFB/Counter
OFB/CounterOFB/Counter:OFB/CounterOFB/Counter:

Security:
+ Plaintext patterns are concealed. Different keys might be used for

the same plaintext.
+ I t t th bl k i h i i k t+ Input to the block cipher is previous keystream.
+ More than one message can be encrypted with the same key,

provided that a different IV is used.provided that a different IV is used.
- Plaintext is very easy to manipulate; any change in ciphertext

directly affects the plaintext.

Efficiency:
+ Speed is the same as the clock cipher

70

+ Speed is the same as the clock cipher.
- Ciphertext is the same size as the plaintext, not counting the IV.

Comparisons OFB/CounterComparisons – OFB/Counter

+ Processing is possible before the message is seen
-/+ OFB processing is not parallelizable; counter processing is

parallelizable.

Fault tolerance:Fault-tolerance:
+ A ciphertext error affects only the corresponding bit of plaintext.
- Synchronization error is unrecoverable.y

71

Breaking DESBreaking DES
• Brute-force attacks:

– distributive computation
• Rocke Verser: more than 1000 computers on the Internet,Rocke Verser: more than 1000 computers on the Internet,

search over 1/4 of the key space for 5 months to find the
1997 RSA Data Security’s DES Challenge for a prize of
US$10000

– custom architecture
• Electronic Frontier Foundation (EFF)’s ‘DES cracker’: 39

days were used to search 85% of the key space to find the
key for RSA Data Security’s DES Challenge II.

• 1 PC, software, 24 search units/chip, 64 chips/board, 12
b d / h i 2 h i (36864 it i t t l)

72

boards/chassis, 2 chassis (36864 units in total)

Enhanced DESEnhanced DES
• Double DES

– although 112 bits key were used, the security level is
the same as a 57 bit scheme

– meet-in-the-middle attack
• Triple DESTriple DES

– three key system: EK1
(EK2

(EK3
(m)))

two key system: E (D (E (m))) compatibility– two key system: EK1
(DK2

(EK1
(m))) compatibility

• DESX: K3 (EK2
(K1m)) by Rivest

n• snDES
– redesign S-Boxes such that linear approximations are

73

minimized

Unix Password SecurityUnix Password Security
• Direct password authentication model• Direct password authentication model

password plaintext

accept/reject

CCompare
with stored
plaintext

d

Eve might sneak into the system and
steal passwords from the system file.

password

74

counter measure: encrypt the password before storing them

Unix Password SecurityUnix Password Security
plaintext

f(ꞏ)workstation
user

passwordf()workstation

compare

f(password)
accept/reject

(p sswo d)
...

• f(ꞏ) is a sort of one way function (not necessary a• f(ꞏ) is a sort of one-way function (not necessary a
permutation); given y = f(x), it’s hard to solve x

• To pass the identification check a user need to key in• To pass the identification check, a user need to key in
the plaintext password. Although Eve might have
access to the system password file she still does not

75

access to the system password file, she still does not
know the plaintext password, unless she can invert f(ꞏ)

Unix Password SecurityUnix Password Security
• Two types of f(ꞏ) function:

– MD5 hash function:

Plaintext password MD5 128-bit hashPlaintext password MD5 128 bit hash

collision resistant

– modified DES:

collision resistant

25-round
DES 64-bit cipher64-bit ‘00000…0’

the first 8-characters

key
the crypt() function

76

of password, 7 bits/char

Unix Password SecurityUnix Password Security
• Dictionary Attacks:

– people tend to choose meaningful words or their
modification as their passwordod cat o as t e passwo d

– greatly reduce the possible set of passwords
958  6 6  1015  8000095  6.6  10  80000

– although it’s hard to invert f(ꞏ); now that we have
the possible set of pass ords e can tr e erthe possible set of passwords, we can try every
possible f(password) explicitly, and match with the
user entries in the system file; even use H/W DESuser entries in the system file; even use H/W DES
cracker

77

– counter measure: salt

Unix Password SecurityUnix Password Security
• Salt:

– additional 12 bits (2 characters, each from 64
candidates)ca d dates)

– together with the 8-character password determines
the ciphertext stored in the system filethe ciphertext stored in the system file

– two users using the same password would not have
the same cipherte t entr in the s stem filethe same ciphertext entry in the system file

– make a general dictionary attack to all user harder,
l h h i i h k i di id lalthough it is the same to attack an individual's

password because the salt value for a particular user
i bli l k

78

is publicly known

Unix Password SecurityUnix Password Security
• Usage of the 12-bit salt:

– E(R) in the DES round function is a 3248 bit
mappingapp g

– swap bit 1 and bit 25 if bit 1 of the salt is 1, else no
swapswap

– swap bit 2 and bit 26 if bit 2 of the salt is 1, else no
s apswap

– …
– custom DES algorithm avoids the attack of a

hardware ‘DES cracker’

79

Challenge Response Password AuthChallenge-Response Password Auth.
• Challenge-Response Protocol

– to avoid transmitting the plaintext password, to
avoid the replay attackavo d t e ep ay attac

USERSYSTEM

choose a random
number r Calculate

()

r

v = Epassword(r)v
Calculate Epassword(r)

d t h ithand match with v
accept/reject

80

passwords

Challenge Response Password AuthChallenge-Response Password Auth.
• How do we avoid the attack on the public password file?

Is there a method for the system to compare the response
without storing the passwords for all the users?

USERSYSTEM
passwordH(•)

choose a random
number r Calculate

()

r

passwordH()

v = EH(password)(r)v
Calculate EH(password)(r)

d t h ithand match with v
accept/reject

81

H(password)’s

Challenge Response Password AuthChallenge-Response Password Auth.
• A cryptographic collision resistant hash function H(•)• A cryptographic collision-resistant hash function H(•)

(ex. MD5, SHA1…) can be used instead of Ek(•).

USERSYSTEM
choose a random
number r Calculate v =

H(H (password)||r)

r

H(H (password)||r)v
Calculate H(H (password)||r)
and match with v

accept/reject

H(password)’s

82

H(password) s

