Introduction to Provable Security

Foundation of Cryptography Pei-yih Ting NTOUCS

0 0 0 0 0 0 1

3

Familiar Schemes (cont'd)

- ♦ Questions:
 - * Are they secure?
 - * What do you mean by "secure"?
 - * Are they secure unconditionally or under any condition?
 - * Which one is better?
 - * What is the primitive underneath?

♦ Brief answers:

- * RSA ciphertext hides the message s.t. reconstruction of m is hard
- * ElGamal encryption is IND-CPA s.t. "no info" about m is leaked
- * Forging valid RSA signature is easy, but not for specified message
- * Security of ElGamal signature? _____ quality / feature of scheme
- * All the above depend on the *definitions of security* and are conditional on some *computational assumptions*. adversary
- * Basic primitive for security protocols is OWF

Familiar Public Key Schemes

♦ RSA: 1978

- * Key Generation: PK=(*n*, *e*) SK=*d*
 - * Choose large prime numbers $p, q, n = p \cdot q, \Phi(n) = (p-1) \cdot (q-1)$
 - ⇒ Choose integer *e* s.t. gcd(*e*, Φ) = 1, calculate *d* such that $e \cdot d \equiv 1 \pmod{Φ}$
- * **Enc**(PK, *m*): $c \equiv m^e \pmod{n}$, **Dec**(SK, *c*): $m \equiv c^d \pmod{n}$
- * **Sign**(SK, *m*): $\sigma \equiv m^d \pmod{n}$, **Verify**(PK, *m*, σ): $\sigma^e \equiv m \pmod{n}$
- ♦ ElGamal: 1985
 - * Key Generation: PK=(p, g, y), SK=x
 - ★ prime p, p = 2 q + 1, where q is also prime, a generator g' of Z_p , generator of $G_q g \equiv_p g'^2$, choose a secret integer x in Z_q , and calculate $y \equiv_p g^x$
 - * **Enc**(PK, *m*): $r \in_{\mathbb{R}} \mathbb{Z}_q$, $u \equiv_p g^r$, $v \equiv_p y^r \cdot m$, **Dec**(SK, *c*): $m \equiv_p v \cdot u^{-x}$
 - * Sign(SK, m): $k \in_{\mathbb{R}} \mathbb{Z}_q$, $r \equiv_p g^k$, $s \equiv_q k^{-1}(m rx)$ Verify(PK, m, σ): $g^m \equiv_p y^r \cdot r^s$
- Neat practical schemes, based on the difficulties of the *integer* factoring problem and the discrete logarithm problem respectively.

Familiar Schemes (cont'd)

- ♦ RSA encryption: $c \equiv m^e \pmod{n}$
 - * Secure if only a complete compromise of *m*, given *c*, *n*, *e*, is considered a security breach
 - * Insecure if any partial information (e.g. Jacobi symbol) derived from *m* is considered a security breach
- $\Rightarrow \text{ RSA signature: } \sigma \equiv m^d \pmod{n}$
 - * Secure if only forgery of the signature of an arbitrarily specified message is considered a security breach
 - * Insecure if an existential forgery is considered a security breach
- ♦ ElGamal encryption: $r \in_{\mathbb{R}} \mathbb{Z}_q$, $u \equiv_p g^r$, $v \equiv_p y^r \cdot m$,
 - * Secure if only distinguishing two adversary specified messages under chosen plaintext attack is considered a security breach
 - * Insecure if only distinguishing two adversary specified messages under chosen ciphertext attack is considered a security breach

Encryption Security

Total break

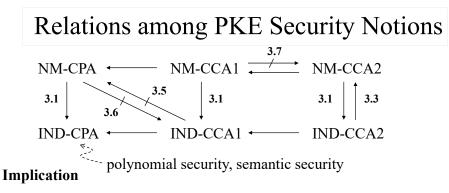
* The adversary can determine the private key of a PKE or the secret key of a symmetric key encryption system.

Partial break

- * The adversary can decrypt a previously unseen ciphertext (without knowing the private/secret key) or determine some interesting information about the plaintext given the ciphertext.
- * In some cryptosystems, partial information about the plaintext may be leaked by the ciphertext. e.g. The Jacobi symbol of the RSA plaintext. $c \equiv m^{c} \pmod{n}$, $gcd(e, \phi(n))=1$, e must be odd $\left(\frac{c}{n}\right) = \left(\frac{m}{n}\right)^{e} = \left(\frac{m}{n}\right)^{e}$

Semantic Security or Polynomial Security:

- * Whatever can be computed from the ciphertext can also be computed without it. Goldwasser & Micali 1984
- * A deterministic encryption scheme does not provide semantic security. e.g. plain RSA and a finite message space



A ⇒ B: A proof that if a public key encryption scheme meets notion of security A then this scheme also meets notion of security B

Separation

A ⇒ B: There exists a public key encryption scheme that provably meets notion of security A but provably does not meet notion of security B

Encryption Security (cont'd)

- ♦ IND: Message Indistinguishability (Ciphertext Indistinguishability): Given a ciphertext *c* from two possible messages m_0, m_1 , it is computationally difficult to determine which one is actually hidden.
- ♦ Non-malleability: Given an encryption of a plaintext *m*, it is impossible to generate another ciphertext which decrypts to f(m), for a known function *f*, without necessarily knowing or learning *m* e.g. RSA, ElGamal, Paillier, m⊕G(sk) are malleable
- ♦ Plaintext awareness: A cryptosystem is plaintext-aware if it is difficult for any efficient algorithm to come up with a valid ciphertext without being aware of the corresponding plaintext.

Adversary Resources:

5

7

Ciphertext Only Attack

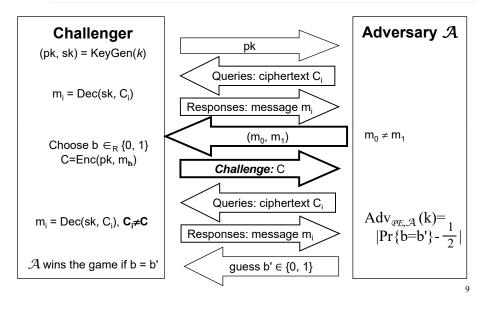
- Known Plaintext Attack
- Chosen Plaintext Attack (CPA)

Non-adaptive Chosen Ciphertext Attack (CCA1, Lunch-time Attack) Adaptive Chosen Ciphertext Attack (CCA2)

Public Verifiable Signature Security

- ♦ Total break: key recovery
- Universal forgery: finding an efficient equivalent algorithm to produce signatures for arbitrary messages
- ✤ Selective forgery: forging the signature for a particular message chosen a priori by the attacker
- ✤ Existential forgery: forging at least one signature
- Adversary Resources:
 - * Key-only attack: no-message attacks
 - * Known-message attack
 - * Generic chosen-message attack: non-adaptive, messages not depending on public key
 - * Directed chosen-message attack: non-adaptive, messages depending on public key
 - * Adaptive chosen-message attack: messages depending on the previously seen signatures

IND-CCA2-Game



CCA is stronger than CPA

- The encryption engine in CPA is free for a PKE. A CCA attack is given both encryption engine and decryption engine.
- Chosen ciphertext is more favorable to the adversary for an IND game
 - ★ Choose c₀, c₁ far away and decrypt to m₀, m₁, use them as the first message, hopefully c = E(m_b) would be easy to distinguish
- CCA2 attack on an IND-CPA homomorphic scheme is easy
 - * Let the challenge ciphertext $c = E(m_b)$.
 - * Choose a random r. Calculate $c' = E(r) \cdot c = E(r \cdot m_b), c' \neq c$
 - $\star\,$ Ask the decryption engine to decrypt c' and obtains $m_b^{}=D(c')/r$

Message Indistinguishability

Definition: IND-CPA, IND-CCA1, IND-CCA2 let $\mathcal{P}E = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ be an encryption scheme $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2)$ be an adversary for atk $\in \{\text{CPA,CCA1,CCA2}\}$ and $k \in \mathbb{N}$, let the advantage $Adv_{\mathcal{P}E,\mathcal{A}}^{ind-atk}(k) = |\Pr\{\text{Exp}_{\mathcal{P}E,\mathcal{A}}^{ind-atk-1}(k) = 1\} - \Pr\{\text{Exp}_{\mathcal{P}E,\mathcal{A}}^{ind-atk-0}(k) = 1\}| < 1/p(k)$ where for $b \in \{0,1\}$, Experiment $\text{Exp}_{\mathcal{P}E,\mathcal{A}}^{ind-atk-b}(k)$ $(pk, sk) \notin \mathcal{K}(k); (x_0, x_1, s) \leftarrow \mathcal{A}_1^{O_1(\cdot)}(pk); y \leftarrow \mathcal{E}_{pk}(x_b);$ return $d \leftarrow \mathcal{A}_2^{O_2(\cdot)}(x_0, x_1, s, y)$ If atk = CPA then $O_1(\cdot) = \varepsilon$ and $O_2(\cdot) = \varepsilon$ If atk = CCA1 then $O_1(\cdot) = \mathcal{D}_{sk}(\cdot)$ and $O_2(\cdot) = \mathcal{D}_{sk}(\cdot)$

10

EUF-CMA

- GMR'86: S. Goldwasser, S. Micali, and R. Rivest, "A digital signature scheme secure against adaptive chosen-message attacks," SIAM J. Computing, pp.281-308, 1988
- ♦ A signature scheme S = (Gen, Sign, Ver) is existentially unforgeable under an adaptive chosen message attack (EUF-CMA) if it is infeasible for a forger who only knows the public key to produce a valid (message, signature) pair, even after obtaining polynomially many signatures on messages of his choice from the signer.
- ♦ Formally, ∀ PPT forger algorithm 𝓕, ∀ positive polynomial p(·),
 ∀ sufficiently large n,

$$\Pr \left\{ \begin{array}{l} (pk, sk) \leftarrow Gen(1^k); \\ \text{for } i=1,...,n \\ M_i \leftarrow \mathcal{F}(pk, M_1, \sigma_1, ..., M_{i-1}, \sigma_{i-1}); \sigma_i \leftarrow Sign(sk, M_i); \\ (M, \sigma) \leftarrow \mathcal{F}(pk, M_1, \sigma_1, ..., M_n, \sigma_n), \\ M \neq m_i \text{ for } i=1,...,n, \text{ and } Ver(pk, M, \sigma)=1 \end{array} \right\} < 1/p(n)$$

Conditional Security

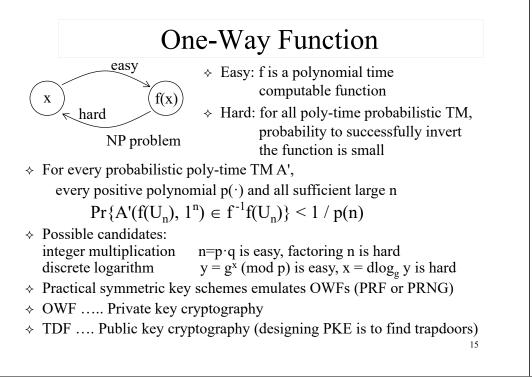
- ♦ Every practical and provably secure public/private key scheme is only secure under specific computational assumptions. e.g.
 - * Rabin cryptosystem is secure if "integer factorization assumption (IFA)" holds
 - * RSA cryptosystem is secure if "RSA assumption" holds for target adv.'s
 - ElGamal encryption is IND-CPA if "decisional Diffie-Hellman assumption (DDH)" holds for target adversaries
- \diamond The NP problem (OWF) behind every public key cryptosystem

Given the public key **PK**, there exists a unique matching secret key **SK**, but no polynomial time algorithm can uncover it.

- \diamond Provably secure *S* \mathcal{E} (PRNG+OTP) is far less efficient than AES/DES
- ♦ Root computational assumption: $NP \neq P$ (weakest)
- ♦ While addressing the security of a cryptosystem, we need to specify the weakest assumption possible (probably not the OWF hiding SK)₁₃

Unconditional Security

- Information-theoretically secure: Perfect secure or Shannon secure: the highest level of security for any scheme, no matter how large the computation power the adversary has, she cannot obtain any information from the ciphertext more than the a-priori information, no computational assumption
 - * Transmitting one random bit: can you encrypt the message such that an adversary guess the message with success probability less than 1/2?
- Necessary condition: the key must be longer than the message, must be symmetric key encryption, not practical
- $\stackrel{\diamond}{\underset{\text{inefficient}}{\text{ smpc from secret sharing, }}} m \xrightarrow{\oplus} \stackrel{\oplus}{\underset{k}{\longrightarrow}} c \xrightarrow{\oplus} \stackrel{\oplus}{\underset{k}{\longrightarrow}} k$
- ♦ Perfect secrecy: the distribution of ciphertext is independent of the encrypted message
- Shannon secrecy: the conditional entropy of the message given the ciphertext is the same as the entropy without the ciphertext

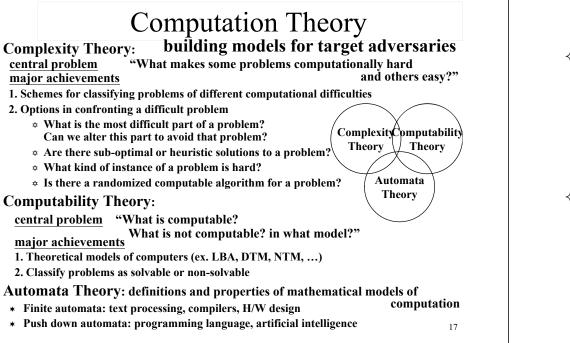


Common Computational Assumptions

 $\diamond \ NP \neq P$

on target adversaries

- ♦ Existence of OWF, OWP, OWTP
- $\diamond \text{ Integer Factoring: given } n = p q, \text{ find } p, q$
- ♦ Discrete Logarithm: given $y \in Z_p$, find x s.t. $y \equiv_p g^x$
- ♦ Square Root Extraction: given n=pq, $y \in Z_n$, find x s.t. $y \equiv_n x^2$
- ♦ RSA (Root Extraction): given n=pq, e, $y \in Z_n$, find x s.t. $y \equiv_n x^e$
- $\diamond \ \ Computational \ Diffie-Hellman: \ given \ g, \ g^x, \ g^y, \ find \ g^{xy}$
- ♦ Decision Diffie-Hellman: given g, g^x , g^y , Z, determine if $Z \equiv_p g^{xy}$
- ♦ Quadratic Residue: given n=pq, x, determine if x \in QR_n
- ♦ Composite Residue: given n=pq, $y \in Z_{n^2}$, decide if $\exists x \in Z_{n^2}$ s.t. $y \equiv_{n^2} x^n$
- ♦ Bilinear Diffie-Hellman: given g, g^x , g^y , $g^z \in G$, find $e(g,g)^{xyz} \in G_T$
- ♦ Bilinear Decision Diffie-Hellman: given g, g^x, g^y, g^z ∈ G, and W∈G_T, decide if W = e(g,g)^{xyz}

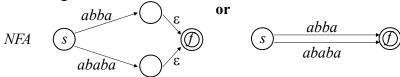


Finite Automata

- ♦ Deterministic Finite Automata (DFA):
 - * $M = (Q, \Sigma, \delta, s, F)$
 - Q: $\{q_0, q_1, \dots, q_{m-1}\}$ finite set of states
 - Σ : alphabet
 - s: start state
 - F: set of final states
 - δ: Q × Σ → Q, transition function
- Non-deterministic Finite Automata (NFA):
 - * $M = (Q, \Sigma, \Delta, s, F)$ Q: {q₀, q₁, ..., q_{m-1}} finite set of states Σ : alphabet s: start state F: set of final states Δ : $Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow 2^Q$, transition function

Example

♦ Design an NFA accepting strings with "abba" or "ababa" substrings.



- ♦ An NFA can always be converted into a DFA.
- We can design an NFA first, then convert it into an equivalent DFA.

Turing Machine

d a

c b a

< 1

- Complexity / Computability is defined w.r.t. a certain model of computation state read/write head
- Turing Machine
 - * Alan Turing, 1936
 - * Similar to finite automaton but with an unlimited and unrestricted memory
 - Formally, a 7-tuple (Q, Σ, Γ, δ, q₀, q_{accept}, q_{reject})
 1. Q is the set of states
 - 2. Σ is the input alphabet not containing the special blank symbol \triangleleft
 - 3. Γ is the tape alphabet, where $\triangleleft \in \Gamma$ and $\Sigma \subseteq \Gamma$
 - 4. $\delta {:}\; Q \times \Gamma \to Q \times \Gamma \times \{L,R\}$ is the transition function
 - 5. $q_0 \in Q$ is the initial state
 - 6. $q_{accept} \in Q$ is the accept state
 - 7. $q_{reject} \in Q$ is the reject state, where $q_{reject} \neq q_{accept}$

Turing Machine (cont'd)

- ♦ TM computes as follows:
 - * M's input $w = w_1 w_2 \dots w_n \in \Sigma^*$ on the leftmost n squares of the tape, the rest of the tape are blanks \triangleleft (the first \triangleleft marks the end)
 - * Initial state is q_0
 - * read/write head starts on the leftmost square
 - \star Computation proceeds according to the transition function δ
 - * If M tries to move its head to the left off the left hand end of the tape, the read/write head stays at the same place for that move

d a

c b a ⊲

read/write head

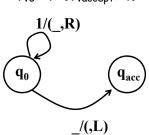
21

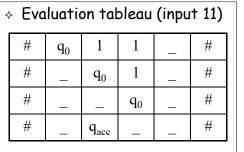
23

* The computation continues state until it enters either the accept or reject state. If neither occurs, M goes on forever.

Example

- ♦ <u>TM</u>:
 - * Q={q₀,q_{accept},q_{reject}}
 - * Σ={1} * Γ={1, }
 - * $\delta(q_0, 1) = \{(q_0, ..., R)\}$
 - * δ(q₀,_)={(q_{accept},L)}





22

DTM vs. NTM

Deterministic Turing Machine: at any time, a DTM knows its next configuration (the state, the tape head, the tape content) for sure; a single configuration specified by its transition function

 $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$

Non-deterministic Turing Machine: at each moment, an NTM has several choices to proceed as the next configurations. i.e. the range of the transition function is modified to be a set:

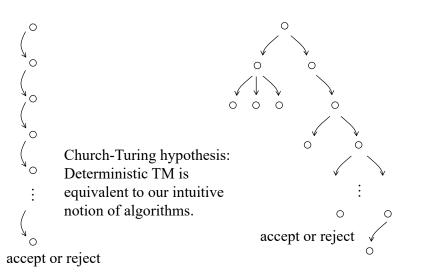
 $\delta: \mathbf{Q} \times \Gamma \to \mathcal{P}(\mathbf{Q} \times \Gamma \times \{\mathbf{L}, \mathbf{R}\}) \setminus \phi$

- * NTM has two equivalent evaluation ways if you only consider the capability:
 - ✤ Process in a massively parallel fashion
 - * Process in a probabilistic fashion (seems much slower)

The parallel one defines a language $L \in NP$ if it accepts $x \in L$ in polynomial time. The probabilistic one also defines NP if it accepts $x \in L$ in polynomial time with non-zero probability. The probabilistic one also defines a language $L \in BPP$ if it accepts $x \in L$ in polynomial time with correct probability bounded away from 0.5. Security professionals surely believe that BPP is a strict subset of NP.

* NTM (with time O(p(n))) can be proven to be equivalent to DTM (with time $O(k^{p(n)})$, where $k = \max |\mathcal{P}(Q \times \Gamma \times \{L, R\})|$)

Deterministic vs. Nondeterministic



Complexity Classes

 \diamond P: polynomial

* problems that can be solved by an algorithm (TM) with computation complexity O(p(n))

ex. Bubble sort $O(n^2)$ Quick sort $O(n \log n)$

* there are many problems which are not P

ex. 2^n knapsack (subset sum) traveling Salesman Problem (TSP) n! unsolvable halting problem

- ♦ NP: non-deterministic polynomial
 - * decision problems that can be decided by an NTM
 - * problems that have solutions (witnesses) which can be verified by a polynomial time algorithm. ex. Decision versions of Fact, dLog, TSP, Satisfiability (SAT), knapsack... 25

Complexity Classes (cont'd)

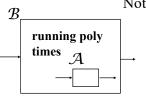
- ♦ NP-complete: the set of the hardest problems in NP
 - * Def 1: NP problems, to which SAT can be reduced
 - * Def 2: NP problems, all NP problems can be reduced to them
 - * ex. SAT, TSP, G3C, Knapsack ...
- ♦ NP-hard: at least as hard as the hardest problems in NP
 - * not limited to decision problem, not necessarily NP, all NP problems can be reduced to them, includes many search problems and optimization problems
 - * ex. halting problem (undecidable), the solution cannot be verified in poly time, Shortest Vector Problem, Closest Vector Problem, Search version of TSP
- \diamond NP-complete = NP-hard \cap NP

26

Standard (Plain) Security Model

- ♦ Reduce a **simple** problem (structurally simple, well analyzed but believed hard and unsolved problem) to a complex problem (the target protocol / cryptosystem).
 - Ex. Fact \leq_{T} Rabin Cryptosystem

"If there exists a PPT adversary \mathcal{A} that breaks the target protocol, then using A as a blackbox, we construct an algorithm \mathcal{B} that breaks the simple but commonly believed hard problem"



Note: 1. Fact \leq_{T} breaking RSA is probably false breaking RSA \leq_{T} Fact is trivial 2. \mathcal{A} should be a blackbox because it is just an assumed entity, nobody knows

supply \mathcal{A} all necessary inputs

including the oracles).

proof by contradiction

its interior design. \mathcal{B} only needs to

ElGamal is IND-CPA

 \diamond primes p, q, p = 2 q + 1, a generator g' of Z_p , calculate a generator of G_a as $g \equiv_p g'^2$, i.e. G_a is QR_p, choose a secret key x in Z_a , and calculate the public key $y \equiv_n g^x$

- $\Rightarrow \mathbf{Enc}(\mathbf{PK}, m): r \in \mathbb{Z}_{q}, u \equiv_{p} g^{r}, v \equiv_{p} y^{r} \cdot m, \mathbf{Dec}(\mathbf{SK}, c): m \equiv_{p} v \cdot u^{-x}$
- ♦ IND-CPA under DDH assumption

$$g, g^{a}, g^{b}, \overbrace{C \in G_{q}}^{\mathcal{B}} \xrightarrow{\mathcal{B}}_{\text{PK: }g, y = g^{a}} \underset{\substack{\beta \in_{\mathbb{R}}\{0,1\}\\CT = (g^{b}, C \cdot \overline{m_{\beta}})}{\mathcal{B}}}{\overset{\mathcal{A}}{\underset{\beta \in_{\mathbb{R}}\{0,1\}}{\overset{\mathcal{A}}{\underset{\beta \in_{\mathbb{R}}\{0,1\}}{\overset{\mathcal{B}}{\underset{\beta \in_{\mathbb{R}}\{0,1\}}{\overset{\mathcal{A}}{\underset{\beta \in_{\mathbb{R}}}{\underset{\beta \in_{\mathbb{R}}}{\overset{\mathcal{A}}{\underset{\beta \in_{\mathbb{R}}}}{\overset{\mathcal{A}}{\underset{\beta \in_{\mathbb{R}}}}{\overset{\mathcal{A}}{\underset{\beta \in_{\mathbb{R}}}}{\overset{\mathcal{A}}{\underset{\beta \in_{\mathbb{R}}}{\overset{\mathcal{A}}{\underset{\beta \in_{\mathbb{R}}}}{\overset{\mathcal{A}}{\underset{\beta \in_{\mathbb{R}}}}{\overset{\mathcal{A}}{\underset{\beta \in_{\mathbb{R}}}}{\overset{\mathcal{A}}{\underset{\beta \in_{\mathbb{R}}}{\overset{\mathcal{A}}{\underset{\beta \in_{\mathbb{R}}}}{\overset{\mathcal{A}}{\underset{\beta \in_{\mathbb{R}}}}{\overset{\mathcal{A}}{\underset{\beta \in_{\mathbb{R}}}}{\overset{\mathcal{A}}{\underset{\beta \in_{\mathbb{R}}}}{\overset{\mathcal{A}}{\underset{\beta \in_{\mathbb{R}}}}}}}}}}}}}}}}}}}}}}}}}}$$

 \diamond DDH tuple: (g, g^a, g^b, g^{ab}) RAND tuple: (g, g^a, g^b, g^c) $\Rightarrow \operatorname{Adv}_{\mathcal{B}} = |\Pr[\mathcal{B}(\text{DDH})=1] - \Pr[\mathcal{B}(\text{RAND})=1]|$ = $|\Pr[\mathcal{A}(PK,CT)=\beta \mid DDH] - \Pr[\mathcal{A}(PK,CT)=\beta \mid RAND]|$ = $|\Pr[\mathcal{A}(PK,CT)=\beta \mid DDH] - 1/2 | \ge |(1/2 + 1/p(n)) - 1/2 |_{28}$

Goldwasser-Micali is IND-CPA

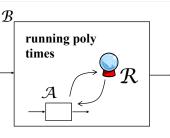
- S. Goldwasser and S. Micali, "Probabilistic encryption," JCSS'84, pp.270-299, 1984
- $\Leftrightarrow \text{ Enc}(b) = r^2 \cdot t^b \text{ (mod n), where } r \in_R Z_n^*$
- $\diamond \ \text{IND-CPA under QRA}$

$$\underbrace{\overset{y \in Z_{n}^{*}}{\xrightarrow{y}}}^{\mathcal{B}} \underbrace{\overset{n, t}{\xrightarrow{y}}}_{b'} \mathcal{A}}_{b'} \xrightarrow{y \in QR_{n} \text{ if } b' \text{ is } 0}_{y \in QNR_{n} \text{ if } b' \text{ is } 1}$$

29

Random Oracle Model

♦ In the random oracle model, all the settings for standard security model are kept the same except that all parties are modeled as oracle machines that operate with the help of a random oracle.

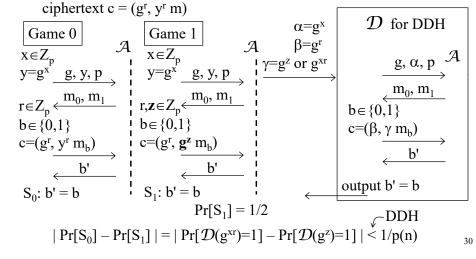


♦ <u>Random Function</u>:

- * The query-response mapping is modeled as a random function $f(\cdot)$.
- * f(x) can only be obtained by asking the oracle.
- ★ Programmability: The proof paradigm is essentially the same as in the standard model, except that B can program the random oracle such that A cannot tell the difference from a true random function. Thus, A behaves well and breaks the complex problem. B obtains both the (input, output)'s of A and (query, answer)'s to R, and breaks the underlying problem with these extra information.

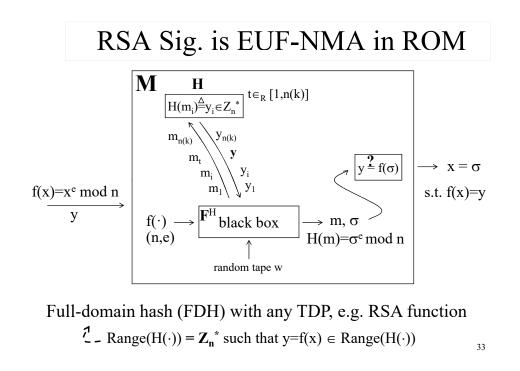
Seq. of Game Proof: ElGamal

- ♦ IND-CPA, assumption: DDH
- ♦ ElGamal Encryption: PK: g, p, $y = g^x \pmod{p}$, SK: x



Random Oracle Model (cont'd)

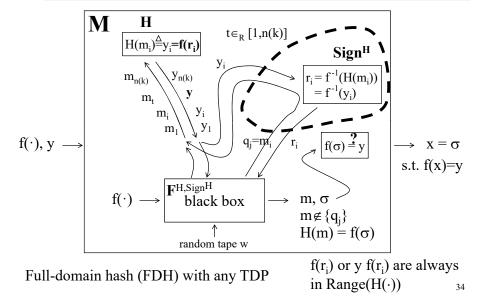
- ♦ After the scheme with ideal random oracle is proven secure. The random oracle is instantiated with a practical primitive like DES or hash functions.
- ♦ The "random oracle model" is ad hoc and under severe criticisms. The substitution of a random oracle with a practical hash function is the major point to be condemned.
- ♦ Without the instantiation part, the security of the random oracle model is already weaker than that of the standard model.
 - * In the random oracle model, the reduction would prove that there is no PPT machine with random oracle access can break the target system.
 - * In the standard model, the reduction only proves that there is no PPT machine that can break the target system.



IND-CPA Encryption in RO

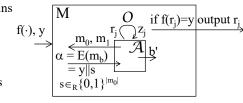
- ♦ Encryption: $E(x) = y || s = f(r) || (O(r) \oplus x)$ Decryption: $x = D(y \parallel s) = s \oplus O(f^{-1}(y))$
- ♦ This scheme is called Efficient Probabilistic Encryption (EPE) scheme and is semantically secure (polynomially secure or message indistinguishable) if $f(\cdot)$ is a trapdoor 1-1 OWF and $O(\cdot)$ is a PRNG
- \diamond This scheme is not CCA2: given a challenge ciphertext y||s, the adversary can generate a random number s' and ask the decryption oracle y||s' to get $D(y||s')=O(f^{-1}(y))\oplus s'$ and the message is $s\oplus O(f^{-1}(y))$
- \diamond We want to show that this scheme is semantically secure if $f(\cdot)$ is a trapdoor 1-1 OWF and $O(\cdot)$, a hash function, is a random oracle
- pf. * Assume that it is not IND, i.e. \exists PPT adversary $\mathcal{A} = (\mathcal{A}_1^0, \mathcal{A}_2^0)$ that defeats the protocol with non-negligible probability
 - * For an arbitrary $b \in \mathbb{R} \{0,1\}, \alpha = E(m_b), \mathcal{A}_1^{0}(E)$ outputs (m_0, m_1) and $\mathcal{A}_{2}^{0}(E, m_{0}, m_{1}, \alpha)$ outputs b', s.t. Pr{ b' = b } $\geq 1/2 + 1/p(k)$

RSA Sig. is EUF-CMA in ROM

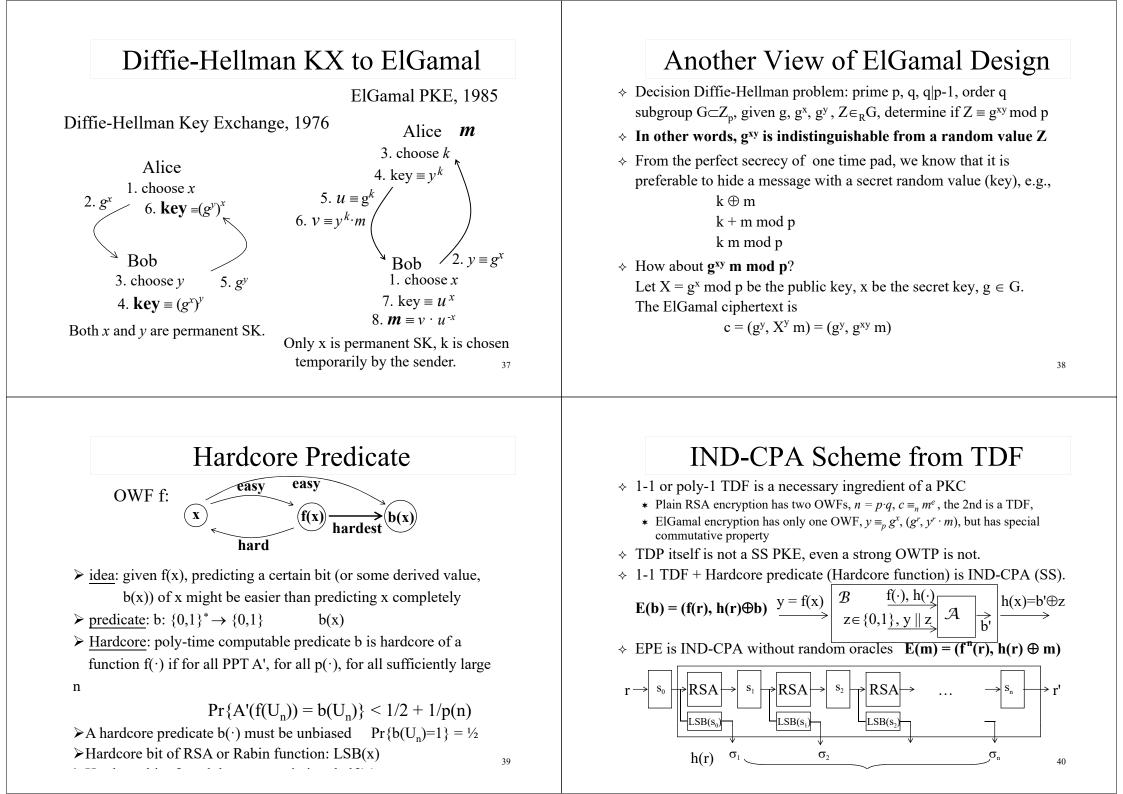


IND-CPA Encryption (cont'd)

- * We construct an algorithm M(f, y) that inverts f using A
 - ☆ Simulate O oracle by flipping coins
 - \Rightarrow Run $\mathcal{A}_1^{0}(E)$ to get (m_0, m_1) . Output \mathbf{r} if O is asked an r s.t. f(r)=y, and stop



- \Leftrightarrow Choose $s \in_{\mathbb{R}} \{0,1\}^{|m_0|}$, let $\alpha = y \parallel s$
- \Rightarrow Run $\mathcal{A}_2^{o}(E, m_0, m_1, \alpha)$. Output **r** if *O* is asked an r s.t. f(r)=y, and stop
- * \mathcal{A} cannot guess correctly m_b with noticeable probability without asking the oracle *O* of r, where $\alpha = y \parallel (O(r) \oplus m_h)$ and y = f(r)
- * Success probability of M(f, y) is non-negligible * Define the event A_k : \mathcal{A} asks the query $r = f^{-1}(y)$
 - $\Rightarrow \Pr{\mathcal{A} \text{ succeeds } | \neg A_k} = 1/2 + 1/2^{|m_0|}$
 - $\Rightarrow 1/2 + 1/p(k) \le \Pr\{\mathcal{A} \text{ succeeds}\} = \Pr\{\mathcal{A} \text{ succeeds} \mid A_k\} \cdot \Pr\{A_k\} +$ $\Pr\{\mathcal{A} \text{ succeeds } | \neg A_k\} \cdot \Pr\{\neg A_k\} \le \Pr\{A_k\} + 1/2 + 1/2^{|m_0|} \text{ contradiction } \P_{36}$



IND-CCA2 Conversion in RO

- ♦ Encryption: $E(x) = y || s = f(r) || (G(r) \oplus x) || H(r || x)$ Decryption: $x = D(y || s) = s \oplus G(f^{-1}(y))$
- ♦ We want to show that this scheme is IND-CCA2 if f(·) is a 1-1 trapdoor OWF, G(·) and H(·) are instantiated by hash functions, which are assumed random oracles
- pf. * Assume that it is not IND under CCA2, i.e. \exists PPT adversary $\mathcal{A} = (\mathcal{A}_1^{G, H, D^{G,H}}, \mathcal{A}_2^{G, H, D^{G,H}})$ that can win the game with non-negligible probability, let E = (f, G, H), i.e.
 - * $\mathcal{A}_1^{G, H, D^{G,H}}(E)$ outputs (m_0, m_1) , $b \in_R \{0, 1\}$, $\alpha = E(m_b)$, and $\mathcal{A}_2^{G, H, D^{G,H}}(E, m_0, m_1, \alpha)$ outputs b', s.t. $Pr\{b=b'\} \ge 1/2 + 1/p(k)$
 - * Now, we are given a blackbox $(\mathcal{A}_1^{G, H, D^{G,H}}, \mathcal{A}_2^{G, H, D^{G,H}})$ and we want to break the fundamental assumption that f is a OWF.

IND-CCA2 Conversion (cont'd)

41

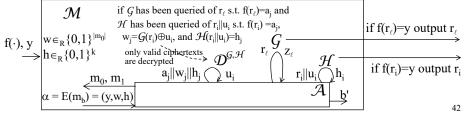
- * We construct an algorithm $\mathcal{M}(f, y)$ that inverts f using \mathcal{A}
 - \Rightarrow Simulate G, \mathcal{H} , and $\mathcal{D}^{G,\mathcal{H}}$ by flipping coins and the following
 - > If $\boldsymbol{\mathcal{G}}$ is queried of \mathbf{r} s.t. f(r)=y, returns r and stop, else returns $\mathbf{z} \in_{\mathbb{R}} \{0,1\}^{|m_0|}$
 - > If \mathcal{H} is queried of $\mathbf{r} \parallel x$ s.t. f(r)=y, returns r and stop, else returns $\mathbf{z} \in_{\mathbb{R}} \{0,1\}^k$
 - > If $\mathcal{D}^{G,\mathcal{H}}$ is queried of $\mathbf{a} \parallel \mathbf{w} \parallel \mathbf{h}$, G is queried of \mathbf{r} , and \mathcal{H} is queried of $\mathbf{r} \parallel \mathbf{u}$ s.t. $f(\mathbf{r})=\mathbf{a}$, $\mathbf{w} = G(\mathbf{r}) \oplus \mathbf{u}$, and $\mathcal{H}(\mathbf{r} \parallel \mathbf{u}) = \mathbf{h}$, returns \mathbf{u} , otherwise return invalid
 - $\Rightarrow \operatorname{Run} \mathcal{A}_{1}^{\mathcal{G}, \mathcal{H}, \mathcal{DG}, \mathcal{H}}(f) \text{ to get (state, m_{0}, m_{1})}$
 - ★ Choose w∈_R{0,1}^{|m_0|} and b∈_R{0,1}^k, let α = y || w || h ★ Run $\mathcal{A}_2^{\mathcal{G}, \mathcal{H}, \mathcal{D}^{\mathcal{G}, \mathcal{H}}}$ (f, state, m₀, m₁, α)

* Why does this work?

We believe that \mathcal{A} cannot guess correctly with noticeable probability about b without querying the oracle \mathcal{G} of r and \mathcal{H} of r $\parallel m_b$. If \mathcal{A} does not query \mathcal{H} of r $\parallel m_b$, the decryption oracle is useless. If \mathcal{A} does not query \mathcal{G} of r, the message m_b is hidden perfectly. The challenge ciphertext satisfies $y = f(r), w = \mathcal{G}(r) \oplus m_b, h = \mathcal{H}(r \parallel m_b), \alpha = y \parallel w \parallel h_{43}$

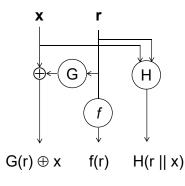
IND-CCA2 Conversion (cont'd)

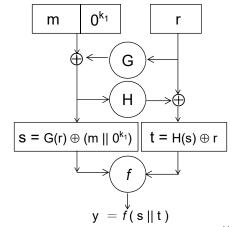
- * \mathcal{M} has control over the inputs to \mathcal{A} and monitors its outputs/ queries. If the distributions of all the inputs are the same as in a real attack, \mathcal{A} would win the game with non-negligible advantage.
- * \mathcal{A} 's inputs:
 - * Inputs to \mathcal{A}_1 : E, responses of \mathcal{G}, \mathcal{H} , and $\mathcal{D}^{\mathcal{G},\mathcal{H}}$
 - * Inputs to \mathcal{A}_2 : E, m_0 , m_1 , α , responses of \mathcal{G} , \mathcal{H} , and $\mathcal{D}^{\mathcal{G},\mathcal{H}}$
- * Distributions of the inputs in a real attack:
 - * G, H: must be uniformly random, must be a consistent function
 - $\star \mathcal{D}^{\mathcal{G},\mathcal{H}}$: must be able to decrypt a valid ciphertext
 - $\Rightarrow \alpha$: must be a valid ciphertext of either m_0 or m_1



Comparison with OAEP

$E(x) = f(r) \parallel (G(r) \oplus x) \parallel \mathbf{H}(r \parallel x)$





FO99 Hybrid Encryption

♦ E. Fujisaki and T. Okamoto, "Secure Integration of Asymmetric and Symmetric Encryption Schemes," Crypto'99
♦ Enc: $\mathcal{I}^{hy}(PK, m) = \langle \mathcal{I}_{PK}^{asym}(\sigma; H(\sigma, m)), \mathcal{I}_{G(\sigma)}^{sym}(m) \rangle$ Dec: $\sigma' = \mathcal{D}_{SK}^{asym}(C_1), m' = \mathcal{D}_{G(\sigma)}^{sym}(C_2), h' = H(\sigma', m'),$ check $C_1 \stackrel{?}{=} \mathcal{I}^{asym}(\sigma'; h')$ ♦ If $\mathcal{I}_{PK}^{asym}(\cdot)$ is a OWE and $\mathcal{I}_{G(\cdot)}^{sym}(m)$ is SS, $\mathcal{I}^{hy}(\cdot)$ is IND-CCA2 in the random oracle model
♦ e.g. $\mathcal{I}^{asym}(\cdot)$ is ElGamal, $\mathcal{I}^{sym}(\cdot)$ is one-time pad

This is the second method to transform a weakly secure PKE (OWE) to an IND-CCA secure PKE

Pseudorandomness and PRNG $\diamond \forall$ PPT algorithm D, every positive p(·), all sufficiently large n $| Pr{D(X_n, 1^n)=1}-Pr{D(U_n, 1^n)=1} | < 1/p(n)$ ♦ f: $\{0,1\}^n \to \{0,1\}^{\ell(n)}$ n-bit uniform distribution $f(\cdot)$ is a pseudorandom generator if $f(U_n) \approx^C U_{\ell(n)}$ n-bit random seed *l*-bit random sequence computationally indistinguishable ♦ BBS Pseudorandom Generator ----Keep secret can be public $f(\cdot)$ $f(\cdot)$ $f(\cdot)$ $b(\cdot)$ $b(\cdot)$ $b(\cdot)$ G $\sigma_{\scriptscriptstyle p(n)}$ σ_2 OWF: $f(\cdot) = x^2 \mod n$, HC $b(\cdot) = LSB(s_{i-1})$ G(s)47

ElGamal or RSA?

- * Efficiency

 - \Rightarrow Length of ciphertext / signature
- * Security

45

- * A stricter security notion defines more secure scheme.
- ☆ A weaker assumption is less prone to be invalid.
- * Standard (plain) model is far better than random oracle model.
- ★ RSA encryption is OWE itself; use f(r) || (O(r) ⊕ x) to get an
 IND-CPA scheme in the RO model; use f(r) || (G(r) ⊕ x) ||
 H(r || x) to get an IND-CCA scheme in the RO model
- \ddagger RSA signature is EUF-CMA in the RO model
- ★ ElGamal is IND-CPA in standard model; use FO99 transform to get an IND-CCA scheme in the RO model; Cramer-Shoup designed an IND-CCA secure scheme in the standard model based on a modified ElGamal scheme

BBS PRNG

- ♦ LSB(x) (even log n bits) is a hardcore predicate of $f(x) = x^2 \mod n$
 - * W. Alexi, B. Chor, O. Goldreich, and C. P. Schnorr, "RSA and Rabin functions: Certain parts are as hard as the whole," SIAM JC88
- ♦ Thus, the assumption underlying the pseudo-randomness of BBS is the one-wayness of Rabin function, which is equivalent to factoring.
- Original BBS paper
 - * Lenore Blum, Manuel Blum, and Michael Shub, "Comparison of Two Pseudo-random number generator," Crypto'82
 - only proves that QRA implies the pseudo randomness of BBS

 $QR(n) \leq_T LSB(n) \leq_T Fact(n)$

pf. If you have an adversary \mathcal{A} that given $x^2 \mod n$ for $x \in QR_n$ as input, can determine LSB(x). Construct an algorithm \mathcal{B} , given $y \in Z_n$, determine if $y \in QR_n$. • calculate $z=y^2 \mod n$, • output $y \in QR_n$ if $\mathcal{A}(z)=LSB(y)$; otherwise output $y \notin QR_n$

Secure Applications from RF/PRF

- A general methodology for designing applications that share PRF
 - ① design your scheme (assuming all parties legitimate) sharing a random function f: {0,1}ⁿ → {0,1}ⁿ (the adversary can obtain, from legitimate users, the values of f(·) on arguments of their choices, but does not have direct access to f(·) itself)
 - O prove the security of your system, assuming $f(\cdot)$ is a true random function
 - ③ replace the random function in your scheme with a pseudo random function
 - ④ if your new scheme become insecure (i.e. has different behavior from the true random scheme) then this system can be used to distinguish the pseudo random function from f(·)

Secure PKE from PRF

Given a PRF $f_k(\cdot)$: $\{0,1\}^{\ell} \rightarrow \{0,1\}^{\ell}$, the cryptosystem is as follows:

- key generation: $k \in_{R} \{0,1\}^{n}$
- **2** encryption: $m \in \{0,1\}^{\ell}, r \in_{R} \{0,1\}^{\ell}, c = E_{k}(m) = (r, f_{k}(r) \oplus m)$
- **6** decryption: $m = D_k(r, s) = f_k(r) \oplus s$

Note: this is a symmetric block encryption scheme

 $f_k^{-1}(\cdot)$ might not exist, might not be computable

Is the above scheme secure? (in what sense?)

- If a true random function is used in the above scheme, each block of message has perfect secrecy in which given a ciphertext c, the probability of correctly recovering m is only 2^{-ℓ}. The probability to correctly recover each bit is only 1/2 and is independent for each bit. In this sense, it does not matter how you choose ℓ in the above scheme.
- 2 when a PRF f_k is used in place of the true random function, if there exists an adversarial algorithm which can guess the correct m given

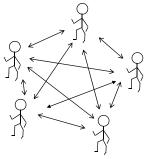
Secure $S\mathcal{E}$ from RP/PRP

- Invertible pseudo random permutation is a secure block encryption: c=f(m)
- ♦ Invertible PRP from PRF: Luby-Rackoff H_k() is almost XOR universal

 $w = u \oplus H_k(v), x = v \oplus F_{s_1}(w), y = w \oplus F_{s_2}(x)$

- $w' = y \oplus F_{s_2}(x), v' = x \oplus F_{s_1}(w'), u' = w' \oplus H_k(v')$
- PRF in counter mode is a secure stream cipher
- DES is simulating a invertible random permutation
- Verifiable trapdoor pseudo-random permutation is a secure unique signature scheme

Multi-Party Computation Real model Ideal model



mutually distrustful parties

mutually trusted parties and a trusted party

- ✤ To what extent the trusted third party in the ideal model can be emulated by the mutually distrustful parties in the real model?
- To what extent the protocol in the real model can be simulated in the ideal model with the help of a trusted oracle?

Secure MPC

the Simulation Paradigm

- * Used also in the definition of zero-knowledge and semantic security
- --- A scheme is *secure* if whatever a *feasible* adversary can obtain after attacking it is also
 - feasibly attainable in an "ideal setting" ---
- In this way, the protocol emulated the ideal setting computation with the help of a trusted party – and achieves all the desired properties
 - * Preservation of the *privacy* of each player's local inputs beyond what is revealed by the local outputs
 - * Correctness of honest parties' local outputs???

53

55

Static vs. Adaptive Adversary

♦ Static adversary:

Assume that \mathcal{A} controls 2 out of n machines from the start

Goal: S(sk₁, sk₂, M₁, M₂) \approx^{C}

 $View_{\Pi, \mathcal{A}}(sk_1, sk_2, ..., sk_n, M_1, M_2, ..., M_n)$ i.e. simulator S in the ideal model must produce the view indistinguishable from that of an adversary in the real model

Adaptive adversary (Mobile adversary in proactive model):

As $\mathcal A$ decides to break into a machine, $\mathcal A$ obtains its secret key at that moment.

Goal: $S^{O}() \approx^{C} View_{\Pi, \mathcal{A}}(sk_{1}, sk_{2}, ..., sk_{n}, M_{1}, M_{2}, ..., M_{n})$ i.e. simulator S in the ideal model, can ask an oracle **O**

about the secret sk_i and the output M_i of the i-th machine during the simulation when the adversary chooses machines to attack and must produce the view indistinguishable from that of an adversary in the real model

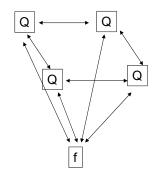
Adaptive Security Model Real model: A (MA A (MA

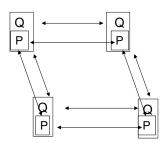
- * Correctness: whatever can be obtained in the ideal model, can also be obtained in the real model.
- Privacy: whatever can be observed by the adversary in the real model, can also be observed by the adversary in the ideal model.

Universal Composability

- What about security "in conjunction with other protocol executions"?
 - * Other executions of the same protocol?
 - * Other executions of arbitrary other protocols?
 - * "Intended" (coordinated) executions?
 - * "unintended" (uncoordinated) executions?
- ♦ Composition of instances of the same protocol:
 - * With same inputs/different inputs
 - * Same parties/different parties/different roles
 - \star Sequential, parallel, concurrent (either coordinated or uncoordinated).
- * "Subroutine composition" (modular composition):
 - * protocol Q calls protocol P as subroutine.
 - * Non-concurrent, Concurrent
- ♦ General composition: Running in the same system with arbitrary other protocols (arbitrary network activity), without coordination.
- Is security maintained under these operations?

Modular Composition





Towards the composition theorem

The hybrid model with ideal access to func. f (the f-hybrid model):

- * Start with the real-life model of protocol execution.
- * In addition, the parties have access to a trusted party F for f:
 - \Rightarrow At pre-defined rounds, the protocol instructs all parties to sends values to F.
 - * F evaluates f on the given inputs and hands outputs to parties
 - ✤ Once the outputs are obtained the parties proceed as usual.
- * Notation: $\text{EXEC}_{P,H,Z}^{f}$ is the ensemble describing the output of Z after interacting with protocol P and adversary H in the f-hybrid model.

Note:

- During the "ideal call rounds" no other computation takes place.
- Can generalize to a model where in each "ideal call round" a different function is being evaluated. But doesn't really add power (can use a single universal functionality).

58

Modular composition

(Originates with [Micali-Rogaway91]) Start with:

 \diamond Protocol Q in the f-hybrid model

 \diamond Protocol P that securely realizes f

Construct the composed protocol Q^P:

- \diamond Each call to f is replaced with an invocation of P.
- $\diamond~$ The output of P ~ is treated as the value of f.

Notes:

- $\label{eq:product} \begin{array}{l} \diamond \quad In \ Q^P, \ there \ is \ at \ most \ one \ protocol \ active \ (ie, \ sending \ messages) \ at \ any \ point \ in \ time: \ When \ P \ is \ running, \ Q \ is \ suspended. \end{array}$
- ♦ It is important that in P all parties terminate the protocol at the same round. Otherwise the composition theorem does not work...
- \diamond If P is a protocol in the real-life model then so is Q^P. If P is a protocol in the f-hybrid model for some function f', then so is Q^P.

