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Familiar Public Key SchemesFamiliar Public Key Schemes
 RSA: 1978

 Key Generation: PK=(n, e) SK=d
 Choose large prime numbers p, q, n = pꞏq, (n) = (p-1)ꞏ(q-1)
 Choose integer e s.t. gcd(e, ) = 1, calculate d such that e ꞏ d  1 (mod )

E (PK ) e ( d ) D (SK ) d ( d ) Enc(PK, m): c  me (mod n), Dec(SK, c): m  cd (mod n)
 Sign(SK, m):   md (mod n), Verify(PK, m, ): e  m (mod n)

ElG l 1985 ElGamal: 1985
 Key Generation: PK=(p, g, y), SK=x

 prime p p = 2 q + 1 where q is also prime a generator g' of Z generator prime p, p = 2 q + 1, where q is also prime, a generator g  of Zp , generator 
of Gq g p g'2, choose a secret integer x in Zq, and calculate y p gx

 Enc(PK, m): rRZq, u p gr, v p yr ꞏ m,  Dec(SK, c): m p v ꞏ u-x
q p p p

 Sign(SK, m): kRZq, r p gk, s q k-1(m-rx)  
Verify(PK, m, ): gm p yr ꞏ rs
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 Neat practical schemes, based on the difficulties of the integer 
factoring problem and the discrete logarithm problem respectively.

Familiar Schemes (cont’d)Familiar Schemes (cont d)
 Questions:

 Are they secure? Are they secure?
 What do you mean by “secure”?
 Are they secure unconditionally or under any condition? Are they secure unconditionally or under any condition?
 Which one is better?
 What is the primitive underneath? What is the primitive underneath?

 Brief answers:
 RSA ciphertext hides the message s.t. reconstruction of m is hard RSA ciphertext hides the message s.t. reconstruction of m is hard
 ElGamal encryption is IND-CPA s.t. “no info” about m is leaked
 Forging valid RSA signature is easy, but not for specified messageg g g y, p g
 Security of ElGamal signature?
 All the above depend on the definitions of security and are 

quality / feature of scheme
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conditional on some computational assumptions.
 Basic primitive for security protocols is OWF

adversary

Familiar Schemes (cont’d)Familiar Schemes (cont d)
 RSA encryption: c  me (mod n)

S if l l i f i i Secure if only a complete compromise of m, given c, n, e, is 
considered a security breach

 Insecure if any partial information (e g Jacobi symbol) derived Insecure if any partial information (e.g. Jacobi symbol) derived 
from m is considered a security breach

 RSA signature:   md (mod n)g ( )
 Secure if only forgery of the signature of an arbitrarily specified 

message is considered a security breach
 Insecure if an existential forgery is considered a security breach

 ElGamal encryption: rRZq, u p gr, v p yr ꞏ m, q p p
 Secure if only distinguishing two adversary specified messages 

under chosen plaintext attack is considered a security breach
I if l di ti i hi t d ifi d
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 Insecure if only distinguishing two adversary specified messages 
under chosen ciphertext attack is considered a security breach



Encryption SecurityEncryption Security
 Total break

 The adversary can determine the private key of a PKE or the The adversary can determine the private key of a PKE or the 
secret key of a symmetric key encryption system. 

 Partial break
 The adversary can decrypt a previously unseen ciphertext

(without knowing the private/secret key) or determine some 
interesting information about the plaintext given the ciphertextinteresting information about the plaintext given the ciphertext.

 In some cryptosystems, partial information about the plaintext 
may be leaked by the ciphertext.  ey y p
e.g. The Jacobi symbol of the RSA plaintext. 
c  me (mod n), gcd(e, (n))=1, e must be odd

c
n

m
n

m
n

e
= =

 Semantic Security or Polynomial Security: 
 Whatever can be computed from the ciphertext can also be 

computed without it Goldwasser & Micali 1984
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computed without it.  Goldwasser & Micali 1984
 A deterministic encryption scheme does not provide semantic 

security. e.g. plain RSA and a finite message space

Encryption Security (cont’d)Encryption Security (cont d)
 IND: Message Indistinguishability (Ciphertext Indistinguishability): 

Given a ciphertext c from two possible messages m0, m1, it is p p g 0, 1,
computationally difficult to determine which one is actually hidden.

 Non-malleability: Given an encryption of a plaintext m, it is 
i ibl h i h hi h d f( ) fimpossible to generate another ciphertext which decrypts to f(m), for 
a known function f, without necessarily knowing or learning m
e.g. RSA, ElGamal, Paillier, mG(sk) are malleableg , , , ( )

 Plaintext awareness: A cryptosystem is plaintext-aware if it is 
difficult for any efficient algorithm to come up with a valid 
i h i h b i f h di l iciphertext without being aware of the corresponding plaintext.

 Adversary Resources:
Ciphertext Only AttackCiphertext Only Attack
Known Plaintext Attack
Chosen Plaintext Attack (CPA)
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( )
Non-adaptive Chosen Ciphertext Attack (CCA1, Lunch-time Attack)
Adaptive Chosen Ciphertext Attack (CCA2)

Relations among PKE Security Notionsg y
NM-CPA NM-CCA1 NM-CCA2

3.7

3.1 3.33.13.5

3.6
3.1

IND-CPA IND-CCA1 IND-CCA2

polynomial security semantic security
Implication

A  B: A proof that if a public key encryption scheme meets

polynomial security, semantic security

notion of security A then this scheme also meets
notion of security B

Separation
A  B: There exists a public key encryption scheme that
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provably meets notion of security A but provably does
not meet notion of security B

Public Verifiable Signature SecurityPublic Verifiable Signature Security
 Total break: key recovery
 Universal forgery: finding an efficient equivalent algorithm to Universal forgery: finding an efficient equivalent algorithm to 

produce signatures for arbitrary messages
 Selective forgery: forging the signature for a particular message 

chosen a priori by the attacker
 Existential forgery: forging at least one signature
 Adversary Resources:

 Key-only attack: no-message attacks
 Known-message attack
 Generic chosen-message attack: non-adaptive, messages not 

depending on public keydepending on public key
 Directed chosen-message attack: non-adaptive, messages 

depending on public key
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p g p y
 Adaptive chosen-message attack: messages depending on the 

previously seen signatures



IND-CCA2-GameIND CCA2 Game
Challenger Adversary A

pk

Queries: ciphertext Ci

Challenger
(pk, sk) = KeyGen(k)

Adversary A

Queries: ciphertext Ci

Responses: message mi

mi = Dec(sk, Ci)

(m0, m1)

Ch ll C

Choose b R {0, 1}
C=Enc(pk, mb)

m0  m1

Challenge: C

Queries: ciphertext Ci

mi = Dec(sk, Ci), CiC AdvPE,A (k)=   
|Pr{b=b'}- |1

2
Responses: message mi
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guess b' ∈ {0, 1}A wins the game if b = b'

Message Indistinguishabilityg g y
DefinitionDefinition: IND-CPA, IND-CCA1, IND-CCA2

let PE = (K E D) be an encryption schemelet PE = (K, E, D) be an encryption scheme
A = (A1, A2) be an adversary

for atk {CPA CCA1 CCA2} and k  N let the advantagefor atk {CPA,CCA1,CCA2} and k  N, let the advantage

AdvPE,A (k) = | Pr{ExpPE,A (k) = 1} - Pr{ExpPE,A (k) = 1}| < 1/p(k)ind-atk      ind-atk-1 ind-atk-0

where for b {0,1},
Experiment ExpPE,A (k)ind-atk-b

(pk, sk)  K(k); (x0, x1, s)  A1
O1(ꞏ)(pk); y  Epk(xb);

return d  A2
O2(ꞏ) (x0, x1, s, y)

R

If atk = CPA then O1(ꞏ) =  and O2(ꞏ) = 
If atk = CCA1 then O1(ꞏ) = Dsk(ꞏ) and O2(ꞏ) = 
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If atk = CCA2 then O1(ꞏ) = Dsk(ꞏ) and O2(ꞏ) = Dsk(ꞏ)

CCA is stronger than CPACCA is stronger than CPA
 The encryption engine in CPA is free for a PKE.  A CCA 

k i i b h i i d d iattack is given both encryption engine and decryption 
engine.

 Chosen ciphertext is more favorable to the adversary for an 
IND gameN ga e
 Choose c0, c1 far away and decrypt to m0, m1, use them as the first 

message hopefully c = E(mb) would be easy to distinguishmessage, hopefully c  E(mb) would be easy to distinguish

 CCA2 attack on an IND-CPA homomorphic scheme is easy
h h ll i h ( ) Let the challenge ciphertext c = E(mb). 

 Choose a random r.  Calculate c' = E(r)  c = E(r  mb), c'  c
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 Ask the decryption engine to decrypt c' and obtains mb = D(c')/r

EUF-CMAEUF CMA
 GMR’86: S. Goldwasser, S. Micali, and R. Rivest, “A digital signature scheme 

secure against adaptive chosen-message attacks,” SIAM J. Computing, pp.281-g p g p g pp
308, 1988

 A signature scheme S = (Gen, Sign, Ver) is existentially unforgeable 
d d i h k (EUF CMA) if i iunder an adaptive chosen message attack (EUF-CMA) if it is 

infeasible for a forger who only knows the public key to produce a 
valid (message, signature) pair, even after obtaining polynomially ( g , g ) p , g p y y
many signatures on messages of his choice from the signer.  

 Formally,  PPT forger algorithm F,  positive polynomial p(ꞏ), 
 sufficiently large n,

(pk, sk)  Gen(1k);

Pr
for i=1,…,n

Mi  F (pk,M1,1,…,Mi-1,i-1); i  Sign(sk,Mi);
( ) F ( k )

< 1/p(n)
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(M,)  F (pk,M1,1,…,Mn,n), 
Mmi for i=1,…,n, and Ver(pk,M,)=1



Conditional SecurityConditional Security
 Every practical and provably secure public/private key scheme is 

only secure under specific computational assumptions. e.g.
 Rabin cryptosystem is secure if “integer factorization assumption (IFA)” holds
 RSA cryptosystem is secure if “RSA assumption” holds for target adv.’s
 ElGamal encryption is IND CPA if “decisional Diffie Hellman assumption ElGamal encryption is IND-CPA if decisional Diffie-Hellman assumption 

(DDH)” holds for target adversaries
 The NP problem (OWF) behind every public key cryptosystem

Given the public key PK, there exists a unique matching secret key 
SK, but no polynomial time algorithm can uncover it.

 Provably secure SE (PRNG+OTP) is far less efficient than AES/DES
 Root computational assumption: NP  P (weakest)
 RSA assumption  IFA  NP  P

DDHA  CDHA  DLA
strongest adversary
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 While addressing the security of a cryptosystem, we need to specify 
the weakest assumption possible (probably not the OWF hiding SK).

Unconditional SecurityUnconditional Security
 Information-theoretically secure: Perfect secure or Shannon 

secure: the highest level of security for any scheme, no matter how g y y ,
large the computation power the adversary has, she cannot obtain 
any information from the ciphertext more than the a-priori 
information no computational assumptioninformation, no computational assumption
 Transmitting one random bit: can you encrypt the message such that an 

adversary guess the message with success probability less than 1/2?
 Necessary condition: the key must be longer than the message, must 

be symmetric key encryption, not practical
 E l ti d Example: one-time pad

SMPC from secret sharing, 
inefficient

m  c
k


k

 Perfect secrecy: the distribution of ciphertext is independent of the 
encrypted message
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 Shannon secrecy: the conditional entropy of the message given the 
ciphertext is the same as the entropy without the ciphertext

One-Way FunctionOne Way Function
 Easy: f is a polynomial time 

computable function
easy

computable function
 Hard: for all poly-time probabilistic TM,

probability to successfully invert
hard

x f(x)

bl probability to successfully invert
the function is smallNP problem

 For every probabilistic poly-time TM A',
every positive polynomial p(ꞏ) and all sufficient large n

Pr{A'(f(Un), 1
n)  f -1f(Un)} < 1 / p(n){ ( ( n) ) ( n)} p( )

 Possible candidates: 
integer multiplication      n=pꞏq is easy, factoring n is hard
di t l ith x ( d ) i dl i h ddiscrete logarithm            y = gx (mod p) is easy, x = dlogg y is hard

 Practical symmetric key schemes emulates OWFs (PRF or PRNG)
 OWF Private key cryptography

15

 OWF ….. Private key cryptography
 TDF …. Public key cryptography (designing PKE is to find trapdoors)

Common Computational AssumptionsCommon Computational Assumptions
 NP  P
 Existence of OWF OWP OWTP

on target adversaries
 Existence of OWF, OWP, OWTP
 Integer Factoring: given n = p q, find p, q
 Di t L ith i Z fi d t x Discrete Logarithm: given yZp, find x s.t. y p gx

 Square Root Extraction: given n=pq, yZn , find x s.t. y n x2

RSA (R t E t ti ) i Z fi d t e RSA (Root Extraction): given n=pq, e, yZn , find x s.t. y n xe

 Computational Diffie-Hellman: given g, gx, gy, find gxy

D i i Diffi H ll i Z d i if Z Decision Diffie-Hellman: given g, gx, gy , Z, determine if Z p gxy

 Quadratic Residue: given n=pq, x, determine if xQRn

 Composite Residue: given n=pq, yZn2, decide if  xZn2 s.t.y n2 xn

 Bilinear Diffie-Hellman: given g, gx, gy, gz G, find e(g,g)xyzGT
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 Bilinear Decision Diffie-Hellman: given g, gx, gy, gz G, and WGT, 
decide if W = e(g,g)xyz



Computation TheoryComputation Theory
Complexity Theory: 
central problem “What makes some problems computationally hard 

j hi t d th ?”

building models for target adversaries
major achievements
1. Schemes for classifying problems of different computational difficulties
2. Options in confronting a difficult problem

and others easy?”

 What is the most difficult part of a problem?  
Can we alter this part to avoid that problem?

 Are there sub-optimal or heuristic solutions to a problem?
Complexity

Theory
Computability

Theory

 What kind of instance of a problem is hard?
 Is there a randomized computable algorithm for a problem?

Computability Theory:
Automata

TheoryComputability Theory:
central problem “What is computable? 

What is not computable? in what model?”major achievementsj
1. Theoretical models of computers (ex. LBA, DTM, NTM, …)
2. Classify problems as solvable or non-solvable

Automata Theory: definitions and properties of mathematical models of
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Automata Theory: definitions and properties of mathematical models of
 Finite automata: text processing, compilers, H/W design
 Push down automata: programming language, artificial intelligence

computation

Finite AutomataFinite Automata
 Deterministic Finite Automata (DFA):

M (Q   F) M = (Q, , , s, F)
Q: {q0, q1, …, qm-1} finite set of states
: alphabet b

a

a: alphabet
s: start state
F: set of final states b
: Q    Q, transition function

 Non-deterministic Finite Automata (NFA):( )
 M = (Q, , , s, F)

Q: {q0, q1, …, qm-1} finite set of states
b

: alphabet
s: start state
F t f fi l t t

a,ba
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F: set of final states
: Q  (  2Q, transition function



ExampleExample
 Design an NFA accepting strings with “abba” or “ababa” 

b t isubstrings.

abba f
abba 

or

NFA
abba
ababa

s f

ababa

s f


 An NFA can always be converted into a DFA.
 We can design an NFA first, then convert it into an 

equivalent DFA. b b aaq

a

b b aas f
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a
bAn equivalent DFA

Turing MachineTuring Machine
 Complexity / Computability is defined w.r.t. a certain 

model of computation
 Turing Machine

state read/write head

 Alan Turing, 1936
 Similar to finite automaton but with an unlimited and 

i d

aa c b d

unrestricted memory
 Formally, a 7-tuple (Q, , , , q0, qaccept, qreject)

1 Q is the set of states1. Q is the set of states
2.  is the input alphabet not containing the special blank symbol 
3.  is the tape alphabet, where    and   
4. : Q    Q    {L, R} is the transition function
5. q0  Q is the initial state
6 q  Q is the accept state

20

6. qaccept  Q is the accept state
7. qreject  Q is the reject state, where qreject  qaccept



Turing Machine (cont’d)Turing Machine (cont d)
 TM computes as follows:

* M’s input w = w1w2…wn 
* on the leftmost n squares  of the 

tape, the rest of the tape are blanks  (the first  marks the 
end)end)

 Initial state is q0
 read/write head starts on the leftmost squareq
 Computation proceeds according to the transition function 
 If M tries to move its head to the left off the left hand end of 

the tape, the read/write head stays at the same place for that 
move

 The computation continues state read/write head The computation continues 
until it enters either the accept 
or reject state.  If neither occurs, 

state

aa c b 

read/write head

d
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M goes on forever.

ExampleExample
 TM:

 Q={q0,qaccept,qreject}
 ={1}  Evaluation tableau (input 11){ }
 ={1,_}
 (q0,1)={(q0, ,R)}

# q0 1 1 _ #
 (q0,1) {(q0,_,R)}
 (q0,_)={(qaccept,L)}

1/( R)

# _ q0 1 _ #

# _ _ q0 _ #
1/(_,R)

# _ qacc _ _ #

q0 qacc
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_/(,L)

DTM vs. NTMDTM vs. NTM
 Deterministic Turing Machine: at any time, a DTM knows its 

next configuration (the state, the tape head, the tape content) for sure; 
a single configuration specified by its transition function 

: Q    Q    {L, R}
 Non deterministic Turing Machine t h t NTM Non-deterministic Turing Machine: at each moment, an NTM 

has several choices to proceed as the next configurations. i.e. the 
range of the transition function is modified to be a set:

: Q    P(Q    {L, R}) \ 
 NTM has two equivalent evaluation ways if you only consider the capability:

 Process in a massively parallel fashion Process in a massively parallel fashion
 Process in a probabilistic fashion  (seems much slower) 

The parallel one defines a language L NP if it accepts x  L in polynomial time.
The probabilistic one also defines NP if it accepts x  L in polynomial time withThe probabilistic one also defines NP if it accepts x  L in polynomial time with
non-zero probability. The probabilistic one also defines a language L BPP if it
accepts x  L in polynomial time with correct probability bounded away from 0.5.
S it f i l l b li th t BPP i t i t b t f NP
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Security professionals surely believe that BPP is a strict subset of NP.
 NTM (with time O(p(n))) can be proven to be equivalent to DTM 

(with time O(kp(n), where k = max |P(Q    {L, R})|)

Deterministic vs. Nondeterministicete st c vs. No dete st c

Church-Turing hypothesis:

… …

g yp
Deterministic TM is 
equivalent to our intuitive 

i f l i h
accept or reject

notion of algorithms.
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accept or reject
Note that an NTM decider halts on all branches.



Complexity Classesp y
 P: polynomial

 problems that can be solved by an algorithm (TM) problems that can be solved by an algorithm (TM)
with computation complexity O(p(n))

ex Bubble sort O(n2) Quick sort O(n log n)ex. Bubble sort O(n2)   Quick sort O(n log n)
 there are many problems which are not P

e 2n knapsack (s bset s m)ex. 2n                      knapsack (subset sum)
n!                  traveling Salesman Problem (TSP)
unsolvable halting problemunsolvable    halting problem

 NP: non-deterministic polynomial
 decision problems that can be decided by an NTM
 problems that have solutions (witnesses) which can be verified 
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by a polynomial time algorithm.       ex. Decision versions of 
Fact, dLog, TSP, Satisfiability (SAT), knapsack...

Complexity Classes (cont’d)p y ( )
 NP-complete: the set of the hardest problems in NPp p

 Def 1: NP problems, to which SAT can be reduced
 Def 2: NP problems, all NP problems can be reduced to them Def 2: NP problems, all NP problems can be reduced to them
 ex. SAT, TSP, G3C, Knapsack ...

 NP-hard: at least as hard as the hardest problems in NP NP-hard: at least as hard as the hardest problems in NP
 not limited to decision problem, not necessarily NP, all NP 

problems can be reduced to them includes many searchproblems can be reduced to them, includes many search 
problems and optimization problems

 ex. halting problem (undecidable), the solution cannot be e . a g p ob e (u dec dab e), e so u o ca o be
verified in poly time, Shortest Vector Problem, Closest 
Vector Problem, Search version of TSP
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 NP-complete = NP-hard  NP

Standard (Plain) Security ModelStandard (Plain) Security Model
 Reduce a simple problem (structurally simple, well analyzed but 

believed hard and unsolved problem) to a complex problem (thebelieved hard and unsolved problem) to a complex problem (the 
target protocol / cryptosystem).

Ex. Fact T Rabin CryptosystemEx.     Fact T Rabin Cryptosystem
“If there exists a PPT adversary A that breaks the target protocol, 
then using A as a blackbox, we construct an algorithm B thatthen using A as a blackbox, we construct an algorithm B that
breaks the simple but commonly believed hard problem”

Note: Fact  breaking RSA is probably false1B
running poly 

Note: Fact T breaking RSA     is probably false
breaking RSA T Fact     is trivial
A should be a blackbox because it is

1.

2
Atimes A should be a blackbox because it is

just an assumed entity, nobody knows
its interior design.  B only needs to

l A ll i t

2.
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supply A all necessary inputs
including the oracles).proof by contradiction

ElGamal is IND-CPAElGamal is IND CPA
 primes p, q, p = 2 q + 1, a generator g' of Zp, calculate a generator of 

G as g  g'2 i e G is QR choose a secret key x in Z andGq as g p g , i.e. Gq is QRp, choose a secret key x in Zq, and 
calculate the public key y p gx

 Enc(PK m): rZ u  gr v  yr ꞏ m Dec(SK c): m  v ꞏ u-x Enc(PK, m): rZq, u p g , v p y m,  Dec(SK, c): m p v  u
 IND-CPA under DDH assumption

B PK AB
g, ga, gb, 
C  G '

PK
1 (C = gab), if ' equals 
0 (C i d ) th i

SK: a
PK: g, y=ga m0, m1

C  Gq R{0,1}
CT=(gb,Cm)

 0 (C is random), otherwise

 DDH tuple: (g, ga, gb, gab)     RAND tuple: (g, ga, gb, gc)
 AdvB = | Pr[B(DDH)=1] – Pr[B(RAND)=1] |
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= | Pr[A(PK,CT)= | DDH] – Pr[A(PK,CT)= | RAND] |
= | Pr[A(PK,CT)= | DDH] – 1/2 |  | (1/2 + 1/p(n)) – 1/2 |



Goldwasser-Micali is IND-CPAGoldwasser Micali is IND CPA
 S. Goldwasser and S. Micali, “Probabilistic encryption,” JCSS’84, 

pp 270-299 1984pp.270-299, 1984

 Choose two large prime numbers p q n = pq choose t  QNR Choose two large prime numbers p, q, n = pq, choose t R QNRn

 Enc(b) = r2  tb (mod n), where r R Zn
*

 IND CPA under QRA IND-CPA under QRA

B
y  Z * n t y  QR if b' is 0

A
y  Zn

y b'

n, t y  QRn if b  is 0
y  QNRn if b' is 1

29

Seq. of Game Proof: ElGamalSeq. of Game Proof: ElGamal
 IND-CPA, assumption: DDH
 ElGamal Encryption: PK: g p y = gx (mod p) SK: x ElGamal Encryption: PK: g, p, y = gx (mod p), SK: x

ciphertext c = (gr, yr m)
D for DDH=gx

G 0 G 1

g, , p A

g
=gr

=gz or gxr

Game 0

y=gx g y p
AxZp

Game 1
A

y=gx g y p
xZp

m0, m1

b{0,1}

y g g, y, p
m0, m1rZp

m0, m1r,zZp

y g g, y, p

{ }
c=(,  mb)

b'

b{0,1}
c=(gr, yr mb)

b{0,1}
c=(gr, gz mb)

output b' = b
b'

S0: b' = b
b'

S1: b' = b
P [S ] 1/2

30| Pr[S0] – Pr[S1] | = | Pr[D(gxr)=1] – Pr[D(gz)=1] | < 1/p(n)
DDHPr[S1] = 1/2

Random Oracle ModelRandom Oracle Model
 In the random oracle model, all the 

settings for standard security model 
B

i l
g y

are kept the same except that all parties 
are modeled as oracle machines
h i h h h l f

running poly 
times

Rthat operate with the help of a 
random oracle.

 Random Function:

A
R

 Random Function: 
 The query-response mapping ismodeled as a random function f().
 f( ) l b bt i d b ki th l f(x) can only be obtained by asking the oracle.

 Programmability: The proof paradigm is essentially the same as in 
the standard model except that B can program the random oraclethe standard model, except that B can program the random oracle 
such that A cannot tell the difference from a true random function.  
Thus, A behaves well and breaks the complex problem.  B obtains 
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, p p
both the (input, output)’s of A and (query, answer)’s to R, and 
breaks the underlying problem with these extra information.

Random Oracle Model (cont’d)Random Oracle Model (cont d)
 After the scheme with ideal random oracle is proven secure.  The 

random oracle is instantiated with a practical primitive like DES orrandom oracle is instantiated with a practical primitive like DES or 
hash functions.

 The “random oracle model” is ad hoc and under severe criticisms. The random oracle model  is ad hoc and under severe criticisms.  
The substitution of a random oracle with a practical hash function is 
the major point to be condemned. 

 Without the instantiation part, the security of the random oracle 
model is already weaker than that of the standard model.  
 In the random oracle model, the reduction would prove that there 

is no PPT machine with random oracle access can break the 
target system.  
I th t d d d l th d ti l th t th i
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 In the standard model, the reduction only proves that there is no 
PPT machine that can break the target system. 



RSA Sig. is EUF-NMA in ROMg
M H

t [1 n(k)]

m yn(k)

H(mi)=yiZn
*

tR [1,n(k)]

x = y = f()mi

mn(k)

mt
yi

yn(k)

y ?

f(x)=xe mod n 
y black boxFH

f(ꞏ) m, 

m1
y1 s.t. f(x)=y

black boxf( )
(n,e)

m, 
H(m)=e mod n

random tape wrandom tape w

Full domain hash (FDH) with any TDP e g RSA function
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Full-domain hash (FDH) with any TDP, e.g. RSA function
Range(H()) = Zn

* such that y=f(x)  Range(H())

RSA Sig. is EUF-CMA in ROMg
M H

t [1 n(k)]
SignH

m yn(k)

H(mi)=yi=f(ri)

r = f -1(H(m ))

tR [1,n(k)]

yi

mi

mn(k)

mt
yi

yn(k)

y
ri = f (H(mi))

= f -1(yi)

f(ꞏ), y x = f() = y
m1

y1
qj=mi ri ?

s t f(x)=y

black boxFH,SignH
f(ꞏ) m, 

s.t. f(x)=y

m{qj}
H(m) = f()

random tape w

34
Full-domain hash (FDH) with any TDP f(ri) or y f(ri) are always 

in Range(H())

IND-CPA Encryption in ROIND CPA Encryption in RO
 Encryption: E(x) = y || s = f(r) || (O(r)  x)

Decryption: x = D(y || s) = s  O(f -1(y))Decryption: x  D(y || s)  s  O(f (y))
 This scheme is called Efficient Probabilistic Encryption (EPE) scheme 

and is semantically secure (polynomially secure or messageand is semantically secure (polynomially secure or message 
indistinguishable) if f(ꞏ) is a trapdoor 1-1 OWF and O(ꞏ) is a PRNG

 This scheme is not CCA2: given a challenge ciphertext y||s, the g g p y|| ,
adversary can generate a random number s' and ask the decryption 
oracle y||s' to get D(y||s')=O(f -1(y))s' and the message is sO(f -1(y))

 We want to show that this scheme is semantically secure if f(ꞏ) is a 
trapdoor 1-1 OWF and O(ꞏ), a hash function, is a random oracle

A h i i IND i  PPT d A (A O A O)f  Assume that it is not IND, i.e.  PPT adversary A = (A1
O, A2

O) 
that defeats the protocol with non-negligible probability

 F bit b {0 1} E( ) A O(E) t t ( )

pf.
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 For an arbitrary bR{0,1},  = E(mb),  A1
O(E) outputs (m0, m1) 

and A2
O(E, m0, m1, ) outputs b', s.t. Pr{ b' = b }  1/2 + 1/p(k)

IND-CPA Encryption (cont’d)N C c ypt o (co t d)
 We construct an algorithm M(f, y) that inverts f using A

 Simulate O oracle by flipping coins OMy pp g
 Run A1

O(E) to get (m0, m1).  
Output r if O is asked an r s.t. 

O
m0, m1

 = E(m ) b'

rjf(), y zj
if f(rj)=y output rj

M

A
f(r)=y, and stop

 Choose sR{0,1}|m0|, let  = y || s
 R n A O(E m m )

  E(mb)
= y||s

sR{0,1}|m0|

 Run A2
O(E, m0, m1, ). 

Output r if O is asked an r s.t. f(r)=y, and stop

 A cannot guess correctly mb with noticeable probability without A cannot guess correctly mb with noticeable probability without 
asking the oracle O of r, where  = y || (O(r)  mb) and y = f(r)

 Success probability of M(f, y) is non-negligiblep y ( , y) g g
 Define the event Ak: A asks the query r = f -1(y)
 Pr{A succeeds | Ak} = 1/2 + 1/2|m0|

36

 1/2 + 1/p(k)  Pr{A succeeds} = Pr{A succeeds | Ak} ꞏ Pr{Ak} + 
Pr{A succeeds | Ak} ꞏ Pr{Ak}  Pr{Ak} + 1/2 + 1/2|m0| contradiction ¶ 



Diffie-Hellman KX to ElGamalDiffie Hellman KX to ElGamal
ElGamal PKE, 1985

3 choose k

Diffie-Hellman Key Exchange, 1976 Alice m
3. choose k

5 u  gk
4. key  y kAlice

2 x
1. choose x 5. u  g

6. v  y kꞏm 
2. gx

6. key (gy)x

2. y  gx

1. choose x
Bob

5. gy3. choose y
Bob

7. key  u x

8. m  v ꞏ u -x

5. gy
4. key  (gx)y

Both x and y are permanent SK
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Both x and y are permanent SK.
Only x is permanent SK, k is chosen

temporarily by the sender.

Another View of ElGamal DesignAnother View of ElGamal Design
 Decision Diffie-Hellman problem: prime p, q, q|p-1, order q 

subgroup GZ given g gx gy Z G determine if Z  gxy mod psubgroup GZp, given g, gx, gy , ZRG, determine if Z  gxy mod p
 In other words, gxy is indistinguishable from a random value Z

F h f f i d k h i i From the perfect secrecy of  one time pad, we know that it is 
preferable to hide a message with a secret random value (key), e.g.,

k k  m 
k + m mod p
k m mod pk m mod p

 How about gxy m mod p?  
Let X = gx mod p be the public key x be the secret key g  GLet X = gx mod p be the public key, x be the secret key, g  G.  
The ElGamal ciphertext is 

c = (gy Xy m) = (gy gxy m)
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c  (gy, X m)  (gy, g y m)

Hardcore PredicateHardcore Predicate
easyOWF f:

easy

hard

x f(x) b(x)
hardest

 idea: given f(x), predicting a certain bit (or some derived value,
b( )) of might be easier than predicting completelb(x)) of x might be easier than predicting x completely 

 predicate: b: {0,1}*  {0,1}              b(x)
 H d l ti t bl di t b i h d f Hardcore: poly-time computable predicate b is hardcore of a 

function f(ꞏ) if for all PPT A', for all p(ꞏ), for all sufficiently large 
n

Pr{A'(f(Un)) = b(Un)} < 1/2 + 1/p(n)
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A hardcore predicate b(ꞏ) must be unbiased     Pr{b(Un)=1} = ½
Hardcore bit of RSA or Rabin function: LSB(x)
H d bi f d l i i h lf( )

IND-CPA Scheme from TDFIND CPA Scheme from TDF
 1-1 or poly-1 TDF is a necessary ingredient of a PKC

 Plain RSA encryption has two OWFs, n = pꞏq, c n me , the 2nd is a TDF, Plain RSA encryption has two OWFs, n  p q, c n m , the 2nd is a TDF, 
 ElGamal encryption has only one OWF, y p gx, (gr, yr ꞏ m), but has special 

commutative property
 TDP it lf i t SS PKE t OWTP i t TDP itself is not a SS PKE, even a strong OWTP is not.
 1-1 TDF + Hardcore predicate (Hardcore function) is IND-CPA (SS).

B f( ) h( )
E(b) = (f(r), h(r)b) A

By = f(x)
z{0,1}, y || z b'

f(), h() h(x)=b'z

 EPE is IND-CPA without random oracles   E(m) = (f n(r), h(r)  m)

s0 s1RSA s2RSA RSA sn…r

LSB(s0) LSB(s1) LSB(s2)

r'
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1 2 nh(r)

( 0) ( 1) ( 2)



IND-CCA2 Conversion in ROIND CCA2 Conversion in RO
 Encryption: E(x) = y || s = f(r) || (G(r)  x) || H(r || x)

D i D( || )  G( f -1( ) )Decryption: x = D(y || s) = s  G( f 1(y) )
 We want to show that this scheme is IND-CCA2 if f(ꞏ) is a 1-1 

trapdoor OWF, G(ꞏ) and H(ꞏ) are instantiated by hash functions,
which are assumed random oracles
 Assume that it is not IND under CCA2, i.e.  PPT adversary A = 

(A1
G, H, DG,H, A2

G, H, DG,H) that can win the game with non-
pf.

negligible probability, let E = (f, G, H), i.e.
 A1

G, H, DG,H(E) outputs (m0, m1), bR{0,1},  = E(mb), and 
G HA2

G, H, DG,H(E, m0, m1, ) outputs b', s.t. Pr{b=b'}  1/2 + 1/p(k)
 Now, we are given a blackbox (A1

G, H, DG,H, A2
G, H, DG,H) and we 
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want to break the fundamental assumption that f is a OWF.

IND-CCA2 Conversion (cont’d)IND CCA2 Conversion (cont d)
 M has control over the inputs to A and monitors its outputs/ 

queries.  If the distributions of all the inputs are the same as in a q p
real attack, A would win the game with non-negligible advantage.

 A’s inputs:
H G H

 Inputs to A1: E, responses of G, H, and DG,H

 Inputs to A2: E, m0, m1, , responses of G, H, and DG,H

 Distributions of the inputs in a real attack: Distributions of the inputs in a real attack:
 G, H: must be uniformly random, must be a consistent function
 DG,H : must be able to decrypt a valid ciphertext

b lid i h f i h : must be a valid ciphertext of either m0 or m1

if f(r )=y output r
M if G has been queried of r s.t. f(r)=aj and

H has been queried of ri||ui s.t. f(ri) =aj, 

DG,H

a ||w ||h

f(), y

u

if f(r)=y output rG
r z H

r ||u h if f(ri)=y output ri

wR{0,1}|m0|

hR{0,1}k

q i|| i ( i) j,
wj=G(ri)ui, and H(ri||ui)=hj

only valid ciphertexts
are decrypted
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m0, m1

 = E(mb) = (y,w,h) b'

aj||wj||hj ui

A
ri||ui hi

if f(ri) y output ri

IND-CCA2 Conversion (cont’d)N CC Co ve s o (co t d)
 We construct an algorithm M(f, y) that inverts f using A

 Simulate G, H, and DG,H by flipping coins and the following Simulate G, H, and D by flipping coins and the following
 If G is queried of r s.t. f(r)=y, returns r and stop, else returns zR{0,1}|m0|

 If H is queried of r || x s.t. f(r)=y, returns r and stop, else returns zR{0,1}k

 If DG,H is queried of  a || w || h, G is queried of r, and H is queried of r || u
s.t. f(r)=a, w = G(r)  u, and H(r || u) = h, returns u, otherwise return invalid

R n A G H DG,H(f ) to get (state m m )Run A1
G, H, DG, (f ) to get (state, m0, m1)

Choose wR{0,1}|m0| and bR{0,1}k, let  = y || w || h
R A G H DG,H(f t t )Run A2

G, H, DG,H(f, state, m0, m1, ) 
 Why does this work? 

We believe that A cannot guess correctly with noticeable probabilityWe believe that A cannot guess correctly with noticeable probability 
about b without querying the oracle G of r and H of r || mb.  If A does 
not query H of r || mb, the decryption oracle is useless.  If A does not 
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q y || b, yp
query G of r, the message mb is hidden perfectly. The challenge 
ciphertext satisfies y = f(r), w = G(r)  mb, h = H(r || mb),  = y||w||h

Comparison with OAEPComparison with OAEP
E(x) = f(r) || (G(r)  x) || H(r || x)

rm 0k1

E(x) = f(r) || (G(r)  x) || H(r || x)

x r rm 0 1

G

x r

G

H




G H

s = G(r)  (m || 0k1) t = H(s)  r
f

f 
G(r)  x f(r) H(r || x)
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y  ＝ f ( s || t )



FO99 Hybrid EncryptionFO99 Hybrid Encryption
 E. Fujisaki and T. Okamoto, “Secure Integration of Asymmetric and 

Symmetric Encryption Schemes,” Crypto’99

 Enc: E hy(PK, m) = <E asym(; H(, m)),  E sym (m)>G()PK( , ) ( ; ( , )), ( )
Dec: '=Dasym(C1), m'=D sym (C2), h'=H(', m'), 

h k E asym( h )

G()PK

G()SK
?check C1 = E asym('; h')

 If E asym(ꞏ) is a OWE and E sym (m) is SS

?

G( )PK If E ( ) is a OWE and E (m) is SS, 
E hy(ꞏ) is IND-CCA2 in the random oracle model

G()PK

 e.g. E asym(ꞏ) is ElGamal, E sym(ꞏ) is one-time pad
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This is the second method to transform a weakly secure 
PKE (OWE) to an IND-CCA secure PKE

ElGamal or RSA?ElGamal or RSA?
 Efficiency

Computation time
 Length of ciphertext / signature

 Security
A stricter security notion defines more secure schemeA stricter security notion defines more secure scheme.
A weaker assumption is less prone to be invalid.
 Standard (plain) model is far better than random oracle model Standard (plain) model is far better than random oracle model.
RSA encryption is OWE itself; use f(r) || (O(r)  x) to get an 

IND-CPA scheme in the RO model; use f(r) || (G(r)  x) || ; ( ) || ( ( ) ) ||
H(r || x) to get an IND-CCA scheme in the RO model

RSA signature is EUF-CMA in the RO model
 ElGamal is IND-CPA in standard model; use FO99 transform 

to get an IND-CCA scheme in the RO model; Cramer-Shoup 
designed an IND-CCA secure scheme in the standard model
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designed an IND CCA secure scheme in the standard model 
based on a modified ElGamal scheme

 ElGamal signature is ??-secure

Pseudorandomness and PRNGPseudorandomness and PRNG
  PPT algorithm D, every positive p(ꞏ), all sufficiently large n

| Pr{D(X 1n)=1} Pr{D(U 1n)=1} | < 1/p(n)| Pr{D(Xn, 1 )=1}-Pr{D(Un, 1 )=1} | < 1/p(n)
 f: {0,1}n  {0,1}(n)

f( ) is a pseudorandom generator if f(U ) C U
n-bit uniform distribution

f(ꞏ) is a pseudorandom generator if f(Un) C U(n)

n-bit random seed -bit random sequence
i ll

 BBS Pseudorandom Generator
Keep secret can be public

computationally 
indistinguishable

s0 s1f(ꞏ) s2f(ꞏ) f(ꞏ) sp(n)…s

G
b(ꞏ) b(ꞏ) b(ꞏ)
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1 2 p(n)
G

G(s)OWF: f(ꞏ)=x2 mod n, HC b(ꞏ)=LSB(si-1)

BBS PRNGBBS PRNG
 LSB(x) (even log n bits) is a hardcore predicate of f(x) = x2 mod n

 W. Alexi, B. Chor, O. Goldreich, and C. P. Schnorr, “RSA and Rabin , , , ,
functions: Certain parts are as hard as the whole,” SIAM JC88

 Thus, the assumption underlying the pseudo-randomness of BBS is 
the one-wayness of Rabin function, which is equivalent to factoring.

 Original BBS paper
 Lenore Blum, Manuel Blum, and Michael Shub, “Comparison of Two 

Pseudo-random number generator,” Crypto’82
only proves that QRA implies the pseudo randomness of BBS  

QR(n) T LSB(n) T Fact(n)
A 2pf. If you have an adversary A that given x2 mod n for xQRn as

input, can determine LSB(x).  Construct an algorithm B, given
yZ determine if yQR  calculate z=y2 mod n  output
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yZn, determine if yQRn.   calculate z=y2 mod n,   output 
yQRn if A(z)=LSB(y); otherwise output yQRnt



Secure Applications from RF/PRFpp
 A general methodology for designing applications that 

h PRFshare PRF
 design your scheme (assuming all parties legitimate) sharing a 

d f i f {0 1}n {0 1}n ( h d b irandom function f:{0,1}n {0,1}n (the adversary can obtain,
from legitimate users, the values of f(ꞏ) on arguments of their
choices, but does not have direct access to f(ꞏ) itself)

 prove the security of your system, assuming f(ꞏ) is a true random
function

 replace the random function in your scheme with a pseudo
random function

 if your new scheme become insecure (i.e. has different behavior
f h d h ) h hi b d
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from the true random scheme) then this system can be used to
distinguish the pseudo random function from f(ꞏ)

Secure PKE from PRF
Given a PRF fk(ꞏ): {0,1}{0,1}, the cryptosystem is as follows:
 key generation: k  {0 1}n key generation:  k R {0,1}
 encryption:  m {0,1}, r R {0,1}, c = Ek(m) = (r, fk(r)  m)
 decryption: m = Dk(r, s) = fk(r)  s decryption:  m  Dk(r, s)  fk(r)  s

Note: this is a symmetric block encryption scheme
fk

-1(ꞏ) might not exist, might not be computablek ( ) g , g p
Is the above scheme secure? (in what sense?)
 if a true random function is used in the above scheme, each block of ,

message has perfect secrecy in which given a ciphertext c, the 
probability of correctly recovering m is only 2-.  The probability to

tl h bit i l 1/2 d i i d d t f h bitcorrectly recover each bit is only 1/2 and is independent for each bit.
In this sense, it does not matter how you choose  in the above scheme.

 when a PRF f is used in place of the true random function if there
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 when a PRF fk is used in place of the true random function, if there 
exists an adversarial algorithm which can guess the correct m given

Secure SE from RP/PRP
 Invertible pseudo random permutation is a secure block 

encryption: c=f(m) u vencryption: c f(m)
 Invertible PRP from PRF: Luby-Rackoff

H () i l t XOR i l

Hk

F

u v


Hk() is almost XOR universal
w = u  Hk(v), x = v  Fs1(w), y = w  Fs2

(x)

Fs1

Fs2





w

w' = y  Fs2
(x), v' = x  Fs1(w'), u' = w'  Hk(v')

 PRF in counter mode is a secure stream cipher
xy

p

 DES is simulating a invertible random permutation DES is simulating a invertible random permutation
 Verifiable trapdoor pseudo-random permutation is a 

i i h
51

secure unique signature scheme

Multi-Party ComputationMulti Party Computation
Real model Ideal model

mutually distrustful parties mutually trusted parties 
and a trusted party

 To what extent the trusted third party in the ideal model can be 
emulated by the mutually distrustful parties in the real model?

and a trusted party
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emulated by the mutually distrustful parties in the real model?
 To what extent the protocol in the real model can be simulated in the 

ideal model with the help of a trusted oracle?



Secure MPC
the Simulation Paradigmg

 Used also in the definition of zero-knowledge and semantic 
security

--- A scheme is secure if whatever a feasible
adversary can obtain after attacking it is alsoadversary can obtain after attacking it is also
feasibly attainable in an “ideal setting” ---

I thi th t l l t d th id l tti In this way, the protocol emulated the ideal setting –
computation with the help of a trusted party – and 

hi ll th d i d tiachieves all the desired properties
 Preservation of the privacy of each player’s local inputs 

b d h t i l d b th l l t t
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beyond what is revealed by the local outputs
 Correctness of honest parties’ local outputs???

Adaptive Security ModelAdaptive Security Model
Real model: Ideal model:

trusted
party ---
oracle O

simulator S
sk M as A

A
M

A
M

ski,Mi as A
decides to 
break into 

MA

adaptive adversary A

MA machine i

 Correctness: whatever can be obtained in the ideal model, can also be obtained 
in the real model

adaptive adversary A
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in the real model.
 Privacy: whatever can be observed by the adversary in the real model, can also 

be observed by the adversary in the ideal model.

Static vs. Adaptive AdversaryStatic vs. Adaptive Adversary
 Static adversary: 

Assume that A controls 2 out of n machines from the startAssume that A controls 2 out of n machines from the start
Goal: S(sk1, sk2, M1, M2) C

View (sk sk sk M M M )ViewA(sk1, sk2, …, skn, M1, M2, …, Mn)
i.e. simulator S in the ideal model must produce the view 
indistinguishable from that of an adversary in the real modelindistinguishable from that of an adversary in the real model

 Adaptive adversary (Mobile adversary in proactive model):
As A decides to break into a machine, A obtains its secret key at that s A dec des to b ea to a ac e, A obta s ts sec et ey at t at
moment.
Goal: SO() C ViewA(sk1, sk2, …, skn, M1, M2, …, Mn) A

i.e. simulator S in the ideal model, can ask an oracle O
about the secret ski and the output Mi of the i-th machine
during the simulation when the adversary chooses machines
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during the simulation when the adversary chooses machines 
to attack and must produce the view indistinguishable from
that of an adversary in the real model

Universal ComposabilityUniversal Composability
 What about security “in conjunction with other protocol executions”?

 Other executions of the same protocol? Other executions of the same protocol?
 Other executions of  arbitrary other protocols?
 “Intended” (coordinated) executions?
 “unintended” (uncoordinated) executions?

 Composition of instances of the same protocol:
 With same inputs/different inputs
 Same parties/different parties/different roles
 Sequential parallel concurrent (either coordinated or uncoordinated) Sequential, parallel, concurrent (either coordinated or uncoordinated). 

 “Subroutine composition” (modular composition):               
 protocol Q calls protocol P as subroutine protocol Q calls protocol P as subroutine. 
 Non-concurrent, Concurrent

 General composition: Running in the same system with arbitrary 
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p g y y
other protocols (arbitrary network activity), without coordination.

 Is security maintained under these operations?



Modular CompositionModular Composition

Q Q
Q Q

Q 
P

Q
P

Q Q
Q QQ Q

PP

f
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Towards the composition theoremTowards the composition theorem
The hybrid model with ideal access to func. f (the f-hybrid model): 

 Start with the real life model of protocol execution Start with the real-life model of protocol execution.
 In addition, the parties have access to a trusted party F for f:

 At pre defined rounds the protocol instructs all parties to sends values to F At pre-defined rounds, the protocol instructs all parties  to sends values to F.
 F evaluates f on the given inputs and hands outputs to parties
 Once the outputs are obtained the parties proceed as usual.p p p

 Notation: EXECf
P,H,Z is the ensemble describing the output of Z 

after interacting with protocol P and adversary H in the f-hybrid 
model.

Note:
 During the “ideal call rounds” no other computation takes place.
 Can generalize to a model where in each “ideal call round” a different function is 

being evaluated But doesn’t really add power (can use a single universal
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being evaluated. But doesn t really add power (can use a single universal 
functionality).

Modular compositionp
(Originates with [Micali-Rogaway91])
Start with:
 Protocol Q in the f-hybrid model
 Protocol P that sec rel reali es f Protocol  P  that securely realizes f

Construct the composed protocol QP:Construct the composed protocol Q : 
 Each call to f is replaced with an invocation of  P.
 The output of  P  is treated as the value of f.

Notes:
 In QP there is at most one protocol active (ie sending messages) at any point in In Q , there is at most one protocol active (ie, sending messages) at any point in 

time: When P is running, Q is suspended.
 It is important that in P all parties terminate the protocol at the same round. 

Otherwise the composition theorem does not work…
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Otherwise the composition theorem does not work…
 If P is a protocol in the real-life model then so is QP. If P is a protocol in the f’-

hybrid model for some function f’, then so is QP. 

Universal ComposabilityUniversal Composability
Ideal process F : Protocol  execution:

ZZ

P1 P2 P1 P2
S A

P3
P4 P3

P4

Protocol  securely realizes F if:
For any adversary A

F

For any adversary A
There exists an adversary S
Such that no environment Z can tell
whether it interacts with:

60

whether it interacts with:
- A run of  with A
- An ideal run with F and S


