1082 作業三

1. Calculate the following (please write down the detail calculation process)

(a) Divide 2^{12345} by 120. What is the remainder?

- (b) What is the last 3 digits of 321^{2439} ?
- (c) Evaluate $7^{999} \pmod{8}$?
- (d) Use part (c) to find $6^{7^{999}} \pmod{30}$?
- 2. Let $p \equiv 3 \pmod{4}$ be prime. Show that $x^2 \equiv -1 \pmod{p}$ has no solution, i.e. -1 or p-1 is a quadratic non-residue. (Hint: by contradiction, i.e. assume that the solution *x* exists. Raise both sides to the power (p-1)/2 and use Fermat's theorem.)
- 3. Let *a* and n > 1 be integers with gcd(a, n) = 1. The order of *a* mod *n* is the smallest positive integer *r* such that $a^r \equiv 1 \pmod{n}$. Denote $r = ord_n(a)$.

(a) Show that $r \leq \phi(n)$

- (b) Show that if m = r k is a multiple of r, then $a^m \equiv 1 \pmod{n}$
- (c) Suppose $a^t \equiv 1 \pmod{n}$. Write t = q r + s with $0 \le s < r$ (this is just division with remainder). Show that $a^s \equiv 1 \pmod{n}$.
- (d) Using the definition of *r* and the fact that $0 \le s < r$, show that s = 0 and therefore $r \mid t$. This, combined with part (b), yields the result that $a^t \equiv 1 \pmod{n}$ if and only if $ord_n(a) \mid t$.
- (e) Show that $ord_n(a) | \phi(n)$.