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< Prime number: an integer p>1 that is divisible only by 1
and 1itself, ex. 2, 3.5, 7, 11, 13, 17...

<~ Composite number: an integer n>1 that is not prime

< Fact: there are infinitely many prime numbers. (by Euclid)
pf: #=on the contrary, assume a, is the largest prime number
& ]et the finite set of prime numbers be {a,, a;, a,, .... a_}
& the number b = aj*a; *a,*...*a_+ 1 1s not divisible by any a;
1.e. b does not have prime factors < a_

2 cases: »if b has a prime factor d, b>d> a_, then “d is a prime
number that 1s larger than a_.” ... contradiction

> 1f b does not have any prime factor less than b, then “b 1s a

prime number that is larger than a_” ... contradiction
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*x Then X
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Prime Number Theorem
< Prime Number Theorem:

* Let m(x) be the number of primes less than x

*x Then X

In x
in the sense that the ratio n(x) / (x/Inx) > 1 as x —» «©

T(X) =

T(x) > —— and for x>17, T(x) < 1.10555 —
In x In x

< Ex: number of 100-digit primes

10100 1099
T(101) - T(10%) » 5 - s ~3.9x 107
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<~ Every composite number can be expressible as a
product a'b of integers with 1 <a, b<n

< Every positive integer has a unique representation
as a product of prime numbers raised to different

POWETS.
& Ex. 504 =23-3%2-7 1125=3%-53
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Factors

< Lemma: p is a prime number and p|a-b—>p|aorp|b,
more generally, p 1s a prime number and p | a-b-...:Z
—> p must divide one of a, b, ..., z

* proof:
xcase l: p|a

xcase 2: p/fa,
> p/aand p is a prime number = ged(p,a)=1=>1=ax+py
> multiply both side by b, b=bax+bpy
>plab=p|b
% In general: if p | a then we are done, if p/ a then p | bc...z, continuing

this way, we eventually find that p divides one of the factors of the
product
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['heorem: Every positive integer 1s a product of primes.
T'his factorization into primes 1s unique, up to

reordering of the factors. « Empty product equals 1.
x Proof: product of primes  Prime 1s a one factor product.

% assume there exist positive uitegers that are not product of primes
% let n be the smallest such/integer

% since n can not be 1 or a prime, n must be composite, i.e. n=a-b
& since n 1s the smallest, both a and b must be products of primes.
% n = a'b must also be a product of primes, contradiction

* Proof: uniqueness of factorization

& assume n = rlclrzcz. . .rkckplalpzaz. P as — rlclr202. . .I-kck qlblqzbz. . .qtbt
where p, q; are all distinct primes.

% letm=n/(r,°r,*2 - -1,%)

% consider p; for example, since p; divide m = q;q;..q{q,...q;, p; must
divide one of the factors di, contradict the fact that “p;, q; are distinct

primes”
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+Ifpisaprime, ptfa then aP'=1 (mod p)

Proof: %letS={1,2,3,...,p-1} (Z,"), define y(x) =a - x (mod p) be
a mapping y: S—Z

xVX e S, yx) =0 (modp)= Vx € S, y(X) € S, 1.e. y: S>S

C/ ify(x)=a:x=0(modp) = x=0 (mod p) since gcd(a, p) =1

2V X,y € S, 1f x #y then y(x) # y(y)

ifyx)=y(y) >a-x=a- y=x=ysince gcd(a, p) =1
% from the above two observations, y(1), w(2),... y(p-1) are
distinct elements of S
12 .. (p-D)=vw(l)y2)....yp-1)=(a-1)(a2)...-(a(p-1))
=aP! (1-2 -... (p-1)) (mod p)
% since ged(j, p) = 1 forj € S, we can divide both side by 1, 2,
3, ... p-1, and obtain aP"'=1 (mod p)
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i.e. 223 =2>modl0 93 8 (mod11)

< if n is prime, then 2™! = 1 (mod n)
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x (*) 1S a quick test for eliminating composite number
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< properties of ¢(*)
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ex. O(10)=(2-1)-(5-1)=4 $(120)=120(1-1/2)(1-1/3)(1-1/5)=32
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< d(n) ~ n - 6/7° as n goes large

<~ Probability that a prime number p 1s a factor of a random
numberr ? /p

r must be of the form kp

< Probability that two independent random numbers r, and r,
both have a given prime number p as a factor? ]/p2

{- The probability that they do not have p as a common factor
is thus 1 — 1/p?

< The probability that two numbers r, and r, have no common

prime factor?
10




< d(n) ~ n - 6/7° as n goes large

<~ Probability that a prime number p 1s a factor of a random
numberr ? /p

r must be of the form kp

< Probability that two independent random numbers r, and r,
both have a given prime number p as a factor? ]/p2

{- The probability that they do not have p as a common factor
is thus 1 — 1/p?
< The probability that two numbers r, and r, have no common

prime factor? p = (1-1/22)(1-1/32)(1-1/52)(1-1/72)...

10




Pr{ r, and r, relatively prime }

< Equalities:

|
1-x
1+1/22+1/32+1/42+1/52+ 1/62 + ... = 12/6

= [+x+x*+x7+...




Pr{ r, and r, relatively prime }

< Equalities:

|
1-x
1+1/22+1/32+1/42+1/52+ 1/62 + ... = 12/6

& P = (1-1/22)(1-1/33)(1-1/53)(1-1/72) - ...

= [+x+x*+x7+...




Pr{ r, and r, relatively prime }

< Equalities:

L+

p 1+1/22+1/324+1/42+1/52+1/62+ ... = n2/6
S P=(1-1/22)(1-1/32)(1-1/53)(1-1/7%) - ..

= ((1H1/2241/2%. ) (1413241 /3%+.) - )]




Pr{ r, and r, relatively prime }

< Equalities:

L+

p 1+1/22+1/324+1/42+1/52+1/62+ ... = n2/6
S P=(1-1/22)(1-1/32)(1-1/53)(1-1/7%) - ..

= (117224124 ) (1413241 /34 - L))
= (1412241324 1/42 +1/52+1/62+. )]

~..each positive number has a unique prime number factorization
ex. 452=3%-52




Pr{ r, and r, relatively prime }

< Equalities:

L _ l+x+x2+x3+. ..

1+1/22+1/32+1/42+ 1/52+ 1/62 + ... = 1%/6
<>P (1-1/2%)(1-1/3%)(1-1/5%)(1-1/7%) - . :
_((1+1/22+1/24+---)(1+1/32+1/34+...) L)
= (1+1/2241/3%1/4% +1/52 +1/6%+...) !

~..each positive number has a unique prime number factorization
ex. 452=3%-52




Pr{ r, and r, relatively prime }

< Equalities:

L+

p 1+1/22+1/324+1/42+1/52+1/62+ ... = n2/6
S P=(1-1/22)(1-1/32)(1-1/53)(1-1/7%) - .. |

L (122124 ) (1413241734 - L)
= (1412241324 1/42 41/52 +1/62+. Y

~..each positive number has a unique prime number factorization
ex. 452=3%-52




< ¢(n) 1s the number of integers less than n that are relative
prime to n




< ¢(n) 1s the number of integers less than n that are relative
prime to n

< ¢(n)/n 1s the probability that a randomly chosen integer 1s
relatively prime to n




< ¢(n) 1s the number of integers less than n that are relative
prime to n

< ¢(n)/n 1s the probability that a randomly chosen integer 1s
relatively prime to n

< Therefore, ¢(n) ~ n - 6/7




< ¢(n) 1s the number of integers less than n that are relative
prime to n

< ¢(n)/n 1s the probability that a randomly chosen integer 1s
relatively prime to n

< Therefore, ¢(n) ~ n - 6/7

< P, = Pr { n random numbers have no common factor }




< ¢(n) 1s the number of integers less than n that are relative
prime to n

< ¢(n)/n 1s the probability that a randomly chosen integer 1s
relatively prime to n

< Therefore, ¢(n) ~ n - 6/7

< P, = Pr { n random numbers have no common factor }

* n independent random numbers all have a given prime p as a

factor 1s 1/p"




< ¢(n) 1s the number of integers less than n that are relative
prime to n

< ¢(n)/n 1s the probability that a randomly chosen integer 1s
relatively prime to n

< Therefore, ¢(n) ~ n - 6/7

< P, = Pr { n random numbers have no common factor }

* n independent random numbers all have a given prime p as a

factor 1s 1/p"
* They do not all have p as a common factor 1 — 1/p®




< ¢(n) 1s the number of integers less than n that are relative
prime to n

< ¢(n)/n 1s the probability that a randomly chosen integer 1s
relatively prime to n

< Therefore, ¢(n) ~ n - 6/7

< P, = Pr { n random numbers have no common factor }

* n independent random numbers all have a given prime p as a

factor 1s 1/p"
* They do not all have p as a common factor 1 — 1/p®

x P = (1+1/2"+1/3"+1/4"+1/5"+1/6"+...)! is the Riemann zeta
function C(n) http://mathworld.wolfram.com/RiemannZetaFunction.html




< ¢(n) 1s the number of integers less than n that are relative
prime to n

< ¢(n)/n 1s the probability that a randomly chosen integer 1s
relatively prime to n

< Therefore, ¢(n) ~ n - 6/7

< P, = Pr { n random numbers have no common factor }

* n independent random numbers all have a given prime p as a

factor 1s 1/p"
* They do not all have p as a common factor 1 — 1/p®

x P = (1+1/2"+1/3"+1/4"+1/5"+1/6"+...)! is the Riemann zeta
function C(n) http://mathworld.wolfram.com/RiemannZetaFunction.html

* Ex. n=4, ¢(4) = 1%/90 ~ 0.92




+If ged(a,n)_1 then a®™ =1 (mod n)




true when n is prime

+If ged(a,n)_1 then a®™ =1 (mod n)




true when n is prime

+If ged(a,n)_1 then a®™ =1 (mod n)

Proof: #let S be the set of integers 1<x<n, with gcd(x, n) = 1




true when n is prime

+If ged(a,n)_1 then a®™ =1 (mod n)
Proof: #1let S be the set of integers 1<x<n, with gcd(x, n) = 1
x define y(x) = a - x (mod n) be a mapping y: S—>Z




true when n is prime

+If ged(a,n)_1 then a®™ =1 (mod n)

Proof: #1let S be the set of integers 1<x<n, with gcd(x, n) = 1
x define y(x) = a - x (mod n) be a mapping y: S—>Z
x VX € S and ged(a, n) =1,




true when n is prime

+If ged(a,n)_1 then a®™ =1 (mod n)

Proof: #1let S be the set of integers 1<x<n, with gcd(x, n) = 1
x define y(x) = a - x (mod n) be a mapping y: S—>Z

n)=1,

=l

x VX € S and ged(a
y(x) # 0 (mod n)

ify(x)=a- - x=0(modn) = x =0 (mod n)




true when n is prime

+If ged(a,n)_1 then a®™ =1 (mod n)

Proof: #let S be the set of integers 1<x<n, with gcd(x, n) =1
x define y(x) = a - x (mod n) be a mapping y: S—>Z
x VX € S and ged(a, n) =1,

gcd(a, n)=1 and gcd(x, n)=1

\|J(X) # 0 (mod n) e ] (no common prime factors)

ged(y(x), n) = 1




true when n is prime
+If ged(a,n)_1 then a®™ =1 (mod n)
Proof: #1let S be the set of integers 1<x<n, with gcd(x, n) = 1
x define y(x) = a - x (mod n) be a mapping y: S—>Z
x VX € S and ged(a, n) =1,
y(x) # 0 (mod n)
ged(y(x), n) =1

} = Vx € S, y(x) € S, 1.e. y: S>S




true when n is prime

+If ged(a,n)_1 then a®™ =1 (mod n)
Proof: #let S be the set of integers 1<x<n, with gcd(x, n) =1
x define y(x) = a - x (mod n) be a mapping y: S—>Z
x VX € S and ged(a, n) =1,
y(x) # 0 (mod n)
ged(y(x), n) =1
xV X,y € S, ‘if X #y then y(X) # y(y) (mod n)’
o ifyx)=y(y)=>a-x=a'y=x=ysince gcd(a, n) =1

} = Vx € S, y(x) € S, 1.e. y: S>S




true when n is prime

+If ged(a,n)_1 then a®™ =1 (mod n)
Proof: #let S be the set of integers 1<x<n, with gcd(x, n) =1
x define y(x) = a - x (mod n) be a mapping y: S—>Z
x VX € S and ged(a, n) =1,
y(x) # 0 (mod n)
ged(y(x), n) =1
xV X,y € S, ‘if X #y then y(X) # y(y) (mod n)’
o ifyx)=y(y)=>a-x=a'y=x=ysince gcd(a, n) =1

} = Vx € S, y(x) € S, 1.e. y: S>S

% from the above two observations, VxeS, y(x) are distinct
elements of S (i.e. {y(X) | VxeS} 1s S)




true when n is prime

+If ged(a,n)_1 then a®™ =1 (mod n)
Proof: #let S be the set of integers 1<x<n, with gcd(x, n) =1
x define y(x) = a - x (mod n) be a mapping y: S—>Z
x VX € S and ged(a, n) =1,
y(x) # 0 (mod n)
ged(y(x), n) =1
xV X,y € S, ‘if X #y then y(X) # y(y) (mod n)’
&\—Hw@)zw@%3a°xzaquszyﬁmmgﬂmJDZ1

} = Vx € S, y(x) € S, 1.e. y: S>S

% from the above two observations, VxeS, y(x) are distinct
elements of S (i.e. {y(X) | VxeS} 1s S)

¢ [Ix=[lwx)=za®™[Ix (modn)
XeS  XeS XeS




true when n is prime

+If ged(a,n)_1 then a®™ =1 (mod n)
Proof: #let S be the set of integers 1<x<n, with gcd(x, n) =1
x define y(x) = a - x (mod n) be a mapping y: S—>Z
x VX € S and ged(a, n) =1,
y(x) # 0 (mod n)
ged(y(x), n) =1
xV X,y € S, ‘if X #y then y(X) # y(y) (mod n)’
&\—Hw@)zw@%3a°xzaquszyﬁmmgﬂmJDZ1

} = Vx € S, y(x) € S, 1.e. y: S>S

% from the above two observations, VxeS, y(x) are distinct
elements of S (i.e. {y(X) | VxeS} 1s S)

¢ [Ix=[lwx)=za®™[Ix (modn)
XeS  XeS XeS

% since gcd(x, n) = 1 for x € S, we can cancel one by one
x € S of both sides, and obtain a®™=1 (mod n)




true when n is prime

<> If ng(a,n):l then a(l)(n) — 1 (mod n) true even when n = p¥

Proof: #let S be the set of integers 1<x<n, with gcd(x, n) =1
x define y(x) = a - x (mod n) be a mapping y: S—>Z
x VX € S and ged(a, n) =1,
y(x) # 0 (mod n)
ged(y(x), n) =1
xV X,y € S, ‘if X #y then y(X) # y(y) (mod n)’
&\—Hw@)zw@%3a°xzaquszyﬁmmgﬂmJDZ1

} = Vx € S, y(x) € S, 1.e. y: S>S

% from the above two observations, VxeS, y(x) are distinct
elements of S (i.e. {y(X) | VxeS} 1s S)

¢ [Ix=[lwx)=za®™[Ix (modn)
XeS  XeS XeS

% since gcd(x, n) = 1 for x € S, we can cancel one by one
x € S of both sides, and obtain a®™=1 (mod n)




< Example: What are the last three digits of 78039
i.e. we want to find 75 (mod 1000)
1000 =23-5°,  $(1000) = 1000(1-1/2)(1-1/5) = 400
7803 = 7803 (mod 400) — 73 = 343 (mod 1000))




< Example: What are the last three digits of 78039
i.e. we want to find 75 (mod 1000)
1000 =23-5°,  $(1000) = 1000(1-1/2)(1-1/5) = 400
7803 = 7803 (mod 400) — 73 = 343 (mod 1000))

<~ Example: Compute 43210 (mod 101)?
101=1- 101, d(101) = 100




QAFVAVAVYAY™aVWVaA

Euler’s Theorem: VaeZ *, a®™ =1 (mod n)




QAFVAVAVYAY™aVWVaA

Euler’s Theorem: VaeZ *, a®™ =1 (mod n)

<~ We have proved the above theorem by showing that the function
y(x)=a - x (mod n) 1s a permutation.




QAFVAVAVYAY™aVWVaA

Euler’s Theorem: VaeZ *, a®™ =1 (mod n)

<~ We have proved the above theorem by showing that the function
y(x)=a - x (mod n) 1s a permutation.

<~ We can also prove it through Fermat’s Little Theorem & CRT




QAFVAVAVYAY™aVWVaA

Euler’s Theorem: VaeZ *, a®™ =1 (mod n)

<~ We have proved the above theorem by showing that the function
y(x)=a - x (mod n) 1s a permutation.

<~ We can also prove it through Fermat’s Little Theorem & CRT
> considern=p - q, ¢(n) = (p-1)(q-1)




QAFVAVAVYAY™aVWVaA

Euler’s Theorem: VaeZ *, a®™ =1 (mod n)

<~ We have proved the above theorem by showing that the function
y(x)=a - x (mod n) 1s a permutation.

<~ We can also prove it through Fermat’s Little Theorem & CRT
> considern=p - q, ¢(n) = (p-1)(q-1)

Vanp*, aP"!l = 1 (mod p) = (aP 19! = a%™ = 1 (mod p)




QAFVAVAVYAY™aVWVaA

Euler’s Theorem: VaeZ *, a®™ =1 (mod n)

<~ We have proved the above theorem by showing that the function
y(x)=a - x (mod n) 1s a permutation.

<~ We can also prove it through Fermat’s Little Theorem & CRT
> considern=p - q, ¢(n) = (p-1)(q-1)

Vanp:, ap'i =1 (mod p) = (ap'i)q'i = a%™ = 1 (mod p)
q »al =1 (modq) = (@1 )P = a®™ =1 (mod q)




QAFVAVAVYAY™aVWVaA

Euler’s Theorem: VaeZ *, a®™ =1 (mod n)

<~ We have proved the above theorem by showing that the function
y(x)=a - x (mod n) 1s a permutation.

<~ We can also prove it through Fermat’s Little Theorem & CRT
> considern=p - q, ¢(n) = (p-1)(q-1)

Vanp:, ap'i =1 (mod p) = (ap'i)q'i = a%™ = 1 (mod p)
q »al =1 (modq) = (@1 )P = a®™ =1 (mod q)




QAFVAVAVYAY™aVWVaA

Euler’s Theorem: VaeZ *, a®™ =1 (mod n)

<~ We have proved the above theorem by showing that the function
y(x) =a - x (mod n) 1s a permutation.

<~ We can also prove it through Fermat’s Little Theorem & CRT
> considern=p - q, ¢(n) = (p-1)(q-1)

Vanp*, aPl = 1 (mod p) = (aP Ha! = a®™ = | (mod p)
q*, a9l = 1 (mod q) = (a41)P1 = a%™ =1 (mod q)
gcd(p,q)=1 = p-q|a®™-1,1ie. VaeZ (pfaand qfa),a®™ =1 (mod n)




QAFVAVAVYAY™aVWVaA

Euler’s Theorem: VaeZ *, a®™ =1 (mod n)

<~ We have proved the above theorem by showing that the function
y(x) =a - x (mod n) 1s a permutation.

<~ We can also prove it through Fermat’s Little Theorem & CRT
> considern=p - q, ¢(n) = (p-1)(q-1)

Vanp*, aPl = 1 (mod p) = (aP Ha! = a®™ = | (mod p)
q*, a9l = 1 (mod q) = (a41)P1 = a%™ =1 (mod q)
gcd(p,q)=1 = p-q|a®™-1,1ie. VaeZ (pfaand qfa),a®™ =1 (mod n)

> consider n = p’, ¢(n) = p~!(p-1)




QAFVAVAVYAY™aVWVaA

Euler’s Theorem: VaeZ *, a®™ =1 (mod n)

<~ We have proved the above theorem by showing that the function
y(x) =a - x (mod n) 1s a permutation.

<~ We can also prove it through Fermat’s Little Theorem & CRT
> considern=p - q, ¢(n) = (p-1)(q-1)

Vanp*, aPl = 1 (mod p) = (aP Ha! = a®™ = | (mod p)
q*, a9l = 1 (mod q) = (a41)P1 = a%™ =1 (mod q)
gcd(p,q)=1 = p-q|a®™-1,1ie. VaeZ (pfaand qfa),a®™ =1 (mod n)

> consider n = p’, ¢(n) = p~!(p-1)
Vaezzr, aPl =1 (mod p) = aP! = 1+Ap




QAFVAVAVYAY™aVWVaA

Euler’s Theorem: VaeZ *, a®™ =1 (mod n)

<~ We have proved the above theorem by showing that the function
y(x) =a - x (mod n) 1s a permutation.

<~ We can also prove it through Fermat’s Little Theorem & CRT
> considern=1p - q, ¢(n) = (p-1)(q-1)
Vanp:, ap‘i =1 (mod p) = (ap'i)q'i = a%™ = 1 (mod p)
q »a’ =1 (modq) = (2}:1' Pl = 2% =1 (mod q)
gcd(p,q)=1 = p-q|a®™-1,1ie. VaeZ (pfaand qfa),a®™ =1 (mod n)

> consider n = p’, ¢(n) = p~!(p-1)
Vaezzr, aPl =1 (mod p) = aP! = 1+Ap

a%® = (144p) =1+C" Ap+C” (Ap)+...
=1+p"~! ap+p~l(p™-1)2 (Ap)* +...




QAFVAVAVYAY™aVWVaA

Euler’s Theorem: VaeZ *, a®™ =1 (mod n)

<~ We have proved the above theorem by showing that the function
y(x) =a - x (mod n) 1s a permutation.

<~ We can also prove it through Fermat’s Little Theorem & CRT
> considern=1p - q, ¢(n) = (p-1)(q-1)
Vanp:, ap‘i =1 (mod p) = (ap'i)q'i = a%™ = 1 (mod p)
q »a’ =1 (modq) = (2}:1' Pl = 2% =1 (mod q)
gcd(p,q)=1 = p-q|a®™-1,1ie. VaeZ (pfaand qfa),a®™ =1 (mod n)

> consider n = p’, ¢(n) = p~!(p-1) :
Vaezzr, aPl =1 (mod p) = aP! = 1+Ap a®n) = (H}bp)p
= ] (mod n)

a%® = (144p) =1+C" Ap+C” (Ap)+...
=1+p"~! ap+p~l(p™-1)2 (Ap)* +...




> consider n=p" - ¢%, ¢(n) = p"!(p-1) ¢*(q-1)




> consider n=p" - ¢%, ¢(n) = p"!(p-1) ¢*(q-1)
VaeZy, aP! = 1 (mod p)




> consider n=p" - @3, ¢(n) = p~l(p-1) qs'l(q 1)
Van ,aP” =1 (mod p) = (ap 1) =1 (mod p")




A second proof (cont'd)

> consider n=p" - @3, ¢(n) = p~l(p-1) q" Y(g-1)
Vaezzr, aP ! =1 (mod p) = (aP” 1) =1 (mod p')

— (a(p Dp” )(q—l)q — 50 _ 1 (mod p")




A second proof (cont'd)

> consider n=p" - @3, ¢(n) = p~l(p-1) q" Y(g-1)
Vaezzr, aP ! =1 (mod p) = (aP” 1) =1 (mod p')

— (a(p Dp” )(q-l)q — 50 _ 1 (mod p") = p' | 20 _1




A second proof (cont'd)

> consider n=p" - @3, ¢(n) = p~l(p-1) q" Y(g-1)
Vaezzr, aP ! =1 (mod p) = (aP” 1) =1 (mod p')

N (a(p 1)p™ )(q-l)q — 0 _ 4 (mod p*) = p | 20()_1
Vaezzs, a9l = 1 (mod q)




A second proof (cont'd)

> consider n=p" - @3, ¢(n) = p~l(p-1) q" Y(g-1)
Vaezzr, aP ! =1 (mod p) = (aP” 1) =1 (mod p')

— @P P @ D < ad’(n)z 1 (mod p") = p" | a®™-1
Van ,a%! =1 (mod q) = (aF 1) =1 (mod q°)




A second proof (cont'd)

> consider n=p" - @3, ¢(n) = p~l(p-1) q" Y(g-1)
Vaezzr, aP ! =1 (mod p) = (aP” 1) =1 (mod p')

— @P P @ D < ad’(n)z 1 (mod p") = p" | a®™-1
Van ,a%! =1 (mod q) = (aF 1) =1 (mod q°)

= @@DI)E-DPL 200 = | (mod o)




A second proof (cont'd)
> consider n=p" - @3, ¢(n) = p~l(p-1) q" Y(g-1)
Vaezzr, aP ! =1 (mod p) = (aP” 1) =1 (mod p')
— @P P @ D < ad’(n)z 1 (mod p") = p" | a®™-1
Van ,a%! =1 (mod q) = (aF 1) =1 (mod q°)

— @@ D) E-DP"Z 200 = | (mod ¢°) = q* | a®®-1




A second proof (cont'd)
> consider n=p" - @3, ¢(n) = p~l(p-1) q" Y(g-1)
Vaezzr, aP ! =1 (mod p) = (aP” 1) =1 (mod p')
— @P P @ D < ad’(n)z 1 (mod p") = p" | a®™-1
Van ,a%! =1 (mod q) = (aF 1) =1 (mod q°)

— @@ D) E-DP"Z 200 = | (mod ¢°) = q* | a®®-1

ged(png®)=1




A second proof (cont'd)
> consider n=p" - @3, ¢(n) = p~l(p-1) q" Y(g-1)
Vaezzr, aP ! =1 (mod p) = (aP” 1) =1 (mod p')
— @P P @ D < ad’(n)z 1 (mod p") = p" | a®™-1
Van ,a%! =1 (mod q) = (aF 1) =1 (mod q°)

— @@ D) E-DP"Z 200 = | (mod ¢°) = q* | a®®-1

ged(pr,g?)=1=> p'q* | a®"-1




A second proof (cont'd)
> consider n=p" - @3, ¢(n) = p~l(p-1) q" Y(g-1)
Vaezzr, aP ! =1 (mod p) = (aP” 1) =1 (mod p')
— @P P @ D < ad’(n)z 1 (mod p") = p" | a®™-1
Van ,a%! =1 (mod q) = (aF 1) =1 (mod q°)

= (a4 DT )(p DP"= 29 = 1 (mod ¢) = g | a®®-1
gcd(pt,q®)=1= p'q° | a¥™_1, j.e. VacZ (pyaandqjfa), 2™ =1 (mod n)




A second proof (cont'd)
> considern=p" - %, ¢(n) =p"~'(p-1) ¢ (q-1)
VanSr ,aP” =1 (mod p) = (aP” 1) =1 (mod p")
— (a(P 1p” )(q gt a<|>(n)E 1 (mod p*) = p* | 29(M)_1
VaeZ. o> a9l =1 (mod q) = (@¥ 1) =1 (mod q°)
— @@ D) E-DP"Z 200 = | (mod ¢°) = q* | a®®-1
gcd(pt,q®)=1= p'q° | a¥™_1, je. VacZ (pyaandqjfa), 2™ = 1 (mod n)

> considern=p, 'p, 2--p X, ¢(n) =n VH| (1-1/p) Unique Prime
p|n

Factorization




A second proof (cont'd)
> considern=p" - %, ¢(n) =p"~'(p-1) ¢ (q-1)
VanSr ,aP” =1 (mod p) = (ap 1) =1 (mod p")
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> considern=p" - %, ¢(n) =p"~'(p-1) ¢ (q-1)
VanSr ,aP” =1 (mod p) = (ap 1) =1 (mod p")
— (aP-Dp” )(q'l)q =a ¥ = 1 (mod p") = p* | a®™-1
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> considern=p' * ¢%, ¢(n) = p~'(p-1) ¢*!(q-1)

r-1
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> consider n=p" - @3, ¢(n) = p~l(p-1) qs'l(q 1)
Van ,aP” =1 (mod p) = (ap 1) =1 (mod p")

— (a(p 1)p” )(q-l)q — a(l)(ﬂ)E 1 (mod p") = p" | 20 _1
VaeZ. > a0l =1 (mod q) = (aT 1) =1 (mod q°)
— (a(q Da” )(p Dp~Z 0 = (mod ¢*) = ¢ | 20(M)_1
gcd(pt,q®)=1= p'q° | a¥™_1, je. VacZ (pyaandqjfa), 2™ = 1 (mod n)

> considern=p, 'p, 2--p X, ¢(n) =n VH| (1-1/p) Unique Prime
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ST (p-Dpy
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> consider n=p" - @3, ¢(n) = p~l(p-1) qs'l(q 1)
Van ,aP” =1 (mod p) = (ap 1) =1 (mod p")

— (a(p 1)p” )(q-l)q — a(l)(ﬂ)E 1 (mod p") = p" | 20 _1
VaeZ. > a0l =1 (mod q) = (aT 1) =1 (mod q°)
— (a(q Da” )(p Dp~Z 0 = (mod ¢*) = ¢ | 20(M)_1
gcd(pt,q®)=1= p'q° | a¥™_1, j.e. VacZ (pyaandqjfa), 2™ =1 (mod n)

> considern=p, 'p, 2--p X, ¢(n) =n VH| (1-1/p) Unique Prime
p|n

Factorization

" : . 1;-1
‘v’anp.ri, aPl =1 (mod p,)) = (api l)pl =1 (mod p,")

S (pDpy
— (a(pi'l)p ) Vi# ] ] — a(l)(n) — 1 (mOd plr) — piri | ad)(n)_l

all p/li are . )
relatively prime le | a®™-1, i.e. VaeZ (Vip, ya),a?™ =1 (mod n) 0
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Theorem;
VaeZ *, a™ =1 (mod n) and a®M™ =1 (mod n?)
where n=p-q, p # q, Mn) = lem(p-1, g-1), A(n) | ¢(n)

$- like Euler’s Theorem, we can prove 1t through Fermat’s
Little Theorem, consider n =p * q, where p=q,
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VaeZ *, a™ =1 (mod n) and a®M™ =1 (mod n?)
where n=p-q, p # q, Mn) = lem(p-1, g-1), A(n) | ¢(n)

$- like Euler’s Theorem, we can prove 1t through Fermat’s
Little Theorem, consider n =p * q, where p=q,

VaeZ, aP"! = 1 (mod p) = (aP1)(@Deedp-1.a-D) = gMM) = | (mod p)
1 1n(p-1Yeed(p-1.g-1) — aA(0) —

o s 9! =1 (mod q) — (aq )(P 1)/ged(p-1,9-1) = g (n) — 1 (mod q)
gcd(p,q)=1 = pq | a*®W-1, VaeZ *(i.e. pfarqfa), a*™ = 1 (mod n)
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Carmichael Theorem

Theorem:
VaeZ *, a™ =1 (mod n) and a®M™ =1 (mod n?)
where n=p-q, p # q, Mn) = lem(p-1, g-1), A(n) | ¢(n)
$- like Euler’s Theorem, we can prove 1t through Fermat’s
Little Theorem, consider n =p - q, where p=q,
VaeZ, aP"! = 1 (mod p) = (aP1)(@Deedp-1.a-D) = gMM) = | (mod p)
e aq'l =8| (mod q) p— (aq'l)(P'l)/ng(P'laQ'l) = a?\,(n) =1 (mod q)
gcd(p,q)=1 = pq | a*®W-1, VaeZ *(i.e. pfarqfa), a*™ = 1 (mod n)
therefore, VaeZ *, a®™W=1+k - n

raise both side to the n-th power, we get a® ™ = (1 + k - n)",

= a" ™ =1+nkn+..=VaeZ"(orZ,*),a" ™ =1 (mod n?)
104




< Let a, n, X, y be integers with n>1, and gcd(a,n)=1
if x =y (mod ¢(n)), then a* = a¥ (mod n).




< Let a, n, X, y be integers with n>1, and gcd(a,n)=1
if x =y (mod ¢(n)), then a* = a¥ (mod n).

< If you want to work mod n, you should work mod
¢(n) or A(n) 1in the exponent.
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<- When p 1s a prime number, a primitive root
modulo p 1s a number whose powers yield every
nonzero element mod p. (equivalently, the order of
a primitive root 1s p-1)

+ex: 31=3, 32=2, 33=6, 3%=4, 3°=5, 3%=1 (mod 7)
3 1s a primitive root mod 7

<-sometimes called a multiplicative generator

$-there are plenty of primitive roots, actually ¢(p-1)

* ex. p=101, d(p-1)=100-(1-1/2)-(1-1/5)=40
p=143537, d(p-1)=143536-(1-1/2)-(1-1/8971)=71760
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< How do we test whether h is a primitive root modulo p?
* naive method:
go through all powers h?, h3, ..., hP?2, and make sure
they all # 1 modulo p
* faster method:

assume p-1 has prime factors q;, q,, ..., q,,,

for all q;, make sure h®-1a modulo p is not 1,

then h 1s a primitive root

Intuition: let h = g% (mod p), if gcd(a, p-1)=d (i.e. g* is not a
primitive root), (g?) P-1)/di = (g2/4i)(P-D) = 1 (mod p) for
some q; | d
ex. p=29, p-1=2-2.7, h=5, h?¥?=1, h?®7=16, 5 is not a primitive
h=11, h?82=28, h?¥7=25, 11 is a primitive
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for all q;, g(P-D/4i (mod p) is not 1 = g is a primitive
Proof:
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Fermat Theorem: g®) = 1 (mod p) therefore implies ord (g) < ¢(p)
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<~ Procedure to test a primitive g:

let p-1 has prime factors q;, q, ..., q,, (1.€. ¢(p)=p-1=q,"...q,™)
for all q;, g(P-D/4i (mod p) is not 1 = g is a primitive
Proof:

(a) by definition, ord (g) is the smallest positive x s.t. g* = 1 (mod p)

Fermat Theorem: g®) = 1 (mod p) therefore implies ord (g) < ¢(p)

if ¢(p) = ord (g) * k+s with 0 <s <ord,(g)

g®) = gordp(®) "k g8 = g5 = | (mod p), but s < ord (g) = s =0, i.e. ord (g) | d(p)
(b) assume g is not a primitive root 1.e ord (g) < ¢(p)=p-1

then 3 i, such thatord(g) | (p-1)/q; i.e. g4 =1 (mod p) for some q;
(c) if for all q., g4l = 1 (mod p)

then ord (g) = ¢(p) and g is a primitive root modulo p
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< An integer n is prime iff the converse of
Ja, s.t. {1. a™! =1 (mod n)
2. Vprime factor q of n-1, a4 % 1 (mod n)
(=) ifnis prime, catch: inefficient, factors of n-1 are required

Fermat Little Theorem

Proof:

Fermat's little theorem ensures that "Vazkn, a™! = 1 (mod n)"
a primitive a ensures "V prime factor q of n-1, a4 % 1 (mod n)"

(<) ifda, s.t. 1. a™!' = 1 (mod n) and
2. Vprime factor q of n-1, a»4# 1 (mod n)
By definition, ord (a) is the smallest positive x s.t. a* = 1 (mod n)
the first condition implies that ord (a) < n-1, also, ord (a) | n-1




Lucas Primality Test
L
<~ An integer n 1s prime 1ff the converse of
da, s.t. {

1.a"! = 1 (mod n) Fermat Little Theorem

Proof: 2. Vprime factor q of n-1, a4 # 1 (mod n)
(=) ifnis prime, catch: inefficient, factors of n-1 are required
Fermat's little theorem ensures that "Vazkn, a®! =1 (mod n)"
a primitive a ensures "V prime factor q of n-1, a4« 1 (mod n)"
(<) ifda, s.t. 1. a™!' = 1 (mod n) and
2. Vprime factor g of n-1, a4 # 1 (mod n)
By definition, ord (a) is the smallest positive x s.t. a* = 1 (mod n)
the first condition implies that ord (a) < n-1, also, ord (a) | n-1
the second condition then implies that ord (a) = n-1 (*)




Lucas Primality Test
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Ja, s.t. {1. a™! =1 (mod n)
2. Vprime factor q of n-1, a4 % 1 (mod n)
(=) ifnis prime, catch: inefficient, factors of n-1 are required

Fermat Little Theorem

Proof:

Fermat's little theorem ensures that "Vazkn, a™! = 1 (mod n)"
a primitive a ensures "V prime factor q of n-1, a4 % 1 (mod n)"

(<) ifda, s.t. 1. a™!' = 1 (mod n) and
2. Vprime factor q of n-1, a»4# 1 (mod n)
By definition, ord (a) is the smallest positive x s.t. a* = 1 (mod n)
the first condition implies that ord (a) < n-1, also, ord (a) | n-1
the second condition then implies that ord (a) = n-1 (*)

Euler thm says that a®™ = 1 (mod n), by definition ¢(n)<n-1 if n is

a composite number, 1.e. ord_(a) < n-1, contradict with (*). o1
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<- based on the Lucas Primality Test (LPT)
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229 (a=6,229 —1=2°x3x19)
2 (known prime)
3 @=2,3—-1=2)
2 (known prime)
19 (a=2,19—-1=2x3?)
2 (known prime)
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< Why are there ¢(p-1) primitive roots?
* et g be a primitive root (the order of g 1s p-1) an integer

. less than p-1
* g g% g, .. o
* 1f gcd(a, p- 1) =d, then (ga) (p-D/d = (g d)(p 1) =1 (mod p) which
says that the order of g% is at most (p-1)/d, therefore, g 1s not a
primitive root = There are at most ¢(p-1) primitive roots in Zp*

* For an element g? in Zp* where gcd(a, p-1) = 1, 1t 1s guaranteed
that (g2)®-1/di = 1 (mod p) for all g (q; is factors or p-1)
assume that for a certain g, (g)®-14 = 1 (mod p)

=p-lla-(p-1)/q
= Jintegerk, a - (p-1)/q,=k - (p-1) 1.e.a=k"q;

= ;| a




< Why are there ¢(p-1) primitive roots?

* let g be a primitive root (the order of g is p-1) lan itIIlltegerl
.- less than p-

X g gz, g3, e gp'1 is a permutation of l,g_,_

* if ged(a, p-1)=d, then (g?) P-4 = (g@d)(P-D) = | (mod p) which
says that the order of g% is at most (p-1)/d, therefore, g 1s not a
primitive root = There are at most ¢(p-1) primitive roots in Zp*

* For an element g? in Zp* where gcd(a, p-1) = 1, 1t 1s guaranteed
that (g2)®-1/di = 1 (mod p) for all g (q; is factors or p-1)
assume that for a certain g, (g)®-14 = 1 (mod p)

=p-lla-(p-1)/q
= Jintegerk, a - (p-1)/q,=k - (p-1) 1.e.a=k"q;

=q;la
= q; | ged(a, p-1) contradiction
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Multiplicative Generators in Z_~

1V 1 LJn

< How do we define a multiplicative generator in
Z._" if n is a composite number?

x [s there an element in Z " that can generate all elements
of 77

* [fn=p - q, the answer 1s negative. From Carmichael
theorem, VaeZ_*, a*™ = 1 (mod n), ged(p-1, g-1) is at
least 2, A(n) = lcm(p-1, g-1) 1s at most ¢(n) / 2. The
size of a maximal possible multiplicative subgroup in
Z. " is therefore no larger than A(n).

x I[f n = p¥, the answer is yes

* How many elements in Z_* can generate the maximal
possible subgroup of Z *?
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Findi S R I n
<+ For example: find x such that x* = 71 (mod 77)

Is there any solution?

How many solutions are there?

How do we solve the above equation systematically?

<+ In general: find x s.t. x> = b (mod n),

where b € QR , n =p-q, and p, g are prime numbers

& Easier case: find x s.t. x2 = b (mod p),

where p 1s a prime number, b € QR

Note: QR is “Quadratic Residue in Z_*” to be defined later
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< G1ven yeZp*, find x, s.t. x* = y (mod p), p is prime
>»p=1(mod4) (1.e. p =4k + 1) : probabilistic algorithm

T ;
WO cases >p =3 (mod4) (i.e. p = 4k + 3) : deterministic algorithm

< Is there any solutionl? (Isy a QR ?)

7
check y 2 21 (mod p)
<>p =3 (mOd 4) ptl

x=xy 4 (modp)
% (pt+1)/4 = (4k+3+1)/4 = k+1 1s an integer
£ x2 :y(p+l)/2 :y(p-l)/Z cy=y (modp)
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Finding Square Root mod p
$p=1(mod4)
* Peralta, Eurocrypt’86, p =25 g + 1, both p, g are prime

* 3-step probabilistic procedure
{ 1. Choose a random number r, if 7> = y (mod p), output z = r

2. Calculate (r + x)(p—l)/2 =u + vx (mod f(x)), f(x)= x2—y
3. If u = 0 then output z = v'! (mod p), else goto step 1

note: (b+cx)(d+ex) = (bd+ce x%) + (betcd) x
= (bd+ce y) + (betcd) x (mod x%-)
use square-multiply algorithm to calculate the
polynomial (» + x)®-1)/2

* the probability to successfully find z for each » > 1/2

230




T ; |

+ex: find z such that z2 = 12 (mod 13)




T ; |

+ex: find z such that z2 = 12 (mod 13)

solution:
x13=1(mod4) 1e.4k+l




T ; |

+ex: find z such that z2 = 12 (mod 13)

solution:
x13=1(mod4) 1e.4k+l
&choose 7r=3,32=9 =12




+ex: find z such that z2 = 12 (mod 13)

solution:
x13=1(mod4) 1e.4k+l
&choose 7r=3,32=9 =12

53 +x) B3 D2=3+x)0=12+0x (modx3-12)




+ex: find z such that z2 = 12 (mod 13)

solution:
x13=1(mod4) 1e.4k+l
&choose 7r=3,32=9 =12

53 +x) B3 D2=3+x)0=12+0x (modx3-12)
&choose r=7,72=10= 12




+ex: find z such that z2 = 12 (mod 13)

solution:
x13=1(mod4) 1e.4k+l
&choose 7r=3,32=9 =12

53 +x) B3 D2=3+x)0=12+0x (modx3-12)
&choose r=7,72=10= 12

& (7 +x) 3 D2=(7+x°=0+8x (modx?12)
—=z=81=35 (mod 13)




+ex: find z such that z2 = 12 (mod 13)

solution:
x13=1(mod4) 1e.4k+l
&choose 7r=3,32=9 =12

53 +x) B3 D2=3+x)0=12+0x (modx3-12)
&choose r=7,72=10= 12

& (7 +x) 3 D2=(7+x°=0+8x (modx?12)
—=z=81=35 (mod 13)

Why does it work???




+ex: find z such that z2 = 12 (mod 13)

solution:
x13=1(mod4) 1e.4k+l
&choose 7r=3,32=9 =12

53 +x) B3 D2=3+x)0=12+0x (modx3-12)
&choose r=7,72=10= 12

(7 +x) B3 D2=7+x)0=0+8x (modx3-12)
—=z=81=5 (mod 13)

Why does it work???
Why 1s the success probability > %2 277
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<~ Now let's return to the question of solving square roots
inZ’,i.e
for an integer yeQR_,
find xeZ " such that x’= y (mod »)

< We would like to transform the problem into solving
square roots mod p.

< Question: for n=p-q
Is solving “x? = y (mod n)” equivalent to solving
“x? =y (mod p) and x* = y (mod ¢)”???

yes (=) x*-y=kn=kpg = p | x*-y and q | x*>-y [

(<) p|x*-yand q | x*-y= pq | x>-y i.e. x>-y=kpg=kn [ .,
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< find x such that x*> = 71 (mod 77)
x77=7 11

* “x* satisfies f(x*) =71 (mod 77)” <
“x* satisfies both f(x*) =1 (mod 7) and {(x*)=5 (mod 11)”

* since 7 and 11 are prime numbers, we can solve x* = 1 (mod 7)
and x? = 5 (mod 11) far more easily than x* = 71 (mod 77)
x%= 1 (mod 7) has two solutions: x = +1 (mod 7)

x?>= 5 (mod 11) has two solutions: x = +4 (mod 11)

* put them together and use CRT to calculate the four solutions
x= 1(mod7)= 4(mod 11) = x= 15 (mod 77)
x= 1(mod7)= 7(mod 11) = x= 29 (mod 77)
x= 6(mod7)= 4 (mod 11) = x= 48 (mod 77)
x= 6(mod7)= 7(mod 11) = x= 62 (mod 77)
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<~ Previous slides show that once you know the factors of n
are p and g, you can easily solve the square roots of n

<~ Indeed, if you can solve the square roots for one single
quadratic residue mod 7, you can factor n.

* from the four solutions *a, +b on the previous slide
x=c (modp)=d(modg) = x=a (modp.q)
x=c (modp)=-d(mod g) = x=b(modp.q)
x=-c(modp)=d(mod g) = x=-b (mod p.q)
x =-c (mod p) =-d (mod g) = x =-a (mod p.q)
we can find out a = b (mod p) and a =-b (mod q)
(or equivalently a = -b (mod p) and a = b (mod g))

* therefore, p | (a-b) 1.e. gcd(a-b, n) =p (ex. gcd(15-29, 77)=7)
g | (atb)1.e. gcd(at+b, n) =q (ex. gcd(15+29, 77)=11)

31




Yuadratic Resid

< Consider yeZ *, if 3 x €Z *, such that x> = y (mod n),

then y 1s called a quadratic residue mod », 1.e. yeQR,




< Consider yeZ *, if 3 x €Z *, such that x> = y (mod n),
then y 1s called a quadratic residue mod », 1.e. yeQR,

If the modulus p 1s prime, there are (p-1)/2 quadratic
residues in Z "




< Consider yeZ *, if 3 x €Z *, such that x> = y (mod n),

then y 1s called a quadratic residue mod », 1.e. yeQR,

If the modulus p 1s prime, there are (p-1)/2 quadratic
residues in Z "

.. S 5 = P
* let g be a primitiverootin 2", {g, g%, g°, ..., g} 1s a
permutation of {1,2,...p-1}




< Consider yeZ *, if 3 x €Z *, such that x> = y (mod n),

then y 1s called a quadratic residue mod », 1.e. yeQR,

If the modulus p 1s prime, there are (p-1)/2 quadratic
residues in Z "

.. S 5 = P
* let g be a primitiverootin 2", {g, g%, g°, ..., g} 1s a
permutation of {1,2,...p-1}

x in the above set, {g?, g%,..., g?'!} are quadratic
residues (QR))




< Consider yeZ *, if 3 x €Z *, such that x> = y (mod n),

then y 1s called a quadratic residue mod », 1.e. yeQR,

If the modulus p 1s prime, there are (p-1)/2 quadratic
residues in Z "

.. S 5 = P
* let g be a primitiverootin 2", {g, g%, g°, ..., g} 1s a
permutation of {1,2,...p-1}

x in the above set, {g?, g%,..., g?'!} are quadratic
residues (QR))

* {g, g°,..., g'"*} are quadratic non-residues (QNR)),
out of which there are ¢(p-1) primitive roots
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15t proof:

* For each xeZ ", p-x # x (mod p) (since if x is odd, p-
x 1s even), 1t’s clear that x and p-x are both square
roots of a certain yeZ ",

* Because there are only p-1 elements 1n Zp*, we know
that |QR | < (p-1)/2

x Because | {g?, g%,..., 2”1} | = (p-1)/2, there can be no
more quadratic residues outside this set. Therefore,

the set {g, g°,..., g} contains only quadratic non-
residues
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quadratic residues must be less than p-1 (i1.e. some element 1n Zp*
must be quadratic non-residue)

x Let g is a primitive, consider this set {g, g°,..., g%} directly

* It ge QR , then g cannot be a primitive (because g* must all be

quadratic residues). Thus, geQNR
* If g?#tl=g**-g € QR,, I xeZ" such that x* = g**'g (mod p)
Since ged(g%, p)=1,g  (g?)1-x? L ((gH*x)* eQR, contradictio
(@) = (" 'g'g ....g =1 (mod p)
= () =g g ... g =@ ) =g
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quadratic residues must be less than p-1 (i1.e. some element 1n Zp*
must be quadratic non-residue)

x Let g is a primitive, consider this set {g, g°,..., g%} directly

* It ge QR , then g cannot be a primitive (because g* must all be

quadratic residues). Thus, geQNR
* If g?#tl=g**-g € QR,, I xeZ" such that x* = g**'g (mod p)
Since ged(g*, p)=1,g  (g%)"'x*  ((g")x)* €eQR, contradictio

Thus, g?"'e QNR N
’ " @@ = (g g ...-g =1 (mod p)
= (@ '=glgl gl =(g)=((g)h?
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Quadratic Residues in Z
P
< ex. p=143537, p-1=143536=24-8971,
d(p-1)=24-8971-(1-1/2)-(1-1/8971)=71760 primitives,
(p-1)/2=T71768 QR,’s and 71768 QNR’s
* Note: if g is a primitive, then g°, g° ... are also primitives

except the following 8 numbers g8”71, g8971°3 o8971°15

* Elements 1n Zp* can be grouped further according to their order

since Verp*, ord,(x) | p-1, we can list all possible orders

8971 |

p-1| p-1| p-1]| p-1 p-1
2 | 4 | 8 |16 : : 8 | 8971-16

QR,| QR,| QR QR, QR,

1 35
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< If y 1s a quadratic residue modulo 7, 1t must be a
quadratic residue modulo all prime factors of 7.

dxeZ, st.x’*=y(modn) s x*=kn+y=kpqg+ty
= x* =y (mod p) and x* = y (mod q)

< If y 1s a quadratic residue modulo p and also a quadratic
residue modulo ¢, then y 1s a quadratic residue modulo 7.
r€Z, and r,eZ" such that
y =r* (mod p) = (r; mod p)* (mod p)
=r,* (mod gq) = (r, mod g)* (mod q)

from CRT, 3! » €Z " such that » = r, (mod p) = r, (mod q)
therefore, y = r? (mod p) = r?> (mod q)
again from CRT, y = r? (mod p-q)
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< Legendre symbol L(a, p) 1s defined when a 1s any integer,
p 1s a prime number greater than 2
* L(a,p)=01fp|a
* L(a, p) =1 1f a 1s a quadratic residue mod p
* L(a, p) =-1 1f a 1s a quadratic non-residue mod p

<~ Two methods to compute (a/p)
x (alp) = a?" D2 (mod p)
* recursively calculate by L(a - b, p) = L(a, p) - L(b, p)
l.Ifa=1,L(a,p)=1
2. If ais even, L(a, p) = L(a/2, p)-(-1)P2 D8
3. If a is odd prime, L(a, p) = L((p mod a), a)-(-1)«D@e-D/4

< Legendre symbol L(a, p) =-1 1f a € QNR,
L(a,p)=11ta € QR
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* [t yeQR,

* Then IxeZ " such that y=x* (mod p)

x Therefore, y?-12 = (x?2)P-D2 = x-D=1 (mod p)
(<)
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yeQR, <y D2=] (mod p)

(=)
* [t yeQR,
* Then IxeZ " such that y=x* (mod p)
x Therefore, y?-12 = (x?2)P-D2 = x-D=1 (mod p)
(<)
* [fy2QR  1.e. yeQNR,
* Then y=g?*1 (mod p)
x Therefore, Y12 = (g2 - g)P-D2 = gk(-1) or-12= o>-D2 % (mod p)

38




Legendre Symbol

yeQR, <y D2=] (mod p)

(=)
* [t yeQR,
* Then IxeZ " such that y=x* (mod p)
x Therefore, y?-12 = (x?2)P-D2 = x-D=1 (mod p)

(<)

* Ify#QR  i.e. yeQNR, ord,(g) = p-1

* Then y=g?*1 (mod p) /\/

* Therefore, yP-D2 = (g2 - g)P-D2 = ghp-]) o-12= o2 X1 (mod p)

38
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< Jacob1 symbol J(a, n) 1s a generalization of the

Legendre symbol to a composite modulus 7

< If n 1s a prime, J(a, n) 1s equal to the Legendre symbol

i.e. J(a, n) = a"Y2(mod n)

<~ Jacobi symbol cannot be used to determine whether a
1s a quadratic residue mod » (unless # 1s a prime)
ex. J(7,143)=J(7, 11)-J(7, 13) = (-1)-(-1) =1
however, there 1s no mteger x such that
x? =7 (mod 143)
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* Def 1:J(0, n) =0 also If n 1s prime, J(a, n) = 0 if n|a
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Rule 1: J(1,n) =1

Rule 3: J(2, n) =1 if (n?-1)/8 is even and J(2, n) = -1 otherwise

*
x
x
* Rule 2: J(a'b, n)=J(a, n) - J(b, n)
x
* Rule 4: J(a, n) = J(a mod n, n)
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<~ The following algorithm computes the Jacobi symbol J(a, n), for any
integer a and odd integer n, recursively:

* Def 1:J(0, n) =0 also If n 1s prime, J(a, n) = 0 if n|a
Def 2: Ifnis prime, J(a, n) =1 1fa € QR, and J(a,n) =-11fa ¢ QR,
Def 3: If n 1s a composite, J(a, n) = J(a, p,'p,...'p,,) = Ia.p,) J(ap,)...-J(a,p,,)
Rule 1: J(1,n) =1

Rule 2: J(a-b, n) = J(a, n) - J(b, n)
Rule 3: J(2, n) =1 if (n?-1)/8 is even and J(2, n) = -1 otherwise
Rule 4: J(a, n) = J(a mod n, n)
Rule 5: J(a, b) = J(-a, b) 1f a <0 and (b-1)/2 is even,
J(a, b) =-J(-a, b) if a<0 and (b-1)/2 1s odd
Rule 6: J(a, b,"b,) =J(a, b)) - I(a, b,)
Rule 7: if gcd(a, b)=1, a and b are odd

x 7a: J(a, b) = 1(b, a) if (a-1):(b-1)/4 1s even
%« 7b: J(a, b) =-J(b, a) if (a-1)-(b-1)/4 is odd
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*xeg.p=5 3-2-1=1(mod)H)
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* Claim: Vi#i,eZ,"\{1,-1}, i,"#i," (pf:if i, =i, theni, - i, =1
then i, = i, , contradiction)

* Out of the set {2, 3, ... p-2}, we can form (p-3)/2 pairs such that
i - j=1 (mod p), multiply them together, we obtain (p-2)! = 1 ’
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* We can group the integers 1, 2, ..., p-1 mto (p-1)/2 pairs (i, j),
each satisfying i:j = y (mod p)

* Multiply them together, we have (p-1)! = y?-D2 (mod p)

* From Wilson’s theorem, y?-D2 = -1 (mod p)
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i.e. x and p-x such that x’= (p-x)’= y (mod p)

PE X QR, = {¢% ¢.... g1}, 1Z,"| = p-1, and QR = (p-1)/2

* For each y=g** in QR , there are at least two distinct xeZ,” s.t.
x*=y (mod p), i.e., g¥ and p-g* (if one is even, the other is odd)

* Since |QR [ = (p-1)/2, we can obtain a set of p-1 square roots
S=18,0-8, 2, p-8.....g0 V%, p-g? )=}

* Claim: the elements of S are all distinct (1. g#¢g/ (mod p) when
i#j since g 1s a primitive, 2. g#-g/ (mod p) when i/, otherwise
(g'+g/)(g"-g/)= g*-g? =0 (mod p) implies i# (mod (p-1)/2),

3. g'#-g’ (mod p) since if one is even, the other is odd)

* If there is one more square root z of y=g%* which is not g% and
-g¥, it must belong to S (which is Z "), say g/, j#k, which would
imply that g% = g% (mod p), and leads to contradiction 45
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Let p be a prime number, g be a primitive in Z*

Letp=k-g+1 1e. g|p-1 whereq isalsoaprime number

Let G, = {g~, g*, ....g7 *=1}

Is G, a subgroup in Z,"? YES

Vx,y G,itisclearthatz g''* x-y g™ %(mod p)
is also in G, where i =i, + i, (mod g)

Is the order of the subgroup G, ¢? YES

Vi,i, Z,i, I, g"* g2 *(modp)otherwise gisnota
primitive in Z ", also g7 *=1 (mod p)

How many generators are there in G,? ¢(gq)=¢-1

a. there are ¢(p-1) generators in Z "={g', g%, ....g", ...,g/"'}, since
gcd(p-1,x)=d > 1 implies that ord,(g%) = (p-1)/d
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Is the set S={g/*, g%, ..., g¥* 1} different from G?

letx S,ie.x g"*(modp),i €Z,
x givk  gvivk  gi'k(mod p) wherei s i; (mod g),i.e. S
G

q




o oJe §
also (¢¥y 1 (modp)and gr-! 1 (mod p) implies that either
x-y|p-1 or p-1|x -y, ged(x, p-1) =1 implies that p-1 | y
therefore, ord (g*) = p-1
b. there are ¢(¢) primitives in G, = {g*, g*, ..., g7* 1} since
g 1s also a prime number
< Is G4 a unique order ( subgroup in Z," ? YES
Let S be an order-¢g cyclic subgroup, S= {g, g, ..., g7 1}. Since
p is prime, 3 a unique k-throotg, Z,S, st. g  g*(modp)
Letg, g be another primitive, clearly g, g*(mod p),

Is the set S={g/*, g%, ..., g¥* 1} different from G?

letx S,ie.x g"*(modp),i €Z,

x givk  gvivk  gi'k(mod p) wherei s i; (mod g),i.e. S
G

q
The proof 1s similar for G,  S. Therefore, S=G,




Gauss’ Lemma
1d

Lemma: let p be a prime, a 1s an integer s.t. gcd(a, p)=1,

pf.

define {o; =j-a (mod p)fi; -1y
let n be the number of a;’s s.t. o, > p/2 then L(a, p) = (-1)"

* o € {1y, ..., I 1T oy >p/2and oy € {sy, ..., S, 1y 1T O <p/2
* Since ged(a, p)=1, r; and s, are all distinct and non-zero
x Clearly, 0 <p-r,<p/2 fori1=1,...,n
* no p-r;isans;:  if p-r;=s; then s; = -r; (mod p)
rewrite 1in terms of a: ua=-va (mod p) where 1 <u, v<(p-1)/2

= u =-v (mod p) where 1 <u, v < (p-1)/2 = impossible

= {815 -+ Sp1y2-00 PTs ---5 PI, 18 @ reordering of {1, 2,..., (p-1)/2}

= (1P ((-1)/2)! a2 (mod p) = L(a, ) = (-1

48



Theorem: J(2, p) = (-1
Theorem: let p be a prime, gcd(a, p) = 1 then L(a, p) = (-1)!
(p-1)/2

where t = 21 Lj-a/pl. Also L(2, p) = (-1)®>D8
J

pf.
* o € {1y, ..., Iy 1T oy >p/2and oy € {8y, ..., Sy qyqs 1T <p/2
xja=plj-apl+a forj=1, ..., (p-1)2

(p-1)/2 ( 1)/2 (p-1)/2-
S b |_Ja/pj+2r+p%,n

=1 j=1 =1
* {81, «-es S(p_1y2ms PTps --o5 DT} 18 @ reordermg of {1, 2,..., (p-1)/2}
(p-1)/2 (p-1)/2-n (p-1)/2-n

= X j—Z(pr)+ 2 S; =1np - Zr+ 2 s

=l -1 1 =

J

* Subtracting the above two equations we have
p-1)/2

(a - I)ZJ—p(Z |_Ja/pJ—n)+2 Zr




}(AP? (-1)®*D’8 (cont’d)

L+ (-2 = (p-1)2 (1 + (p-1)/2) / 2 = (p2-1)/8
(p-1)/2

* Thus, we have (a-1) (p*>-1)/8 = Z |_J°a/pJ - n (mod 2)

(p- 1)/2

(p- 1)/2 |_

*x [faisodd, n= JapJ

* [fa=2, Lj-z/pj = o for j=1, ..., (p-1)/2, n=(p>1)/8 (mod 2)
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Lemma. There are at most ¢(k) ord-k elements in Z ", k | p-1
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Lemma. There are at most ¢(k) ord-k elements in Z ", k | p-1

pt.<-Z " is a field = x*-1=0 (mod p) has at most k roots
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Lemma. There are at most ¢(k) ord-k elements in Z ", k | p-1

pt.<-Z " is a field = x*-1=0 (mod p) has at most k roots

< if a is a nontrivial root (a#1), then {a’, a!, a2, ..., ak!}
1s the set of the k distinct roots.




d-1 ' 0
p =
Lemma. There are at most ¢(k) ord-k elements in Z ", k | p-1

pt.<-Z " is a field = x*-1=0 (mod p) has at most k roots

< if a is a nontrivial root (a#1), then {a’, a!, a2, ..., ak!}
1s the set of the k distinct roots.

e.g.p=13
2 is a generator in Z ;" = {21,22,23,24,25,26, 27,28,29,2109211,212}




d-1 ' 0
p =
Lemma. There are at most ¢(k) ord-k elements in Z ", k | p-1

pt.<-Z " is a field = x*-1=0 (mod p) has at most k roots

< if a is a nontrivial root (a#1), then {a’, a!, a2, ..., ak!}
1s the set of the k distinct roots.

Cgp:13 {29 49 89 39 69 129 11999 59 109 79 1}
2 is a generator in Z,;" = {21,22,23,24,25 26 27 98 79 719 511 512




d-1 ' 0
p =
Lemma. There are at most ¢(k) ord-k elements in Z ", k | p-1

pt.<-Z " is a field = x*-1=0 (mod p) has at most k roots

< if a is a nontrivial root (a#1), then {a’, a!, a2, ..., ak!}
1s the set of the k distinct roots.

Cgp:13 {29 49 89 39 69 129 11999 59 109 79 1}
2 is a generator in Z,;" = {21,22,23,24,25 26 27 98 79 719 511 512
k=12, {2,4,8,3,6,12,11,9, 5, 10,7, 1}




d-1 ' 0
p =
Lemma. There are at most ¢(k) ord-k elements in Z ", k | p-1

pt.<-Z " is a field = x*-1=0 (mod p) has at most k roots

< if a is a nontrivial root (a#1), then {a’, a!, a2, ..., ak!}
1s the set of the k distinct roots.

Cgp:13 {29 49 89 39 69 129 11999 59 109 79 1}
2 is a generator in Z,;" = {21,22,23,24,25 26 27 98 79 719 511 512
k=12, {2,4,8,3,6,12,11,9, 5, 10,7, 1}

K6 1312910 e imioo2)




d-1 ' 0
p =
Lemma. There are at most ¢(k) ord-k elements in Z ", k | p-1

pt.<-Z " is a field = x*-1=0 (mod p) has at most k roots

< if a is a nontrivial root (a#1), then {a’, a!, a2, ..., ak!}
1S the set of the k distinct roots.
< Those a* with gcd(4, k) = d > 1 have order at most k/d

Cgp:13 {29 49 89 39 69 129 11999 59 109 79 1}
2 is a generator in Z,;" = {21,22,23,24,25 26 27 98 79 719 511 512
k=12, {2,4,8,3,6,12,11,9, 5, 10,7, 1}
k=6, {4,3,12,9, 10, 1}




d-1 ' 0
p =
Lemma. There are at most ¢(k) ord-k elements in Z ", k | p-1

pt.<-Z " is a field = x*-1=0 (mod p) has at most k roots

< if a is a nontrivial root (a#1), then {a’, a!, a2, ..., ak!}
1S the set of the k distinct roots.
< Those a* with gcd(4, k) = d > 1 have order at most k/d

Cgp:13 {29 49 89 39 69 129 11999 59 109 79 1}
2 is a generator in Z,;" = {21,22,23,24,25 26 27 98 79 719 511 512
k=12, {2,% 8,3, 6,12,11,9, 5, 10,7, 1}
k=6, {4,3,12,9, 10, 1}




d-1 ' 0
p =
Lemma. There are at most ¢(k) ord-k elements in Z ", k | p-1

pt.<-Z " is a field = x*-1=0 (mod p) has at most k roots

< if a is a nontrivial root (a#1), then {a’, a!, a2, ..., ak!}
1S the set of the k distinct roots.
< Those a* with gcd(4, k) = d > 1 have order at most k/d

Cgp:13 {29 49 89 39 69 129 11999 59 109 79 1}
2 is a generator in Z,;" = {21,22,23,24,25 26 27 98 79 719 511 512
k=12, {2,%X, 3,6,12,11,9, 5, 10,7, 1}
k=6, {4,3,12,9, 10, 1}




d-1 ' 0
p =
Lemma. There are at most ¢(k) ord-k elements in Z ", k | p-1

pt.<-Z " is a field = x*-1=0 (mod p) has at most k roots

< if a is a nontrivial root (a#1), then {a’, a!, a2, ..., ak!}
1S the set of the k distinct roots.
< Those a* with gcd(4, k) = d > 1 have order at most k/d

Cgp:13 {29 49 89 39 69 129 11999 59 109 79 1}
2 is a generator in Z,;" = {21,22,23,24,25 26 27 98 79 719 511 512
k=12, {2,%X,% 6,12, 11,9, 5, 10,7, 1}
k=6, {4,3,12,9, 10, 1}




d-1 ' 0
p =
Lemma. There are at most ¢(k) ord-k elements in Z ", k | p-1

pt.<-Z " is a field = x*-1=0 (mod p) has at most k roots

< if a is a nontrivial root (a#1), then {a’, a!, a2, ..., ak!}
1S the set of the k distinct roots.
< Those a* with gcd(4, k) = d > 1 have order at most k/d

Cgp:13 {29 49 89 39 69 129 11999 59 109 79 1}
2 is a generator in Z,;" = {21,22,23,24,25 26 27 98 79 719 511 512
k=12, {2,%X,X 6, ®, 11,9, 5, 10,7, 1}
k=6, {4,3,12,9, 10, 1}




d-1 ' 0
p =
Lemma. There are at most ¢(k) ord-k elements in Z ", k | p-1

pt.<-Z " is a field = x*-1=0 (mod p) has at most k roots

< if a is a nontrivial root (a#1), then {a’, a!, a2, ..., ak!}
1S the set of the k distinct roots.
< Those a* with gcd(4, k) = d > 1 have order at most k/d

e.q.p=13 (2,4,8,3,6,12,11,9,5,10, 7, 1}
2 is a generator in Z,;" = {21,22,23,24,25 26 27 98 79 719 511 512
k=12, {2,%X,% 6, ®, 11,%, 5, 10, 7, 1}
k=6, {4,3,12,9, 10, 1}
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Lemma. There are at most ¢(k) ord-k elements in Z ", k | p-1

pt.<-Z " is a field = x*-1=0 (mod p) has at most k roots

< if a is a nontrivial root (a#1), then {a’, a!, a2, ..., ak!}
1S the set of the k distinct roots.
< Those a* with gcd(4, k) = d > 1 have order at most k/d

e.q.p=13 (2,4,8,3,6,12,11,9,5,10, 7, 1}
2 is a generator in Z,;" = {21,22,23,24,25 26 27 98 79 719 511 512
k=12, {2,%X,% 6, ®, 11,% %X 10, 7, 1}
k=6, {4,3,12,9, 10, 1}
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Lemma. There are at most ¢(k) ord-k elements in Z ", k | p-1

pt.<-Z " is a field = x*-1=0 (mod p) has at most k roots

< if a is a nontrivial root (a#1), then {a’, a!, a2, ..., ak!}
1S the set of the k distinct roots.
< Those a* with gcd(4, k) = d > 1 have order at most k/d

e.q.p=13 (2,4,8,3,6,12,11,9,5,10, 7, 1}
2 is a generator in Z,;" = {21,22,23,24,25 26 27 98 79 719 511 512
k=12, {2,%X,% 6, ®, 11,% X 20,7, 1}
k=6, {4,3,12,9, 10, 1}




v
U b

Lemma. There are at most ¢(k) ord-k elements in Z ", k | p-1

pt.<-Z " is a field = x*-1=0 (mod p) has at most k roots

< if a is a nontrivial root (a#1), then {a’, a!, a2, ..., ak!}
1S the set of the k distinct roots.
< Those a* with gcd(4, k) = d > 1 have order at most k/d

< Only those a‘ with gcd(4, k) = 1 might have order k

e.q.p=13 (2,4,8,3,6,12,11,9,5,10, 7, 1}
2 is a generator in Z,;" = {21,22,23,24,25 26 27 98 79 719 511 512
k=12, {2,%X, % 6, ), 11, X 20, 7X, 6(12)
k=6, {4,3,12,9, 10, 1}
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Lemma. There are at most ¢(k) ord-k elements in Z ", k | p-1

pt.<-Z " is a field = x*-1=0 (mod p) has at most k roots

< if a is a nontrivial root (a#1), then {a’, a!, a2, ..., ak!}
1S the set of the k distinct roots.
< Those a* with gcd(4, k) = d > 1 have order at most k/d

< Only those a‘ with gcd(4, k) = 1 might have order k
<~ Hence, there are at most ¢(k) order k elements
e.g.p=13 {2,4,8,3,6,12,11,9,5,10, 7, 1}
2 is a generator in Z,;" = {21,22,23,24,25 26 27 98 79 719 511 512
k=12, {2, XX, X 6, R, 11,% X 20, 74}, d(12)
k=6, {4,3,12,9, 10, 1}




v
U b

Lemma. There are at most ¢(k) ord-k elements in Z ", k | p-1

pt.<-Z " is a field = x*-1=0 (mod p) has at most k roots

< if a is a nontrivial root (a#1), then {a’, a!, a2, ..., ak!}
1S the set of the k distinct roots.
< Those a* with gcd(4, k) = d > 1 have order at most k/d

< Only those a‘ with gcd(4, k) = 1 might have order k
<~ Hence, there are at most ¢(k) order k elements
e.g.p=13 {2,4,8,3,6,12,11,9,5,10, 7, 1}
2 is a generator in Z,;" = {21,22,23,24,25 26 27 98 79 719 511 512
k=12, {2, XX, X 6, R, 11,% X 20, 74}, d(12)
k=6, {4,%, 12,9, 10, 1}
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Lemma. There are at most ¢(k) ord-k elements in Z ", k | p-1

pt.<-Z " is a field = x*-1=0 (mod p) has at most k roots

< if a is a nontrivial root (a#1), then {a’, a!, a2, ..., ak!}
1S the set of the k distinct roots.
< Those a* with gcd(4, k) = d > 1 have order at most k/d

< Only those a‘ with gcd(4, k) = 1 might have order k
<~ Hence, there are at most ¢(k) order k elements
e.g.p=13 {2,4,8,3,6,12,11,9,5,10, 7, 1}
2 is a generator in Z,;" = {21,22,23,24,25 26 27 98 79 719 511 512
k=12, {2, XX, X 6, R, 11,% X 20, 74}, d(12)
k=6, {4,%, ¥, 9, 10, 1}
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Lemma. There are at most ¢(k) ord-k elements in Z ", k | p-1

pt.<-Z " is a field = x*-1=0 (mod p) has at most k roots

< if a is a nontrivial root (a#1), then {a’, a!, a2, ..., ak!}
1S the set of the k distinct roots.
< Those a* with gcd(4, k) = d > 1 have order at most k/d

< Only those a‘ with gcd(4, k) = 1 might have order k
<~ Hence, there are at most ¢(k) order k elements
e.g.p=13 {2,4,8,3,6,12,11,9,5,10, 7, 1}
2 is a generator in Z,;" = {21,22,23,24,25 26 27 98 79 719 511 512
k=12, {2, XX, X 6, R, 11,% X 20, 74}, d(12)
k=6, {4, X, ¥.%, 10, 1}
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Lemma. There are at most ¢(k) ord-k elements in Z ", k | p-1

pt.<-Z " is a field = x*-1=0 (mod p) has at most k roots

< if a is a nontrivial root (a#1), then {a’, a!, a2, ..., ak!}
1S the set of the k distinct roots.
< Those a* with gcd(4, k) = d > 1 have order at most k/d

< Only those a‘ with gcd(4, k) = 1 might have order k
<~ Hence, there are at most ¢(k) order k elements
e.g.p=13 {2,4,8,3,6,12,11,9,5,10, 7, 1}
2 is a generator in Z,;" = {21,22,23,24,25 26 27 98 79 719 511 512
k=12, {2, XX, X 6, R, 11,% X 20, 74}, d(12)
k=6, {4,%, ¥4, 10,X}, d(6)
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Lemma. There are at most ¢(k) ord-k elements in Z ", k | p-1

pt.<-Z " is a field = x*-1=0 (mod p) has at most k roots

< if a is a nontrivial root (a#1), then {a’, a!, a2, ..., ak!}
1S the set of the k distinct roots.
< Those a* with gcd(4, k) = d > 1 have order at most k/d

< Only those a‘ with gcd(4, k) = 1 might have order k
<~ Hence, there are at most ¢(k) order k elements
e.g.p=13 {2,4,8,3,6,12,11,9,5,10, 7, 1}
2 is a generator in Z,;" = {21,22,23,24,25 26 27 98 79 719 511 512
k=12, {2, XX, X 6, R, 11,% X 20, 74}, d(12)
k=6, {4,%, ¥4, 10,X}, d(6)
k=4, {8, 12, 5, 1}, ¢(4)
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Lemma. There are at most ¢(k) ord-k elements in Z ", k | p-1

pt.<-Z " is a field = x*-1=0 (mod p) has at most k roots

< if a is a nontrivial root (a#1), then {a’, a!, a2, ..., ak!}
1S the set of the k distinct roots.
< Those a* with gcd(4, k) = d > 1 have order at most k/d

< Only those a‘ with gcd(4, k) = 1 might have order k
<~ Hence, there are at most ¢(k) order k elements
e.g.p=13 {2,4,8,3,6,12,11,9,5,10, 7, 1}
2 is a generator in Z,;" = {21,22,23,24,25 26 27 98 79 719 511 512
k=12, {2, XX, X 6, R, 11,% X 20, 74}, d(12)
k=6, {4,%, ¥4, 10,X}, d(6)
k=4, {8, K, 5, 1}, ¢(4)
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Lemma. There are at most ¢(k) ord-k elements in Z ", k | p-1

pt.<-Z " is a field = x*-1=0 (mod p) has at most k roots

< if a is a nontrivial root (a#1), then {a’, a!, a2, ..., ak!}
1S the set of the k distinct roots.
< Those a* with gcd(4, k) = d > 1 have order at most k/d

< Only those a‘ with gcd(4, k) = 1 might have order k
<~ Hence, there are at most ¢(k) order k elements
e.g.p=13 {2,4,8,3,6,12,11,9,5,10, 7, 1}
2 is a generator in Z,;" = {21,22,23,24,25 26 27 98 79 719 511 512
k=12, {2, XX, X 6, R, 11,% X 20, 74}, d(12)
k=6, {4,%, ¥4, 10,X}, d(6)
k=4, {8, B, 5,X}, ¢(4)
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Lemma. There are at most ¢(k) ord-k elements in Z ", k | p-1

pt.<-Z " is a field = x*-1=0 (mod p) has at most k roots

< if a is a nontrivial root (a#1), then {a’, a!, a2, ..., ak!}
1S the set of the k distinct roots.
< Those a* with gcd(4, k) = d > 1 have order at most k/d

< Only those a‘ with gcd(4, k) = 1 might have order k
<~ Hence, there are at most ¢(k) order k elements
e.g.p=13 {2,4,8,3,6,12,11,9,5,10, 7, 1}
2 is a generator in Z,;" = {21,22,23,24,25 26 27 98 79 719 511 512
k=12, {2, XX, X 6, R, 11,% X 20, 74}, d(12)
k=6, {4, K. A, 10,X}, ¢(6) k=3, {3,9, 1}, ¢(3)
k=4, {8, B, 5,X}, ¢(4)
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Lemma. There are at most ¢(k) ord-k elements in Z ", k | p-1

pt.<-Z " is a field = x*-1=0 (mod p) has at most k roots

< if a is a nontrivial root (a#1), then {a’, a!, a2, ..., ak!}
1S the set of the k distinct roots.
< Those a* with gcd(4, k) = d > 1 have order at most k/d

< Only those a‘ with gcd(4, k) = 1 might have order k
<~ Hence, there are at most ¢(k) order k elements
e.g.p=13 {2,4,8,3,6,12,11,9,5,10, 7, 1}
2 is a generator in Z,;" = {21,22,23,24,25 26 27 98 79 719 511 512
k=12, {2, XX, X 6, R, 11,% X 20, 74}, d(12)
k=6, {4, K. A, 10,X}, ¢(6) k=3, {3, 9, X}, ¢(3)
k=4, {8, B, 5,X}, ¢(4)
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Lemma. There are at most ¢(k) ord-k elements in Z ", k | p-1

pt.<-Z " is a field = x*-1=0 (mod p) has at most k roots

< if a is a nontrivial root (a#1), then {a’, a!, a2, ..., ak!}
1S the set of the k distinct roots.
< Those a* with gcd(4, k) = d > 1 have order at most k/d

< Only those a‘ with gcd(4, k) = 1 might have order k
<~ Hence, there are at most ¢(k) order k elements
e.g.p=13 {2,4,8,3,6,12,11,9,5,10, 7, 1}
2 is a generator in Z,;" = {21,22,23,24,25 26 27 98 79 719 511 512
k=12, {2, XX, X 6, R, 11,% X 20, 74}, d(12)
k=6, {4, K. A, 10,X}, ¢(6) k=3, {3, 9, X}, ¢(3)
k=4, {8, R, 5.X1, 0(4) k=2, {12,1}, &(2)
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Lemma. There are at most ¢(k) ord-k elements in Z ", k | p-1

pt.<-Z " is a field = x*-1=0 (mod p) has at most k roots

< if a is a nontrivial root (a#1), then {a’, a!, a2, ..., ak!}
1S the set of the k distinct roots.
< Those a* with gcd(4, k) = d > 1 have order at most k/d

< Only those a‘ with gcd(4, k) = 1 might have order k
<~ Hence, there are at most ¢(k) order k elements
e.g.p=13 {2,4,8,3,6,12,11,9,5,10, 7, 1}
2 is a generator in Z,;" = {21,22,23,24,25 26 27 98 79 719 511 512
k=12, {2, XX, X 6, R, 11,% X 20, 74}, d(12)
k=6, {4, K. A, 10,X}, ¢(6) k=3, {3, 9, X}, ¢(3)
k=4, {8, K, 5.X}, 0(4) k=2, {12.X, &(2)
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Lemma. There are at most ¢(k) ord-k elements in Z ", k | p-1

pt.<-Z " is a field = x*-1=0 (mod p) has at most k roots

< if a is a nontrivial root (a#1), then {a’, a!, a2, ..., ak!}
1S the set of the k distinct roots.
< Those a* with gcd(4, k) = d > 1 have order at most k/d

< Only those a‘ with gcd(4, k) = 1 might have order k
<~ Hence, there are at most ¢(k) order k elements
e.g.p=13 {2,4,8,3,6,12,11,9,5,10, 7, 1}
2 is a generator in Z,;" = {21,22,23,24,25 26 27 98 79 719 511 512
k=12, {2, XX, X 6, R, 11,% X 20, 74}, d(12)
k=6, {4, K. A, 10,X}, ¢(6) k=3, {3, 9, X}, ¢(3)

k=4, {8, B, 54}, ¢(4) k=2, {12.X}, ¢(2) k=1, {1}, ¢(1)




Lemma. 2
k|p-1 o(k) = p-1

Lem
ma. > ., ¢(k) = p-1
let d(1)=1




" __
Lemma. 2, ¢(k) = p-1
Lemma. X, ¢(k) = p-1 let (1)=1
pf.

p-1=2,,, (#ainZs.t. ged(a, p-1) = k)




" __
Lemma. 2, ¢(k) = p-1
Lemma. X, ¢(k) = p-1 let (1)=1
pf.

p-1=2,,, (#ainZs.t. ged(a, p-1) = k)

letp=13,a e Z’
gcd(a, p-1)=k = k | p-1




" __
Lemma. 2, ¢(k) = p-1
Lemma. X, ¢(k) = p-1 let (1)=1
pf.

p-1=2,,, (#ainZs.t. ged(a, p-1) = k)
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Z " is a cyclic group
P

Theorem: Z " is a cyclic group for a prime number p

Pf. Lemma 1: # of ord-k elements in 7, < ¢(k), where k| p-1
Lemma 2: 2., | (k) = p-1
The order k of every element in Z ™ divides p-1

— Z yp.1 (# of elements in Z * with order k) = p-1
(Lemma 1) = p-1 <%, | ¢(k), combined with lemma 2,

we know that # of ord-k elements in Z ™ = ¢(k)
— # of ord-(p-1) elements in Z " = ¢(p-1) > 1

—> There is at least one generatorin Z ", i.e. Z " is cyclic

Ex. p=13, p-1 = [12,6,11,75[ + |14,105| + [18,55[ + [13,9}[ + [{123] + [ 1}]
k=12 k=6 k=4 k=3 k=2 k=153




< Number of generators in Z*: ¢(p-1)
Let g be a primitive, Z~ = <g>= {g, g%, g°, ..., g ..., g}

if gcd(k, p-1) =d # 1 then gX is not a primitive
since (g4)P-Vd = (g¥)p-t =1, i.e. ord (g*) < (p-1)/d
if gcd(k, p-1) = 1 and g* is not a primitive, then d=0rdp(gk) <p-1, 1.e.
(g5)d=1; g is a primitive = p-1 | k d = p-1 | d contradiction.
< Z_"is not a cyclic group (n=p q, p=2p'+1, ¢=2q'+1, A(n)=2p'q")
Since x*™ = 1 (mod n), there is no generator that can generate
all members in Z_"
$ QR 1s a cyclic group of order A(n)/2 = lem(p-1, g-1)/2= p' ¢
VxeZ ', x*=1(modn) Carmichael’s Theorem
clearly, (x?)*™?2 =1 (modn), QR, = {x* |V x € Z_*}
Le. Vy e QR ord(y) [p'q" (ord,(y)eil,p' q\,p'q'})
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Generators in QR (cont’d)
cyclic? 3Ix"eZ  ord (x)=An)=2p'q =
3y" (=(x7)) € QR s.t. ord,(y") =AMn)2=p'q
$ Lety be a random element in QR_, the probability that y 1s a generator
1s close to 1

Let y”* be a generator of QR_,
QR, =<y™>={y", )%, ') -0, ) oo, P}

if gcd(k, p'q') =d # 1 then (y*)k 1S not a generator

since ((y") )P = ((y")/9)P9 = 1, i.e. ord ((y")") < (p'q')/d
o(p'q) = o(p) ¢(q) = (@-1)(q-1)=p'q-p'-q +1

=p'q-(-1)-(q-1)-1
vV x e {7 ), ..., (7)Y ord, (x) = p!
Vxe {y), )P, ..., )"} ord,(x) = ¢
ord (1) =1
Pr{x is a generator | xey QR .} = ¢0(p'q’) / (p'q’) 1s close to 1




7 %
Subgroups in Z
Consider n=p q, p=2p'+1, g=2q'+1, m=p'q’, A(n) = lcm(p-1, q-1)=2m,
o(n) = (p-1)(g-1) = 4m
< Z._° is not a cyclic group
* Carmichael’s theorem asserts that no element in Z * can generate
all elements in Z_*. (maximum order is 2m instead of 4m)

* However, Z " is still a group over modulo n multiplication.
< QR, is a cyclic subgroup of order m = A(n)/2, QR = {x* |V x € Z_"}
* I = {x € Z,” | J(x,p)=1 and J(x,q)=1}

x If there exists an element in Z_* whose order is 2m, then QR _ is
clearly a cyclic group. (Will the precondition be true?)

*x V xeZ " x?™ =1 (mod n) implies that V ye QR ord (y) | p'q'
1.e. ord (y) 1s either 1, p', ¢, or p'q' (if there 1s one y s.t. ord (y)=m

then y 1s a generator and QR 1s cyclic). Let’s construct one. »




Let g, be a generator in Zp*, and g, be a generator in Zq*
Let g =g, (mod p) =g, (mod q), (note that J(g,n)=1,g € J;,)
ghl =g =g’ =1 (modp), g' = g*¥ =g, =1 (mod q)
= g?Pd=1 (mod p) and g?9?' = 1 (mod q) i.e. g??9 =1 (mod n)
if there exists ak € {1, 2, p', q', 2p’, 29", p'q'} s.t. g<=1 (mod n)
then ord (g) 1s not 2p'q'
1. k=1: = g, = 1 (mod p) contradict with ord (g;) = p-1

2. k=p': = gP = g,* = 1 (mod p) contradict with ord (g,) = 2p'

3.k=q": = g¥ =g,% =1 (mod q) contradict with ord (g,) = 2q'

4. k=2: = g,> =1 (mod p) contradict with ord,(g,) = p-1
5.k=2p". = g* = g,* = 1 (mod q) contradict with ord (g,) = 2q'
6. k=2q": = g*¥ = g,*? = 1 (mod p) contradict with ord (g,) = 2p'
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7. k=p'q: = gP9 =g,P9 =1 (mod p)
since g,?? = 1 (mod p) and
gcd(q,2)=1= da,bst.aq +b2=1
= gP'=g,P@a+b2 = (gr'd)" (g,27)° = 1 (mod p)
contradict with ord (g,) = 2p'
1~7 implies that ord_(g) =2p'q', i.e. QR = {g?, g%, ..., gP4}
and QR 1s a cyclic group.
* Pr{Elements in QR being a generator} = ¢(p'q’) / (p'q")
< J_is a cyclic subgroup of order 2m = A(n), J_ = {x € Z " | J(x,n)=1}
x J,,={x e Z | Jx,p)=-1and J(x,q)=-1}

* The above proof also shows that J_ = {g, g2, ..., g??9} is cyclic

* Pr{Elements in J  being a generator} = ¢(p'q') / (2p'q’)
< Jg 0 =2\ {Jy o]} is not a subgroup in Z_°
x1fx € J,, thenx *x € J,




> n=pq, p=2p+1, g=2q'+1
< Find a generator in QR
1. Find a generator g, of Z " (i.e. Z," = <g,>) and g, of Z " (i.e. Z;" = <g,>)
2. Calculate the generator h; = g,* (mod p) of QR and h, = g,* (mod 1) of QR
3. Let h=h, (mod p) = h, (mod q).
It is clear that h = g (mod n), i.e. heQR_, where g = g, (mod p) = g, (mod q).
Claim: h 1s a generator of QR
pf.

y € QR, = y € QR,andy € QR
i.e. 3x,€ Z,and x,€ Z,,y =h,"" (mod p) = h,™ (mod q)

= y=g,’" (mod p) = g,”* (mod q)

= y=g°*(modn)if2x=2x, (modp-1)=2x, (mod g-1)
a unique X € Z. exists by CRT since ged(p-1, q-1) = ged(2p', 2q') =2
— y=h" (mod n)




< Z_ " is NOT a cyclic group (n=p q, p=2p'+1, g=2q'+1, m=p' q')
< How do we generate random elements in Z_*?

Z*={g*u*" (-1)*| gis a generator in QR , gcd(e, d(n)) = 1,
ueg Z. " and J(u,n) = -1,
ae{0,....m-1},b,€{0,1}, and b,e{0,1} }

Note: 1. J(-1,n) =1 and -1 € J \QR,, since (-1)®-2=(-1)P'=-1 (mod p)

2. e i1s odd, ¢p(n)-¢ is also odd, J(u™, n) = J(u, n) = -1
< We can view the above as 4 parts
1. Jpo (QR,): b, =b, =0, Jgp = {g* [ a€{0,...,m-1}}
2.J,;J\QR): b, =0,b,=1,J,, = {-g2 | ae {0,...,m-1}}
Assume that J(u, p) =-1 and J(u, q) =1
3.Jy:b,=1,b,=0,J,, = {g?u” | ae{0,...,m-1}}
4.J,0:b,=1,b,=1,J,, = {-g*u™ | ae{0,...,m-1}}




b/
Lagrange’s Theorem
<- Theorem: for any finite group G, the order

(number of elements) of every subgroup H of G
divides the order of G.

* proof sketch: divide G into left cosets H — equivalence
classes, and show that they have the same size.
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Lagrange’s Theorem
<- Theorem: for any finite group G, the order

(number of elements) of every subgroup H of G

divides the order of G.

* proof sketch: divide G into left cosets H — equivalence
classes, and show that they have the same size.

< It implies that: the order of any element a of a
finite group (1.e. the smallest positive integer
number k£ with a* = 1) divides the order of the
group. Since the order of a 1s equal to the order
of the cyclic subgroup generated by a. Also, al®
= 1 since order of a divides |G].

<~ Any prime order group 1s cyclic.




