- •
- •
- •
- •

- •

۲

# **Prime Numbers**



密碼學與應用 海洋大學資訊工程系 丁培毅

Prime number: an integer p>1 that is divisible only by 1 and itself, ex. 2, 3,5, 7, 11, 13, 17...

۲

Prime number: an integer p>1 that is divisible only by 1 and itself, ex. 2, 3,5, 7, 11, 13, 17...

Composite number: an integer n>1 that is not prime

Prime number: an integer p>1 that is divisible only by 1 and itself, ex. 2, 3,5, 7, 11, 13, 17...

Composite number: an integer n>1 that is not prime

 $\diamond$  Fact: there are infinitely many prime numbers. (by Euclid)

Prime number: an integer p>1 that is divisible only by 1 and itself, ex. 2, 3,5, 7, 11, 13, 17...

Composite number: an integer n>1 that is not prime

- ♦ Fact: there are infinitely many prime numbers. (by Euclid)
  - pf:  $\Rightarrow$  on the contrary, assume  $a_n$  is the largest prime number

Prime number: an integer p>1 that is divisible only by 1 and itself, ex. 2, 3,5, 7, 11, 13, 17...

Composite number: an integer n>1 that is not prime

- ✦ Fact: there are infinitely many prime numbers. (by Euclid)
  - pf:  $\Rightarrow$  on the contrary, assume  $a_n$  is the largest prime number  $\Rightarrow$  let the finite set of prime numbers be  $\{a_0, a_1, a_2, \dots, a_n\}$

Prime number: an integer p>1 that is divisible only by 1 and itself, ex. 2, 3,5, 7, 11, 13, 17...

Composite number: an integer n>1 that is not prime

♦ Fact: there are infinitely many prime numbers. (by Euclid)

pf:  $\Rightarrow$  on the contrary, assume  $a_n$  is the largest prime number  $\Rightarrow$  let the finite set of prime numbers be  $\{a_0, a_1, a_2, \dots, a_n\}$  $\Rightarrow$  the number  $b = a_0^* a_1^* a_2^* \dots^* a_n + 1$  is not divisible by any  $a_i$ 

i.e. b does not have prime factors  $\leq a_n$ 

Prime number: an integer p>1 that is divisible only by 1 and itself, ex. 2, 3,5, 7, 11, 13, 17...

Composite number: an integer n>1 that is not prime
 Fact: there are infinitely many prime numbers. (by Euclid)

pf:  $\Rightarrow$  on the contrary, assume  $a_n$  is the largest prime number  $\Rightarrow$  let the finite set of prime numbers be  $\{a_0, a_1, a_2, \dots, a_n\}$ 

 $\Rightarrow$  the number  $b = a_0^* a_1^* a_2^* \dots^* a_n + 1$  is not divisible by any  $a_i$ 

i.e. b does not have prime factors  $\leq a_n$ 

2 cases: > if b has a prime factor d, b>d>  $a_n$ , then "d is a prime number that is larger than  $a_n$ " ... contradiction

Prime number: an integer p>1 that is divisible only by 1 and itself, ex. 2, 3,5, 7, 11, 13, 17...

Composite number: an integer n>1 that is not prime

✦ Fact: there are infinitely many prime numbers. (by Euclid)

pf:  $\Rightarrow$  on the contrary, assume  $a_n$  is the largest prime number  $\Rightarrow$  let the finite set of prime numbers be  $\{a_0, a_1, a_2, \dots, a_n\}$ 

 $\Rightarrow$  the number  $b = a_0^* a_1^* a_2^* \dots^* a_n + 1$  is not divisible by any  $a_i$ 

i.e. b does not have prime factors  $\leq a_n$ 

2 cases: > if b has a prime factor d, b>d> a<sub>n</sub>, then "d is a prime number that is larger than a<sub>n</sub>" ... contradiction
> if b does not have any prime factor less than b, then "b is a prime number that is larger than a<sub>n</sub>" ... contradiction

#### ♦ Prime Number Theorem:

۲

#### ♦ Prime Number Theorem:

۲

\* Let  $\pi(x)$  be the number of primes less than x

#### ♦ Prime Number Theorem:

\* Let  $\pi(x)$  be the number of primes less than x

\* Then

۲

$$\pi(\mathbf{x}) \approx \frac{\mathbf{x}}{\ln \mathbf{x}}$$

#### Prime Number Theorem:

\* Let  $\pi(x)$  be the number of primes less than x

\* Then

$$\pi(\mathbf{x}) \approx \frac{\mathbf{x}}{\ln \mathbf{x}}$$

in the sense that the ratio  $\pi(x) / (x/\ln x) \rightarrow 1$  as  $x \rightarrow \infty$ 

#### Prime Number Theorem:

\* Let  $\pi(x)$  be the number of primes less than x

\* Then

$$\pi(x) \approx \frac{x}{\ln x}$$

in the sense that the ratio  $\pi(x) / (x/\ln x) \rightarrow 1$  as  $x \rightarrow \infty$ 

\* Also, 
$$\pi(x) \ge \frac{x}{\ln x}$$
 and for  $x \ge 17$ ,  $\pi(x) \le 1.10555 \frac{x}{\ln x}$ 

#### Prime Number Theorem:

\* Let  $\pi(x)$  be the number of primes less than x

\* Then

$$\pi(x) \approx \frac{x}{\ln x}$$

in the sense that the ratio  $\pi(x) / (x/\ln x) \rightarrow 1$  as  $x \rightarrow \infty$ 

\* Also, 
$$\pi(x) \ge \frac{x}{\ln x}$$
 and for  $x \ge 17$ ,  $\pi(x) \le 1.10555 \frac{x}{\ln x}$   
$$\int_{10}^{12} \frac{\pi(x)}{\sqrt{\ln x}} \frac{\pi(x)}{$$

#### ♦ Prime Number Theorem:

\* Let  $\pi(x)$  be the number of primes less than x

\* Then

$$\pi(x) \approx \frac{x}{\ln x}$$

in the sense that the ratio  $\pi(x) / (x/\ln x) \rightarrow 1$  as  $x \rightarrow \infty$ 

\* Also, 
$$\pi(x) \ge \frac{x}{\ln x}$$
 and for  $x \ge 17$ ,  $\pi(x) \le 1.10555 \frac{x}{\ln x}$ 

♦ Ex: number of 100-digit primes

$$\pi(10^{100}) - \pi(10^{99}) \approx \frac{10^{100}}{\ln 10^{100}} - \frac{10^{99}}{\ln 10^{99}} \approx 3.9 \times 10^{97}$$

3

Every composite number can be expressible as a product a b of integers with 1 < a, b < n</p>

Every composite number can be expressible as a product a b of integers with 1 < a, b < n</p>

Every positive integer has a unique representation as a product of prime numbers raised to different powers.

Every composite number can be expressible as a product a b of integers with 1 < a, b < n</p>

Every positive integer has a unique representation as a product of prime numbers raised to different powers.

 $\Rightarrow$  Ex. 504 = 2<sup>3</sup> · 3<sup>2</sup> · 7, 1125 = 3<sup>2</sup> · 5<sup>3</sup>

♦ Lemma: p is a prime number and p | a·b ⇒ p | a or p | b, more generally, p is a prime number and p | a·b·...·z
⇒ p must divide one of a, b, ..., z

♦ Lemma: p is a prime number and p | a·b ⇒ p | a or p | b, more generally, p is a prime number and p | a·b·...·z
⇒ p must divide one of a, b, ..., z

\* proof:

 $\Rightarrow$  case 1: p | a

♦ Lemma: p is a prime number and p | a·b ⇒ p | a or p | b, more generally, p is a prime number and p | a·b·...·z
⇒ p must divide one of a, b, ..., z

**\*** proof:

case 1: p | a
case 2: p ∤ a,

♦ Lemma: p is a prime number and p | a · b ⇒ p | a or p | b, more generally, p is a prime number and p | a · b · ... · z
⇒ p must divide one of a, b, ..., z

**\*** proof:

 $\Rightarrow$  case 1: p | a

 $\Rightarrow$  case 2: p  $\nmid$  a,

ightarrow p/a and p is a prime number  $\Rightarrow$  gcd(p, a) = 1  $\Rightarrow$  1 = a x + p y

♦ Lemma: p is a prime number and p | a · b ⇒ p | a or p | b, more generally, p is a prime number and p | a · b · ... · z
⇒ p must divide one of a, b, ..., z

\* proof:

 $\Rightarrow$  case 1: p | a

¢case 2: p∤a,

ightarrow p/a and p is a prime number  $\Rightarrow$  gcd(p, a) = 1  $\Rightarrow$  1 = a x + p y

> multiply both side by b,  $b = \underline{b} \underline{a} x + b \underline{p} y$ 

♦ Lemma: p is a prime number and p | a · b ⇒ p | a or p | b, more generally, p is a prime number and p | a · b · ... · z
⇒ p must divide one of a, b, ..., z

\* proof:

 $\Rightarrow$  case 1: p | a

 $\Rightarrow$  case 2: p  $\nmid$  a,

ightarrow p/a and p is a prime number  $\Rightarrow$  gcd(p, a) = 1  $\Rightarrow$  1 = a x + p y

> multiply both side by b,  $b = \underline{b} \underline{a} x + \overline{b} \underline{p} y$ 

 $\succ p \mid a b \Longrightarrow p \mid b$ 

♦ Lemma: p is a prime number and p | a·b ⇒ p | a or p | b, more generally, p is a prime number and p | a·b·...·z
⇒ p must divide one of a, b, ..., z

**\*** proof:

- $\Rightarrow$  case 1: p | a
- $\Rightarrow$  case 2: p  $\nmid$  a,
  - > p/ a and p is a prime number  $\Rightarrow$  gcd(p, a) = 1  $\Rightarrow$  1 = a x + p y
  - > multiply both side by b,  $b = \underline{b \ a} \ x + b \ \underline{p} \ y$

 $\succ$  p | a b  $\Rightarrow$  p | b

☆ In general: if p | a then we are done, if p / a then p | bc...z, continuing this way, we eventually find that p divides one of the factors of the product

 Theorem: Every positive integer is a product of primes. This factorization into primes is unique, up to reordering of the factors.

 Theorem: Every positive integer is a product of primes. This factorization into primes is unique, up to reordering of the factors.
 \* Proof: product of primes

 Theorem: Every positive integer is a product of primes. This factorization into primes is unique, up to reordering of the factors.

\* Proof: product of primes

 Theorem: Every positive integer is a product of primes. This factorization into primes is unique, up to reordering of the factors.

- \* Proof: product of primes
  - \* assume there exist positive integers that are not product of primes
  - ☆ let n be the smallest such integer

 Theorem: Every positive integer is a product of primes. This factorization into primes is unique, up to reordering of the factors.

- \* Proof: product of primes
  - \* assume there exist positive integers that are not product of primes
  - ☆ let n be the smallest such integer
  - $\Rightarrow$  since n can not be 1 or a prime, n must be composite, i.e.  $n = a \cdot b$

♦ Theorem: Every positive integer is a product of primes. This factorization into primes is unique, up to reordering of the factors.

- Empty product equals 1.
- Prime is a one factor product.
- *★* assume there exist positive integers that are not product of primes
- $\Rightarrow$  let n be the smallest such/integer
- $\Rightarrow$  since n can not be 1 or a prime, n must be composite, i.e.  $n = a \cdot b$

Theorem: Every positive integer is a product of primes.
This factorization into primes is unique, up to

reordering of the factors.

- Empty product equals 1.
- Prime is a one factor product.
- ★ assume there exist positive integers that are not product of primes
- ☆ let n be the smallest such/integer
- $\Rightarrow$  since n can not be 1 or a prime, n must be composite, i.e.  $n = a \cdot b$
- $\Rightarrow$  since n is the smallest, both a and b must be products of primes.

Theorem: Every positive integer is a product of primes.
 This factorization into primes is unique, up to

reordering of the factors.

- Empty product equals 1.
- Prime is a one factor product.
- ★ assume there exist positive integers that are not product of primes
- ☆ let n be the smallest such/integer
- $\Rightarrow$  since n can not be 1 or a prime, n must be composite, i.e.  $n = a \cdot b$
- *★* since n is the smallest, both a and b must be products of primes.
- $anticolumna n = a \cdot b$  must also be a product of primes, contradiction

Theorem: Every positive integer is a product of primes.
 This factorization into primes is unique, up to

reordering of the factors.

\* Proof: product of primes

- Empty product equals 1.
- Prime is a one factor product.
- ★ assume there exist positive integers that are not product of primes
- ☆ let n be the smallest such/integer
- $\Rightarrow$  since n can not be 1 or a prime, n must be composite, i.e.  $n = a \cdot b$
- ☆ since n is the smallest, both a and b must be products of primes.
- $\Rightarrow$  n = a·b must also be a product of primes, contradiction

\* Proof: uniqueness of factorization

Theorem: Every positive integer is a product of primes.
 This factorization into primes is unique, up to

reordering of the factors.

- Empty product equals 1.
- Prime is a one factor product.
- ★ assume there exist positive integers that are not product of primes
- ☆ let n be the smallest such/integer
- $\Rightarrow$  since n can not be 1 or a prime, n must be composite, i.e.  $n = a \cdot b$
- *★* since n is the smallest, both a and b must be products of primes.
- $anticolumna n = a \cdot b$  must also be a product of primes, contradiction
- \* Proof: uniqueness of factorization
  - $\Rightarrow \text{ assume } n = r_1^{c_1} r_2^{c_2} \cdots r_k^{c_k} p_1^{a_1} p_2^{a_2} \cdots p_s^{a_s} = r_1^{c_1} r_2^{c_2} \cdots r_k^{c_k} q_1^{b_1} q_2^{b_2} \cdots q_t^{b_t}$ where  $p_i$ ,  $q_i$  are all distinct primes.
# Factorization into primes

Theorem: Every positive integer is a product of primes.
 This factorization into primes is unique, up to

reordering of the factors.

\* Proof: product of primes

- Empty product equals 1.
- Prime is a one factor product.
- ★ assume there exist positive integers that are not product of primes
- ☆ let n be the smallest such/integer
- $\Rightarrow$  since n can not be 1 or a prime, n must be composite, i.e.  $n = a \cdot b$
- *★* since n is the smallest, both a and b must be products of primes.
- $aigeta n = a \cdot b$  must also be a product of primes, contradiction

\* Proof: uniqueness of factorization

 $\Rightarrow \text{ assume } n = r_1^{c_1} r_2^{c_2} \cdots r_k^{c_k} p_1^{a_1} p_2^{a_2} \cdots p_s^{a_s} = r_1^{c_1} r_2^{c_2} \cdots r_k^{c_k} q_1^{b_1} q_2^{b_2} \cdots q_t^{b_t}$ where  $p_i$ ,  $q_i$  are all distinct primes.

 $\Rightarrow \text{ let } \mathbf{m} = \mathbf{n} / (\mathbf{r}_1^{c_1} \mathbf{r}_2^{c_2} \cdots \mathbf{r}_k^{c_k})$ 

# Factorization into primes

Theorem: Every positive integer is a product of primes.
 This factorization into primes is unique, up to

reordering of the factors.

\* Proof: product of primes

- Empty product equals 1.
- Prime is a one factor product.
- ★ assume there exist positive integers that are not product of primes
- ☆ let n be the smallest such/integer
- $\Rightarrow$  since n can not be 1 or a prime, n must be composite, i.e.  $n = a \cdot b$
- *★* since n is the smallest, both a and b must be products of primes.
- $aigeta n = a \cdot b$  must also be a product of primes, contradiction
- \* Proof: uniqueness of factorization
  - $\Rightarrow \text{ assume } n = r_1^{c_1} r_2^{c_2} \cdots r_k^{c_k} p_1^{a_1} p_2^{a_2} \cdots p_s^{a_s} = r_1^{c_1} r_2^{c_2} \cdots r_k^{c_k} q_1^{b_1} q_2^{b_2} \cdots q_t^{b_t}$ where  $p_i$ ,  $q_i$  are all distinct primes.
  - $\Rightarrow \text{ let } \mathbf{m} = \mathbf{n} / (\mathbf{r}_1^{c_1} \mathbf{r}_2^{c_2} \cdots \mathbf{r}_k^{c_k})$
  - \* consider  $p_1$  for example, since  $p_1$  divide  $m = q_1q_1..q_1q_2...q_t$ ,  $p_1$  must divide one of the factors  $q_j$ , contradict the fact that " $p_i$ ,  $q_j$  are distinct primes"

### $\Rightarrow$ If p is a prime, p $\nmid$ a then $a^{p-1} \equiv 1 \pmod{p}$

# Fermat's Little Theorem

### ♦ If p is a prime, $p \nmid a$ then $a^{p-1} \equiv 1 \pmod{p}$

# Fermat's Little Theorem

♦ If p is a prime, p ∤ a then  $a^{p-1} \equiv 1 \pmod{p}$ Proof: \$\$\\$\\$ let S = {1, 2, 3, ..., p-1} (Z\_p^\*)\$, define \$\$\\$\\$\\$\\$(x) \$\$\\$\\$ a ` x (mod p) be a mapping \$\$\\$\\$\\$: S→Z\$

# Fermat's Little Theorem

◇ If p is a prime, p ∤ a then  $a^{p-1} \equiv 1 \pmod{p}$ Proof:  $\Rightarrow$  let S = {1, 2, 3, ..., p-1} (Z<sub>p</sub>\*), define ψ(x) ≡ a · x (mod p) be a mapping ψ: S→Z  $\Rightarrow \forall x \in S, ψ(x) \neq 0 \pmod{p} \Rightarrow \forall x \in S, ψ(x) \in S, i.e. ψ: S→S$ 

# Fermat's Little Theorem

# Fermat's Little Theorem

♦ If p is a prime, p ∤ a then  $a^{p-1} \equiv 1 \pmod{p}$ Proof:  $\Rightarrow \text{let S} = \{1, 2, 3, ..., p-1\} (Z_p^*), \text{ define } \psi(x) \equiv a \cdot x \pmod{p} \text{ be a mapping } \psi: S \rightarrow Z$   $\Rightarrow \forall x \in S, \psi(x) \neq 0 \pmod{p} \Rightarrow \forall x \in S, \psi(x) \in S, \text{ i.e. } \psi: S \rightarrow S$ if  $\psi(x) \equiv a \cdot x \equiv 0 \pmod{p} \Rightarrow x \equiv 0 \pmod{p} \text{ since } \gcd(a, p) \equiv 1$   $\Rightarrow \forall x, y \in S, \text{ if } x \neq y \text{ then } \psi(x) \neq \psi(y)$ 

# Fermat's Little Theorem

♦ If p is a prime, p ∤ a then  $a^{p-1} \equiv 1 \pmod{p}$ Proof:  $\Rightarrow \text{let } S = \{1, 2, 3, ..., p-1\} (Z_p^*), \text{ define } \psi(x) \equiv a \cdot x \pmod{p} \text{ be a mapping } \psi: S \rightarrow Z$   $\Rightarrow \forall x \in S, \psi(x) \neq 0 \pmod{p} \Rightarrow \forall x \in S, \psi(x) \in S, \text{ i.e. } \psi: S \rightarrow S$ if  $\psi(x) \equiv a \cdot x \equiv 0 \pmod{p} \Rightarrow x \equiv 0 \pmod{p} \text{ since } \gcd(a, p) \equiv 1$   $\Rightarrow \forall x, y \in S, \text{ if } x \neq y \text{ then } \psi(x) \neq \psi(y)$ if  $\psi(x) \equiv \psi(y) \Rightarrow a \cdot x \equiv a \cdot y \Rightarrow x \equiv y \text{ since } \gcd(a, p) = 1$ 

# Fermat's Little Theorem

# Fermat's Little Theorem

 $\Rightarrow$  If p is a prime, p / a then  $a^{p-1} \equiv 1 \pmod{p}$  $\Rightarrow \text{let S} = \{1, 2, 3, ..., p-1\} (Z_p^*), \text{ define } \psi(x) \equiv a \cdot x \pmod{p} \text{ be}$ Proof: a mapping  $\psi: S \rightarrow Z$  $\Rightarrow \forall x \in S, \psi(x) \neq 0 \pmod{p} \Rightarrow \forall x \in S, \psi(x) \in S, i.e. \psi: S \rightarrow S$ if  $\psi(x) \equiv a \cdot x \equiv 0 \pmod{p} \implies x \equiv 0 \pmod{p}$  since  $gcd(a, p) \equiv 1$  $\Leftrightarrow \forall x, y \in S, \text{ if } x \neq y \text{ then } \psi(x) \neq \psi(y)$ if  $\psi(x) \equiv \psi(y) \Rightarrow a \cdot x \equiv a \cdot y \Rightarrow x \equiv y$  since gcd(a, p) = 1 $\Rightarrow$  from the above two observations,  $\psi(1), \psi(2), \dots, \psi(p-1)$  are distinct elements of S  $1 \approx 1 \cdot 2 \cdot \dots \cdot (p-1) \equiv \psi(1) \cdot \overline{\psi(2)} \cdot \dots \cdot \psi(p-1) \equiv (a \cdot 1) \cdot (a \cdot 2) \cdot \dots \cdot (a \cdot (p-1))$  $\equiv a^{p-1} (1 \cdot 2 \cdot \dots \cdot (p-1)) \pmod{p}$ 

# Fermat's Little Theorem

 $\Rightarrow$  If p is a prime, p / a then  $a^{p-1} \equiv 1 \pmod{p}$  $\Rightarrow \text{let S} = \{1, 2, 3, ..., p-1\} (Z_p^*), \text{ define } \psi(x) \equiv a \cdot x \pmod{p} \text{ be}$ Proof: a mapping  $\psi: S \rightarrow Z$  $\Rightarrow \forall x \in S, \psi(x) \neq 0 \pmod{p} \Rightarrow \forall x \in S, \psi(x) \in S, i.e. \psi: S \rightarrow S$ if  $\psi(x) \equiv a \cdot x \equiv 0 \pmod{p} \implies x \equiv 0 \pmod{p}$  since  $gcd(a, p) \equiv 1$  $\Leftrightarrow \forall x, y \in S, \text{ if } x \neq y \text{ then } \psi(x) \neq \psi(y)$ if  $\psi(x) \equiv \psi(y) \Rightarrow a \cdot x \equiv a \cdot y \Rightarrow x \equiv y$  since gcd(a, p) = 1 $\Rightarrow$  from the above two observations,  $\psi(1), \psi(2), \dots, \psi(p-1)$  are distinct elements of S  $\Rightarrow 1 \cdot 2 \cdot \dots \cdot (p-1) \equiv \psi(1) \cdot \psi(2) \cdot \dots \cdot \psi(p-1) \equiv (a \cdot 1) \cdot (a \cdot 2) \cdot \dots \cdot (a \cdot (p-1))$  $\equiv a^{p-1} (1 \cdot 2 \cdot \dots \cdot (p-1)) \pmod{p}$  $\Rightarrow$  since gcd(j, p) = 1 for j  $\in$  S, we can divide both side by 1, 2, 3, ... p-1, and obtain  $a^{p-1} \equiv 1 \pmod{p}$ 

### $\Rightarrow \text{Ex: } 2^{10} = 1024 \equiv 1 \pmod{11}$

# $\Rightarrow \text{Ex: } 2^{10} = 1024 \equiv 1 \pmod{11}$ $2^{53} = (2^{10})^5 2^3 \qquad 1^5 2^3 \qquad 8 \pmod{11}$

 $\Rightarrow \operatorname{Ex:} 2^{10} = 1024 \equiv 1 \pmod{11}$   $2^{53} = (2^{10})^5 2^3 \qquad 1^5 2^3 \qquad 8 \pmod{11}$ i.e.  $2^{53} \equiv 2^{53 \mod 10} \qquad 2^3 \qquad 8 \pmod{11}$ 

♦ if n is prime, then  $2^{n-1} \equiv 1 \pmod{n}$ i.e. if  $2^{n-1} \neq 1 \pmod{n}$  then n is not prime (\*) usually, if  $2^{n-1} \equiv 1 \pmod{n}$ , then n is prime

 $★ Ex: 2^{10} = 1024 \equiv 1 \pmod{11}$   $2^{53} = (2^{10})^5 2^3 \qquad 1^5 2^3 \qquad 8 \pmod{11}$   $i.e. 2^{53} \equiv 2^{53 \mod 10} \qquad 2^3 \qquad 8 \pmod{11}$ 

♦ if n is prime, then  $2^{n-1} \equiv 1 \pmod{n}$ i.e. if  $2^{n-1} \neq 1 \pmod{n}$  then n is not prime (\*) usually, if  $2^{n-1} \equiv 1 \pmod{n}$ , then n is prime \* exceptions:  $2^{561-1} \equiv 1 \pmod{561}$  although  $561 = 3 \cdot 11 \cdot 17$  $2^{1729-1} \equiv 1 \pmod{1729}$  although  $1729 = 7 \cdot 13 \cdot 19$ 

 $★ Ex: 2^{10} = 1024 \equiv 1 \pmod{11}$   $2^{53} = (2^{10})^5 2^3 \qquad 1^5 2^3 \qquad 8 \pmod{11}$   $i.e. 2^{53} \equiv 2^{53 \mod 10} \qquad 2^3 \qquad 8 \pmod{11}$ 

♦ if n is prime, then 2<sup>n-1</sup> ≡ 1 (mod n)
i.e. if 2<sup>n-1</sup> ≠ 1 (mod n) then n is not prime ←(\*)
usually, if 2<sup>n-1</sup> ≡ 1 (mod n), then n is prime
\* exceptions: 2<sup>561-1</sup> ≡ 1 (mod 561) although 561 = 3 · 11 · 17
2<sup>1729-1</sup> ≡ 1 (mod 1729) although 1729 = 7 · 13 · 19
\* (\*) is a quick test for eliminating composite number

 $\diamond \phi(n)$ : the number of integers  $1 \le a \le n$  s.t.  $gcd(a,n)_{=}1$ 

### φ(n): the number of integers 1≤a<n s.t. gcd(a,n)<sub>=</sub>1 ex. n<sub>=</sub>10, $φ(n)_=4$ the set is $Z_{10}^* = \{1,3,7,9\}$

\$\phi(n)\$: the number of integers 1≤a<n s.t. gcd(a,n)=1</li>
ex. n=10, \$\phi(n)=4\$ the set is Z<sub>10</sub>\* = {1,3,7,9}
\$\phi\$ properties of \$\phi(•)\$

\$\oplus(n)\$: the number of integers 1≤a<n s.t. gcd(a,n)=1 ex. n=10, \$\oplus(n)=4\$ the set is Z<sub>10</sub>\* = {1,3,7,9}
\$\oplus properties of \$\oplus(\$\oplus)\$) \*\$\oplus(p) = p-1, if p is prime

\$\oplus(n)\$: the number of integers 1≤a<n s.t. gcd(a,n)=1 ex. n=10, \$\oplus(n)=4\$ the set is Z<sub>10</sub>\* = {1,3,7,9}
\$\oplus properties of \$\oplus(\$\oplus)\$) \$\oplus(p) = p-1\$, if p is prime

 $\star \phi(p^r) = p^r - p^{r-1} = p^r \cdot (1 - 1/p)$ , if p is prime

\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\$\operatorname{\operatorname{\operatorname{\operatorname

 $\star \phi(n \cdot m) = \phi(n) \cdot \phi(m)$  if gcd(n,m) = 1

multiplicative property

 $\Rightarrow φ(n)$ : the number of integers 1≤a<n s.t. gcd(a,n)<sub>=</sub>1 ex. n<sub>=</sub>10, φ(n)<sub>=</sub>4 the set is Z<sub>10</sub><sup>\*</sup> = {1,3,7,9}

### $\diamond$ properties of $\phi(\bullet)$

 $\star \phi(p) = p-1$ , if p is prime

 $\star \phi(p^{r}) = p^{r} - p^{r-1} = p^{r} \cdot (1 - 1/p)$ , if p is prime

if  $gcd(n,m)=d_1$ ,  $gcd(n/d_1,d_1)=d_2$ ,  $gcd(m/d_1,d_1)=d_3$ 

 $\Rightarrow$  φ(n): the number of integers 1≤a<n s.t. gcd(a,n)=1 ex. n=10, φ(n)=4 the set is Z<sub>10</sub>\* = {1,3,7,9}

### $\diamond$ properties of $\phi(\bullet)$

 $\star \phi(p) = p-1$ , if p is prime

 $\star \phi(p^{r}) = p^{r} - p^{r-1} = p^{r} \cdot (1 - 1/p)$ , if p is prime

if  $gcd(n,m)=d_1$ ,  $gcd(n/d_1,d_1)=d_2$ ,  $gcd(m/d_1,d_1)=d_3$ 

 $\star \phi(\mathbf{n}) = \mathbf{n} \prod_{\forall p \mid n} (1 - 1/p)$ 

 $\diamond \phi(n)$ : the number of integers  $1 \le a \le n$  s.t. gcd(a,n) = 1ex.  $n_10, \phi(n)_4$  the set is  $Z_{10}^* = \{1, 3, 7, 9\}$ 

### $\diamond$ properties of $\phi(\bullet)$

 $\star \phi(p) = p-1$ , if p is prime

 $\star \phi(p^r) = p^r - p^{r-1} = p^r \cdot (1 - 1/p)$ , if p is prime

multiplicative  $\star \phi(n \cdot m) = \phi(n) \cdot \phi(m)$  if gcd(n,m) = 1propertv

 $\star \phi(n \cdot m) = \phi((d_1/d_2/d_3)^2) \cdot \phi(d_2^3) \cdot \phi(d_3^3) \cdot \phi(n/d_1/d_2) \cdot \phi(m/d_1/d_3)$ 

if  $gcd(n,m)=d_1$ ,  $gcd(n/d_1,d_1)=d_2$ ,  $gcd(m/d_1,d_1)=d_3$ 

 $\star \phi(n) = n \prod_{\forall p \mid n} (1 - 1/p)$ 

ex.  $\phi(10)=(2-1)\cdot(5-1)=4$   $\phi(120)=120(1-1/2)(1-1/3)(1-1/5)=32$ 

 $\Rightarrow \phi(n) \approx n \cdot 6/\pi^2$  as n goes large

 $\Rightarrow \phi(n) \approx n \cdot 6/\pi^2$  as n goes large

Probability that a prime number p is a factor of a random number r ?

 $\Rightarrow \phi(n) \approx n \cdot 6/\pi^2$  as n goes large

Probability that a prime number p is a factor of a random number r ?
 r must be of the form kp

 $\Rightarrow \phi(n) \approx n \cdot 6/\pi^2 \text{ as n goes large}$ 

Probability that a prime number p is a factor of a random number r? 1/p r must be of the form kp

 $\Rightarrow \phi(n) \approx n \cdot 6/\pi^2$  as n goes large

♦ Probability that a prime number p is a factor of a random number r? 1/p
r must be of the form kp

p 2p 3p 4p

♦ Probability that two independent random numbers  $r_1$  and  $r_2$  both have a given prime number p as a factor?

 $\Rightarrow \phi(n) \approx n \cdot 6/\pi^2$  as n goes large

Probability that a prime number p is a factor of a random number r? 1/p r must be of the form kp

♦ Probability that two independent random numbers r<sub>1</sub> and r<sub>2</sub> both have a given prime number p as a factor?  $1/p^2$ 

 $\Rightarrow \phi(n) \approx n \cdot 6/\pi^2$  as n goes large

Probability that a prime number p is a factor of a random number r? 1/p
r must be of the form kp

p 2p 3p 4p

♦ Probability that two independent random numbers r<sub>1</sub> and r<sub>2</sub> both have a given prime number p as a factor? 1/p<sup>2</sup>
♦ The probability that they do not have p as a common factor is thus 1 – 1/p<sup>2</sup>

 $\Rightarrow \phi(n) \approx n \cdot 6/\pi^2$  as n goes large

Probability that a prime number p is a factor of a random number r? 1/p r must be of the form kp

p 2p 3p 4p

♦ Probability that two independent random numbers r<sub>1</sub> and r<sub>2</sub> both have a given prime number p as a factor?  $1/p^2$ 

♦ The probability that they do not have p as a common factor is thus  $1 - 1/p^2$ 

♦ The probability that two numbers  $r_1$  and  $r_2$  have no common prime factor?

 $\Rightarrow \phi(n) \approx n \cdot 6/\pi^2$  as n goes large

Probability that a prime number p is a factor of a random number r? 1/p r must be of the form kp

p 2p 3p 4p

♦ Probability that two independent random numbers r<sub>1</sub> and r<sub>2</sub> both have a given prime number p as a factor?  $1/p^2$ 

♦ The probability that they do not have p as a common factor is thus  $1 - 1/p^2$ 

♦ The probability that two numbers r<sub>1</sub> and r<sub>2</sub> have no common prime factor? P =  $(1-1/2^2)(1-1/3^2)(1-1/5^2)(1-1/7^2)...$
#### Pr{ $r_1$ and $r_2$ relatively prime } ⇒ Equalities: $\frac{1}{1-x} = 1+x+x^2+x^3+...$ $1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+...=\pi^2/6$

#### Pr{ $r_1$ and $r_2$ relatively prime } ⇒ Equalities: $\frac{1}{1-x} = 1+x+x^2+x^3+...$ $1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+...=\pi^2/6$ ⇒ P = $(1-1/2^2)(1-1/3^2)(1-1/5^2)(1-1/7^2) \cdot ...$

## Pr{ $r_1$ and $r_2$ relatively prime } $\Rightarrow$ Equalities: $\frac{1}{1-x} = 1+x+x^2+x^3+...$ $1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+...=\pi^2/6$ $\Rightarrow$ P = $(1-1/2^2)(1-1/3^2)(1-1/5^2)(1-1/7^2)\cdot...$ $= ((1+1/2^2+1/2^4+...)(1+1/3^2+1/3^4+...)\cdot...)^{-1}$

### $Pr\{r_1 \text{ and } r_2 \text{ relatively prime }\}$ ♦ Equalities: $\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots$ $1 + 1/2^2 + 1/3^2 + 1/4^2 + 1/5^2 + 1/6^2 + \ldots = \pi^2/6$ $\Rightarrow \mathbf{P} = (1-1/2^2)(1-1/3^2)(1-1/5^2)(1-1/7^2) \cdot \dots$ $= ((1+1/2^2+1/2^4+...)(1+1/3^2+1/3^4+...) \cdot ...)^{-1}$ $=(1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+...)^{-1}$

each positive number has a unique prime number factorization ex.  $45^2 = 3^4 \cdot 5^2$ 

Pr{ 
$$r_1$$
 and  $r_2$  relatively prime }  
 $\Rightarrow$  Equalities:  
 $\frac{1}{1-x} = 1+x+x^2+x^3+...$   
 $1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+...=\pi^2/6$   
 $\Rightarrow$  P =  $(1-1/2^2)(1-1/3^2)(1-1/5^2)(1-1/7^2)\cdot...$   
 $= ((1+1/2^2+1/2^4+...)(1+1/3^2+1/3^4+...)\cdot...)^{-1}$   
 $= (1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+...)^{-1}$   
 $= 6/\pi^2$ 

each positive number has a unique prime number factorization ex.  $45^2 = 3^4 \cdot 5^2$ 

### $Pr\{r_1 \text{ and } r_2 \text{ relatively prime }\}$ ♦ Equalities: $\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots$ $1 + 1/2^2 + 1/3^2 + 1/4^2 + 1/5^2 + 1/6^2 + \ldots = \pi^2/6$ $\Rightarrow \mathbf{P} = (1-1/2^2)(1-1/3^2)(1-1/5^2)(1-1/7^2) \cdot \dots$ $= ((1+1/2^2+1/2^4+...)(1+1/3^2+1/3^4+...) \cdot ...)^{-1}$ $= (1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+...)^{-1}$ $= 6/\pi^{2}$ 0.61

each positive number has a unique prime number factorization ex.  $45^2 = 3^4 \cdot 5^2$ 

 $\Rightarrow \phi(n)$  is the number of integers less than n that are relative prime to n

۲

 $\Rightarrow \phi(n)$  is the number of integers less than n that are relative prime to n

 $\Rightarrow \phi(n)/n$  is the probability that a randomly chosen integer is relatively prime to n

 $\Rightarrow \phi(n)$  is the number of integers less than n that are relative prime to n

 $\Rightarrow \phi(n)/n$  is the probability that a randomly chosen integer is relatively prime to n

♦ Therefore,  $\phi(n) \approx n \cdot 6/\pi^2$ 

 $\Rightarrow \phi(n)$  is the number of integers less than n that are relative prime to n

 $\Rightarrow \phi(n)/n$  is the probability that a randomly chosen integer is relatively prime to n

♦ Therefore,  $\phi(n) \approx n \cdot 6/\pi^2$ 

 $\Rightarrow P_n = Pr \{ n \text{ random numbers have no common factor } \}$ 

- $\Rightarrow \phi(n)/n$  is the probability that a randomly chosen integer is relatively prime to n
- ♦ Therefore,  $\phi(n) \approx n \cdot 6/\pi^2$
- P<sub>n</sub> = Pr { n random numbers have no common factor }
  \* n independent random numbers all have a given prime p as a factor is 1/p<sup>n</sup>

- $\Rightarrow \phi(n)/n$  is the probability that a randomly chosen integer is relatively prime to n
- ♦ Therefore,  $\phi(n) \approx n \cdot 6/\pi^2$
- $P_n = Pr \{ n \text{ random numbers have no common factor } \}$ 
  - n independent random numbers all have a given prime p as a factor is 1/p<sup>n</sup>
  - \* They do not all have p as a common factor  $1 1/p^n$

- $\Rightarrow \phi(n)/n$  is the probability that a randomly chosen integer is relatively prime to n
- ♦ Therefore,  $\phi(n) \approx n \cdot 6/\pi^2$
- $P_n = Pr \{ n \text{ random numbers have no common factor } \}$ 
  - n independent random numbers all have a given prime p as a factor is 1/p<sup>n</sup>
  - \* They do not all have p as a common factor  $1 1/p^n$
  - \*  $P_n = (1+1/2^n+1/3^n+1/4^n+1/5^n+1/6^n+...)^{-1}$  is the Riemann zeta function  $\zeta(n)$  http://mathworld.wolfram.com/RiemannZetaFunction.html

- $\Rightarrow \phi(n)/n$  is the probability that a randomly chosen integer is relatively prime to n
- ♦ Therefore,  $\phi(n) \approx n \cdot 6/\pi^2$
- $\diamond P_n = Pr \{ n \text{ random numbers have no common factor } \}$ 
  - n independent random numbers all have a given prime p as a factor is 1/p<sup>n</sup>
  - \* They do not all have p as a common factor  $1 1/p^n$
  - \*  $P_n = (1+1/2^n+1/3^n+1/4^n+1/5^n+1/6^n+...)^{-1}$  is the Riemann zeta function  $\zeta(n)$  http://mathworld.wolfram.com/RiemannZetaFunction.html
  - \* Ex. n=4,  $\zeta(4) = \pi^4/90 \approx 0.92$

### $\Rightarrow$ If gcd(a,n)=1 then $a^{\phi(n)} \equiv 1 \pmod{n}$

۲

true when n is prime

### $\Rightarrow$ If gcd(a,n)=1 then $a^{\phi(n)} \equiv 1 \pmod{n}$

•

true when n is prime

# ♦ If gcd(a,n)=1 then $a^{\phi(n)} \equiv 1 \pmod{n}$ Proof: $\Rightarrow$ let S be the set of integers $1 \le x \le n$ , with gcd(x, n) = 1

۲

true when n is prime

#### ♦ If gcd(a,n)=1 then $a^{\phi(n)} \equiv 1 \pmod{n}$ Proof: \$\\$ let S be the set of integers 1≤x<n, with gcd(x, n) = 1 \$\\$ define ψ(x) ≡ a · x (mod n) be a mapping ψ: S→Z

true when n is prime

♦ If gcd(a,n)=1 then  $a^{\phi(n)} \equiv 1 \pmod{n}$ Proof: \$\\$ let S be the set of integers 1≤x<n, with gcd(x, n) = 1</p>
\$\\$ define \$\\$ define \$\\$ (x) \$\\$ = a \$\cdot \$x\$ (mod \$n\$) be a mapping \$\\$\$: S→Z
\$\\$ \$\\$ \$\\$ \$x\$ \$\epsilon\$ S and gcd(a, \$n\$) = 1,

true when n is prime

♦ If gcd(a,n)=1 then  $a^{\phi(n)} \equiv 1 \pmod{n}$ Proof: \$\\$ let \$S\$ be the set of integers 1≤x<n, with gcd(x, n) = 1
</p>

\$\\$ define \$\\$\\$(x) \$\] = a \cdot x\$ (mod \$n\$) be a mapping \$\\$\\$: \$S\$→\$Z\$

\$\\$ \$\\$\\$ x \$\in \$S\$ and gcd(a, \$n\$) = 1, if \$\\$\\$(x) \$\] = a \cdot x \$= 0\$ (mod \$n\$) \$\\$\\$ x \$= 0\$ (mod \$n\$)

\$\\$ \$\\$\\$(x) \$\\$= 0\$ (mod \$n\$)

true when n is prime

#### 

true when n is prime

♦ If gcd(a,n)\_1 then  $a^{\phi(n)} \equiv 1 \pmod{n}$ Proof: \$\\$ let S be the set of integers 1≤x<n, with gcd(x, n) = 1</p>
\$\\$ define \$\\$ (x) \$\] = a \cdot x (mod n) be a mapping \$\\$\\$: S→Z
\$\\$  $\forall x \in S$ and gcd(a, n) = 1,$ \$\\$  $\psi(x) \neq 0 \pmod{n}$ } $\] $\$ <math>\forall x \in S, \psi(x) \in S, i.e. $\psi$: S→S
$\] gcd($\$ (\$\$(x), n) = 1$ }$ 

#### Euler's Theorem true when n is prime $\Rightarrow$ If gcd(a,n)\_1 then $a^{\phi(n)} \equiv 1 \pmod{n}$ **Proof:** $\Rightarrow$ let S be the set of integers $1 \le x \le n$ , with gcd(x, n) = 1 $\Leftrightarrow$ define $\psi(x) \equiv a \cdot x \pmod{n}$ be a mapping $\psi: S \rightarrow Z$ $\Leftrightarrow \forall x \in S \text{ and } gcd(a, n) = 1,$ $\psi(x) \neq 0 \pmod{n}$ $\Rightarrow \forall x \in S, \psi(x) \in S, i.e. \psi: S \rightarrow S$ $gcd(\psi(x), n) = 1$ $\Rightarrow \forall x, y \in S, \text{ `if } x \neq y \text{ then } \psi(x) \not\equiv \psi(y) \pmod{n}$ if $\psi(x) \equiv \psi(y) \Rightarrow a \cdot x \equiv a \cdot y \Rightarrow x \equiv y$ since gcd(a, n) = 1

### Euler's Theorem true when n is prime $\Rightarrow$ If gcd(a,n)\_1 then $a^{\phi(n)} \equiv 1 \pmod{n}$ **Proof:** $\Rightarrow$ let S be the set of integers $1 \le x \le n$ , with gcd(x, n) = 1 $\Leftrightarrow$ define $\psi(x) \equiv a \cdot x \pmod{n}$ be a mapping $\psi: S \rightarrow Z$ $\Leftrightarrow \forall x \in S \text{ and } gcd(a, n) = 1,$ $\begin{array}{l} \psi(x) \neq 0 \ (\text{mod } n) \\ gcd(\psi(x), n) = 1 \end{array} \end{array} \right\} \Rightarrow \forall x \in S, \ \psi(x) \in S, \ i.e. \ \psi: S \rightarrow S \end{array}$ $\Leftrightarrow \forall x, y \in S, \text{ `if } x \neq y \text{ then } \psi(x) \not\equiv \psi(y) \pmod{n}$ if $\psi(x) \equiv \psi(y) \Rightarrow a \cdot x \equiv a \cdot y \Rightarrow x \equiv y$ since gcd(a, n) = 1 $\Rightarrow$ from the above two observations, $\forall x \in S, \psi(x)$ are distinct

elements of S (i.e.  $\{\psi(x) \mid \forall x \in S\}$  is S)

Euler's Theorem true when n is prime  $\Rightarrow$  If gcd(a,n)=1 then  $a^{\phi(n)} \equiv 1 \pmod{n}$ **Proof:**  $\Rightarrow$  let S be the set of integers  $1 \le x \le n$ , with gcd(x, n) = 1 $\Leftrightarrow$  define  $\psi(x) \equiv a \cdot x \pmod{n}$  be a mapping  $\psi: S \rightarrow Z$  $\Leftrightarrow \forall x \in S \text{ and } gcd(a, n) = 1,$  $\begin{array}{l} \psi(x) \neq 0 \ (\text{mod } n) \\ \gcd(\psi(x), n) = 1 \end{array} \end{array} \right\} \implies \forall x \in S, \ \psi(x) \in S, \ i.e. \ \psi: S \rightarrow S \end{array}$  $\Leftrightarrow \forall x, y \in S, \text{ `if } x \neq y \text{ then } \psi(x) \not\equiv \psi(y) \pmod{n}$ if  $\psi(x) \equiv \psi(y) \Rightarrow a \cdot x \equiv a \cdot y \Rightarrow x \equiv y$  since gcd(a, n) = 1 $\Leftrightarrow$  from the above two observations,  $\forall x \in S, \psi(x)$  are distinct elements of S (i.e.  $\{\psi(x) \mid \forall x \in S\}$  is S)  $\stackrel{\text{\tiny{(1)}}}{=} \prod x \equiv \prod \psi(x) \equiv a^{\phi(n)} \prod x \pmod{n}$  $x \in S$   $x \in S$ x∈S

#### Euler's Theorem true when n is prime $\Rightarrow$ If gcd(a,n)\_1 then $a^{\phi(n)} \equiv 1 \pmod{n}$ **Proof:** $\Rightarrow$ let S be the set of integers $1 \le x \le n$ , with gcd(x, n) = 1 $\Leftrightarrow$ define $\psi(x) \equiv a \cdot x \pmod{n}$ be a mapping $\psi: S \rightarrow Z$ $\Leftrightarrow \forall x \in S \text{ and } gcd(a, n) = 1,$ $\begin{cases} \psi(x) \neq 0 \pmod{n} \\ \gcd(\psi(x), n) = 1 \end{cases} \end{cases} \Rightarrow \forall x \in S, \psi(x) \in S, i.e. \psi: S \rightarrow S \end{cases}$ $\Leftrightarrow \forall x, y \in S, \text{ `if } x \neq y \text{ then } \psi(x) \not\equiv \psi(y) \pmod{n}$ if $\psi(x) \equiv \psi(y) \Rightarrow a \cdot x \equiv a \cdot y \Rightarrow x \equiv y$ since gcd(a, n) = 1 $\Leftrightarrow$ from the above two observations, $\forall x \in S, \psi(x)$ are distinct elements of S (i.e. $\{\psi(x) \mid \forall x \in S\}$ is S) $\stackrel{\text{\tiny{(1)}}}{=} \prod x \equiv \prod \psi(x) \equiv a^{\phi(n)} \prod x \pmod{n}$ $x \in S$ $x \in S$ x $\in$ S $\Rightarrow$ since gcd(x, n) = 1 for x $\in$ S, we can cancel one by one $x \in S$ of both sides, and obtain $a^{\phi(n)} \equiv 1 \pmod{n}$

13

#### Euler's Theorem true when n is prime $\Rightarrow$ If gcd(a,n)=1 then $a^{\phi(n)} \equiv 1 \pmod{n}$ true even when $n = p^k$ **Proof:** $\Rightarrow$ let S be the set of integers $1 \le x \le n$ , with gcd(x, n) = 1 $\Leftrightarrow$ define $\psi(x) \equiv a \cdot x \pmod{n}$ be a mapping $\psi: S \rightarrow Z$ $\Leftrightarrow \forall x \in S \text{ and } gcd(a, n) = 1,$ $\begin{array}{l} \psi(x) \neq 0 \ (\text{mod } n) \\ gcd(\psi(x), n) = 1 \end{array} \end{array} \right\} \Rightarrow \forall x \in S, \ \psi(x) \in S, \ i.e. \ \psi: S \rightarrow S \end{array}$ $\Leftrightarrow \forall x, y \in S, \text{ `if } x \neq y \text{ then } \psi(x) \not\equiv \psi(y) \pmod{n}$ if $\psi(x) \equiv \psi(y) \Rightarrow a \cdot x \equiv a \cdot y \Rightarrow x \equiv y$ since gcd(a, n) = 1 $\Leftrightarrow$ from the above two observations, $\forall x \in S, \psi(x)$ are distinct elements of S (i.e. $\{\psi(x) \mid \forall x \in S\}$ is S) $\stackrel{\text{\tiny{(1)}}}{=} \prod x \equiv \prod \psi(x) \equiv a^{\phi(n)} \prod x \pmod{n}$ $x \in S$ $x \in S$ x $\in$ S $\Rightarrow$ since gcd(x, n) = 1 for x $\in$ S, we can cancel one by one

 $x \in S$  of both sides, and obtain  $a^{\phi(n)} \equiv 1 \pmod{n}$ 

♦ Example: What are the last three digits of 7<sup>803</sup>?
i.e. we want to find 7<sup>803</sup> (mod 1000)  $1000 = 2^3 \cdot 5^3$ ,  $\phi(1000) = 1000(1 - 1/2)(1 - 1/5) = 400$   $7^{803} \equiv 7^{803} \pmod{400} \equiv 7^3 \equiv 343 \pmod{1000}$ 

♦ Example: What are the last three digits of 7<sup>803</sup>?
i.e. we want to find 7<sup>803</sup> (mod 1000)  $1000 = 2^3 \cdot 5^3$ ,  $\phi(1000) = 1000(1 - 1/2)(1 - 1/5) = 400$   $7^{803} \equiv 7^{803 \pmod{400}} \equiv 7^3 \equiv 343 \pmod{1000}$ 

♦ Example: Compute  $2^{43210} \pmod{101}$ ?  $101 = 1 \cdot 101, \qquad \phi(101) = 100$   $2^{43210} \equiv 2^{43210 \pmod{100}} \equiv 2^{10} \equiv 1024 \equiv 14 \pmod{101}$ 

# A second proof of Euler's Theorem Euler's Theorem: $\forall a \in \mathbb{Z}_n^*, a^{\phi(n)} \equiv 1 \pmod{n}$

### A second proof of Euler's Theorem Euler's Theorem: $\forall a \in Z_n^*, a^{\phi(n)} \equiv 1 \pmod{n}$ $\Rightarrow$ We have proved the above theorem by showing that the function $\psi(x) \equiv a \cdot x \pmod{n}$ is a permutation.

### A second proof of Euler's Theorem Euler's Theorem: $\forall a \in Z_n^*, a^{\phi(n)} \equiv 1 \pmod{n}$ $\Rightarrow$ We have proved the above theorem by showing that the function $\psi(x) \equiv a \cdot x \pmod{n}$ is a permutation.

♦ We can also prove it through Fermat's Little Theorem & CRT

# A second proof of Euler's Theorem Euler's Theorem: $\forall a \in Z_n^*, a^{\phi(n)} \equiv 1 \pmod{n}$

- ♦ We have proved the above theorem by showing that the function  $\psi(x) \equiv a \cdot x \pmod{n}$  is a permutation.
- ♦ We can also prove it through Fermat's Little Theorem & CRT
  - > consider  $n = p \cdot q$ ,  $\phi(n) = (p-1)(q-1)$

# A second proof of Euler's Theorem Euler's Theorem: $\forall a \in Z_n^*, a^{\phi(n)} \equiv 1 \pmod{n}$

♦ We have proved the above theorem by showing that the function  $\psi(x) \equiv a \cdot x \pmod{n}$  is a permutation.

♦ We can also prove it through Fermat's Little Theorem & CRT

> consider  $n = p \cdot q$ ,  $\phi(n) = (p-1)(q-1)$  $\forall a \in Z_p^*, a^{p-1} \equiv 1 \pmod{p} \Rightarrow (a^{p-1})^{q-1} \equiv a^{\phi(n)} \equiv 1 \pmod{p}$ 

# A second proof of Euler's Theorem Euler's Theorem: $\forall a \in Z_n^*, a^{\phi(n)} \equiv 1 \pmod{n}$

♦ We have proved the above theorem by showing that the function  $\psi(x) \equiv a \cdot x \pmod{n}$  is a permutation.

♦ We can also prove it through Fermat's Little Theorem & CRT

> consider  $n = p \cdot q$ ,  $\phi(n) = (p-1)(q-1)$   $\forall a \in Z_p^*, a^{p-1} \equiv 1 \pmod{p} \Rightarrow (a^{p-1})^{q-1} \equiv a^{\phi(n)} \equiv 1 \pmod{p}$  $\forall a \in Z_q^*, a^{q-1} \equiv 1 \pmod{q} \Rightarrow (a^{q-1})^{p-1} \equiv a^{\phi(n)} \equiv 1 \pmod{q}$ 

A second proof of Euler's Theorem Euler's Theorem:  $\forall a \in \mathbb{Z}_n^*, a^{\phi(n)} \equiv 1 \pmod{n}$  $\diamond$  We have proved the above theorem by showing that the function  $\psi(x) \equiv a \cdot x \pmod{n}$  is a permutation. ♦ We can also prove it through Fermat's Little Theorem & CRT > consider  $n = p \cdot q$ ,  $\phi(n) = (p-1)(q-1)$  $\forall a \in \mathbb{Z}_{p}^{*}, a^{p-1} \equiv 1 \pmod{p} \Longrightarrow (a^{p-1})^{q-1} \equiv a^{\phi(n)} \equiv 1 \pmod{p}$  $\forall a \in Z_q^*, a^{q-1} \equiv 1 \pmod{q} \Rightarrow (a^{q-1})^{p-1} \equiv a^{\phi(n)} \equiv 1 \pmod{q}$ gcd(p,q)=1
A second proof of Euler's Theorem Euler's Theorem:  $\forall a \in \mathbb{Z}_n^*, a^{\phi(n)} \equiv 1 \pmod{n}$  $\diamond$  We have proved the above theorem by showing that the function  $\psi(x) \equiv a \cdot x \pmod{n}$  is a permutation. ♦ We can also prove it through Fermat's Little Theorem & CRT > consider  $n = p \cdot q$ ,  $\phi(n) = (p-1)(q-1)$  $\forall a \in \mathbb{Z}_{p}^{*}, a^{p-1} \equiv 1 \pmod{p} \Longrightarrow (a^{p-1})^{q-1} \equiv a^{\phi(n)} \equiv 1 \pmod{p}$  $\forall a \in Z_q^*, a^{q-1} \equiv 1 \pmod{q} \Rightarrow (a^{q-1})^{p-1} \equiv a^{\phi(n)} \equiv 1 \pmod{q}$  $gcd(p,q)=1 \implies p \cdot q \mid a^{\phi(n)}-1$ , i.e.  $\forall a \in Z_n^*$  (p / a and q / a),  $a^{\phi(n)} \equiv 1 \pmod{n}$ 

A second proof of Euler's Theorem Euler's Theorem:  $\forall a \in \mathbb{Z}_n^*, a^{\phi(n)} \equiv 1 \pmod{n}$  $\diamond$  We have proved the above theorem by showing that the function  $\psi(x) \equiv a \cdot x \pmod{n}$  is a permutation. ♦ We can also prove it through Fermat's Little Theorem & CRT > consider  $n = p \cdot q$ ,  $\phi(n) = (p-1)(q-1)$  $\forall a \in \mathbb{Z}_{p}^{*}, a^{p-1} \equiv 1 \pmod{p} \Longrightarrow (a^{p-1})^{q-1} \equiv a^{\phi(n)} \equiv 1 \pmod{p}$  $\forall a \in Z_q^*, a^{q-1} \equiv 1 \pmod{q} \Longrightarrow (a^{q-1})^{p-1} \equiv a^{\phi(n)} \equiv 1 \pmod{q}$  $gcd(p,q)=1 \Rightarrow p \cdot q \mid a^{\phi(n)}-1$ , i.e.  $\forall a \in Z_n^* (p \nmid a \text{ and } q \nmid a), a^{\phi(n)} \equiv 1 \pmod{n}$ > consider  $n = p^r$ ,  $\phi(n) = p^{r-1}(p-1)$ 

A second proof of Euler's Theorem Euler's Theorem:  $\forall a \in \mathbb{Z}_n^*, a^{\phi(n)} \equiv 1 \pmod{n}$  $\diamond$  We have proved the above theorem by showing that the function  $\psi(x) \equiv a \cdot x \pmod{n}$  is a permutation. ♦ We can also prove it through Fermat's Little Theorem & CRT > consider  $n = p \cdot q$ ,  $\phi(n) = (p-1)(q-1)$  $\forall a \in \mathbb{Z}_{p}^{*}, a^{p-1} \equiv 1 \pmod{p} \Longrightarrow (a^{p-1})^{q-1} \equiv a^{\phi(n)} \equiv 1 \pmod{p}$  $\forall a \in Z_q^*, a^{q-1} \equiv 1 \pmod{q} \Longrightarrow (a^{q-1})^{p-1} \equiv a^{\phi(n)} \equiv 1 \pmod{q}$  $gcd(p,q)=1 \Rightarrow p \cdot q \mid a^{\phi(n)}-1$ , i.e.  $\forall a \in \mathbb{Z}_n^* (p \nmid a \text{ and } q \nmid a), a^{\phi(n)} \equiv 1 \pmod{n}$ > consider  $n = p^r$ ,  $\phi(n) = p^{r-1}(p-1)$  $\forall a \in \mathbb{Z}_{p^r}^*, a^{p-1} \equiv 1 \pmod{p} \Rightarrow a^{p-1} = 1 + \lambda p$ 

A second proof of Euler's Theorem Euler's Theorem:  $\forall a \in \mathbb{Z}_n^*, a^{\phi(n)} \equiv 1 \pmod{n}$  $\diamond$  We have proved the above theorem by showing that the function  $\psi(x) \equiv a \cdot x \pmod{n}$  is a permutation. ♦ We can also prove it through Fermat's Little Theorem & CRT > consider  $n = p \cdot q$ ,  $\phi(n) = (p-1)(q-1)$  $\forall a \in \mathbb{Z}_{p}^{*}, a^{p-1} \equiv 1 \pmod{p} \Longrightarrow (a^{p-1})^{q-1} \equiv a^{\phi(n)} \equiv 1 \pmod{p}$  $\forall a \in Z_q^*, a^{q-1} \equiv 1 \pmod{q} \Rightarrow (a^{q-1})^{p-1} \equiv a^{\phi(n)} \equiv 1 \pmod{q}$  $gcd(p,q)=1 \implies p \cdot q \mid a^{\phi(n)}-1$ , i.e.  $\forall a \in Z_n^*$  (p / a and q / a),  $a^{\phi(n)} \equiv 1 \pmod{n}$ > consider  $n = p^r$ ,  $\phi(n) = p^{r-1}(p-1)$  $\forall a \in Z_{p^r}^*, a^{p-1} \equiv 1 \pmod{p} \Rightarrow a^{p-1} \equiv 1 + \lambda p$  $a^{\phi(n)} = (1+\lambda p)^{p^{r-1}} = 1 + C_1^{p^{r-1}} \lambda p + C_2^{p^{r-1}} (\lambda p)^2 + \dots$  $= 1 + p^{r-1} \lambda p + p^{r-1} (p^{r-1} - 1)/2 (\lambda p)^2 + \dots$ 10

A second proof of Euler's Theorem Euler's Theorem:  $\forall a \in \mathbb{Z}_n^*, a^{\phi(n)} \equiv 1 \pmod{n}$  $\diamond$  We have proved the above theorem by showing that the function  $\psi(x) \equiv a \cdot x \pmod{n}$  is a permutation. ♦ We can also prove it through Fermat's Little Theorem & CRT > consider  $n = p \cdot q$ ,  $\phi(n) = (p-1)(q-1)$  $\forall a \in \mathbb{Z}_{p}^{*}, a^{p-1} \equiv 1 \pmod{p} \Longrightarrow (a^{p-1})^{q-1} \equiv a^{\phi(n)} \equiv 1 \pmod{p}$  $\forall a \in Z_q^*, a^{q-1} \equiv 1 \pmod{q} \Rightarrow (a^{q-1})^{p-1} \equiv a^{\phi(n)} \equiv 1 \pmod{q}$  $gcd(p,q)=1 \implies p \cdot q \mid a^{\phi(n)}-1$ , i.e.  $\forall a \in Z_n^* (p \nmid a \text{ and } q \nmid a), a^{\phi(n)} \equiv 1 \pmod{n}$ > consider  $n = p^r$ ,  $\phi(n) = p^{r-1}(p-1)$  $\mathbf{a}^{\phi(n)} \equiv (1 + \lambda p)^{p^{r-1}}$  $\forall a \in Z_{p^r}^*, a^{p-1} \equiv 1 \pmod{p} \Longrightarrow a^{p-1} = 1 + \lambda p$  $\equiv 1 \pmod{n}$  $a^{\phi(n)} = (1 + \lambda p)^{p^{r-1}} = 1 + C_1^{p^{r-1}} \lambda p + C_2^{p^{r-1}} (\lambda p)^2 + \dots$  $= 1 + p^{r-1} \lambda p + p^{r-1} (p^{r-1} - 1)/2 (\lambda p)^2 + \dots$ 10

### A second proof (cont'd)

### > consider $n = p^r \cdot q^s$ , $\phi(n) = p^{r-1}(p-1) q^{s-1}(q-1)$

### A second proof (cont'd)

> consider  $\mathbf{n} = \mathbf{p}^{\mathbf{r}} \cdot \mathbf{q}^{\mathbf{s}}, \phi(\mathbf{n}) = \mathbf{p}^{\mathbf{r}-1}(\mathbf{p}-1) \mathbf{q}^{\mathbf{s}-1}(\mathbf{q}-1)$  $\forall \mathbf{a} \in Z_{\mathbf{p}^{\mathbf{r}}}^{*}, \mathbf{a}^{\mathbf{p}-1} \equiv \underline{1 \pmod{p}}$ 

### A second proof (cont'd)

### > consider $n = p^r \cdot q^s$ , $\phi(n) = p^{r-1}(p-1) q^{s-1}(q-1)$ $\forall a \in Z_{p^r}^*$ , $a^{p-1} \equiv 1 \pmod{p} \Rightarrow (a^{p-1})^{p^{r-1}} \equiv 1 \pmod{p^r}$

### $A \operatorname{second} \operatorname{proof} (\operatorname{cont'd})$ $> \operatorname{consider} n = p^{r} \cdot q^{s}, \phi(n) = p^{r-1}(p-1) q^{s-1}(q-1)$ $\forall a \in Z_{p^{r}}^{*}, a^{p-1} \equiv 1 \pmod{p} \Rightarrow (a^{p-1})^{p^{r-1}} \equiv 1 \pmod{p^{r}}$ $\Rightarrow (a^{(p-1)p^{r-1}})^{(q-1)q^{s-1}} \equiv a^{\phi(n)} \equiv 1 \pmod{p^{r}}$

### A second proof (cont'd) > consider n = p<sup>r</sup> · q<sup>s</sup>, $\phi(n) = p^{r-1}(p-1) q^{s-1}(q-1)$ ∀a∈Z<sup>\*</sup><sub>p<sup>r</sup></sub>, $a^{p-1} \equiv 1 \pmod{p} \Rightarrow (a^{p-1})^{p^{r-1}} \equiv 1 \pmod{p^r}$ $\Rightarrow (a^{(p-1)p^{r-1}})^{(q-1)q^{s-1}} \equiv a^{\phi(n)} \equiv 1 \pmod{p^r} \Rightarrow p^r | a^{\phi(n)} - 1$

## $\begin{array}{l} \textbf{A second proof (cont'd)} \\ \textbf{>} \ \text{consider } \textbf{n} = \textbf{p}^{r} \cdot \textbf{q}^{s}, \, \phi(\textbf{n}) = \textbf{p}^{r-1}(\textbf{p}-1) \ \textbf{q}^{s-1}(\textbf{q}-1) \\ \forall \textbf{a} \in Z_{p^{r}}^{*}, \, \textbf{a}^{p-1} \equiv 1 \ (\text{mod } \textbf{p}) \Rightarrow (\textbf{a}^{p-1})^{p^{r-1}} \equiv 1 \ (\text{mod } \textbf{p}^{r}) \\ \Rightarrow (\textbf{a}^{(p-1)p^{r-1}})^{(q-1)q^{s-1}} \equiv \textbf{a}^{\phi(\textbf{n})} \equiv 1 \ (\text{mod } \textbf{p}^{r}) \Rightarrow \textbf{p}^{r} \mid \textbf{a}^{\phi(\textbf{n})} - 1 \\ \forall \textbf{a} \in Z_{q^{s}}^{*}, \, \textbf{a}^{q-1} \equiv 1 \ (\text{mod } \textbf{q}) \end{array}$

## $\begin{array}{l} \textbf{A second proof (cont'd)} \\ \textbf{>} \ \text{consider } \textbf{n} = \textbf{p}^{r} \cdot \textbf{q}^{s}, \, \phi(\textbf{n}) = \textbf{p}^{r-1}(\textbf{p}-1) \ \textbf{q}^{s-1}(\textbf{q}-1) \\ \forall \textbf{a} \in Z_{p^{r}}^{*}, \, \textbf{a}^{p-1} \equiv 1 \ (\text{mod } \textbf{p}) \Rightarrow (\textbf{a}^{p-1})^{p^{r-1}} \equiv 1 \ (\text{mod } \textbf{p}^{r}) \\ \Rightarrow (\textbf{a}^{(p-1)p^{r-1}})^{(q-1) \ \textbf{q}^{s-1}} \equiv \textbf{a}^{\phi(\textbf{n})} \equiv 1 \ (\text{mod } \textbf{p}^{r}) \Rightarrow \textbf{p}^{r} \ | \ \textbf{a}^{\phi(\textbf{n})} - 1 \\ \forall \textbf{a} \in Z_{q^{s}}^{*}, \, \textbf{a}^{q-1} \equiv 1 \ (\text{mod } \textbf{q}) \Rightarrow (\textbf{a}^{q-1})^{q^{s-1}} \equiv 1 \ (\text{mod } \textbf{q}^{s}) \end{array}$

## $\begin{array}{l} & A \ second \ proof \ (cont'd) \\ & \succ \ consider \ n = p^r \cdot q^s, \ \phi(n) = p^{r-1}(p-1) \ q^{s-1}(q-1) \\ & \forall a \in Z_{p^r}^*, \ a^{p-1} \equiv 1 \ (mod \ p) \Rightarrow (a^{p-1})^{p^{r-1}} \equiv 1 \ (mod \ p^r) \\ & \Rightarrow (a^{(p-1)p^{r-1}})^{(q-1) \ q^{s-1}} \equiv a^{\phi(n)} \equiv 1 \ (mod \ p^r) \Rightarrow p^r \ | \ a^{\phi(n)} - 1 \\ & \forall a \in Z_{q^s}^*, \ a^{q-1} \equiv 1 \ (mod \ q) \Rightarrow (a^{q-1})^{q^{s-1}} \equiv 1 \ (mod \ q^s) \\ & \Rightarrow (a^{(q-1)q^{s-1}})^{(p-1)p^{r-1}} \equiv a^{\phi(n)} \equiv 1 \ (mod \ q^s) \end{array}$

# $\begin{array}{l} \textbf{A second proof (cont'd)} \\ \textbf{>} \ \text{consider } \textbf{n} = \textbf{p}^{r} \cdot \textbf{q}^{s}, \, \phi(\textbf{n}) = \textbf{p}^{r-1}(\textbf{p}-1) \, \textbf{q}^{s-1}(\textbf{q}-1) \\ \forall a \in Z_{p^{r}}^{*}, \, a^{p-1} \equiv 1 \pmod{p} \Rightarrow (a^{p-1})^{p^{r-1}} \equiv 1 \pmod{p^{r}} \\ \Rightarrow (a^{(p-1)p^{r-1}})^{(q-1)q^{s-1}} \equiv a^{\phi(n)} \equiv 1 \pmod{p^{r}} \Rightarrow p^{r} \mid a^{\phi(n)}-1 \\ \forall a \in Z_{q^{s}}^{*}, \, a^{q-1} \equiv 1 \pmod{q} \Rightarrow (a^{q-1})^{q^{s-1}} \equiv 1 \pmod{q^{s}} \\ \Rightarrow (a^{(q-1)q^{s-1}})^{(p-1)p^{r-1}} \equiv a^{\phi(n)} \equiv 1 \pmod{q^{s}} \Rightarrow (a^{(q-1)q^{s-1}})^{(p-1)p^{r-1}} \equiv a^{\phi(n)} \equiv 1 \pmod{q^{s}} \Rightarrow (a^{\phi(n)}-1)^{q^{s-1}} \Rightarrow (a^{\phi(n)}-1)^{q^$

$$\begin{array}{l} \textbf{A second proof (cont'd)} \\ \textbf{S} \ \text{consider } \textbf{n} = \textbf{p}^{r} \cdot \textbf{q}^{s}, \ \phi(\textbf{n}) = \textbf{p}^{r-1}(\textbf{p}-1) \ \textbf{q}^{s-1}(\textbf{q}-1) \\ \forall \textbf{a} \in Z_{p^{r}}^{*}, \ \textbf{a}^{p-1} \equiv 1 \ (\text{mod } \textbf{p}) \Rightarrow (\textbf{a}^{p-1})^{p^{r-1}} \equiv 1 \ (\text{mod } \textbf{p}^{r}) \\ \Rightarrow (\textbf{a}^{(p-1)p^{r-1}})^{(q-1)q^{s-1}} \equiv \textbf{a}^{\phi(n)} \equiv 1 \ (\text{mod } \textbf{p}^{r}) \Rightarrow \textbf{p}^{r} \ | \ \textbf{a}^{\phi(n)} - 1 \\ \forall \textbf{a} \in Z_{q^{s}}^{*}, \ \textbf{a}^{q-1} \equiv 1 \ (\text{mod } \textbf{q}) \Rightarrow (\textbf{a}^{q-1})^{q^{s-1}} \equiv 1 \ (\text{mod } \textbf{q}^{s}) \\ \Rightarrow (\textbf{a}^{(q-1)q^{s-1}})^{(p-1)p^{r-1}} \equiv \textbf{a}^{\phi(n)} \equiv 1 \ (\text{mod } q^{s}) \Rightarrow \textbf{q}^{s} \ | \ \textbf{a}^{\phi(n)} - 1 \end{array}$$

 $gcd(p^r,q^s)=1$ 

A second proof (cont'd) > consider  $n = p^r \cdot q^s$ ,  $\phi(n) = p^{r-1}(p-1) q^{s-1}(q-1)$  $\forall a \in Z_{p^r}^*, a^{p-1} \equiv 1 \pmod{p} \Longrightarrow (a^{p-1})^{p^{r-1}} \equiv 1 \pmod{p^r}$  $\Rightarrow (\overline{a^{(p-1)p^{r-1}})} (\overline{q^{-1})q^{s-1}} \equiv \overline{a^{\phi(n)}} \equiv 1 \pmod{p^r} \Rightarrow p^r \mid \overline{a^{\phi(n)}} - 1$  $\forall a \in Z_{q^s}^*, a^{q-1} \equiv 1 \pmod{q} \Longrightarrow (a^{q-1})^{q^{s-1}} \equiv 1 \pmod{q^s}$  $\Rightarrow (a^{(q-1)q^{s-1}})^{(p-1)p^{r-1}} \equiv a^{\phi(n)} \equiv 1 \pmod{q^s} \Rightarrow q^s \mid a^{\phi(n)} - 1$  $gcd(p^r,q^s)=1 \Longrightarrow p^rq^s \mid a^{\phi(n)}-1$ 

### A second proof (cont'd) > consider $n = p^r \cdot q^s$ , $\phi(n) = p^{r-1}(p-1) q^{s-1}(q-1)$ $\forall a \in Z_{p^r}^*, a^{p-1} \equiv 1 \pmod{p} \Rightarrow (a^{p-1})^{p^{r-1}} \equiv 1 \pmod{p^r}$ $\Rightarrow (a^{(p-1)p^{r-1}})^{(q-1)q^{s-1}} \equiv a^{\phi(n)} \equiv 1 \pmod{p^r} \Rightarrow p^r \mid a^{\phi(n)} = 1$ $\forall a \in Z_{q^s}^*, a^{q-1} \equiv 1 \pmod{q} \Rightarrow (a^{q-1})^{q^{s-1}} \equiv 1 \pmod{q^s}$ $\Rightarrow (a^{(q-1)q^{s-1}})^{(p-1)p^{r-1}} \equiv a^{\phi(n)} \equiv 1 \pmod{q^s} \Rightarrow q^s \mid a^{\phi(n)} = 1$ $gcd(p^r,q^s)=1 \Rightarrow p^rq^s \mid a^{\phi(n)}-1$ , i.e. $\forall a \in Z_n^*$ (p \ a and q \ a), $a^{\phi(n)} \equiv 1 \pmod{n}$

$$\begin{array}{l} \textbf{A second proof (cont'd)} \\ \textbf{> consider } \textbf{n} = \textbf{p}^r \cdot \textbf{q}^s, \, \phi(\textbf{n}) = \textbf{p}^{r-1}(\textbf{p-1}) \, \textbf{q}^{s-1}(\textbf{q-1}) \\ \forall a \in Z_{p^r}^*, \, a^{p-1} \equiv 1 \pmod{p} \Rightarrow (a^{p-1})^{p^{r-1}} \equiv 1 \pmod{p^r} \\ \Rightarrow (a^{(p-1)p^{r-1}})^{(q-1)q^{s-1}} \equiv a^{\phi(n)} \equiv 1 \pmod{p^r} \Rightarrow p^r \mid a^{\phi(n)} - 1 \\ \forall a \in Z_{q^s}^*, \, a^{q-1} \equiv 1 \pmod{q} \Rightarrow (a^{q-1})^{q^{s-1}} \equiv 1 \pmod{q^s} \\ \Rightarrow (a^{(q-1)q^{s-1}})^{(p-1)p^{r-1}} \equiv a^{\phi(n)} \equiv 1 \pmod{q^s} \Rightarrow q^s \mid a^{\phi(n)} - 1 \\ \texttt{gcd}(p^r, q^s) = 1 \Rightarrow p^r q^s \mid a^{\phi(n)} - 1, \text{ i.e. } \forall a \in Z_n^* (p \nmid a \text{ and } q \restriction a), \underline{a^{\phi(n)}} \equiv 1 \pmod{n} \\ \textbf{> consider } n = p_1^{-r_1} p_2^{-r_2} \cdots p_k^{-r_k}, \, \phi(n) = n \quad \prod_{\forall p \mid n} (1 - 1/p) \\ \end{array}$$

$$\begin{array}{l} \textbf{A second proof (cont'd)} \\ \textbf{> consider } n = p^r \cdot q^s, \phi(n) = p^{r+1}(p-1) q^{s+1}(q-1) \\ \forall a \in Z_{p^r}^*, a^{p-1} \equiv 1 \pmod{p} \Rightarrow (a^{p-1})^{p^{r+1}} \equiv 1 \pmod{p^r} \\ \Rightarrow (a^{(p-1)p^{r+1}})^{(q-1)q^{s+1}} \equiv a^{\phi(n)} \equiv 1 \pmod{p^r} \Rightarrow p^r \mid a^{\phi(n)} - 1 \\ \forall a \in Z_{q^s}^*, a^{q-1} \equiv 1 \pmod{q} \Rightarrow (a^{q-1})^{q^{s+1}} \equiv 1 \pmod{q^s} \\ \Rightarrow (a^{(q-1)q^{s+1}})^{(p-1)p^{r+1}} \equiv a^{\phi(n)} \equiv 1 \pmod{q^s} \Rightarrow q^s \mid a^{\phi(n)} - 1 \\ \texttt{gcd}(p^r,q^s) = 1 \Rightarrow p^r q^s \mid a^{\phi(n)} - 1, \text{ i.e. } \forall a \in Z_n^* (p \nmid a \text{ and } q \land a), \underline{a^{\phi(n)}} \equiv 1 \pmod{n} \\ \textbf{> consider } n = p_1^{-r_1} p_2^{-r_2} \cdots p_k^{-r_k}, \phi(n) = n \\ \forall a \in Z_{p_i^{r_i}}^*, a^{p_i - 1} \equiv 1 \pmod{p_i} \end{array}$$

$$\begin{array}{l} \textbf{A second proof (cont'd)} \\ \textbf{>} \ \text{consider } \textbf{n} = \textbf{p}^r \cdot \textbf{q}^s, \, \phi(n) = \textbf{p}^{r-1}(\textbf{p}-1) \, \textbf{q}^{s-1}(\textbf{q}-1) \\ \forall a \in Z_{p^r}^*, \, a^{p-1} \equiv 1 \pmod{p} \Rightarrow (a^{p-1})^{p^{r-1}} \equiv 1 \pmod{p^r} \\ \Rightarrow (a^{(p-1)p^{r-1}})^{(q-1)q^{s-1}} \equiv a^{\phi(n)} \equiv 1 \pmod{p^r} \Rightarrow p^r \mid a^{\phi(n)}-1 \\ \forall a \in Z_{q^s}^*, \, a^{q-1} \equiv 1 \pmod{q} \Rightarrow (a^{q-1})^{q^{s-1}} \equiv 1 \pmod{q^s} \\ \Rightarrow (a^{(q-1)q^{s-1}})^{(p-1)p^{r-1}} \equiv a^{\phi(n)} \equiv 1 \pmod{q^s} \Rightarrow q^s \mid a^{\phi(n)}-1 \\ \texttt{gcd}(p^r,q^s)=1 \Rightarrow p^r q^s \mid a^{\phi(n)}-1, \text{ i.e. } \forall a \in Z_n^* (p \nmid a \text{ and } q \not a), \underline{a^{\phi(n)}} \equiv 1 \pmod{n} \\ \textbf{>} \ \texttt{consider } \textbf{n} = p_1^{r_1} p_2^{-r_2} \cdots p_k^{-r_k}, \, \phi(n) = \textbf{n} \quad \prod_{\forall p \mid n} (1-1/p) \quad \textbf{Unique Prime} \\ \texttt{Factorization} \\ \forall a \in Z_{p_i^{r_i}}^*, \, a^{p_i-1} \equiv 1 \pmod{p_i} \Rightarrow (a^{p_i-1})^{p_i^{r_i-1}} \equiv 1 \pmod{p_i^{r_i}} \end{array}$$

$$\begin{array}{l} \textbf{A second proof (cont'd)} \\ \textbf{> consider } \textbf{n} = \textbf{p}^r \cdot \textbf{q}^s, \phi(\textbf{n}) = \textbf{p}^{r-1}(\textbf{p}-1) \ \textbf{q}^{s-1}(\textbf{q}-1) \\ \forall \textbf{a} \in Z_{p^r}^*, \ \textbf{a}^{p-1} \equiv 1 \ (\text{mod } \textbf{p}) \Rightarrow (\textbf{a}^{p-1})^{p^{r-1}} \equiv 1 \ (\text{mod } \textbf{p}^r) \\ \Rightarrow (\textbf{a}^{(p-1)p^{r-1}})^{(q-1)q^{s-1}} \equiv \textbf{a}^{\phi(n)} \equiv 1 \ (\text{mod } \textbf{p}^r) \Rightarrow \textbf{p}^r \ | \ \textbf{a}^{\phi(n)} - 1 \\ \forall \textbf{a} \in Z_{q^s}^*, \ \textbf{a}^{q-1} \equiv 1 \ (\text{mod } \textbf{q}) \Rightarrow (\textbf{a}^{q-1})^{q^{s-1}} \equiv \textbf{a}^{\phi(n)} \equiv 1 \ (\text{mod } \textbf{q}^s) \\ \Rightarrow (\textbf{a}^{(q-1)q^{s-1}})^{(p-1)p^{r-1}} \equiv \textbf{a}^{\phi(n)} \equiv 1 \ (\text{mod } \textbf{q}^s) \Rightarrow \textbf{q}^s \ | \ \textbf{a}^{\phi(n)} - 1 \\ \textbf{gcd}(\textbf{p}^r, \textbf{q}^s) = 1 \Rightarrow \textbf{p}^r \textbf{q}^s \ | \ \textbf{a}^{\phi(n)} - 1, \ \textbf{i.e.} \ \forall \textbf{a} \in Z_n^* \ (\textbf{p} \not \textbf{a} \ \text{and} \ \textbf{q} \not \textbf{a}), \ \textbf{\underline{a}}^{\phi(n)} \equiv 1 \ (\text{mod } \textbf{n}) \\ \textbf{> consider } \textbf{n} = \textbf{p}_1^{r_1} \ \textbf{p}_2^{r_2} \cdots \textbf{p}_k^{r_k}, \ \phi(\textbf{n}) = \textbf{n} \ \prod_{\forall p \mid n} (1 - 1/p) \qquad \textbf{Unique Prime} \\ \textbf{Factorization} \\ \forall \textbf{a} \in Z_{p_i^{r_i}}^*, \ \textbf{a}^{p_i - 1} \equiv 1 \ (\text{mod } p_i) \Rightarrow (\textbf{a}^{p_i - 1})^{p_i^{r_i - 1}} \equiv 1 \ (\text{mod } p_i^{r_i}) \\ \Rightarrow (\textbf{a}^{(p_i - 1)^{p_i^{r_i - 1}}} \ \forall p_i^{r_i} (p_i^{r_i - 1})^{p_i^{r_i - 1}} \equiv 1 \ (\text{mod } p_i^{r_i}) \\ \Rightarrow (\textbf{a}^{(p_i - 1)^{p_i^{r_i - 1}}} \ \forall p_i^{r_i} (p_i^{r_i - 1)^{p_i^{r_i - 1}} \equiv \textbf{a}^{\phi(n)} \equiv 1 \ (\text{mod } p_i^{r_i}) \\ \Rightarrow (\textbf{a}^{(p_i - 1)^{p_i^{r_i - 1}}} \ \forall p_i^{r_i} (p_i^{r_i - 1)^{p_i^{r_i - 1}} \equiv \textbf{a}^{\phi(n)} \equiv 1 \ (\text{mod } p_i^{r_i}) \\ \end{array}$$

$$\begin{array}{l} \textbf{A second proof (cont'd)} \\ \textbf{> consider } n = p^{r} \cdot q^{s}, \phi(n) = p^{r-1}(p-1) q^{s-1}(q-1) \\ \forall a \in Z_{p^{r}}^{*}, a^{p-1} \equiv 1 \pmod{p} \Rightarrow (a^{p-1})^{p^{r-1}} \equiv 1 \pmod{p^{r}} \\ \Rightarrow (a^{(p-1)p^{r-1}})^{(q-1)q^{s-1}} \equiv a^{\phi(n)} \equiv 1 \pmod{p^{r}} \Rightarrow p^{r} \mid a^{\phi(n)} - 1 \\ \forall a \in Z_{q^{s}}^{*}, a^{q-1} \equiv 1 \pmod{q} \Rightarrow (a^{q-1})^{q^{s-1}} \equiv 1 \pmod{q^{s}} \\ \Rightarrow (a^{(q-1)q^{s-1}})^{(p-1)p^{r-1}} \equiv a^{\phi(n)} \equiv 1 \pmod{q^{s}} \Rightarrow q^{s} \mid a^{\phi(n)} - 1 \\ \texttt{gcd}(p^{r},q^{s}) \equiv 1 \Rightarrow p^{r}q^{s} \mid a^{\phi(n)} - 1, \text{ i.e. } \forall a \in Z_{n}^{*} (p \nmid a \text{ and } q \not a), \underline{a^{\phi(n)}} \equiv 1 \pmod{n} \\ \textbf{> consider } n = p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{k}^{r_{k}}, \phi(n) = n \underset{\forall p|n}{\forall p|n} (1 - 1/p) \qquad \textbf{Unique Prime} \\ \texttt{Factorization} \\ \forall a \in Z_{p_{1}^{r_{1}}}^{*}, a^{p_{1}-1} \equiv 1 \pmod{p_{i}} \Rightarrow (a^{(p_{1}-1)p_{1}^{r_{1}-1}} \equiv a^{\phi(n)} \equiv 1 \pmod{p_{i}^{r_{i}}} \\ \Rightarrow (a^{(p_{1}-1)^{p_{i}^{r_{1}-1}})^{(p_{1}-1)p_{1}^{r_{1}-1}} \equiv a^{\phi(n)} \equiv 1 \pmod{p_{i}^{r_{i}}} \Rightarrow p_{i}^{r_{i}} \mid a^{\phi(n)} - 1 \end{array}$$

$$\begin{array}{l} \textbf{A second proof (cont'd)} \\ \texttt{> consider } n = p^{r} \cdot q^{\texttt{s}}, \phi(n) = p^{r-1}(p-1) q^{\texttt{s}-1}(q-1) \\ \forall a \in Z_{p^{r}}^{*}, a^{p-1} \equiv 1 \pmod{p} \Rightarrow (a^{p-1})^{p^{r-1}} \equiv 1 \pmod{p^{r}} \\ \Rightarrow (a^{(p-1)p^{r-1}})^{(q-1)q^{\texttt{s}-1}} \equiv a^{\phi(n)} \equiv 1 \pmod{p^{r}} \Rightarrow p^{r} \mid a^{\phi(n)}-1 \\ \forall a \in Z_{q^{\texttt{s}}}^{*}, a^{q-1} \equiv 1 \pmod{q} \Rightarrow (a^{q-1})^{q^{\texttt{s}-1}} \equiv 1 \pmod{q^{\texttt{s}}} \\ \Rightarrow (a^{(q-1)q^{\texttt{s}-1}})^{(p-1)p^{r-1}} \equiv a^{\phi(n)} \equiv 1 \pmod{q^{\texttt{s}}} \Rightarrow q^{\texttt{s}} \mid a^{\phi(n)}-1 \\ \texttt{gcd}(p^{r},q^{\texttt{s}}) \equiv 1 \Rightarrow p^{r}q^{\texttt{s}} \mid a^{\phi(n)}-1, i.e. \forall a \in Z_{n}^{*}(p \nmid a \text{ and } q \not a), \underline{a^{\phi(n)}} \equiv 1 \pmod{n} \\ \texttt{> consider } n = p_{1}^{-r_{1}} p_{2}^{-r_{2}} \cdots p_{k}^{-r_{k}}, \phi(n) \equiv n \prod_{\forall p \mid n} (1-1/p) \qquad \textbf{Unique Prime} \\ \texttt{Factorization} \\ \forall a \in Z_{p^{t}n}^{*}, a^{p_{t}-1} \equiv 1 \pmod{p_{t}} \Rightarrow (a^{(p_{t}-1)p_{1}^{r_{t}-1}} \equiv a^{\phi(n)} \equiv 1 \pmod{p_{t}^{r_{t}}}) \Rightarrow p_{t}^{r_{t}} \mid a^{\phi(n)}-1 \\ \texttt{all } p_{t}^{-r_{t}} \texttt{are} \\ \texttt{relatively prime} \qquad \texttt{10} \end{array}$$

### A second proof (cont'd) > consider $n = p^r \cdot q^s$ , $\phi(n) = p^{r-1}(p-1) q^{s-1}(q-1)$ $\forall a \in Z_{p^r}^*, a^{p-1} \equiv 1 \pmod{p} \Longrightarrow (a^{p-1})^{p^{r-1}} \equiv 1 \pmod{p^r}$ $\Rightarrow (a^{(p-1)p^{r-1}})^{(q-1)q^{s-1}} \equiv a^{\phi(n)} \equiv 1 \pmod{p^r} \Rightarrow p^r \mid a^{\phi(n)} = 1$ $\forall a \in Z_{q^s}^*, a^{q-1} \equiv 1 \pmod{q} \Rightarrow (a^{q-1})^{q^{s-1}} \equiv 1 \pmod{q^s}$ $\Rightarrow (a^{(q-1)q^{s-1}})^{(p-1)p^{r-1}} \equiv a^{\phi(n)} \equiv 1 \pmod{q^s} \Rightarrow q^s \mid a^{\phi(n)} - 1$ $gcd(p^r,q^s)=1 \Rightarrow p^rq^s \mid a^{\phi(n)}-1$ , i.e. $\forall a \in Z_n^*$ (p \ a and q \ a), $a^{\phi(n)} \equiv 1 \pmod{n}$ > consider $n = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$ , $\phi(n) = n \prod_{\forall p \mid n} (1-1/p)$ Unique Prime Eactorization Factorization $\forall a \in \mathbb{Z}_{p_i^{r_i}}^*, a^{p_i^{-1}} \equiv 1 \pmod{p_i} \Longrightarrow (a^{p_i^{-1}})^{p_i^{r_i^{-1}}} \equiv 1 \pmod{p_i^{r_i}}$ $\Rightarrow (a^{(p_i-1)}{}^{p_i^{r_i-1}}) \stackrel{\prod}{\forall_{j\neq i}}{}^{(p_j-1)}{}^{p_j^{r_j-1}}{} \equiv a^{\phi(n)} \equiv 1 \pmod{p_i^{r_i}} \implies p_i^{r_i} \mid a^{\phi(n)} = 1$ all $p_i^{r_i}$ are relatively prime $\stackrel{k}{\Rightarrow} \prod_{i=1}^{k} p_i^{r_i} | a^{\phi(n)} - 1$ 10

### A second proof (cont'd) > consider $n = p^r \cdot q^s$ , $\phi(n) = p^{r-1}(p-1) q^{s-1}(q-1)$ $\forall a \in Z_{p^r}^*, a^{p-1} \equiv 1 \pmod{p} \Longrightarrow (a^{p-1})^{p^{r-1}} \equiv 1 \pmod{p^r}$ $\Rightarrow (a^{(p-1)p^{r-1}})^{(q-1)q^{s-1}} \equiv a^{\phi(n)} \equiv 1 \pmod{p^r} \Rightarrow p^r \mid a^{\phi(n)} = 1$ $\forall a \in Z_{q^s}^*, a^{q-1} \equiv 1 \pmod{q} \Rightarrow (a^{q-1})^{q^{s-1}} \equiv 1 \pmod{q^s}$ $\Rightarrow (a^{(q-1)q^{s-1}})^{(p-1)p^{r-1}} \equiv a^{\phi(n)} \equiv 1 \pmod{q^s} \Rightarrow q^s \mid a^{\phi(n)} - 1$ $gcd(p^r,q^s)=1 \Rightarrow p^rq^s \mid a^{\phi(n)}-1$ , i.e. $\forall a \in Z_n^*$ (p \ a and q \ a), $a^{\phi(n)} \equiv 1 \pmod{n}$ > consider $n = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$ , $\phi(n) = n \prod_{\forall p \mid n} (1-1/p)$ Unique Prime Factorization $\forall a \in \mathbb{Z}_{p_i^{r_i}}^*, a^{p_i^{-1}} \equiv 1 \pmod{p_i} \Longrightarrow (a^{p_i^{-1}})^{p_i^{r_i^{-1}}} \equiv 1 \pmod{p_i^{r_i}}$ $\Rightarrow (a^{(p_i-1)p_i^{r_i-1}}) \stackrel{\prod}{\forall j \neq i} (p_j-1)p_j^{r_j-1} \equiv a^{\phi(n)} \equiv 1 \pmod{p_i^{r_i}} \implies p_i^{r_i} \mid a^{\phi(n)}-1$ all $p_i^{r_i}$ are all $p_i^{r_1}$ are relatively prime $\stackrel{k}{\Rightarrow} \prod_{i=1}^k p_i^{r_i} | a^{\phi(n)} - 1$ , i.e. $\forall a \in Z_n^* (\forall i, p_i \not| a), \underline{a^{\phi(n)} \equiv 1 \pmod{n}}_{10}$

### **Theorem:**

$$\forall a \in Z_n^*, a^{\lambda(n)} \equiv 1 \pmod{n} \text{ and } a^{n \cdot \lambda(n)} \equiv 1 \pmod{n^2}$$
  
where n=p·q, p ≠ q,  $\lambda(n) = \text{lcm}(p-1, q-1), \lambda(n) | \phi(n)$ 

### **Theorem:**

$$\forall a \in \mathbb{Z}_{n}^{*}, a^{\lambda(n)} \equiv 1 \pmod{n} \text{ and } a^{n \cdot \lambda(n)} \equiv 1 \pmod{n^{2}}$$
  
where n=p·q, p ≠ q,  $\lambda(n) = \operatorname{lcm}(p-1, q-1), \lambda(n) | \phi(n)$ 

♦ like Euler's Theorem, we can prove it through Fermat's Little Theorem, consider n = p · q, where p≠q,

### **Theorem**:

 $\forall a \in \mathbb{Z}_{n}^{*}, a^{\lambda(n)} \equiv 1 \pmod{n} \text{ and } a^{n \cdot \lambda(n)} \equiv 1 \pmod{n^{2}}$ where n=p·q, p ≠ q,  $\lambda(n) = \operatorname{lcm}(p-1, q-1), \lambda(n) | \phi(n)$ 

♦ like Euler's Theorem, we can prove it through Fermat's Little Theorem, consider n = p · q, where p≠q,  $\forall a \in Z_p^*, a^{p-1} \equiv 1 \pmod{p} \Rightarrow (a^{p-1})^{(q-1)/gcd(p-1,q-1)} \equiv a^{\lambda(n)} \equiv 1 \pmod{p}$ 

### **Theorem**:

 $\forall a \in Z_n^*, a^{\lambda(n)} \equiv 1 \pmod{n} \text{ and } a^{n \cdot \lambda(n)} \equiv 1 \pmod{n^2}$   $\text{ where } n = p \cdot q, p \neq q, \lambda(n) = \text{lcm}(p-1, q-1), \lambda(n) \mid \phi(n)$   $\Rightarrow \text{ like Euler's Theorem, we can prove it through Fermat's Little Theorem, consider } n = p \cdot q, \text{ where } p \neq q,$   $\forall a \in Z_p^*, a^{p-1} \equiv 1 \pmod{p} \Rightarrow (a^{p-1})^{(q-1)/\text{gcd}(p-1,q-1)} \equiv a^{\lambda(n)} \equiv 1 \pmod{p}$   $\forall a \in Z_q^*, a^{q-1} \equiv 1 \pmod{q} \Rightarrow (a^{q-1})^{(p-1)/\text{gcd}(p-1,q-1)} \equiv a^{\lambda(n)} \equiv 1 \pmod{q}$ 

### **Theorem**:

 $\forall a \in Z_n^*, a^{\lambda(n)} \equiv 1 \pmod{n} \text{ and } a^{n \cdot \lambda(n)} \equiv 1 \pmod{n^2}$   $\text{where } n \equiv p \cdot q, p \neq q, \lambda(n) \equiv \text{lcm}(p-1, q-1), \lambda(n) \mid \phi(n)$   $\Rightarrow \text{ like Euler's Theorem, we can prove it through Fermat's Little Theorem, consider } n = p \cdot q, \text{ where } p \neq q,$   $\forall a \in Z_p^*, a^{p-1} \equiv 1 \pmod{p} \Rightarrow (a^{p-1})^{(q-1)/\text{gcd}(p-1,q-1)} \equiv a^{\lambda(n)} \equiv 1 \pmod{p}$   $\forall a \in Z_q^*, a^{q-1} \equiv 1 \pmod{q} \Rightarrow (a^{q-1})^{(p-1)/\text{gcd}(p-1,q-1)} \equiv a^{\lambda(n)} \equiv 1 \pmod{q}$   $gcd(p,q) \equiv 1 \Rightarrow pq \mid a^{\lambda(n)} - 1, \forall a \in Z_n^* \text{ (i.e. } p \nmid a \land q \not \downarrow a), a^{\lambda(n)} \equiv 1 \pmod{n}$ 

### **Theorem**:

 $\forall a \in \mathbb{Z}_n^*, a^{\lambda(n)} \equiv 1 \pmod{n} \text{ and } a^{n \cdot \lambda(n)} \equiv 1 \pmod{n^2}$ where  $n=p \cdot q$ ,  $p \neq q$ ,  $\lambda(n) = lcm(p-1, q-1)$ ,  $\lambda(n) \mid \phi(n)$ Little Theorem, consider  $n = p \cdot q$ , where  $p \neq q$ ,  $\forall a \in \mathbb{Z}_{p}^{*}, a^{p-1} \equiv 1 \pmod{p} \Longrightarrow (a^{p-1})^{(q-1)/(q-1)} \equiv a^{\lambda(n)} \equiv 1 \pmod{p}$  $\forall a \in \mathbb{Z}_q^*, a^{q-1} \equiv 1 \pmod{q} \Rightarrow (a^{q-1})^{(p-1)/(p-1)/(p-1)} \equiv a^{\lambda(n)} \equiv 1 \pmod{q}$  $gcd(p,q)=1 \Rightarrow pq \mid a^{\lambda(n)}-1, \forall a \in \mathbb{Z}_n^* (i.e. p \nmid a \land q \nmid a), a^{\lambda(n)} \equiv 1 \pmod{n}$ therefore,  $\forall a \in \mathbb{Z}_n^*$ ,  $a^{\lambda(n)} = 1 + k \cdot n$ 

### **Theorem**:

 $\forall a \in \mathbb{Z}_n^*, a^{\lambda(n)} \equiv 1 \pmod{n} \text{ and } a^{n \cdot \lambda(n)} \equiv 1 \pmod{n^2}$ where  $n=p \cdot q$ ,  $p \neq q$ ,  $\lambda(n) = lcm(p-1, q-1)$ ,  $\lambda(n) \mid \phi(n)$ ♦ like Euler's Theorem, we can prove it through Fermat's Little Theorem, consider  $n = p \cdot q$ , where  $p \neq q$ ,  $\forall a \in \mathbb{Z}_{p}^{*}, a^{p-1} \equiv 1 \pmod{p} \Rightarrow (a^{p-1})^{(q-1)/(q-1)} \equiv a^{\lambda(n)} \equiv 1 \pmod{p}$  $\forall a \in \mathbb{Z}_q^*, a^{q-1} \equiv 1 \pmod{q} \Rightarrow (a^{q-1})^{(p-1)/(p-1)/(p-1)} \equiv a^{\lambda(n)} \equiv 1 \pmod{q}$  $gcd(p,q)=1 \Rightarrow pq \mid a^{\lambda(n)}-1, \forall a \in \mathbb{Z}_n^* (i.e. p \nmid a \land q \nmid a), a^{\lambda(n)} \equiv 1 \pmod{n}$ therefore,  $\forall a \in Z_n^*$ ,  $a^{\lambda(n)} = 1 + k \cdot n$ raise both side to the n-th power, we get  $a^{n \cdot \lambda(n)} = (1 + k \cdot n)^n$ .

### **Theorem:**

 $\forall a \in \mathbb{Z}_n^*, a^{\lambda(n)} \equiv 1 \pmod{n} \text{ and } a^{n \cdot \lambda(n)} \equiv 1 \pmod{n^2}$ where n=p·q, p  $\neq$  q,  $\lambda(n) = lcm(p-1, q-1), \lambda(n) | \phi(n)$ ♦ like Euler's Theorem, we can prove it through Fermat's Little Theorem, consider  $n = p \cdot q$ , where  $p \neq q$ ,  $\forall a \in \mathbb{Z}_{p}^{*}, a^{p-1} \equiv 1 \pmod{p} \Longrightarrow (a^{p-1})^{(q-1)/gcd(p-1,q-1)} \equiv a^{\lambda(n)} \equiv 1 \pmod{p}$  $\forall a \in \mathbb{Z}_q^*, a^{q-1} \equiv 1 \pmod{q} \Rightarrow (a^{q-1})^{(p-1)/(p-1)/(p-1)} \equiv a^{\lambda(n)} \equiv 1 \pmod{q}$  $gcd(p,q)=1 \Rightarrow pq \mid a^{\lambda(n)}-1, \forall a \in \mathbb{Z}_n^* (i.e. p \nmid a \land q \nmid a), a^{\lambda(n)} \equiv 1 \pmod{n}$ therefore,  $\forall a \in Z_n^*$ ,  $a^{\lambda(n)} = 1 + k \cdot n$ raise both side to the n-th power, we get  $a^{n \cdot \lambda(n)} = (1 + k \cdot n)^n$ ,  $\Rightarrow a^{n \cdot \lambda(n)} = 1 + n \cdot k \cdot n + ... \Rightarrow \forall a \in Z_n^* (or Z_{n^2}^*), a^{n \cdot \lambda(n)} \equiv 1 \pmod{n^2}$ 

### Basic Principle to do Exponentiation

♦ Let a, n, x, y be integers with n≥1, and gcd(a,n)=1 if x ≡ y (mod  $\phi(n)$ ), then a<sup>x</sup> ≡ a<sup>y</sup> (mod n).

### Basic Principle to do Exponentiation

♦ Let a, n, x, y be integers with n≥1, and gcd(a,n)=1 if x ≡ y (mod  $\phi(n)$ ), then a<sup>x</sup> ≡ a<sup>y</sup> (mod n).

♦ If you want to work mod n, you should work mod  $\phi(n)$  or  $\lambda(n)$  in the exponent.

### Primitive Roots modulo p

 When p is a prime number, a primitive root modulo p is a number whose powers yield every nonzero element mod p. (equivalently, the order of a primitive root is p-1)
When p is a prime number, a primitive root modulo p is a number whose powers yield every nonzero element mod p. (equivalently, the order of a primitive root is p-1)

♦ ex:  $3^1 \equiv 3, 3^2 \equiv 2, 3^3 \equiv 6, 3^4 \equiv 4, 3^5 \equiv 5, 3^6 \equiv 1 \pmod{7}$ 3 is a primitive root mod 7

 When p is a prime number, a primitive root modulo p is a number whose powers yield every nonzero element mod p. (equivalently, the order of a primitive root is p-1)

♦ ex:  $3^1 \equiv 3, 3^2 \equiv 2, 3^3 \equiv 6, 3^4 \equiv 4, 3^5 \equiv 5, 3^6 \equiv 1 \pmod{7}$ 3 is a primitive root mod 7

♦ sometimes called a multiplicative generator

 When p is a prime number, a primitive root modulo p is a number whose powers yield every nonzero element mod p. (equivalently, the order of a primitive root is p-1)

♦ ex:  $3^1 \equiv 3, 3^2 \equiv 2, 3^3 \equiv 6, 3^4 \equiv 4, 3^5 \equiv 5, 3^6 \equiv 1 \pmod{7}$ 3 is a primitive root mod 7

 $\diamond$  sometimes called a multiplicative generator  $\diamond$  there are plenty of primitive roots, actually  $\phi(p-1)$ 

♦ When p is a prime number, a primitive root modulo p is a number whose powers yield every nonzero element mod p. (equivalently, the order of a primitive root is p-1)
♦ ex: 3<sup>1</sup>=3, 3<sup>2</sup>=2, 3<sup>3</sup>=6, 3<sup>4</sup>=4, 3<sup>5</sup>=5, 3<sup>6</sup>=1 (mod 7)

3 is a primitive root mod 7

♦ sometimes called a multiplicative generator
♦ there are plenty of primitive roots, actually \$\overline(p-1)\$
\* ex. p=101, \$\overline(p-1)=100 \cdot(1-1/2) \cdot(1-1/5)=40\$
p=143537, \$\overline(p-1)=143536 \cdot(1-1/2) \cdot(1-1/8971)=71760\$

 $\diamond$  How do we test whether h is a primitive root modulo p?

How do we test whether h is a primitive root modulo p?
\* naïve method:

go through all powers  $h^2$ ,  $h^3$ , ...,  $h^{p-2}$ , and make sure they all  $\neq 1$  modulo p

How do we test whether h is a primitive root modulo p?
\* naïve method:

go through all powers  $h^2$ ,  $h^3$ , ...,  $h^{p-2}$ , and make sure they all  $\neq 1$  modulo p

\* faster method:

assume p-1 has prime factors  $q_1, q_2, ..., q_n$ , for all  $q_i$ , make sure  $h^{(p-1)/q_i}$  modulo p is not 1, then h is a primitive root

How do we test whether h is a primitive root modulo p?
\* naïve method:

go through all powers  $h^2$ ,  $h^3$ , ...,  $h^{p-2}$ , and make sure they all  $\neq 1$  modulo p

\* faster method:

assume p-1 has prime factors  $q_1, q_2, ..., q_n$ , for all  $q_i$ , make sure  $h^{(p-1)/q_i}$  modulo p is not 1, then h is a primitive root

Intuition: let  $h \equiv g^a \pmod{p}$ , if gcd(a, p-1)=d (i.e.  $g^a$  is not a primitive root),  $(g^a)^{(p-1)/q_i} \equiv (g^{a/q_i})^{(p-1)} \equiv 1 \pmod{p}$  for some  $q_i \mid d$ 

How do we test whether h is a primitive root modulo p?
\* naïve method:

go through all powers  $h^2$ ,  $h^3$ , ...,  $h^{p-2}$ , and make sure they all  $\neq 1$  modulo p

\* faster method:

assume p-1 has prime factors  $q_1, q_2, ..., q_n$ , for all  $q_i$ , make sure  $h^{(p-1)/q_i}$  modulo p is not 1, then h is a primitive root

Intuition: let  $h \equiv g^a \pmod{p}$ , if gcd(a, p-1)=d (i.e.  $g^a$  is not a primitive root),  $(g^a)^{(p-1)/q_i} \equiv (g^{a/q_i})^{(p-1)} \equiv 1 \pmod{p}$  for some  $q_i \mid d$ ex. p=29, p-1=2.2.7, h=5, h<sup>28/2</sup>=1, h<sup>28/7</sup>=16, 5 is not a primitive

How do we test whether h is a primitive root modulo p?
\* naïve method:

go through all powers  $h^2$ ,  $h^3$ , ...,  $h^{p-2}$ , and make sure they all  $\neq 1$  modulo p

\* faster method:

assume p-1 has prime factors  $q_1, q_2, ..., q_n$ , for all  $q_i$ , make sure  $h^{(p-1)/q_i}$  modulo p is not 1, then h is a primitive root

Intuition: let  $h \equiv g^{a} \pmod{p}$ , if gcd(a, p-1)=d (i.e.  $g^{a}$  is not a primitive root),  $(g^{a})^{(p-1)/q_{i}} \equiv (g^{a/q_{i}})^{(p-1)} \equiv 1 \pmod{p}$  for some  $q_{i} \mid d$ ex. p=29, p-1=2.2.7, h=5, h<sup>28/2</sup>=1, h<sup>28/7</sup>=16, <u>5 is not a primitive h=11, h<sup>28/2</sup>=28, h<sup>28/7</sup>=25, 11</u> is a primitive

♦ Procedure to test a primitive g:

 $\diamond$  Procedure to test a primitive g:

let p-1 has prime factors  $q_1, q_2, ..., q_n$ , (i.e.  $\phi(p)=p-1=q_1^{r_1}...q_n^{r_n}$ ) for all  $q_i$ ,  $g^{(p-1)/q_i} \pmod{p}$  is not  $1 \Rightarrow g$  is a primitive

 $\diamond$  Procedure to test a primitive g:

let p-1 has prime factors  $q_1, q_2, ..., q_n$ , (i.e.  $\phi(p)=p-1=q_1^{r_1}...q_n^{r_n}$ ) for all  $q_i$ ,  $g^{(p-1)/q_i} \pmod{p}$  is not  $1 \Rightarrow g$  is a primitive

Proof:

## 

let p-1 has prime factors  $q_1, q_2, ..., q_n$ , (i.e.  $\phi(p)=p-1=q_1^{r_1}...q_n^{r_n}$ ) for all  $q_i$ ,  $g^{(p-1)/q_i} \pmod{p}$  is not  $1 \Rightarrow g$  is a primitive

Proof:

(a) by definition,  $\operatorname{ord}_{p}(g)$  is the smallest positive x s.t.  $g^{x} \equiv 1 \pmod{p}$ 

## 

let p-1 has prime factors  $q_1, q_2, ..., q_n$ , (i.e.  $\phi(p)=p-1=q_1^{r_1}...q_n^{r_n}$ ) for all  $q_i$ ,  $g^{(p-1)/q_i}$  (mod p) is not  $1 \Rightarrow g$  is a primitive Proof:

(a) by definition,  $\operatorname{ord}_{p}(g)$  is the smallest positive x s.t.  $g^{x} \equiv 1 \pmod{p}$ Fermat Theorem:  $g^{\phi(p)} \equiv 1 \pmod{p}$  therefore implies  $\operatorname{ord}_{p}(g) \leq \phi(p)$ 

 $\diamond$  Procedure to test a primitive g:

let p-1 has prime factors  $q_1, q_2, ..., q_n$ , (i.e.  $\phi(p)=p-1=q_1^{r_1}...q_n^{r_n}$ ) for all  $q_i$ ,  $g^{(p-1)/q_i} \pmod{p}$  is not  $1 \Rightarrow g$  is a primitive

Proof:

(a) by definition,  $\operatorname{ord}_{p}(g)$  is the smallest positive x s.t.  $g^{x} \equiv 1 \pmod{p}$ Fermat Theorem:  $g^{\phi(p)} \equiv 1 \pmod{p}$  therefore implies  $\operatorname{ord}_{p}(g) \leq \phi(p)$ if  $\phi(p) = \operatorname{ord}_{p}(g) * k + s \text{ with } 0 \leq s < \operatorname{ord}_{p}(g)$ 

 $\diamond$  Procedure to test a primitive g:

let p-1 has prime factors  $q_1, q_2, ..., q_n$ , (i.e.  $\phi(p)=p-1=q_1^{r_1}...q_n^{r_n}$ ) for all  $q_i$ ,  $g^{(p-1)/q_i}$  (mod p) is not  $1 \Rightarrow g$  is a primitive Proof:

(a) by definition,  $\operatorname{ord}_{p}(g)$  is the smallest positive x s.t.  $g^{x} \equiv 1 \pmod{p}$ Fermat Theorem:  $g^{\phi(p)} \equiv 1 \pmod{p}$  therefore implies  $\operatorname{ord}_{p}(g) \leq \phi(p)$ if  $\phi(p) = \operatorname{ord}_{p}(g) * k + s \quad \text{with } 0 \leq s < \operatorname{ord}_{p}(g)$  $g^{\phi(p)} \equiv g^{\operatorname{ord}_{p}(g) * k} g^{s} \equiv g^{s} \equiv 1 \pmod{p}$ , but  $s < \operatorname{ord}_{p}(g) \Rightarrow s = 0$ , i.e.  $\operatorname{ord}_{p}(g) \mid \phi(p)$ 

 $\diamond$  Procedure to test a primitive g:

let p-1 has prime factors  $q_1, q_2, ..., q_n$ , (i.e.  $\phi(p)=p-1=q_1^{r_1}...q_n^{r_n}$ ) for all  $q_i$ ,  $g^{(p-1)/q_i}$  (mod p) is not  $1 \Rightarrow g$  is a primitive Proof:

(a) by definition, ord<sub>p</sub>(g) is the smallest positive x s.t. g<sup>x</sup> ≡ 1 (mod p) Fermat Theorem: g<sup>φ(p)</sup> ≡ 1 (mod p) therefore implies ord<sub>p</sub>(g) ≤ φ(p) if φ(p) = ord<sub>p</sub>(g) \* k + s with 0 ≤ s < ord<sub>p</sub>(g) g<sup>φ(p)</sup> ≡ g<sup>ordp(g) \* k</sup> g<sup>s</sup> ≡ g<sup>s</sup> ≡ 1 (mod p), but s < ord<sub>p</sub>(g) ⇒ s = 0, i.e. ord<sub>p</sub>(g) | φ(p)
(b) assume g is not a primitive root i.e ord<sub>p</sub>(g) < φ(p)=p-1 then ∃ i, such that ord<sub>p</sub>(g) | (p-1)/q<sub>i</sub> i.e. g<sup>(p-1)/qi</sup> ≡ 1 (mod p) for some q<sub>i</sub>

 $\diamond$  Procedure to test a primitive g:

let p-1 has prime factors  $q_1, q_2, ..., q_n$ , (i.e.  $\phi(p)=p-1=q_1^{r_1}...q_n^{r_n}$ ) for all  $q_i$ ,  $g^{(p-1)/q_i}$  (mod p) is not  $1 \Rightarrow g$  is a primitive Proof:

(a) by definition, ord<sub>p</sub>(g) is the smallest positive x s.t. g<sup>x</sup> ≡ 1 (mod p) Fermat Theorem: g<sup>φ(p)</sup> ≡ 1 (mod p) therefore implies ord<sub>p</sub>(g) ≤ φ(p) if φ(p) = ord<sub>p</sub>(g) \* k + s with 0 ≤ s < ord<sub>p</sub>(g) g<sup>φ(p)</sup> ≡ g<sup>ordp(g)</sup> \* k g<sup>s</sup> ≡ g<sup>s</sup> ≡ 1 (mod p), but s < ord<sub>p</sub>(g) ⇒ s = 0, i.e. ord<sub>p</sub>(g) | φ(p)
(b) assume g is not a primitive root i.e ord<sub>p</sub>(g) < φ(p)=p-1 then ∃ i, such that ord<sub>p</sub>(g) | (p-1)/q<sub>i</sub> i.e. g<sup>(p-1)/qi</sup> ≡ 1 (mod p) for some q<sub>i</sub>
(c) if for all q<sub>i</sub>, g<sup>(p-1)/qi</sup> ≠ 1 (mod p) then ord<sub>p</sub>(g) = φ(p) and g is a primitive root modulo p

# Lucas Primality Test

♦ An integer n is prime iff
∃a, s.t.  $\begin{cases} 1. a^{n-1} \equiv 1 \pmod{n} \\ 2. \forall \text{prime factor q of n-1, } a^{n-1/q} \neq 1 \pmod{n} \end{cases}$ 

# Lucas Primality Test

♦ An integer n is prime iff
∃a, s.t.  $\int 1. a^{n-1} \equiv 1 \pmod{n}$   $\exists a, s.t. \int 2. \forall prime factor q of n-1, a^{n-1/q} \neq 1 \pmod{n}$ 

## Lucas Primality Test

♦ An integer n is prime iff ∃a, s.t.  $\begin{cases} 1. a^{n-1} \equiv 1 \pmod{n} \end{cases}$  the converse of Fermat Little Theorem 2.  $\forall$  prime factor q of n-1,  $a^{n-1/q} \neq 1 \pmod{n}$ catch: inefficient, factors of n-1 are required

# $\begin{array}{c} & \text{Lucas Primality Test} \\ \diamond \text{ An integer n is prime iff} & the converse of} \\ \exists a, s.t. \\ 1. a^{n-1} \equiv 1 \pmod{n} & Fermat Little Theorem \\ \textbf{Proof:} & 2. \forall \text{prime factor q of n-1, } a^{n-1/q} \neq 1 \pmod{n} \\ (\Rightarrow) \text{ if n is prime,} & catch: inefficient, factors of n-1 are required} \end{array}$

#### 

# $\begin{array}{c} & \textbf{Lucas Primality Test} \\ & \diamond \text{ An integer n is prime iff} & \textit{the converse of} \\ & \exists a, s.t. \\ & 1. a^{n-1} \equiv 1 \pmod{n} & \textit{Fermat Little Theorem} \\ \textbf{Proof:} & 2. \forall \text{prime factor q of n-1, } a^{n-1/q} \neq 1 \pmod{n} \\ & (\Rightarrow) \text{ if n is prime, } & \textit{catch: inefficient, factors of n-1 are required} \\ & \text{Fermat's little theorem ensures that } \forall a \neq kn, a^{n-1} \equiv 1 \pmod{n} \\ & a \text{ primitive a ensures } \forall \text{ prime factor q of n-1, } a^{n-1/q} \neq 1 \pmod{n} \\ \end{array}$

Lucas Primality Test the converse of  $\Rightarrow$  An integer n is prime iff Fermat Little Theorem  $\exists a, s.t. \\ \begin{cases} 1. a^{n-1} \equiv 1 \pmod{n} \\ 2. \forall prime factor q of n-1, a^{n-1/q} \neq 1 \pmod{n} \end{cases}$ **Proof:** catch: inefficient, factors of n-1 are required  $(\Rightarrow)$  if n is prime, Fermat's little theorem ensures that " $\forall a \neq kn$ ,  $a^{n-1} \equiv 1 \pmod{n}$ " a primitive a ensures " $\forall$  prime factor q of n-1,  $a^{n-1/q} \neq 1 \pmod{n}$ " ( $\Leftarrow$ ) if  $\exists a, s.t. 1. a^{n-1} \equiv 1 \pmod{n}$  and 2.  $\forall$  prime factor q of n-1,  $a^{n-1/q} \neq 1 \pmod{n}$ 

Lucas Primality Test the converse of  $\Rightarrow$  An integer n is prime iff Fermat Little Theorem  $\exists a, s.t. \\ \begin{cases} 1. a^{n-1} \equiv 1 \pmod{n} \\ 2. \forall prime factor q of n-1, a^{n-1/q} \neq 1 \pmod{n} \end{cases}$ **Proof:** catch: inefficient, factors of n-1 are required  $(\Rightarrow)$  if n is prime, Fermat's little theorem ensures that " $\forall a \neq kn$ ,  $a^{n-1} \equiv 1 \pmod{n}$ " a primitive a ensures " $\forall$  prime factor q of n-1,  $a^{n-1/q} \neq 1 \pmod{n}$ " ( $\Leftarrow$ ) if  $\exists a, s.t. 1. a^{n-1} \equiv 1 \pmod{n}$  and 2.  $\forall$  prime factor q of n-1,  $a^{n-1/q} \neq 1 \pmod{n}$ By definition,  $\operatorname{ord}_n(a)$  is the smallest positive x s.t.  $a^x \equiv 1 \pmod{n}$ 

Lucas Primality Test the converse of  $\Rightarrow$  An integer n is prime iff Fermat Little Theorem  $\exists a, s.t. \\ \begin{cases} 1. a^{n-1} \equiv 1 \pmod{n} \\ 2. \forall prime factor q of n-1, a^{n-1/q} \neq 1 \pmod{n} \end{cases}$ **Proof:** catch: inefficient, factors of n-1 are required  $(\Rightarrow)$  if n is prime, Fermat's little theorem ensures that " $\forall a \neq kn$ ,  $a^{n-1} \equiv 1 \pmod{n}$ " a primitive a ensures " $\forall$  prime factor q of n-1,  $a^{n-1/q} \neq 1 \pmod{n}$ " ( $\Leftarrow$ ) if  $\exists a, s.t. 1. a^{n-1} \equiv 1 \pmod{n}$  and 2.  $\forall$  prime factor q of n-1,  $a^{n-1/q} \neq 1 \pmod{n}$ By definition,  $\operatorname{ord}_n(a)$  is the smallest positive x s.t.  $a^x \equiv 1 \pmod{n}$ the first condition implies that  $\operatorname{ord}_n(a) \leq n-1$ , also,  $\operatorname{ord}_n(a) \mid n-1$ 

Lucas Primality Test the converse of  $\Rightarrow$  An integer n is prime iff Fermat Little Theorem  $\exists a, s.t. \\ \begin{cases} 1. a^{n-1} \equiv 1 \pmod{n} \\ 2. \forall prime factor q of n-1, a^{n-1/q} \neq 1 \pmod{n} \end{cases}$ **Proof:** catch: inefficient, factors of n-1 are required  $(\Rightarrow)$  if n is prime, Fermat's little theorem ensures that " $\forall a \neq kn$ ,  $a^{n-1} \equiv 1 \pmod{n}$ " a primitive a ensures " $\forall$  prime factor q of n-1,  $a^{n-1/q} \neq 1 \pmod{n}$ "  $(\Leftarrow)$  if  $\exists a, s.t. 1. a^{n-1} \equiv 1 \pmod{n}$  and 2.  $\forall$  prime factor q of n-1,  $a^{n-1/q} \neq 1 \pmod{n}$ By definition,  $\operatorname{ord}_n(a)$  is the smallest positive x s.t.  $a^x \equiv 1 \pmod{n}$ the first condition implies that  $\operatorname{ord}_n(a) \leq n-1$ , also,  $\operatorname{ord}_n(a) \mid n-1$ the second condition then implies that  $\operatorname{ord}_{n}(a) = n-1$  (\*)

Lucas Primality Test the converse of  $\Rightarrow$  An integer n is prime iff Fermat Little Theorem  $\exists a, s.t. \\ \begin{cases} 1. a^{n-1} \equiv 1 \pmod{n} \\ 2. \forall prime factor q of n-1, a^{n-1/q} \neq 1 \pmod{n} \end{cases}$ **Proof:** catch: inefficient, factors of n-1 are required  $(\Rightarrow)$  if n is prime, Fermat's little theorem ensures that " $\forall a \neq kn$ ,  $a^{n-1} \equiv 1 \pmod{n}$ " a primitive a ensures " $\forall$  prime factor q of n-1,  $a^{n-1/q} \neq 1 \pmod{n}$ " ( $\Leftarrow$ ) if  $\exists a, s.t. 1. a^{n-1} \equiv 1 \pmod{n}$  and 2.  $\forall$  prime factor q of n-1,  $a^{n-1/q} \neq 1 \pmod{n}$ By definition,  $\operatorname{ord}_n(a)$  is the smallest positive x s.t.  $a^x \equiv 1 \pmod{n}$ the first condition implies that  $\operatorname{ord}_n(a) \leq n-1$ , also,  $\operatorname{ord}_n(a) \mid n-1$ the second condition then implies that  $\operatorname{ord}_{n}(a) = n-1$  (\*) Euler thm says that  $a^{\phi(n)} \equiv 1 \pmod{n}$ , by definition  $\phi(n) \le n-1$  if n is a composite number, i.e.  $ord_n(a) < n-1$ , contradict with (\*). 21

 Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time

Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time
 based on the Lucas Primality Test (LPT)

Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time
based on the Lucas Primality Test (LPT)
example:

229

 Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time

#### $\diamond$ example:

229 ( $a = 6, 229 - 1 = 2^2 \times 3 \times 19$ )

 Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time

based on the Lucas Primality Test (LPT)

#### $\diamond$ example:

229 ( $a = 6, 229 - 1 = 2^2 \times 3 \times 19$ ) verification  $6^{229-1} \equiv 1 \pmod{229}$ 

 Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time

#### $\diamond$ example:

229 ( $a = 6, 229 - 1 = 2^2 \times 3 \times 19$ ) verification  $6^{229-1} \equiv 1 \pmod{229}$ 

 $6^{228/2} \equiv 228 \pmod{229}$
Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time

#### $\diamond$ example:

229 ( $a = 6, 229 - 1 = 2^2 \times 3 \times 19$ )

verification $6^{229-1} \equiv 1 \pmod{229}$ 

 $6^{228/2} \equiv 228 \pmod{229}$ 

 $6^{228/3} \equiv 134 \pmod{229}$ 

 Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time

#### $\diamond$ example:

229 ( $a = 6, 229 - 1 = 2^2 \times 3 \times 19$ )

*verification*  $6^{229-1} \equiv 1 \pmod{229}$ 

 $6^{228/2} \equiv 228 \pmod{229}$ 

 $6^{228/3} \equiv 134 \pmod{229}$ 

 $6^{228/19} \equiv 165 \pmod{229}$ 

 Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time

#### $\diamond$ example:

 $229 (a = 6, 229 - 1 = 2^2 \times 3 \times 19)$  verification

 $6^{229-1} \equiv 1 \pmod{229}$ 

 $6^{228/2} \equiv 228 \pmod{229}$ 

 $6^{228/3} \equiv 134 \pmod{229}$ 

 $6^{228/19} \equiv 165 \pmod{229}$ 

By LPT, if 2, 3, 19 are primes, then 229 is also a prime

 Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time

#### $\diamond$ example:

229 ( $a = 6, 229 - 1 = 2^2 \times 3 \times 19$ ) *verification* 2

 Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time

 $\diamond$  example:

229 ( $a = 6, 229 - 1 = 2^2 \times 3 \times 19$ )

verification

2 (known prime)

Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time
 besed on the Luces Primelity Test (LPT)

♦ based on the Lucas Primality Test (LPT)
♦ example:
229 (a = 6, 229 - 1 = 2<sup>2</sup> × 3 × 19) *verification*2 (known prime)
3

- Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time
- $\diamond$  example:

229 ( $a = 6, 229 - 1 = 2^2 \times 3 \times 19$ )

verification

2 (known prime)

3 (a = 2, 3 - 1 = 2)

- Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time
- $\diamond$  example:

229 ( $a = 6, 229 - 1 = 2^2 \times 3 \times 19$ ) verification 2 (known prime)  $2^{3-1} \equiv 1 \pmod{3}$ 3 (a = 2, 3 - 1 = 2)

- Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time
- $\diamond$  example:

229 ( $a = 6, 229 - 1 = 2^2 \times 3 \times 19$ ) verification 2 (known prime)  $2^{3-1} \equiv 1 \pmod{3}$ 3 ( $a = 2, 3 - 1 \equiv 2$ )  $2^{2/2} \equiv 2 \pmod{3}$ 

- Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time
- $\diamond$  example:

229 ( $a = 6, 229 - 1 = 2^2 \times 3 \times 19$ ) verification 2 (known prime)  $2^{3-1} \equiv 1 \pmod{3}$ 3 ( $a = 2, 3 - 1 \equiv 2$ )  $2^{2/2} \equiv 2 \pmod{3}$ 

> By LPT, 2 is a prime, then 3 is also a prime

- Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time
- $\diamond$  example:

229 ( $a = 6, 229 - 1 = 2^2 \times 3 \times 19$ )

verification

2 (known prime)

3(a=2, 3-1=2)

2 (known prime)

Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time
based on the Lucas Primality Test (LPT)
example:

229 ( $a = 6, 229 - 1 = 2^2 \times 3 \times 19$ )

2 (known prime)

3(a=2, 3-1=2)

2 (known prime)

verification

19

- Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time
- based on the Lucas Primality Test (LPT)
- $\diamond$  example:

229 ( $a = 6, 229 - 1 = 2^2 \times 3 \times 19$ )

verification

2 (known prime)

3 (a = 2, 3 - 1 = 2)

2 (known prime)

19 ( $a = 2, 19 - 1 = 2 \times 3^2$ )

- Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time
- based on the Lucas Primality Test (LPT)
- $\diamond$  example:

229 ( $a = 6, 229 - 1 = 2^2 \times 3 \times 19$ ) verification 2 (known prime)  $2^{19-1} \equiv 1 \pmod{19}$ 

3 (a = 2, 3 - 1 = 2)

2 (known prime) 19 (a = 2, 19 – 1 = 2 × 3<sup>2</sup>)

- Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time
- $\diamond$  example:

229 ( $a = 6, 229 - 1 = 2^2 \times 3 \times 19$ ) *verification* 2 (known prime)  $2^{19-1} \equiv 1 \pmod{19}$ 

3 (a = 2, 3 - 1 = 2)

 $2^{19-1} \equiv 1 \pmod{19}$  $2^{18/2} \equiv 18 \pmod{19}$ 

2 (known prime) 19 (a = 2, 19 – 1 = 2 × 3<sup>2</sup>)

- ♦ Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time
- ♦ based on the Lucas Primality Test (LPT)
- $\diamond$  example:

229 ( $a = 6, 229 - 1 = 2^2 \times 3 \times 19$ ) 2 (known prime)

3 (a = 2, 3 - 1 = 2)

2 (known prime) 19 ( $a = 2, 19 - 1 = 2 \times 3^2$ )

- verification
- $2^{19-1} \equiv 1 \pmod{19}$  $2^{18/2} \equiv 18 \pmod{19}$
- $2^{18/3} \equiv 7 \pmod{19}$

- Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time
- $\diamond$  example:

229 ( $a = 6, 229 - 1 = 2^2 \times 3 \times 19$ ) verification 2 (known prime)  $2^{19-1} \equiv 1 \pmod{19}$ 3 ( $a = 2, 3 - 1 \equiv 2$ )  $2^{18/2} \equiv 18 \pmod{19}$ 2 (known prime)  $2^{18/3} \equiv 7 \pmod{19}$ 19 ( $a = 2, 19 - 1 = 2 \times 3^2$ ) By LPT, if 2 and 3 are primes, then 19 is also a prime

♦ Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time ♦ based on the Lucas Primality Test (LPT)  $\diamond$  example: 229 ( $a = 6, 229 - 1 = 2^2 \times 3 \times 19$ ) verification 2 (known prime) 3 (a = 2, 3 - 1 = 2)2 (known prime)  $19 (a = 2, 19 - 1 = 2 \times 3^2)$ 

2 (known prime)

♦ Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time ♦ based on the Lucas Primality Test (LPT)  $\diamond$  example: 229 ( $a = 6, 229 - 1 = 2^2 \times 3 \times 19$ ) verification 2 (known prime) 3 (a = 2, 3 - 1 = 2)2 (known prime) 19 ( $a = 2, 19 - 1 = 2 \times 3^2$ ) 2 (known prime) 3

♦ Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time ♦ based on the Lucas Primality Test (LPT)  $\diamond$  example: 229 ( $a = 6, 229 - 1 = 2^2 \times 3 \times 19$ ) verification 2 (known prime) 3 (a = 2, 3 - 1 = 2)2 (known prime)  $19(a=2, 19-1=2 \times 3^2)$ 2 (known prime) 3 (a = 2, 3 - 1 = 2)

♦ Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time ♦ based on the Lucas Primality Test (LPT)  $\diamond$  example: 229 ( $a = 6, 229 - 1 = 2^2 \times 3 \times 19$ ) verification 2 (known prime)  $2^{3-1} \equiv 1 \pmod{3}$ 3 (a = 2, 3 - 1 = 2)2 (known prime) 19 ( $a = 2, 19 - 1 = 2 \times 3^2$ ) 2 (known prime) 3 (a = 2, 3 - 1 = 2)

♦ Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time ♦ based on the Lucas Primality Test (LPT)  $\diamond$  example: 229 ( $a = 6, 229 - 1 = 2^2 \times 3 \times 19$ ) verification 2 (known prime)  $2^{3-1} \equiv 1 \pmod{3}$ 3 (a = 2, 3 - 1 = 2) $2^{2/2} \equiv 2 \pmod{3}$ 2 (known prime) 19 ( $a = 2, 19 - 1 = 2 \times 3^2$ ) 2 (known prime) 3 (a = 2, 3 - 1 = 2)

♦ Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time ♦ based on the Lucas Primality Test (LPT)  $\diamond$  example: 229 ( $a = 6, 229 - 1 = 2^2 \times 3 \times 19$ ) verification 2 (known prime)  $2^{3-1} \equiv 1 \pmod{3}$ 3 (a = 2, 3 - 1 = 2) $2^{2/2} \equiv 2 \pmod{3}$ 2 (known prime) By LPT, 2 is a prime,

19 ( $a = 2, 19 - 1 = 2 \times 3^2$ )

2 (known prime) 3 (a = 2, 3 - 1 = 2)

22

then 3 is also a prime

♦ Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time ♦ based on the Lucas Primality Test (LPT)  $\diamond$  example: 229 ( $a = 6, 229 - 1 = 2^2 \times 3 \times 19$ ) 2 (known prime) 3 (a = 2, 3 - 1 = 2)2 (known prime)  $19(a=2, 19-1=2 \times 3^2)$ 2 (known prime) 3 (a = 2, 3 - 1 = 2)2 (known prime)

# Number of Primitive Root in $Z_p^*$

 $\Rightarrow$  Why are there  $\phi(p-1)$  primitive roots?

۲

# Number of Primitive Root in $Z_p^*$

♦ Why are there \$\phi(p-1)\$ primitive roots?
★ let g be a primitive root (the order of g is p-1)

♦ Why are there \$\phi(p-1)\$ primitive roots?
\* let g be a primitive root (the order of g is p-1)
\* g, g<sup>2</sup>, g<sup>3</sup>, ..., g<sup>p-1</sup> is a permutation of 1,2,...p-1

- $\Rightarrow$  Why are there  $\phi(p-1)$  primitive roots? \* let g be a primitive root (the order of g is p-1) an integer less than p-1 \* g,  $g^2$ ,  $g^3$ , ...,  $g^{p-1}$  is a permutation of 1,2,...p-1 \* if gcd(a, p-1)=d, then  $(g^{a})^{(p-1)/d} \equiv (g^{a/d})^{(p-1)} \equiv 1 \pmod{p}$  which says that the order of  $g^a$  is at most (p-1)/d, therefore,  $g^a$  is not a
  - primitive root  $\Rightarrow$  There are at most  $\phi(p-1)$  primitive roots in  $Z_{p}^{*}$

- $\diamond$  Why are there  $\phi(p-1)$  primitive roots?
  - \* let g be a primitive root (the order of g is p-1)

an integer less than p-1

\* g,  $g^2$ ,  $g^3$ , ...,  $g^{p-1}$  is a permutation of 1,2,...p-1

- \* if gcd(a, p-1)=d, then  $(g^a)^{(p-1)/d} \equiv (g^{a/d})^{(p-1)} \equiv 1 \pmod{p}$  which says that the order of  $g^a$  is at most (p-1)/d, therefore,  $g^a$  is not a primitive root  $\Rightarrow$  There are at most  $\phi(p-1)$  primitive roots in  $\mathbb{Z}_n^*$
- ★ For an element  $g^a$  in  $Z_p^*$  where gcd(a, p-1) = 1, it is guaranteed that  $(g^a)^{(p-1)/q_i} \neq 1 \pmod{p}$  for all  $q_i$  ( $q_i$  is factors or p-1)

- $\Rightarrow$  Why are there  $\phi(p-1)$  primitive roots? \* let g be a primitive root (the order of g is p-1) an integer less than p-1 \* g,  $g^2$ ,  $g^3$ , ...,  $g^{p-1}$  is a permutation of 1,2,...p-1
  - \* if gcd(a, p-1)=d, then  $(g^{a})^{(p-1)/d} \equiv (g^{a/d})^{(p-1)} \equiv 1 \pmod{p}$  which says that the order of  $g^a$  is at most (p-1)/d, therefore,  $g^a$  is not a primitive root  $\Rightarrow$  There are at most  $\phi(p-1)$  primitive roots in  $Z_n^*$
  - \* For an element  $g^a$  in  $Z_p^*$  where gcd(a, p-1) = 1, it is guaranteed that  $(g^{a})^{(p-1)/q_{i}} \neq 1 \pmod{p}$  for all  $q_{i}$  ( $q_{i}$  is factors or p-1)

assume that for a certain  $q_i$ ,  $(g^a)^{(p-1)/q_i} \equiv 1 \pmod{p}$ 

♦ Why are there \$\phi(p-1)\$ primitive roots?
★ let g be a primitive root (the order of g is p-1)

an integer less than p-1

\* g, g<sup>2</sup>, g<sup>3</sup>, ..., g<sup>p-1</sup> is a permutation of 1, 2, ..., p-1

- \* if gcd(a, p-1)=d, then  $(g^a)^{(p-1)/d} \equiv (g^{a/d})^{(p-1)} \equiv 1 \pmod{p}$  which says that the order of  $g^a$  is at most (p-1)/d, therefore,  $g^a$  is not a primitive root  $\Rightarrow$  There are at most  $\phi(p-1)$  primitive roots in  $Z_p^*$
- ★ For an element  $g^a$  in  $Z_p^*$  where gcd(a, p-1) = 1, it is guaranteed that  $(g^a)^{(p-1)/q_i} \neq 1 \pmod{p}$  for all  $q_i$  ( $q_i$  is factors or p-1)

assume that for a certain  $q_i$ ,  $(g^a)^{(p-1)/q_i} \equiv 1 \pmod{p}$ 

 $\Rightarrow$  p-1 | a · (p-1) / q<sub>i</sub>

- ♦ Why are there \$\phi(p-1)\$ primitive roots?
  \* let g be a primitive root (the order of g is p-1)
  \* g, g<sup>2</sup>, g<sup>3</sup>, ..., g<sup>p-1</sup> is a permutation of 1,2,...p-1
  - \* if gcd(a, p-1)=d, then  $(g^a)^{(p-1)/d} \equiv (g^{a/d})^{(p-1)} \equiv 1 \pmod{p}$  which says that the order of  $g^a$  is at most (p-1)/d, therefore,  $g^a$  is not a primitive root  $\Rightarrow$  There are at most  $\phi(p-1)$  primitive roots in  $\mathbb{Z}_p^*$
  - ★ For an element  $g^a$  in  $Z_p^*$  where gcd(a, p-1) = 1, it is guaranteed that  $(g^a)^{(p-1)/q_i} \neq 1 \pmod{p}$  for all  $q_i$  ( $q_i$  is factors or p-1)

assume that for a certain  $q_i$ ,  $(g^a)^{(p-1)/q_i} \equiv 1 \pmod{p}$ 

 $\Rightarrow$  p-1 | a · (p-1) / q<sub>i</sub>

 $\Rightarrow \exists \text{ integer } k, a \cdot (p-1) / q_i = k \cdot (p-1) \text{ i.e. } a = k \cdot q_i$ 

- ♦ Why are there \$\phi(p-1)\$ primitive roots?
  \* let g be a primitive root (the order of g is p-1)
  \* g, g<sup>2</sup>, g<sup>3</sup>, ..., g<sup>p-1</sup> is a permutation of 1,2,...p-1
  \* if gcd(a, p-1)=d, then (g<sup>a</sup>) <sup>(p-1)/d</sup> = (g<sup>a/d</sup>)<sup>(p-1)</sup> = 1 (mod p) which says that the order of g<sup>a</sup> is at most (p-1)/d, therefore, g<sup>a</sup> is not a primitive root ⇒ There are at most \$\phi(p-1)\$ primitive roots in Z<sub>p</sub>\*
  \* For an element g<sup>a</sup> in Z<sub>p</sub>\* where gcd(a, p-1) = 1, it is guaranteed that (g<sup>a</sup>)<sup>(p-1)/q\_i</sup> ≠ 1 (mod p) for all q<sub>i</sub> (q<sub>i</sub> is factors or p-1) assume that for a certain q<sub>i</sub>, (g<sup>a</sup>)<sup>(p-1)/qi</sup> = 1 (mod p)
  - $\Rightarrow p-1 | a \cdot (p-1) / q_i$   $\Rightarrow \exists \text{ integer } k, a \cdot (p-1) / q_i = k \cdot (p-1) \text{ i.e. } a = k \cdot q_i$  $\Rightarrow q_i | a$

- ♦ Why are there \$\u03c6\$(p-1)\$ primitive roots?
  \* let g be a primitive root (the order of g is p-1)
  \* g, g<sup>2</sup>, g<sup>3</sup>, ..., g<sup>p-1</sup> is a permutation of 1,2,...p-1
  \* if gcd(a, p-1)=d, then (g<sup>a</sup>) (p-1)/d = (g<sup>a/d</sup>)(p-1) = 1 (mod p) which says that the order of g<sup>a</sup> is at most (p-1)/d, therefore, g<sup>a</sup> is not a primitive root ⇒ There are at most \$\u03c6\$(p-1)\$ primitive roots in Z<sub>p</sub>\*
  \* For an element g<sup>a</sup> in Z<sub>p</sub>\* where gcd(a, p-1) = 1, it is guaranteed
  - that  $(g^a)^{(p-1)/q_i} \neq 1 \pmod{p}$  for all  $q_i$  ( $q_i$  is factors or p-1)

assume that for a certain  $q_i$ ,  $(g^a)^{(p-1)/q_i} \equiv 1 \pmod{p}$ 

 $\Rightarrow$  p-1 | a · (p-1) / q<sub>i</sub>

 $\Rightarrow \exists \text{ integer } k, a \cdot (p-1) / q_i = k \cdot (p-1) \text{ i.e. } a = k \cdot q_i$ 

 $\Rightarrow$  q<sub>i</sub> | a

 $\Rightarrow$  q<sub>i</sub> | gcd(a, p-1) contradiction

#### Multiplicative Generators in $Z_n^*$ $\Rightarrow$ How do we define a multiplicative generator in $Z_n^*$ if n is a composite number?

24

####
# Multiplicative Generators in Z<sub>n</sub>\*

- $\diamond$  How do we define a multiplicative generator in  $Z_n^*$  if n is a composite number?
  - \* Is there an element in  $Z_n^*$  that can generate all elements of  $Z_n^*$ ?
  - \* If  $n = p \cdot q$ , the answer is negative. From Carmichael theorem,  $\forall a \in \mathbb{Z}_n^*$ ,  $a^{\lambda(n)} \equiv 1 \pmod{n}$ , gcd(p-1, q-1) is at least 2,  $\lambda(n) = lcm(p-1, q-1)$  is at most  $\phi(n) / 2$ . The size of a maximal possible multiplicative subgroup in  $\mathbb{Z}_n^*$  is therefore no larger than  $\lambda(n)$ .

# Multiplicative Generators in Z<sub>n</sub><sup>\*</sup>

- $\diamond$  How do we define a multiplicative generator in  $Z_n^*$  if n is a composite number?
  - \* Is there an element in  $Z_n^*$  that can generate all elements of  $Z_n^*$ ?
  - \* If n = p · q, the answer is negative. From Carmichael theorem, ∀a∈Z<sub>n</sub>\*, a<sup>λ(n)</sup> = 1 (mod n), gcd(p-1, q-1) is at least 2, λ(n) = lcm(p-1, q-1) is at most φ(n) / 2. The size of a maximal possible multiplicative subgroup in Z<sub>n</sub>\* is therefore no larger than λ(n).
    \* If n = p<sup>k</sup>, the answer is yes

# Multiplicative Generators in Z<sub>n</sub>\*

- ♦ How do we define a multiplicative generator in  $Z_n^*$  if n is a composite number?
  - \* Is there an element in  $Z_n^*$  that can generate all elements of  $Z_n^*$ ?
  - \* If  $n = p \cdot q$ , the answer is negative. From Carmichael theorem,  $\forall a \in Z_n^*$ ,  $a^{\lambda(n)} \equiv 1 \pmod{n}$ , gcd(p-1, q-1) is at least 2,  $\lambda(n) = lcm(p-1, q-1)$  is at most  $\phi(n) / 2$ . The size of a maximal possible multiplicative subgroup in  $Z_n^*$  is therefore no larger than  $\lambda(n)$ .
  - \* If  $n = p^k$ , the answer is yes
  - \* How many elements in  $Z_n^*$  can generate the maximal possible subgroup of  $Z_n^*$ ?

### $\diamond$ For example: find x such that $x^2 \equiv 71 \pmod{77}$

♦ For example: find x such that  $x^2 \equiv 71 \pmod{77}$ ★ Is there any solution?

♦ For example: find x such that x<sup>2</sup> = 71 (mod 77)
★ Is there any solution?
★ How many solutions are there?

- ♦ For example: find x such that  $x^2 \equiv 71 \pmod{77}$ ★ Is there any solution?
  - \* How many solutions are there?
  - \* How do we solve the above equation systematically?

♦ For example: find x such that x<sup>2</sup> = 71 (mod 77)
\* Is there any solution?
\* How many solutions are there?
\* How do we solve the above equation systematically?
♦ In general: find x s.t. x<sup>2</sup> = b (mod n), where b ∈ QR<sub>n</sub>, n = p·q, and p, q are prime numbers

 $\diamond$  For example: find x such that  $x^2 \equiv 71 \pmod{77}$ \* Is there any solution? \* How many solutions are there? \* How do we solve the above equation systematically?  $\diamond$  In general: find x s.t.  $x^2 \equiv b \pmod{n}$ , where  $b \in QR_n$ ,  $n = p \cdot q$ , and p, q are prime numbers  $\diamond$  Easier case: find x s.t.  $x^2 \equiv b \pmod{p}$ , where p is a prime number,  $b \in QR_p$ 

 $\diamond$  For example: find x such that  $x^2 \equiv 71 \pmod{77}$ \* Is there any solution? \* How many solutions are there? \* How do we solve the above equation systematically?  $\diamond$  In general: find x s.t.  $x^2 \equiv b \pmod{n}$ , where  $b \in QR_n$ ,  $n = p \cdot q$ , and p, q are prime numbers  $\diamond$  Easier case: find x s.t.  $x^2 \equiv b \pmod{p}$ , where p is a prime number,  $b \in QR_p$ 

Note:  $QR_n$  is "Quadratic Residue in  $Z_n$ "" to be defined later

### $\Leftrightarrow$ Given $y \in \mathbb{Z}_p^*$ , find x, s.t. $x^2 \equiv y \pmod{p}$ , p is prime

♦ Given  $y \in \mathbb{Z}_p^*$ , find x, s.t.  $x^2 \equiv y \pmod{p}$ , p is prime >  $p \equiv 1 \pmod{4}$  (i.e. p = 4k + 1) : probabilistic algorithm

◇ Given  $y \in \mathbb{Z}_p^*$ , find x, s.t.  $x^2 \equiv y \pmod{p}$ , p is prime Two cases:
>  $p \equiv 1 \pmod{4}$  (i.e. p = 4k + 1) : probabilistic algorithm
>  $p \equiv 3 \pmod{4}$  (i.e. p = 4k + 3) : deterministic algorithm

 $\Rightarrow \text{Given } y \in \mathbb{Z}_{p}^{*}, \text{ find } x, \text{ s.t. } x^{2} \equiv y \pmod{p}, p \text{ is prime}$   $\xrightarrow{p \equiv 1 \pmod{4} \text{ (i.e. } p \equiv 4k + 1) : \text{ probabilistic algorithm}} p \equiv 3 \pmod{4} \text{ (i.e. } p \equiv 4k + 3) : \text{ deterministic algorithm}$   $\Rightarrow \text{ Is there any solution? (Is } y \text{ a } QR_{p}?)$   $\xrightarrow{p-1} \text{ check } y^{\frac{p-1}{2}} \cong 1 \pmod{p}$ 

 $\Leftrightarrow$  Given  $y \in \mathbb{Z}_{p}^{*}$ , find x, s.t.  $x^{2} \equiv y \pmod{p}$ , p is prime Two cases:  $p \equiv 1 \pmod{4}$  (i.e. p = 4k + 1) : probabilistic algorithm  $p \equiv 3 \pmod{4}$  (i.e. p = 4k + 3) : deterministic algorithm  $\diamond$  Is there any solution? (Is y a QR<sub>p</sub>?) check  $y^{\frac{p-1}{2}} \rightleftharpoons 1 \pmod{p}$  $\diamond p \equiv 3 \pmod{4}$  $x \equiv \pm y^{\frac{p+1}{4}} \pmod{p}$ 

 $\diamond$  Given  $y \in \mathbb{Z}_p^*$ , find x, s.t.  $x^2 \equiv y \pmod{p}$ , p is prime Two cases:  $p \equiv 1 \pmod{4}$  (i.e. p = 4k + 1) : probabilistic algorithm  $p \equiv 3 \pmod{4}$  (i.e. p = 4k + 3) : deterministic algorithm  $\diamond$  Is there any solution? (Is y a QR<sub>p</sub>?) check  $y^{\frac{p-1}{2}} \rightleftharpoons 1 \pmod{p}$  $\diamond p \equiv 3 \pmod{4}$  $x \equiv \pm y^{\frac{p}{4}} \pmod{p}$ (p+1)/4 = (4k+3+1)/4 = k+1 is an integer

♦ Given  $y \in \mathbb{Z}_{p}^{*}$ , find x, s.t.  $x^{2} \equiv y \pmod{p}$ , p is prime Two cases:  $> p \equiv 1 \pmod{4}$  (i.e. p = 4k + 1) : probabilistic algorithm  $> p \equiv 3 \pmod{4}$  (i.e. p = 4k + 3) : deterministic algorithm  $\diamond$  Is there any solution? (Is y a QR<sub>p</sub>?) check  $y^{\frac{p-1}{2}} \rightleftharpoons 1 \pmod{p}$  $\diamond p \equiv 3 \pmod{4}$  $x \equiv \pm y^{\frac{1}{4}} \pmod{p}$ (p+1)/4 = (4k+3+1)/4 = k+1 is an integer  $x^2 = v^{(p+1)/2} = v^{(p-1)/2} \cdot v \equiv v \pmod{p}$ 

### $\diamond p \equiv 1 \pmod{4}$

#### $\diamond p \equiv 1 \pmod{4}$

\* Peralta, Eurocrypt'86,  $p = 2^{s} q + 1$ , both p, q are prime

#### $\diamond p \equiv 1 \pmod{4}$

\* Peralta, Eurocrypt'86,  $p = 2^{s} q + 1$ , both  $\overline{p}$ , q are prime

\* 3-step probabilistic procedure

#### $\diamond p \equiv 1 \pmod{4}$

\* Peralta, Eurocrypt'86,  $p = 2^{s} q + 1$ , both p, q are prime \* 3-step probabilistic procedure 1. Choose a random number r, if  $r^{2} \equiv y \pmod{p}$ , output z = r

#### $\diamond p \equiv 1 \pmod{4}$

\* Peralta, Eurocrypt'86,  $p = 2^{s} q + 1$ , both p, q are prime \* 3-step probabilistic procedure 1. Choose a random number r, if  $r^{2} \equiv y \pmod{p}$ , output z = r2. Calculate  $(r + x)^{(p-1)/2} \equiv u + v x \pmod{f(x)}$ ,  $f(x) = x^{2} - y$ 

#### $\diamond p \equiv 1 \pmod{4}$

\* Peralta, Eurocrypt'86,  $p = 2^{s} q + 1$ , both p, q are prime \* 3-step probabilistic procedure 1. Choose a random number r, if  $r^{2} \equiv y \pmod{p}$ , output  $z \equiv r$ 2. Calculate  $(r + x)^{(p-1)/2} \equiv u + v x \pmod{f(x)}$ ,  $f(x) \equiv x^{2} - y$ 3. If u = 0 then output  $z \equiv v^{-1} \pmod{p}$ , else goto step 1

#### $\diamond p \equiv 1 \pmod{4}$

\* Peralta, Eurocrypt'86,  $p = 2^{s} q + 1$ , both p, q are prime \* 3-step probabilistic procedure 1. Choose a random number r, if  $r^{2} \equiv y \pmod{p}$ , output  $z \equiv r$ 2. Calculate  $(r + x)^{(p-1)/2} \equiv u + v x \pmod{f(x)}$ ,  $f(x) \equiv x^{2} - y$ 3. If u = 0 then output  $z \equiv v^{-1} \pmod{p}$ , else goto step 1

note:  $(b+cx)(d+ex) \equiv (bd+ce x^2) + (be+cd) x$ 

#### $\diamond p \equiv 1 \pmod{4}$

\* Peralta, Eurocrypt'86,  $p = 2^{s} q + 1$ , both p, q are prime \* 3-step probabilistic procedure 1. Choose a random number r, if  $r^{2} \equiv y \pmod{p}$ , output  $z \equiv r$ 2. Calculate  $(r + x)^{(p-1)/2} \equiv u + v x \pmod{f(x)}$ ,  $f(x) \equiv x^{2} - y$ 3. If u = 0 then output  $z \equiv v^{-1} \pmod{p}$ , else goto step 1

note:  $(b+cx)(d+ex) \equiv (bd+ce x^2) + (be+cd) x$  $\equiv (bd+ce y) + (be+cd) x \pmod{x^2-y}$ 

#### $\diamond p \equiv 1 \pmod{4}$

\* Peralta, Eurocrypt'86,  $p = 2^{s} q + 1$ , both p, q are prime \* 3-step probabilistic procedure  $\begin{cases}
1. Choose a random number <math>r$ , if  $r^{2} \equiv y \pmod{p}$ , output  $z \equiv r$ 2. Calculate  $(r + x)^{(p-1)/2} \equiv u + v x \pmod{f(x)}$ ,  $f(x) \equiv x^{2} - y$ 3. If u = 0 then output  $z \equiv v^{-1} \pmod{p}$ , else goto step 1

note:  $(b+cx)(d+ex) \equiv (bd+ce x^2) + (be+cd) x$   $\equiv (bd+ce y) + (be+cd) x \pmod{x^2-y}$ use square-multiply algorithm to calculate the

#### $\diamond p \equiv 1 \pmod{4}$

\* Peralta, Eurocrypt'86,  $p = 2^{s} q + 1$ , both p, q are prime \* 3-step probabilistic procedure 1. Choose a random number r, if  $r^{2} \equiv y \pmod{p}$ , output  $z \equiv r$ 2. Calculate  $(r + x)^{(p-1)/2} \equiv u + v x \pmod{f(x)}$ ,  $f(x) \equiv x^{2} - y$ 3. If u = 0 then output  $z \equiv v^{-1} \pmod{p}$ , else goto step 1

note:  $(b+cx)(d+ex) \equiv (bd+ce x^2) + (be+cd) x$   $\equiv (bd+ce y) + (be+cd) x \pmod{x^2-y}$ use square-multiply algorithm to calculate the polynomial  $(r+x)^{(p-1)/2}$ 

#### $\diamond p \equiv 1 \pmod{4}$

\* Peralta, Eurocrypt'86,  $p = 2^{s} q + 1$ , both p, q are prime \* 3-step probabilistic procedure 1. Choose a random number r, if  $r^{2} \equiv y \pmod{p}$ , output  $z \equiv r$ 2. Calculate  $(r + x)^{(p-1)/2} \equiv u + v x \pmod{f(x)}$ ,  $f(x) \equiv x^{2} - y$ 3. If u = 0 then output  $z \equiv v^{-1} \pmod{p}$ , else goto step 1

note:  $(b+cx)(d+ex) \equiv (bd+ce x^2) + (be+cd) x$   $\equiv (bd+ce y) + (be+cd) x \pmod{x^2-y}$ use square-multiply algorithm to calculate the polynomial  $(r+x)^{(p-1)/2}$ 

\* the probability to successfully find z for each  $r \ge 1/2_{230}$ 

### $\diamond$ ex: find z such that $z^2 \equiv 12 \pmod{13}$

♦ ex: find z such that  $z^2 \equiv 12 \pmod{13}$ solution:

 $\approx 13 \equiv 1 \pmod{4} \quad \text{ie. } 4k+1$  $\approx \text{choose} \ r = 3, \ 3^2 = 9 \neq 12$ 

♦ ex: find z such that  $z^2 \equiv 12 \pmod{13}$ solution:

♦ ex: find z such that  $z^2 \equiv 12 \pmod{13}$ solution:
♦ ex: find z such that  $z^2 \equiv 12 \pmod{13}$ solution:

♦ ex: find z such that  $z^2 \equiv 12 \pmod{13}$ solution:

Why does it work???

♦ ex: find z such that  $z^2 \equiv 12 \pmod{13}$ solution:

Why does it work??? Why is the success probability  $> \frac{1}{2}$ ???

# ♦ Now let's return to the question of solving square roots in $Z_n^*$ , i.e.

♦ Now let's return to the question of solving square roots in  $Z_n^*$ , i.e.

for an integer  $y \in QR_n$ , find  $x \in Z_n^*$  such that  $x^2 \equiv y \pmod{n}$ 

♦ Now let's return to the question of solving square roots in  $Z_n^*$ , i.e.

for an integer  $y \in QR_n$ , find  $x \in Z_n^*$  such that  $x^2 \equiv y \pmod{n}$  $\Rightarrow$  We would like to transform the problem into solving square roots mod p.

- ♦ Now let's return to the question of solving square roots in  $Z_n^*$ , i.e.
  - for an integer  $y \in QR_n$ , find  $x \in Z^*$  such that  $x^2 = x$  (m
    - find  $x \in \mathbb{Z}_n^*$  such that  $x^2 \equiv y \pmod{n}$
- ♦ We would like to transform the problem into solving square roots mod p.
- ♦ Question: for  $n=p \cdot q$

♦ Now let's return to the question of solving square roots in  $Z_n^*$ , i.e.

for an integer  $y \in QR_n$ ,

- ♦ We would like to transform the problem into solving square roots mod p.
- ♦ Question: for  $n=p \cdot q$ Is solving " $x^2 \equiv y \pmod{n}$ " equivalent to solving " $x^2 \equiv y \pmod{p}$  and  $x^2 \equiv y \pmod{q}$ "???

♦ Now let's return to the question of solving square roots in  $Z_n^*$ , i.e.

for an integer  $y \in QR_n$ ,

- ♦ We would like to transform the problem into solving square roots mod p.
- ♦ Question: for  $n=p \cdot q$ Is solving " $x^2 \equiv y \pmod{n}$ " equivalent to solving
  " $x^2 \equiv y \pmod{p}$  and  $x^2 \equiv y \pmod{q}$ "???
  yes

♦ Now let's return to the question of solving square roots in  $Z_n^*$ , i.e.

for an integer  $y \in QR_n$ ,

- ♦ We would like to transform the problem into solving square roots mod p.
- ♦ Question: for  $n=p \cdot q$ Is solving " $x^2 \equiv y \pmod{n}$ " equivalent to solving
  " $x^2 \equiv y \pmod{p}$  and  $x^2 \equiv y \pmod{q}$ "???
  yes (⇒)

♦ Now let's return to the question of solving square roots in  $Z_n^*$ , i.e.

for an integer  $y \in QR_n$ ,

- ♦ We would like to transform the problem into solving square roots mod p.
- ♦ Question: for  $n=p \cdot q$ Is solving " $x^2 \equiv y \pmod{n}$ " equivalent to solving " $x^2 \equiv y \pmod{p}$  and  $x^2 \equiv y \pmod{q}$ "??? **yes** (⇒)  $x^2-y=kn=kpq$

♦ Now let's return to the question of solving square roots in  $Z_n^*$ , i.e.

for an integer  $y \in QR_n$ ,

- ♦ We would like to transform the problem into solving square roots mod p.
- ♦ Question: for n=p·q
  Is solving "x<sup>2</sup> ≡ y (mod n)" equivalent to solving
  "x<sup>2</sup> ≡ y (mod p) and x<sup>2</sup> ≡ y (mod q)"???
  yes
  (⇒) x<sup>2</sup>-y=kn=kpq ⇒ p | x<sup>2</sup>-y and q | x<sup>2</sup>-y □

♦ Now let's return to the question of solving square roots in  $Z_n^*$ , i.e.

for an integer  $y \in QR_n$ ,

find  $x \in \mathbb{Z}_n^*$  such that  $x^2 \equiv y \pmod{n}$ 

- ♦ We would like to transform the problem into solving square roots mod p.
- ♦ Question: for  $n=p \cdot q$

 $(\Leftarrow)$ 

Is solving " $x^2 \equiv y \pmod{n}$ " equivalent to solving

"  $x^2 \equiv y \pmod{p}$  and  $x^2 \equiv y \pmod{q}$ " ???

**yes** (⇒)  $x^2-y=kn=kpq \Rightarrow p | x^2-y \text{ and } q | x^2-y \square$ 

♦ Now let's return to the question of solving square roots in  $Z_n^*$ , i.e.

for an integer  $y \in QR_n$ ,

find  $x \in \mathbb{Z}_n^*$  such that  $x^2 \equiv y \pmod{n}$ 

- ♦ We would like to transform the problem into solving square roots mod p.
- ♦ Question: for  $n=p \cdot q$

Is solving " $x^2 \equiv y \pmod{n}$ " equivalent to solving

" $x^2 \equiv y \pmod{p}$  and  $x^2 \equiv y \pmod{q}$ "???

$$\implies (\Rightarrow) x^2 - y = kn = kpq \Rightarrow p \mid x^2 - y \text{ and } q \mid x^2 - y \square$$

 $(\Leftarrow) p \mid x^2 - y \text{ and } q \mid x^2 - y$ 

♦ Now let's return to the question of solving square roots in  $Z_n^*$ , i.e.

for an integer  $y \in QR_n$ ,

find  $x \in \mathbb{Z}_n^*$  such that  $x^2 \equiv y \pmod{n}$ 

- ♦ We would like to transform the problem into solving square roots mod p.
- ♦ Question: for  $n=p \cdot q$

Is solving " $x^2 \equiv y \pmod{n}$ " equivalent to solving

 $x^{2} \equiv y \pmod{p}$  and  $x^{2} \equiv y \pmod{q}$ ???

Yes  $(\Rightarrow) x^2-y=kn=kpq \Rightarrow p \mid x^2-y \text{ and } q \mid x^2-y \square$ 

( $\Leftarrow$ )  $p \mid x^2 - y$  and  $q \mid x^2 - y \Rightarrow pq \mid x^2 - y$  i.e.  $x^2 - y = kpq = kn \square_{232}$ 

#### Finding Square Roots mod $p \cdot q$ $\Rightarrow$ find x such that $x^2 \equiv 71 \pmod{77}$ $* 77 = 7 \cdot 11$ $* x^*$ satisfies $f(x^*) \equiv 71 \pmod{77}$ $\Leftrightarrow$ $x^*$ satisfies both $f(x^*) \equiv 1 \pmod{7}$ and $f(x^*) \equiv 5 \pmod{11}$

**★** 77 = 7 · 11

★ "x\* satisfies  $f(x^*) \equiv 71 \pmod{77}$ "  $\Rightarrow$ <u>"x\* satisfies both</u>  $f(x^*) \equiv 1 \pmod{7}$  and  $f(x^*) \equiv 5 \pmod{11}$ "

\* since 7 and 11 are prime numbers, we can solve  $x^2 \equiv 1 \pmod{7}$ and  $x^2 \equiv 5 \pmod{11}$  far more easily than  $x^2 \equiv 71 \pmod{77}$ 

**★** 77 = 7 · 11

★ " $x^*$  satisfies  $f(x^*) \equiv 71 \pmod{77}$ " " $x^*$  satisfies both  $f(x^*) \equiv 1 \pmod{7}$  and  $f(x^*) \equiv 5 \pmod{11}$ "

\* since 7 and 11 are prime numbers, we can solve  $x^2 \equiv 1 \pmod{7}$ and  $x^2 \equiv 5 \pmod{11}$  far more easily than  $x^2 \equiv 71 \pmod{77}$  $x^2 \equiv 1 \pmod{7}$  has two solutions:  $x \equiv \pm 1 \pmod{7}$ 

**★** 77 = 7 · 11

★ " $x^*$  satisfies  $f(x^*) \equiv 71 \pmod{77}$ " " $x^*$  satisfies both  $f(x^*) \equiv 1 \pmod{7}$  and  $f(x^*) \equiv 5 \pmod{11}$ "

\* since 7 and 11 are prime numbers, we can solve  $x^2 \equiv 1 \pmod{7}$ and  $x^2 \equiv 5 \pmod{11}$  far more easily than  $x^2 \equiv 71 \pmod{77}$ 

 $x^2 \equiv 1 \pmod{7}$  has two solutions:  $x \equiv \pm 1 \pmod{7}$ 

 $x^2 \equiv 5 \pmod{11}$  has two solutions:  $x \equiv \pm 4 \pmod{11}$ 

**★** 77 = 7 · 11

\* " $x^*$  satisfies  $f(x^*) \equiv 71 \pmod{77}$ "  $\Leftrightarrow$ " $x^*$  satisfies both  $f(x^*) \equiv 1 \pmod{7}$  and  $f(x^*) \equiv 5 \pmod{11}$ "

\* since 7 and 11 are prime numbers, we can solve  $x^2 \equiv 1 \pmod{7}$ and  $x^2 \equiv 5 \pmod{11}$  far more easily than  $x^2 \equiv 71 \pmod{77}$ 

 $x^2 \equiv 1 \pmod{7}$  has two solutions:  $x \equiv \pm 1 \pmod{7}$ 

 $x^2 \equiv 5 \pmod{11}$  has two solutions:  $x \equiv \pm 4 \pmod{11}$ 

\* put them together and use CRT to calculate the four solutions

**★** 77 = 7 · 11

\* " $x^*$  satisfies  $f(x^*) \equiv 71 \pmod{77}$ "  $\Leftrightarrow$ " $x^*$  satisfies both  $f(x^*) \equiv 1 \pmod{7}$  and  $f(x^*) \equiv 5 \pmod{11}$ "

\* since 7 and 11 are prime numbers, we can solve  $x^2 \equiv 1 \pmod{7}$ and  $x^2 \equiv 5 \pmod{11}$  far more easily than  $x^2 \equiv 71 \pmod{77}$ 

 $x^2 \equiv 1 \pmod{7}$  has two solutions:  $x \equiv \pm 1 \pmod{7}$ 

 $x^2 \equiv 5 \pmod{11}$  has two solutions:  $x \equiv \pm 4 \pmod{11}$ 

★ put them together and use CRT to calculate the four solutions  $x \equiv 1 \pmod{7} \equiv 4 \pmod{11} \Rightarrow x \equiv 15 \pmod{77}$ 

**★** 77 = 7 · 11

★ " $x^*$  satisfies  $f(x^*) \equiv 71 \pmod{77}$ "  $\Rightarrow$ " $x^*$  satisfies both  $f(x^*) \equiv 1 \pmod{7}$  and  $f(x^*) \equiv 5 \pmod{11}$ "

\* since 7 and 11 are prime numbers, we can solve  $x^2 \equiv 1 \pmod{7}$ and  $x^2 \equiv 5 \pmod{11}$  far more easily than  $x^2 \equiv 71 \pmod{77}$ 

 $x^2 \equiv 1 \pmod{7}$  has two solutions:  $x \equiv \pm 1 \pmod{7}$ 

 $x^2 \equiv 5 \pmod{11}$  has two solutions:  $x \equiv \pm 4 \pmod{11}$ 

★ put them together and use CRT to calculate the four solutions  $x \equiv 1 \pmod{7} \equiv 4 \pmod{11} \Rightarrow x \equiv 15 \pmod{77}$  $x \equiv 1 \pmod{7} \equiv 7 \pmod{11} \Rightarrow x \equiv 29 \pmod{77}$ 

**★** 77 = 7 · 11

★ " $x^*$  satisfies  $f(x^*) \equiv 71 \pmod{77}$ "  $\Rightarrow$ " $x^*$  satisfies both  $f(x^*) \equiv 1 \pmod{7}$  and  $f(x^*) \equiv 5 \pmod{11}$ "

\* since 7 and 11 are prime numbers, we can solve  $x^2 \equiv 1 \pmod{7}$ and  $x^2 \equiv 5 \pmod{11}$  far more easily than  $x^2 \equiv 71 \pmod{77}$ 

 $x^2 \equiv 1 \pmod{7}$  has two solutions:  $x \equiv \pm 1 \pmod{7}$ 

 $x^2 \equiv 5 \pmod{11}$  has two solutions:  $x \equiv \pm 4 \pmod{11}$ 

\* put them together and use CRT to calculate the four solutions

- $x \equiv 1 \pmod{7} \equiv 4 \pmod{11} \Rightarrow x \equiv 15 \pmod{77}$
- $x \equiv 1 \pmod{7} \equiv 7 \pmod{11} \Rightarrow x \equiv 29 \pmod{77}$

 $x \equiv 6 \pmod{7} \equiv 4 \pmod{11} \Rightarrow x \equiv 48 \pmod{77}$ 

**★** 77 = 7 · 11

★ " $x^*$  satisfies  $f(x^*) \equiv 71 \pmod{77}$ "  $\Rightarrow$ " $x^*$  satisfies both  $f(x^*) \equiv 1 \pmod{7}$  and  $f(x^*) \equiv 5 \pmod{11}$ "

\* since 7 and 11 are prime numbers, we can solve  $x^2 \equiv 1 \pmod{7}$ and  $x^2 \equiv 5 \pmod{11}$  far more easily than  $x^2 \equiv 71 \pmod{77}$ 

 $x^2 \equiv 1 \pmod{7}$  has two solutions:  $x \equiv \pm 1 \pmod{7}$ 

 $x^2 \equiv 5 \pmod{11}$  has two solutions:  $x \equiv \pm 4 \pmod{11}$ 

\* put them together and use CRT to calculate the four solutions

- $x \equiv 1 \pmod{7} \equiv 4 \pmod{11} \Rightarrow x \equiv 15 \pmod{77}$
- $x \equiv 1 \pmod{7} \equiv 7 \pmod{11} \Rightarrow x \equiv 29 \pmod{77}$
- $x \equiv 6 \pmod{7} \equiv 4 \pmod{11} \Rightarrow x \equiv 48 \pmod{77}$

 $x \equiv 6 \pmod{7} \equiv 7 \pmod{11} \Rightarrow x \equiv 62 \pmod{77}$ 

♦ Previous slides show that once you know the factors of n are p and q, you can easily solve the square roots of n

Previous slides show that once you know the factors of *n* are *p* and *q*, you can easily solve the square roots of *n*Indeed, if you can solve the square roots for one single quadratic residue mod *n*, you can factor *n*.

◇ Previous slides show that once you know the factors of *n* are *p* and *q*, you can easily solve the square roots of *n*◇ Indeed, if you can solve the square roots for one single quadratic residue mod *n*, you can factor *n*.

\* from the four solutions  $\pm a$ ,  $\pm b$  on the previous slide

Previous slides show that once you know the factors of *n* are *p* and *q*, you can easily solve the square roots of *n*Indeed, if you can solve the square roots for one single

quadratic residue mod *n*, you can factor *n*.

\* from the four solutions  $\pm a$ ,  $\pm b$  on the previous slide  $x \equiv c \pmod{p} \equiv d \pmod{q} \Rightarrow x \equiv a \pmod{p.q}$ 

Previous slides show that once you know the factors of *n* are *p* and *q*, you can easily solve the square roots of *n*Indeed, if you can solve the square roots for one single quadratic residue mod *n*, you can factor *n*.

\* from the four solutions  $\pm a$ ,  $\pm b$  on the previous slide  $x \equiv c \pmod{p} \equiv d \pmod{q} \Rightarrow x \equiv a \pmod{p.q}$  $x \equiv c \pmod{p} \equiv -d \pmod{q} \Rightarrow x \equiv b \pmod{p.q}$ 

Previous slides show that once you know the factors of *n* are *p* and *q*, you can easily solve the square roots of *n*Indeed, if you can solve the square roots for one single quadratic residue mod *n*, you can factor *n*.

\* from the four solutions  $\pm a$ ,  $\pm b$  on the previous slide  $x \equiv c \pmod{p} \equiv d \pmod{q} \Rightarrow x \equiv a \pmod{p.q}$   $x \equiv c \pmod{p} \equiv -d \pmod{q} \Rightarrow x \equiv b \pmod{p.q}$  $x \equiv -c \pmod{p} \equiv d \pmod{q} \Rightarrow x \equiv -b \pmod{p.q}$ 

Previous slides show that once you know the factors of *n* are *p* and *q*, you can easily solve the square roots of *n*Indeed, if you can solve the square roots for one single quadratic residue mod *n*, you can factor *n*.

\* from the four solutions  $\pm a$ ,  $\pm b$  on the previous slide  $x \equiv c \pmod{p} \equiv d \pmod{q} \Rightarrow x \equiv a \pmod{p.q}$   $x \equiv c \pmod{p} \equiv -d \pmod{q} \Rightarrow x \equiv b \pmod{p.q}$   $x \equiv -c \pmod{p} \equiv d \pmod{q} \Rightarrow x \equiv -b \pmod{p.q}$  $x \equiv -c \pmod{p} \equiv -d \pmod{q} \Rightarrow x \equiv -a \pmod{p.q}$ 

Previous slides show that once you know the factors of *n* are *p* and *q*, you can easily solve the square roots of *n*Indeed, if you can solve the square roots for one single quadratic residue mod *n*, you can factor *n*.

\* from the four solutions  $\pm a$ ,  $\pm b$  on the previous slide  $x \equiv c \pmod{p} \equiv d \pmod{q} \Rightarrow x \equiv a \pmod{p.q}$   $x \equiv c \pmod{p} \equiv -d \pmod{q} \Rightarrow x \equiv b \pmod{p.q}$   $x \equiv -c \pmod{p} \equiv d \pmod{q} \Rightarrow x \equiv -b \pmod{p.q}$   $x \equiv -c \pmod{p} \equiv -d \pmod{q} \Rightarrow x \equiv -a \pmod{p.q}$ we can find out  $a \equiv b \pmod{p}$  and  $a \equiv -b \pmod{q}$ 

Previous slides show that once you know the factors of *n* are *p* and *q*, you can easily solve the square roots of *n*Indeed, if you can solve the square roots for one single quadratic residue mod *n*, you can factor *n*.

\* from the four solutions  $\pm a$ ,  $\pm b$  on the previous slide  $x \equiv c \pmod{p} \equiv d \pmod{q} \Rightarrow x \equiv a \pmod{p.q}$   $x \equiv c \pmod{p} \equiv -d \pmod{q} \Rightarrow x \equiv b \pmod{p.q}$   $x \equiv -c \pmod{p} \equiv d \pmod{q} \Rightarrow x \equiv -b \pmod{p.q}$   $x \equiv -c \pmod{p} \equiv -d \pmod{q} \Rightarrow x \equiv -a \pmod{p.q}$ we can find out  $a \equiv b \pmod{p}$  and  $a \equiv -b \pmod{q}$ (or equivalently  $a \equiv -b \pmod{p}$  and  $a \equiv b \pmod{q}$ )
#### Computational Equivalence to Factoring

- Previous slides show that once you know the factors of *n* are *p* and *q*, you can easily solve the square roots of *n*Indeed, if you can solve the square roots for one single
  - quadratic residue mod *n*, you can factor *n*.

\* from the four solutions  $\pm a$ ,  $\pm b$  on the previous slide  $x \equiv c \pmod{p} \equiv d \pmod{q} \Rightarrow x \equiv a \pmod{p.q}$   $x \equiv c \pmod{p} \equiv -d \pmod{q} \Rightarrow x \equiv b \pmod{p.q}$   $x \equiv -c \pmod{p} \equiv d \pmod{q} \Rightarrow x \equiv -b \pmod{p.q}$   $x \equiv -c \pmod{p} \equiv -d \pmod{q} \Rightarrow x \equiv -a \pmod{p.q}$ we can find out  $a \equiv b \pmod{p}$  and  $a \equiv -b \pmod{q}$ (or equivalently  $a \equiv -b \pmod{p}$  and  $a \equiv b \pmod{q}$ )

\* therefore,  $p \mid (a-b)$  i.e. gcd(a-b, n) = p (ex. gcd(15-29, 77)=7)

#### Computational Equivalence to Factoring

Previous slides show that once you know the factors of *n* are *p* and *q*, you can easily solve the square roots of *n*Indeed, if you can solve the square roots for one single

quadratic residue mod *n*, you can factor *n*.

★ from the four solutions ±a, ±b on the previous slide
x ≡ c (mod p) ≡ d (mod q) ⇒ x ≡ a (mod p.q)
x ≡ c (mod p) ≡ -d (mod q) ⇒ x ≡ b (mod p.q)
x ≡ -c (mod p) ≡ d (mod q) ⇒ x ≡ -b (mod p.q)
x ≡ -c (mod p) ≡ -d (mod q) ⇒ x ≡ -a (mod p.q)
we can find out a ≡ b (mod p) and a ≡ -b (mod q)
(or equivalently a ≡ -b (mod p) and a ≡ b (mod q))
★ therefore, p | (a-b) i.e. gcd(a-b, n) = p (ex. gcd(15-29, 77)=7)

 $q \mid (a+b) \text{ i.e. } gcd(a+b, n) = q (ex. gcd(15+29, 77)=11)$ 

♦ Consider  $y \in Z_n^*$ , if  $\exists x \in Z_n^*$ , such that  $x^2 \equiv y \pmod{n}$ , then y is called a quadratic residue mod n, i.e.  $y \in QR_n$ 

♦ Consider  $y \in Z_n^*$ , if  $\exists x \in Z_n^*$ , such that  $x^2 \equiv y \pmod{n}$ , then y is called a quadratic residue mod n, i.e.  $y \in QR_n$ If the modulus p is prime, there are (p-1)/2 quadratic residues in  $Z_p^*$ 

◇ Consider y∈Z<sub>n</sub>\*, if ∃ x ∈Z<sub>n</sub>\*, such that x<sup>2</sup> ≡ y (mod n), then y is called a quadratic residue mod n, i.e. y∈QR<sub>n</sub>
If the modulus p is prime, there are (p-1)/2 quadratic residues in Z<sub>p</sub>\*
\* let g be a primitive root in Z<sub>p</sub>\*, {g, g<sup>2</sup>, g<sup>3</sup>, ..., g<sup>p-1</sup>} is a permutation of {1,2,...p-1}

♦ Consider  $y \in Z_n^*$ , if  $\exists x \in Z_n^*$ , such that  $x^2 \equiv y \pmod{n}$ , then y is called a quadratic residue mod n, i.e.  $y \in QR_n$ If the modulus p is prime, there are (p-1)/2 quadratic residues in  $Z_n^*$ 

\* let g be a primitive root in  $Z_p^*$ ,  $\{g, g^2, g^3, \dots, g^{p-1}\}$  is a permutation of  $\{1, 2, \dots p-1\}$ 

\* in the above set,  $\{g^2, g^4, \dots, g^{p-1}\}$  are quadratic residues (QR<sub>p</sub>)

- ♦ Consider  $y \in Z_n^*$ , if  $\exists x \in Z_n^*$ , such that  $x^2 \equiv y \pmod{n}$ , then y is called a quadratic residue mod n, i.e.  $y \in QR_n$ If the modulus p is prime, there are (p-1)/2 quadratic residues in  $Z_p^*$ 
  - \* let g be a primitive root in  $Z_p^*$ ,  $\{g, g^2, g^3, \dots, g^{p-1}\}$  is a permutation of  $\{1, 2, \dots, p-1\}$
  - \* in the above set,  $\{g^2, g^4, \dots, g^{p-1}\}$  are quadratic residues (QR<sub>p</sub>)
  - \*  $\{g, g^3, ..., g^{p-2}\}$  are quadratic non-residues (QNR<sub>p</sub>), out of which there are  $\phi(p-1)$  primitive roots

#### 1<sup>st</sup> proof:

★ For each  $x \in \mathbb{Z}_p^*$ ,  $p - x \neq x \pmod{p}$  (since if x is odd, px is even), it's clear that x and p-x are both square roots of a certain  $y \in \mathbb{Z}_p^*$ ,

#### 1<sup>st</sup> proof:

- ★ For each  $x \in \mathbb{Z}_p^*$ ,  $p x \neq x \pmod{p}$  (since if x is odd, px is even), it's clear that x and p-x are both square roots of a certain  $y \in \mathbb{Z}_p^*$ ,
- \* Because there are only *p*-1 elements in  $Z_p^*$ , we know that  $|QR_p| \le (p-1)/2$

#### 1<sup>st</sup> proof:

- ★ For each  $x \in \mathbb{Z}_p^*$ ,  $p x \neq x \pmod{p}$  (since if x is odd, px is even), it's clear that x and p-x are both square roots of a certain  $y \in \mathbb{Z}_p^*$ ,
- \* Because there are only *p*-1 elements in  $Z_p^*$ , we know that  $|QR_p| \le (p-1)/2$
- \* Because  $|\{g^2, g^4, ..., g^{p-1}\}| = (p-1)/2$ , there can be no more quadratic residues outside this set. Therefore, the set  $\{g, g^3, ..., g^{p-2}\}$  contains only quadratic nonresidues

2<sup>nd</sup> proof:

\* Because the squares of x and p-x are the same, the number of quadratic residues must be less than p-1 (i.e. some element in  $Z_p^*$  must be quadratic non-residue)

- \* Because the squares of x and p-x are the same, the number of quadratic residues must be less than p-1 (i.e. some element in  $Z_p^*$  must be quadratic non-residue)
- \* Let g is a primitive, consider this set  $\{g, g^3, ..., g^{p-2}\}$  directly

- \* Because the squares of x and p-x are the same, the number of quadratic residues must be less than p-1 (i.e. some element in  $Z_p^*$  must be quadratic non-residue)
- \* Let g is a primitive, consider this set  $\{g, g^3, ..., g^{p-2}\}$  directly
- \* If  $g \in QR_p$ , then g cannot be a primitive (because  $g^k$  must all be quadratic residues). Thus,  $g \in QNR_p$

- \* Because the squares of x and p-x are the same, the number of quadratic residues must be less than p-1 (i.e. some element in  $Z_p^*$  must be quadratic non-residue)
- \* Let g is a primitive, consider this set  $\{g, g^3, ..., g^{p-2}\}$  directly
- \* If  $g \in QR_p$ , then g cannot be a primitive (because  $g^k$  must all be quadratic residues). Thus,  $g \in QNR_p$
- \* If  $g^{2k+1} \equiv g^{2k} \cdot g \in QR_p$ ,  $\exists x \in Z_p^*$  such that  $x^2 \equiv g^{2k} \cdot g \pmod{p}$

- \* Because the squares of x and p-x are the same, the number of quadratic residues must be less than p-1 (i.e. some element in  $Z_p^*$  must be quadratic non-residue)
- \* Let g is a primitive, consider this set  $\{g, g^3, ..., g^{p-2}\}$  directly
- ★ If  $g \in QR_p$ , then g cannot be a primitive (because  $g^k$  must all be quadratic residues). Thus,  $g \in QNR_p$
- \* If  $g^{2k+1} \equiv g^{2k} \cdot g \in QR_p$ ,  $\exists x \in Z_p^*$  such that  $x^2 \equiv g^{2k} \cdot g \pmod{p}$ Since  $gcd(g^{2k}, p) \equiv 1$ ,  $g (g^{2k})^{-1} \cdot x^2 ((g^{-1})^k \cdot x)^2 \in QR_p$  contradiction

2<sup>nd</sup> proof:

- \* Because the squares of x and p-x are the same, the number of quadratic residues must be less than p-1 (i.e. some element in  $Z_p^*$  must be quadratic non-residue)
- \* Let g is a primitive, consider this set  $\{g, g^3, ..., g^{p-2}\}$  directly
- \* If  $g \in QR_p$ , then g cannot be a primitive (because  $g^k$  must all be quadratic residues). Thus,  $g \in QNR_p$
- \* If  $g^{2k+1} \equiv g^{2k} \cdot g \in QR_p$ ,  $\exists x \in Z_p^*$  such that  $x^2 \equiv g^{2k} \cdot g \pmod{p}$ Since  $gcd(g^{2k}, p) = 1$ ,  $g (g^{2k})^{-1} \cdot x^2 ((g^{-1})^k \cdot x)^2 \in QR_p$  contradiction

 $(g^{2k})^{-1}(g^{2k}) \equiv (g^{2k})^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{-1}g^{$ 

2<sup>nd</sup> proof:

- \* Because the squares of x and p-x are the same, the number of quadratic residues must be less than p-1 (i.e. some element in  $Z_p^*$ must be quadratic non-residue)
- \* Let g is a primitive, consider this set  $\{g, g^3, ..., g^{p-2}\}$  directly
- \* If  $g \in QR_p$ , then g cannot be a primitive (because  $g^k$  must all be quadratic residues). Thus,  $g \in QNR_p$

\* If  $g^{2k+1} \equiv g^{2k} \cdot g \in QR_p$ ,  $\exists x \in Z_p^*$  such that  $x^2 \equiv g^{2k} \cdot g \pmod{p}$ Since  $gcd(g^{2k}, p) = 1, g$   $(g^{2k})^{-1} \cdot x^2$   $((g^{-1})^k \cdot x)^2 \in QR_p$  contradiction Thus,  $g^{2k+1} \in QNR_p$   $(g^{2k})^{-1}(g^{2k}) \equiv (g^{2k})^{-1}g \cdot g \cdot \dots \cdot g \equiv 1 \pmod{p}$   $\Rightarrow (g^{2k})^{-1} \equiv g^{-1} \cdot g^{-1} \cdot \dots \cdot g^{-1} \equiv (g^{-1})^{2k} \equiv ((g^{-1})^k)^2$ 

 $(p-1)/2=71768 \text{ QR}_p$ 's and 71768  $\text{QNR}_p$ 's

↔ ex. *p*=143537, *p*-1=143536=2<sup>4</sup>·8971,

 $\phi(p-1)=2^4 \cdot 8971 \cdot (1-1/2) \cdot (1-1/8971)=71760$  primitives,

 $(p-1)/2=71768 \text{ QR}_p$ 's and 71768  $\text{QNR}_p$ 's

\* Note: if g is a primitive, then  $g^3, g^5 \dots$  are also primitives except the following 8 numbers  $g^{8971}, g^{8971 \cdot 3}, \dots, g^{8971 \cdot 15}$ 

♦ ex. p=143537, p-1=143536=2<sup>4</sup>·8971,
\$\phi(p-1)=2^4·8971·(1-1/2)·(1-1/8971)=71760 primitives,
\$(p-1)/2=71768 QR<sub>p</sub>'s and 71768 QNR<sub>p</sub>'s
\* Note: if g is a primitive, then g<sup>3</sup>, g<sup>5</sup> ... are also primitives
\$except the following 8 numbers g<sup>8971</sup>, g<sup>8971·3</sup>,..., g<sup>8971·15</sup>

\* Elements in  $Z_p^*$  can be grouped further according to their order

 $\diamond$  ex. *p*=143537, *p*-1=143536=24.8971,  $\phi(p-1) = 2^4 \cdot 8971 \cdot (1-1/2) \cdot (1-1/8971) = 71760$  primitives,  $(p-1)/2=71768 \text{ QR}_{p}$ 's and 71768  $\text{QNR}_{p}$ 's \* Note: if g is a primitive, then  $g^3, g^5 \dots$  are also primitives except the following 8 numbers  $g^{8971}, g^{8971 \cdot 3}, ..., g^{8971 \cdot 15}$ \* Elements in  $Z_p^*$  can be grouped further according to their order since  $\forall x \in \mathbb{Z}_p^*$ ,  $\operatorname{ord}_p(x) \mid p-1$ , we can list all possible orders 8971 16 8  $\frac{p-1}{2}$ ord<sub>p</sub>(x) p-1 $QR_p QR_p$  $QR_p$  $QNR_p$  $QNR_p QR_p$  $QR_p$  $QR_p$  $QR_p$  $QR_p$ 8 2  $\phi(p-1)$ 35

 $\Rightarrow$  If y is a quadratic residue modulo n, it must be a quadratic residue modulo all prime factors of n.

♦ If y is a quadratic residue modulo n, it must be a quadratic residue modulo all prime factors of n.  $\exists x \in Z_n^* \text{ s.t. } x^2 \equiv y \pmod{n} \Leftrightarrow x^2 = k \cdot n + y = k \cdot p \cdot q + y$ 

♦ If y is a quadratic residue modulo n, it must be a quadratic residue modulo all prime factors of n.  $\exists x \in Z_n^* \text{ s.t. } x^2 \equiv y \pmod{n} \Leftrightarrow x^2 = k \cdot n + y = k \cdot p \cdot q + y$   $\Rightarrow x^2 \equiv y \pmod{p} \text{ and } x^2 \equiv y \pmod{q}$ 

♦ If y is a quadratic residue modulo n, it must be a quadratic residue modulo all prime factors of n.  $\exists x \in Z_n^* \text{ s.t. } x^2 \equiv y \pmod{n} \Leftrightarrow x^2 = k \cdot n + y = k \cdot p \cdot q + y$   $\Rightarrow x^2 \equiv y \pmod{p} \text{ and } x^2 \equiv y \pmod{q}$ 

♦ If y is a quadratic residue modulo p and also a quadratic residue modulo q, then y is a quadratic residue modulo n.

♦ If y is a quadratic residue modulo n, it must be a quadratic residue modulo all prime factors of n.  $\exists x \in Z_n^* \text{ s.t. } x^2 \equiv y \pmod{n} \Leftrightarrow x^2 = k \cdot n + y = k \cdot p \cdot q + y$   $\Rightarrow x^2 \equiv y \pmod{p} \text{ and } x^2 \equiv y \pmod{q}$ 

♦ If y is a quadratic residue modulo p and also a quadratic residue modulo q, then y is a quadratic residue modulo n.  $\exists r_1 \in Z_p^* \text{ and } r_2 \in Z_q^* \text{ such that}$   $y \equiv r_1^2 \pmod{p} \equiv (r_1 \mod p)^2 \pmod{p}$   $\equiv r_2^2 \pmod{q} \equiv (r_2 \mod q)^2 \pmod{q}$ 

♦ If y is a quadratic residue modulo n, it must be a quadratic residue modulo all prime factors of n.  $\exists x \in Z_n^* \text{ s.t. } x^2 \equiv y \pmod{n} \Leftrightarrow x^2 = k \cdot n + y = k \cdot p \cdot q + y$   $\Rightarrow x^2 \equiv y \pmod{p} \text{ and } x^2 \equiv y \pmod{q}$ 

♦ If y is a quadratic residue modulo p and also a quadratic residue modulo q, then y is a quadratic residue modulo n.  $\exists r_1 \in Z_p^* \text{ and } r_2 \in Z_q^* \text{ such that}$   $y \equiv r_1^2 \pmod{p} \equiv (r_1 \mod p)^2 \pmod{p}$   $\equiv r_2^2 \pmod{q} \equiv (r_2 \mod q)^2 \pmod{q}$ from CRT,  $\exists ! r \in Z_p^* \text{ such that } r \equiv r_1 \pmod{p} \equiv r_2 \pmod{q}$ 

♦ If y is a quadratic residue modulo n, it must be a quadratic residue modulo all prime factors of n.  $\exists x \in Z_n^* \text{ s.t. } x^2 \equiv y \pmod{n} \Leftrightarrow x^2 = k \cdot n + y = k \cdot p \cdot q + y$   $\Rightarrow x^2 \equiv y \pmod{p} \text{ and } x^2 \equiv y \pmod{q}$ 

♦ If y is a quadratic residue modulo p and also a quadratic residue modulo q, then y is a quadratic residue modulo n.  $\exists r_1 \in Z_p^* \text{ and } r_2 \in Z_q^* \text{ such that}$   $y \equiv r_1^2 \pmod{p} \equiv (r_1 \mod p)^2 \pmod{p}$   $\equiv r_2^2 \pmod{q} \equiv (r_2 \mod q)^2 \pmod{q}$ from CRT,  $\exists ! r \in Z_n^* \text{ such that } r \equiv r_1 \pmod{p} \equiv r_2 \pmod{q}$ therefore,  $y \equiv r^2 \pmod{p} \equiv r^2 \pmod{q}$ 

♦ If y is a quadratic residue modulo n, it must be a quadratic residue modulo all prime factors of n.  $\exists x \in Z_n^* \text{ s.t. } x^2 \equiv y \pmod{n} \Leftrightarrow x^2 = k \cdot n + y = k \cdot p \cdot q + y$   $\Rightarrow x^2 \equiv y \pmod{p} \text{ and } x^2 \equiv y \pmod{q}$ 

♦ If y is a quadratic residue modulo p and also a quadratic residue modulo q, then y is a quadratic residue modulo n.  $\exists r_1 \in \mathbb{Z}_p^* \text{ and } r_2 \in \mathbb{Z}_q^* \text{ such that}$   $y \equiv r_1^2 \pmod{p} \equiv (r_1 \mod p)^2 \pmod{p}$   $\equiv r_2^2 \pmod{q} \equiv (r_2 \mod q)^2 \pmod{q}$ from CRT,  $\exists ! r \in \mathbb{Z}_n^* \text{ such that } r \equiv r_1 \pmod{p} \equiv r_2 \pmod{q}$ therefore,  $y \equiv r^2 \pmod{p} \equiv r^2 \pmod{q}$ again from CRT,  $y \equiv r^2 \pmod{p \cdot q}$ 

303

♦ Legendre symbol L(a, p) is defined when a is any integer, p is a prime number greater than 2

◇ Legendre symbol L(a, p) is defined when a is any integer,
p is a prime number greater than 2
★ L(a, p) = 0 if p | a

◇ Legendre symbol L(a, p) is defined when a is any integer, p is a prime number greater than 2
\* L(a, p) = 0 if p | a
\* L(a, p) = 1 if a is a quadratic residue mod p

♦ Legendre symbol L(a, p) is defined when a is any integer, p is a prime number greater than 2
★ L(a, p) = 0 if p | a
★ L(a, p) = 1 if a is a quadratic residue mod p

\* L(a, p) = -1 if *a* is a quadratic non-residue mod *p* 

♦ Legendre symbol L(a, p) is defined when a is any integer, p is a prime number greater than 2
★ L(a, p) = 0 if p | a
★ L(a, p) = 1 if a is a quadratic residue mod p

\* L(a, p) = -1 if *a* is a quadratic non-residue mod *p* 

 $\diamond$  Two methods to compute (*a*/*p*)

◇ Legendre symbol L(a, p) is defined when a is any integer, p is a prime number greater than 2
\* L(a, p) = 0 if p | a
\* L(a, p) = 1 if a is a quadratic residue mod p
\* L(a, p) = 1 if a is a quadratic non-residue mod p

- \* L(a, p) = -1 if a is a quadratic non-residue mod p
- $\diamond$  Two methods to compute (*a*/*p*)
  - $\star (a/p) = a^{(p-1)/2} \pmod{p}$

Legendre symbol L(a, p) is defined when a is any integer, p is a prime number greater than 2

 $\star$  L(a, p) = 0 if p | a

\* L(a, p) = 1 if a is a quadratic residue mod p

\* L(a, p) = -1 if a is a quadratic non-residue mod p

 $\diamond$  Two methods to compute (*a*/*p*)

 $\star (a/p) = a^{(p-1)/2} \pmod{p}$ 

\* recursively calculate by  $L(a \cdot b, p) = L(a, p) \cdot L(b, p)$
Legendre symbol L(a, p) is defined when a is any integer, p is a prime number greater than 2

 $\star$  L(a, p) = 0 if p | a

\* L(a, p) = 1 if a is a quadratic residue mod p

\* L(a, p) = -1 if a is a quadratic non-residue mod p

 $\diamond$  Two methods to compute (*a*/*p*)

 $\star (a/p) = a^{(p-1)/2} \pmod{p}$ 

\* recursively calculate by  $L(a \cdot b, p) = L(a, p) \cdot L(b, p)$ 

1. If a = 1, L(a, p) = 1

Legendre symbol L(a, p) is defined when a is any integer, p is a prime number greater than 2

 $\star$  L(a, p) = 0 if p | a

\* L(a, p) = 1 if a is a quadratic residue mod p

\* L(a, p) = -1 if a is a quadratic non-residue mod p

 $\diamond$  Two methods to compute (*a*/*p*)

- $\star (a/p) = a^{(p-1)/2} \pmod{p}$
- \* recursively calculate by  $L(a \cdot b, p) = L(a, p) \cdot L(b, p)$

1. If a = 1, L(a, p) = 1

2. If *a* is even,  $L(a, p) = L(a/2, p) \cdot (-1)^{(p_2-1)/8}$ 

♦ Legendre symbol L(a, p) is defined when a is any integer, p is a prime number greater than 2

 $\star$  L(a, p) = 0 if p | a

\* L(a, p) = 1 if a is a quadratic residue mod p

\* L(a, p) = -1 if a is a quadratic non-residue mod p

 $\diamond$  Two methods to compute (*a*/*p*)

- $\star (a/p) = a^{(p-1)/2} \pmod{p}$
- \* recursively calculate by  $L(a \cdot b, p) = L(a, p) \cdot L(b, p)$

1. If a = 1, L(a, p) = 1

2. If *a* is even,  $L(a, p) = L(a/2, p) \cdot (-1)^{(p_2-1)/8}$ 

3. If *a* is odd prime,  $L(a, p) = L((p \mod a), a) \cdot (-1)^{(a-1)(p-1)/4}$ 

 $\diamond$  Legendre symbol L(a, p) is defined when a is any integer, *p* is a prime number greater than 2  $\star$  L(a, p) = 0 if p | a  $\star$  L(a, p) = 1 if a is a quadratic residue mod p \* L(a, p) = -1 if a is a quadratic non-residue mod p  $\Rightarrow$  Two methods to compute (*a*/*p*)  $\star (a/p) = a^{(p-1)/2} \pmod{p}$ \* recursively calculate by  $L(a \cdot b, p) = L(a, p) \cdot L(b, p)$ 1. If a = 1, L(a, p) = 12. If a is even,  $L(a, p) = L(a/2, p) \cdot (-1)^{(p_2-1)/8}$ 3. If *a* is odd prime,  $L(a, p) = L((p \mod a), a) \cdot (-1)^{(a-1)(p-1)/4}$ ♦ Legendre symbol L(a, p) = -1 if  $a \in QNR_p$ L(a, p) = 1 if  $a \in QR_p$ 

 $y \in QR_p \Leftrightarrow y^{(p-1)/2} \equiv 1 \pmod{p}$ 

•

 $y \in QR_p \Leftrightarrow y^{(p-1)/2} \equiv 1 \pmod{p}$ 



 $y \in QR_p \Leftrightarrow y^{(p-1)/2} \equiv 1 \pmod{p}$ 

 $(\Rightarrow)$ 

۲

\* If  $y \in QR_p$ \* Then  $\exists x \in Z_p^*$  such that  $y \equiv x^2 \pmod{p}$ 

 $y \in QR_p \Leftrightarrow y^{(p-1)/2} \equiv 1 \pmod{p}$ 

 $(\Rightarrow)$ 

\* If  $y \in QR_p$ \* Then  $\exists x \in Z_p^*$  such that  $y \equiv x^2 \pmod{p}$ \* Therefore,  $y^{(p-1)/2} \equiv (x^2)^{(p-1)/2} \equiv x^{(p-1)} \equiv 1 \pmod{p}$ 

 $y \in QR_p \Leftrightarrow y^{(p-1)/2} \equiv 1 \pmod{p}$ 

 $(\Rightarrow)$ 

\* If  $y \in QR_p$ \* Then  $\exists x \in Z_p^*$  such that  $y \equiv x^2 \pmod{p}$ \* Therefore,  $y^{(p-1)/2} \equiv (x^2)^{(p-1)/2} \equiv x^{(p-1)} \equiv 1 \pmod{p}$ ( $\Leftarrow$ ) \* If  $y \notin QR_p$  i.e.  $y \in QNR_p$ 

 $y \in QR_p \Leftrightarrow y^{(p-1)/2} \equiv 1 \pmod{p}$ 

 $(\Rightarrow)$ 

\* If  $y \in QR_p$ \* Then  $\exists x \in Z_p^*$  such that  $y \equiv x^2 \pmod{p}$ \* Therefore,  $y^{(p-1)/2} \equiv (x^2)^{(p-1)/2} \equiv x^{(p-1)} \equiv 1 \pmod{p}$ ( $\Leftarrow$ ) \* If  $y \notin QR_p$  i.e.  $y \in QNR_p$ \* Then  $y \equiv g^{2k+1} \pmod{p}$ 

 $y \in QR_p \Leftrightarrow y^{(p-1)/2} \equiv 1 \pmod{p}$ 

 $(\Rightarrow)$ 

\* If  $y \in QR_p$ \* Then  $\exists x \in Z_p^*$  such that  $y \equiv x^2 \pmod{p}$ \* Therefore,  $y^{(p-1)/2} \equiv (x^2)^{(p-1)/2} \equiv x^{(p-1)} \equiv 1 \pmod{p}$ ( $\Leftarrow$ ) \* If  $y \notin QR_p$  i.e.  $y \in QNR_p$ \* Then  $y \equiv g^{2k+1} \pmod{p}$ 

\* Therefore,  $y^{(p-1)/2} \equiv (g^{2k} \cdot g)^{(p-1)/2} \equiv g^{k(p-1)} g^{(p-1)/2} \equiv g^{(p-1)/2} \equiv 1 \pmod{p}$ 

 $y \in QR_p \Leftrightarrow y^{(p-1)/2} \equiv 1 \pmod{p}$ 

 $(\Rightarrow)$ 

\* If  $y \in QR_p$ \* Then  $\exists x \in Z_p^*$  such that  $y \equiv x^2 \pmod{p}$ \* Therefore,  $y^{(p-1)/2} \equiv (x^2)^{(p-1)/2} \equiv x^{(p-1)} \equiv 1 \pmod{p}$ ( $\Leftarrow$ ) \* If  $y \notin QR_p$  i.e.  $y \in QNR_p$ \* Then  $y \equiv g^{2k+1} \pmod{p}$ \* Therefore,  $y^{(p-1)/2} \equiv (g^{2k} \cdot g)^{(p-1)/2} \equiv g^{k(p-1)} g^{(p-1)/2} \equiv g^{(p-1)/2} \equiv 1 \pmod{p}$ 

 ♦ Jacobi symbol J(a, n) is a generalization of the Legendre symbol to a composite modulus n

◇ Jacobi symbol J(a, n) is a generalization of the Legendre symbol to a composite modulus n
◇ If n is a prime, J(a, n) is equal to the Legendre symbol i.e. J(a, n) ≡ a<sup>(n-1)/2</sup>(mod n)

- ♦ Jacobi symbol J(a, n) is a generalization of the Legendre symbol to a composite modulus n
- ♦ If *n* is a prime, J(*a*, *n*) is equal to the Legendre symbol
  i.e. J(*a*, *n*) ≡  $a^{(n-1)/2} \pmod{n}$
- ♦ Jacobi symbol cannot be used to determine whether *a* is a quadratic residue mod *n* (unless *n* is a prime)

- ♦ Jacobi symbol J(a, n) is a generalization of the Legendre symbol to a composite modulus n
- ♦ If *n* is a prime, J(*a*, *n*) is equal to the Legendre symbol
  i.e. J(*a*, *n*) ≡  $a^{(n-1)/2} \pmod{n}$
- ♦ Jacobi symbol cannot be used to determine whether *a* is a quadratic residue mod *n* (unless *n* is a prime)
  ex. J(7, 143) = J(7, 11) · J(7, 13) = (-1) · (-1) = 1
  however, there is no integer *x* such that  $x^2 \equiv 7 \pmod{143}$

♦ The following algorithm computes the Jacobi symbol J(a, n), for any integer *a* and odd integer *n*, recursively:

\* Def 1: J(0, n) = 0 also If *n* is prime, J(a, n) = 0 if n|a

- \* Def 1: J(0, n) = 0 also If n is prime, J(a, n) = 0 if n|a|
- \* Def 2: If *n* is prime, J(a, n) = 1 if  $a \in QR_n$  and J(a, n) = -1 if  $a \notin QR_n$

- \* Def 1: J(0, n) = 0 also If n is prime, J(a, n) = 0 if n|a|
- \* Def 2: If *n* is prime, J(a, n) = 1 if  $a \in QR_n$  and J(a, n) = -1 if  $a \notin QR_n$
- \* Def 3: If *n* is a composite,  $J(a, n) = J(a, p_1 \cdot p_2 \dots \cdot p_m) = J(a, p_1) \cdot J(a, p_2) \dots \cdot J(a, p_m)$

- \* Def 1: J(0, n) = 0 also If n is prime, J(a, n) = 0 if n|a|
- \* Def 2: If *n* is prime, J(a, n) = 1 if  $a \in QR_n$  and J(a, n) = -1 if  $a \notin QR_n$
- \* Def 3: If *n* is a composite,  $J(a, n) = J(a, p_1 \cdot p_2 \dots \cdot p_m) = J(a, p_1) \cdot J(a, p_2) \dots \cdot J(a, p_m)$
- \* Rule 1: J(1, n) = 1

- \* Def 1: J(0, n) = 0 also If n is prime, J(a, n) = 0 if n|a|
- \* Def 2: If *n* is prime, J(a, n) = 1 if  $a \in QR_n$  and J(a, n) = -1 if  $a \notin QR_n$
- \* Def 3: If *n* is a composite,  $J(a, n) = J(a, p_1 \cdot p_2 \dots \cdot p_m) = J(a, p_1) \cdot J(a, p_2) \dots \cdot J(a, p_m)$
- \* Rule 1: J(1, n) = 1
- \* Rule 2:  $J(a \cdot b, n) = J(a, n) \cdot J(b, n)$

- \* Def 1: J(0, n) = 0 also If n is prime, J(a, n) = 0 if n|a
- \* Def 2: If *n* is prime, J(a, n) = 1 if  $a \in QR_n$  and J(a, n) = -1 if  $a \notin QR_n$
- \* Def 3: If *n* is a composite,  $J(a, n) = J(a, p_1 \cdot p_2 \dots \cdot p_m) = J(a, p_1) \cdot J(a, p_2) \dots \cdot J(a, p_m)$
- \* Rule 1: J(1, n) = 1
- \* Rule 2:  $J(a \cdot b, n) = J(a, n) \cdot J(b, n)$
- \* Rule 3: J(2, n) = 1 if  $(n^2-1)/8$  is even and J(2, n) = -1 otherwise

- \* Def 1: J(0, n) = 0 also If n is prime, J(a, n) = 0 if n|a
- \* Def 2: If *n* is prime, J(a, n) = 1 if  $a \in QR_n$  and J(a, n) = -1 if  $a \notin QR_n$
- \* Def 3: If *n* is a composite,  $J(a, n) = J(a, p_1 \cdot p_2 \dots \cdot p_m) = J(a, p_1) \cdot J(a, p_2) \dots \cdot J(a, p_m)$
- \* Rule 1: J(1, n) = 1
- \* Rule 2:  $J(a \cdot b, n) = J(a, n) \cdot J(b, n)$
- \* Rule 3: J(2, n) = 1 if  $(n^2-1)/8$  is even and J(2, n) = -1 otherwise
- \* Rule 4:  $J(a, n) = J(a \mod n, n)$

- \* Def 1: J(0, n) = 0 also If n is prime, J(a, n) = 0 if n|a
- \* Def 2: If *n* is prime, J(a, n) = 1 if  $a \in QR_n$  and J(a, n) = -1 if  $a \notin QR_n$
- \* Def 3: If *n* is a composite,  $J(a, n) = J(a, p_1 \cdot p_2 \dots \cdot p_m) = J(a, p_1) \cdot J(a, p_2) \dots \cdot J(a, p_m)$
- \* Rule 1: J(1, n) = 1
- \* Rule 2:  $J(a \cdot b, n) = J(a, n) \cdot J(b, n)$
- \* Rule 3: J(2, n) = 1 if  $(n^2-1)/8$  is even and J(2, n) = -1 otherwise
- \* Rule 4:  $J(a, n) = J(a \mod n, n)$
- Rule 5: J(a, b) = J(-a, b) if a <0 and (b-1)/2 is even, J(a, b) = -J(-a, b) if a<0 and (b-1)/2 is odd</p>

- \* Def 1: J(0, n) = 0 also If n is prime, J(a, n) = 0 if n|a
- \* Def 2: If *n* is prime, J(a, n) = 1 if  $a \in QR_n$  and J(a, n) = -1 if  $a \notin QR_n$
- \* Def 3: If *n* is a composite,  $J(a, n) = J(a, p_1 \cdot p_2 \dots \cdot p_m) = J(a, p_1) \cdot J(a, p_2) \dots \cdot J(a, p_m)$
- \* Rule 1: J(1, n) = 1
- \* Rule 2:  $J(a \cdot b, n) = J(a, n) \cdot J(b, n)$
- \* Rule 3: J(2, n) = 1 if  $(n^2-1)/8$  is even and J(2, n) = -1 otherwise
- \* Rule 4:  $J(a, n) = J(a \mod n, n)$
- \* Rule 5: J(a, b) = J(-a, b) if a < 0 and (b-1)/2 is even, J(a, b) = -J(-a, b) if a < 0 and (b-1)/2 is odd
- \* Rule 6:  $J(a, b_1 \cdot b_2) = J(a, b_1) \cdot J(a, b_2)$

- \* Def 1: J(0, n) = 0 also If n is prime, J(a, n) = 0 if n|a
- \* Def 2: If *n* is prime, J(a, n) = 1 if  $a \in QR_n$  and J(a, n) = -1 if  $a \notin QR_n$
- \* Def 3: If *n* is a composite,  $J(a, n) = J(a, p_1 \cdot p_2 \dots \cdot p_m) = J(a, p_1) \cdot J(a, p_2) \dots \cdot J(a, p_m)$
- \* Rule 1: J(1, n) = 1
- \* Rule 2:  $J(a \cdot b, n) = J(a, n) \cdot J(b, n)$
- \* Rule 3: J(2, n) = 1 if  $(n^2-1)/8$  is even and J(2, n) = -1 otherwise
- \* Rule 4:  $J(a, n) = J(a \mod n, n)$
- \* Rule 5: J(a, b) = J(-a, b) if a < 0 and (b-1)/2 is even, J(a, b) = -J(-a, b) if a < 0 and (b-1)/2 is odd
- \* Rule 6:  $J(a, b_1 \cdot b_2) = J(a, b_1) \cdot J(a, b_2)$
- \* Rule 7: if gcd(a, b)=1, a and b are odd

- \* Def 1: J(0, n) = 0 also If n is prime, J(a, n) = 0 if n|a
- \* Def 2: If *n* is prime, J(a, n) = 1 if  $a \in QR_n$  and J(a, n) = -1 if  $a \notin QR_n$
- \* Def 3: If *n* is a composite,  $J(a, n) = J(a, p_1 \cdot p_2 \dots \cdot p_m) = J(a, p_1) \cdot J(a, p_2) \dots \cdot J(a, p_m)$
- \* Rule 1: J(1, n) = 1
- \* Rule 2:  $J(a \cdot b, n) = J(a, n) \cdot J(b, n)$
- \* Rule 3: J(2, n) = 1 if  $(n^2-1)/8$  is even and J(2, n) = -1 otherwise
- \* Rule 4:  $J(a, n) = J(a \mod n, n)$
- Rule 5: J(a, b) = J(-a, b) if a <0 and (b-1)/2 is even, J(a, b) = -J(-a, b) if a<0 and (b-1)/2 is odd</p>
- \* Rule 6:  $J(a, b_1 \cdot b_2) = J(a, b_1) \cdot J(a, b_2)$
- ★ Rule 7: if gcd(a, b)=1, a and b are odd
   ★ 7a: J(a, b) = J(b, a) if (a-1)·(b-1)/4 is even

- \* Def 1: J(0, n) = 0 also If n is prime, J(a, n) = 0 if n|a
- \* Def 2: If *n* is prime, J(a, n) = 1 if  $a \in QR_n$  and J(a, n) = -1 if  $a \notin QR_n$
- \* Def 3: If *n* is a composite,  $J(a, n) = J(a, p_1 \cdot p_2 \dots \cdot p_m) = J(a, p_1) \cdot J(a, p_2) \dots \cdot J(a, p_m)$
- \* Rule 1: J(1, n) = 1
- \* Rule 2:  $J(a \cdot b, n) = J(a, n) \cdot J(b, n)$
- \* Rule 3: J(2, n) = 1 if  $(n^2-1)/8$  is even and J(2, n) = -1 otherwise
- \* Rule 4:  $J(a, n) = J(a \mod n, n)$
- Rule 5: J(a, b) = J(-a, b) if a <0 and (b-1)/2 is even, J(a, b) = -J(-a, b) if a<0 and (b-1)/2 is odd</p>
- \* Rule 6:  $J(\overline{a, b_1 \cdot b_2}) = J(\overline{a, b_1}) \cdot \overline{J(a, b_2)}$
- ★ Rule 7: if gcd(a, b)=1, a and b are odd
  ☆ 7a: J(a, b) = J(b, a) if (a-1)·(b-1)/4 is even
  ☆ 7b: J(a, b) = -J(b, a) if (a-1)·(b-1)/4 is odd

 $\diamond$  Consider  $n = p \cdot q$ , where p and q are prime numbers

♦ Consider  $n = p \cdot q$ , where p and q are prime numbers  $x \in QR_n$ 

♦ Consider  $n = p \cdot q$ , where p and q are prime numbers  $x \in QR_n$   $⇔ x \in QR_p \text{ and } x \in QR_q$ 

♦ Consider  $n = p \cdot q$ , where p and q are prime numbers  $x \in QR_n$   $⇔ x \in QR_p \text{ and } x \in QR_q$   $⇔ J(x, p) = x^{(p-1)/2} \equiv 1 \pmod{p} \text{ and } J(x, q) = x^{(q-1)/2} \equiv 1 \pmod{q}$ 

♦ Consider n = p · q, where p and q are prime numbers  $x \in QR_n$   $\Leftrightarrow x \in QR_p \text{ and } x \in QR_q$   $\Leftrightarrow J(x, p) = x^{(p-1)/2} \equiv 1 \pmod{p} \text{ and } J(x, q) = x^{(q-1)/2} \equiv 1 \pmod{q}$   $\Rightarrow J(x, n) = J(x, p) \cdot J(x, q) = 1$ 

♦ Consider n = p · q, where p and q are prime numbers  $x \in QR_n$   $⇔ x \in QR_p \text{ and } x \in QR_q$   $⇔ J(x, p) = x^{(p-1)/2} \equiv 1 \pmod{p} \text{ and } J(x, q) = x^{(q-1)/2} \equiv 1 \pmod{q}$   $⇒ J(x, n) = J(x, p) \cdot J(x, q) = 1$ 



♦ Consider n = p · q, where p and q are prime numbers  $x \in QR_n$   $\Leftrightarrow x \in QR_p \text{ and } x \in QR_q$   $\Leftrightarrow J(x, p) = x^{(p-1)/2} \equiv 1 \pmod{p} \text{ and } J(x, q) = x^{(q-1)/2} \equiv 1 \pmod{q}$   $\Rightarrow J(x, n) = J(x, p) \cdot J(x, q) = 1$ 


| J(x, p) | J(x,q)                        | J(x, n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |
|---------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 1       | 1                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $x \in QR_n$                    |
|         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |
|         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |
|         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |
|         | J( <i>x</i> , <i>p</i> )<br>1 | $\begin{array}{c c} J(x,p) & J(x,q) \\ \hline 1 & 1 \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ | J(x, p) $J(x, q)$ $J(x, n)$ 111 |

|                 | J(x, p) | J(x,q) | J(x, n) |                      |
|-----------------|---------|--------|---------|----------------------|
| Q <sub>00</sub> | 1       | 1      | 1       | $x \in QR_n$         |
| Q <sub>01</sub> | 1       | -1     | -1      | $x \in \text{QNR}_n$ |
|                 |         |        |         |                      |
|                 |         |        | -       |                      |

|                 | J(x, p) | J(x,q) | J(x, n) |                      |
|-----------------|---------|--------|---------|----------------------|
| Q <sub>00</sub> | 1       | 1      | 1       | $x \in QR_n$         |
| Q <sub>01</sub> | 1       | -1     | -1      | $x \in \text{QNR}_n$ |
| Q <sub>10</sub> |         |        |         |                      |
|                 |         |        |         |                      |

|                 | J(x, p) | J(x,q) | J(x, n) |                      |
|-----------------|---------|--------|---------|----------------------|
| Q <sub>00</sub> | 1       | 1      | 1       | $x \in QR_n$         |
| Q <sub>01</sub> | 1       | -1     | -1      | $x \in \text{QNR}_n$ |
| Q <sub>10</sub> | -1      | 1      | -1      | $x \in \text{QNR}_n$ |
|                 |         |        |         |                      |

|                 | J(x, p) | J(x,q) | J(x, n) |                      |
|-----------------|---------|--------|---------|----------------------|
| Q <sub>00</sub> | 1       | 1      | 1       | $x \in QR_n$         |
| Q <sub>01</sub> | 1       | -1     | -1      | $x \in \text{QNR}_n$ |
| Q <sub>10</sub> | -1      | 1      | -1      | $x \in \text{QNR}_n$ |
| Q <sub>11</sub> |         |        |         |                      |

|                 | J(x, p) | J(x,q) | J(x, n) |                      |
|-----------------|---------|--------|---------|----------------------|
| Q <sub>00</sub> | 1       | 1      | 1       | $x \in QR_n$         |
| Q <sub>01</sub> | 1       | -1     | -1      | $x \in \text{QNR}_n$ |
| Q <sub>10</sub> | -1      | 1      | -1      | $x \in \text{QNR}_n$ |
| Q <sub>11</sub> | -1      | -1     | 1       | $x \in QNR_n$        |

| • |  |  |  |  |
|---|--|--|--|--|
| • |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |

 $(p-1)! -1 \pmod{p}$ 

•

Proof:

 $\bullet$ 

Goal:  $(p-1)! \equiv 1 \cdot 2 \cdot 3 \cdot \cdots (p-1) \equiv -1 \equiv (p-1) \pmod{p}$ 

$$(p-1)! -1 \pmod{p}$$

Proof:

Goal:  $(p-1)! \equiv 1 \cdot 2 \cdot 3 \cdot \cdots (p-1) \equiv -1 \equiv (p-1) \pmod{p}$ \* Since  $gcd(p-1, p) \equiv 1$ , the above is equivalent to  $(p-2)! \equiv 1 \pmod{p}$ 

$$(p-1)! -1 \pmod{p}$$

#### Proof:

Goal:  $(p-1)! \equiv 1 \cdot 2 \cdot 3 \cdot \cdots (p-1) \equiv -1 \equiv (p-1) \pmod{p}$ \* Since gcd(p-1, p) = 1, the above is equivalent to  $(p-2)! \equiv 1 \pmod{p}$ \* e.g. p = 5,  $3 \cdot 2 \cdot 1 \equiv 1 \pmod{5}$ 

 $(p-1)! -1 \pmod{p}$ 

#### Proof:

Goal:  $(p-1)! \equiv 1 \cdot 2 \cdot 3 \cdots (p-1) \equiv -1 \equiv (p-1) \pmod{p}$ \* Since gcd(p-1, p) = 1, the above is equivalent to  $(p-2)! \equiv 1 \pmod{p}$ \* e.g. p = 5,  $3 \cdot 2 \cdot 1 \equiv 1 \pmod{5}$ p = 7,  $5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 1 \pmod{7}$ 

 $(p-1)! -1 \pmod{p}$ 

#### Proof:

Goal:  $(p-1)! \equiv 1 \cdot 2 \cdot 3 \cdot \cdots (p-1) \equiv -1 \equiv (p-1) \pmod{p}$ \* Since gcd(p-1, p) = 1, the above is equivalent to  $(p-2)! \equiv 1 \pmod{p}$ \* e.g. p = 5,  $3 \cdot 2 \cdot 1 \equiv 1 \pmod{5}$  p = 7,  $5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 1 \pmod{7}$ \* We know that  $1^{-1} \equiv 1 \pmod{p}$  and  $(-1)^{-1} \equiv -1 \pmod{p}$ 

 $(p-1)! -1 \pmod{p}$ 

#### Proof:

Goal:  $(p-1)! \equiv 1 \cdot 2 \cdot 3 \cdots (p-1) \equiv -1 \equiv (p-1) \pmod{p}$ \* Since  $gcd(p-1, p) \equiv 1$ , the above is equivalent to  $(p-2)! \equiv 1 \pmod{p}$ \* e.g.  $p \equiv 5$ ,  $3 \cdot 2 \cdot 1 \equiv 1 \pmod{5}$   $p \equiv 7$ ,  $5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 1 \pmod{7}$ \* We know that  $1^{-1} \equiv 1 \pmod{p}$  and  $(-1)^{-1} \equiv -1 \pmod{p}$ \* Claim:  $\forall i \in \mathbb{Z}_p^* \setminus \{1, -1\}, i^{-1} \neq i \pmod{p}$  if  $i^{-1} \equiv i \tanh i^2 \equiv 1, i \in \{1, -1\}$ 

 $(p-1)! -1 \pmod{p}$ 

#### Proof:

Goal:  $(p-1)! \equiv 1 \cdot 2 \cdot 3 \cdot \cdots (p-1) \equiv -1 \equiv (p-1) \pmod{p}$ \* Since  $gcd(p-1, p) \equiv 1$ , the above is equivalent to  $(p-2)! \equiv 1 \pmod{p}$ \* e.g.  $p \equiv 5$ ,  $3 \cdot 2 \cdot 1 \equiv 1 \pmod{5}$  $p \equiv 7$ ,  $5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 1 \pmod{7}$ 

\* We know that  $1^{-1} \equiv 1 \pmod{p}$  and  $(-1)^{-1} \equiv -1 \pmod{p}$ 

★ Claim:  $\forall i \in \mathbb{Z}_p^* \setminus \{1, -1\}, i^{-1} \neq i \quad (\text{pf: if } i^{-1} \equiv i \text{ then } i^2 \equiv 1, i \in \{1, -1\})$ 

\* Claim:  $\forall i_1 \neq i_2 \in \mathbb{Z}_p^* \setminus \{1, -1\}, i_1^{-1} \neq i_2^{-1}$  (pf: if  $i_1^{-1} \equiv i_2^{-1}$  then  $i_1 \cdot i_2^{-1} \equiv 1$ then  $i_1 \equiv i_2$ , contradiction)

 $(p-1)! -1 \pmod{p}$ 

#### Proof:

Goal:  $(p-1)! \equiv 1 \cdot 2 \cdot 3 \cdot \cdots (p-1) \equiv -1 \equiv (p-1) \pmod{p}$ \* Since gcd(p-1, p) = 1, the above is equivalent to  $(p-2)! \equiv 1 \pmod{p}$ \* e.g. p = 5,  $3 \cdot 2 \cdot 1 \equiv 1 \pmod{5}$ 

 $p = 7, 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 1 \pmod{7}$ 

\* We know that  $1^{-1} \equiv 1 \pmod{p}$  and  $(-1)^{-1} \equiv -1 \pmod{p}$ 

\* Claim:  $\forall i \in \mathbb{Z}_{p}^{*} \setminus \{1, -1\}, i^{-1} \neq i \text{ (pf: if } i^{-1} \equiv i \text{ then } i^{2} \equiv 1, i \in \{1, -1\})$ 

\* Claim:  $\forall i_1 \neq i_2 \in \mathbb{Z}_p^* \setminus \{1, -1\}, i_1^{-1} \neq i_2^{-1}$  (pf: if  $i_1^{-1} \equiv i_2^{-1}$  then  $i_1 \cdot i_2^{-1} \equiv 1$ then  $i_1 \equiv i_2$ , contradiction)

\* Out of the set  $\{2, 3, \dots, p-2\}$ , we can form (p-3)/2 pairs such that  $i \cdot j \equiv 1 \pmod{p}$ , multiply them together, we obtain  $(p-2)! \equiv 1$ 

Another Proof of QR<sub>p</sub> test

 $y \in QR_p \Leftrightarrow y^{(p-1)/2} \equiv 1 \pmod{p}$ 

۲

:  
Another Proof of QR<sub>p</sub> test  

$$y \in QR_p \Leftrightarrow y^{(p-1)/2} \equiv 1 \pmod{p}$$
  
 $(\Rightarrow) * If y \in QR_p$ 

Another Proof of QR<sub>p</sub> test  

$$y \in QR_p \Leftrightarrow y^{(p-1)/2} \equiv 1 \pmod{p}$$

$$(\Rightarrow) * If y \in QR_p$$

$$* Then \exists x \in Z_p^* \text{ such that } y \equiv x^2 \pmod{p}$$

 $y \in QR_p \Leftrightarrow y^{(p-1)/2} \equiv 1 \pmod{p}$ 

- \* Then  $\exists x \in \mathbb{Z}_p^*$  such that  $y \equiv x^2 \pmod{p}$
- \* Therefore,  $y^{(p-1)/2} \equiv (x^2)^{(p-1)/2} \equiv x^{(p-1)} \equiv 1 \pmod{p}$

 $y \in QR_p \Leftrightarrow y^{(p-1)/2} \equiv 1 \pmod{p}$ 

- \* Then  $\exists x \in \mathbb{Z}_p^*$  such that  $y \equiv x^2 \pmod{p}$
- \* Therefore,  $y^{(p-1)/2} \equiv (x^2)^{(p-1)/2} \equiv x^{(p-1)} \equiv 1 \pmod{p}$
- ( $\Leftarrow$ ) \*  $\forall i, y \in \mathbb{Z}_p^*$ , gcd $(i, p) = 1, \exists j \text{ such that } i \cdot j \equiv y \pmod{p}$

 $y \in QR_p \Leftrightarrow y^{(p-1)/2} \equiv 1 \pmod{p}$ 

 $(\Longrightarrow) \star \mathrm{If} y \in \mathrm{QR}_p$ 

- \* Then  $\exists x \in \mathbb{Z}_p^*$  such that  $y \equiv x^2 \pmod{p}$
- \* Therefore,  $y^{(p-1)/2} \equiv (x^2)^{(p-1)/2} \equiv x^{(p-1)} \equiv 1 \pmod{p}$

(⇐) \*  $\forall i, y \in \mathbb{Z}_p^*$ , gcd(*i*, *p*)=1,  $\exists j$  such that  $i \cdot j \equiv y \pmod{p}$ \* If  $y \notin QR_p$ , the congruence  $x^2 \equiv y \pmod{p}$  has no solution, therefore,  $j \neq i \pmod{p}$ 

$$y \in QR_p \Leftrightarrow y^{(p-1)/2} \equiv 1 \pmod{p}$$

- \* Then  $\exists x \in \mathbb{Z}_p^*$  such that  $y \equiv x^2 \pmod{p}$
- \* Therefore,  $y^{(p-1)/2} \equiv (x^2)^{(p-1)/2} \equiv x^{(p-1)} \equiv 1 \pmod{p}$
- ( $\Leftarrow$ ) \*  $\forall i, y \in \mathbb{Z}_p^*$ , gcd $(i, p) = 1, \exists j \text{ such that } i \cdot j \equiv y \pmod{p}$ 
  - ★ If  $y \notin QR_p$ , the congruence  $x^2 \equiv y \pmod{p}$  has no solution, therefore,  $j \neq i \pmod{p}$
  - \* We can group the integers 1, 2, ..., p-1 into (p-1)/2 pairs (i, j), each satisfying  $i \cdot j \equiv y \pmod{p}$

$$y \in QR_p \Leftrightarrow y^{(p-1)/2} \equiv 1 \pmod{p}$$

- \* Then  $\exists x \in \mathbb{Z}_p^*$  such that  $y \equiv x^2 \pmod{p}$
- \* Therefore,  $y^{(p-1)/2} \equiv (x^2)^{(p-1)/2} \equiv x^{(p-1)} \equiv 1 \pmod{p}$
- ( $\Leftarrow$ ) \*  $\forall i, y \in \mathbb{Z}_p^*$ , gcd $(i, p) = 1, \exists j \text{ such that } i \cdot j \equiv y \pmod{p}$ 
  - ★ If  $y \notin QR_p$ , the congruence  $x^2 \equiv y \pmod{p}$  has no solution, therefore,  $j \neq i \pmod{p}$
  - \* We can group the integers 1, 2, ..., *p*-1 into (p-1)/2 pairs (i, j), each satisfying  $i \cdot j \equiv y \pmod{p}$
  - \* Multiply them together, we have  $(p-1)! \equiv y^{(p-1)/2} \pmod{p}$

$$y \in QR_p \Leftrightarrow y^{(p-1)/2} \equiv 1 \pmod{p}$$

- \* Then  $\exists x \in \mathbb{Z}_p^*$  such that  $y \equiv x^2 \pmod{p}$
- \* Therefore,  $y^{(p-1)/2} \equiv (x^2)^{(p-1)/2} \equiv x^{(p-1)} \equiv 1 \pmod{p}$
- ( $\Leftarrow$ ) \*  $\forall i, y \in \mathbb{Z}_p^*$ , gcd $(i, p) = 1, \exists j \text{ such that } i \cdot j \equiv y \pmod{p}$ 
  - ★ If  $y \notin QR_p$ , the congruence  $x^2 \equiv y \pmod{p}$  has no solution, therefore,  $j \neq i \pmod{p}$
  - \* We can group the integers 1, 2, ..., p-1 into (p-1)/2 pairs (i, j), each satisfying  $i \cdot j \equiv y \pmod{p}$
  - \* Multiply them together, we have  $(p-1)! \equiv y^{(p-1)/2} \pmod{p}$
  - **\*** From Wilson's theorem,  $y^{(p-1)/2} \equiv -1 \pmod{p}$

### Exactly Two Square Roots Every $y \in QR_p$ has exactly two square roots i.e. x and p-x such that $x^2 \equiv (p-x)^2 \equiv y \pmod{p}$

### Exactly Two Square Roots Every $y \in QR_p$ has exactly two square roots i.e. x and p-x such that $x^2 \equiv (p-x)^2 \equiv y \pmod{p}$

Exactly Two Square Roots Every  $y \in QR_p$  has exactly two square roots i.e. x and p-x such that  $x^2 \equiv (p-x)^2 \equiv y \pmod{p}$ pf:  $* QR_p = \{g^2, g^4, \dots, g^{p-1}\}, |Z_p^*| = p-1, \text{ and } |QR_p| = (p-1)/2$  Every  $y \in QR_p$  has exactly two square roots i.e. x and p-x such that  $x^2 \equiv (p - x)^2 \equiv y \pmod{p}$ pf:  $* QR_p = \{g^2, g^4, \dots, g^{p-1}\}, |Z_p^*| = p-1, \text{ and } |QR_p| = (p-1)/2$  \* For each  $y \equiv g^{2k}$  in QR<sub>p</sub>, there are at least two distinct  $x \in Z_p^*$  s.t.  $x^2 \equiv y \pmod{p}$ , i.e.,  $g^k$  and p- $g^k$  (if one is even, the other is odd) Every  $y \in QR_p$  has exactly two square roots i.e. x and p-x such that  $x^2 \equiv (p-x)^2 \equiv y \pmod{p}$ pf:  $* QR_p = \{g^2, g^4, \dots, g^{p-1}\}, |Z_p^*| = p-1, \text{ and } |QR_p| = (p-1)/2$  \* For each  $y \equiv g^{2k}$  in  $QR_p$ , there are at least two distinct  $x \in Z_p^*$  s.t.  $x^2 \equiv y \pmod{p}$ , i.e.,  $g^k$  and p- $g^k$  (if one is even, the other is odd) \* Since  $|QR_p| = (p-1)/2$ , we can obtain a set of p-1 square roots  $S = \{g, p-g, g^2, p-g^2, \dots, g^{(p-1)/2}, p-g^{(p-1)/2}\}$ 

Exactly Two Square Roots Every  $y \in QR_p$  has exactly two square roots i.e. x and p-x such that  $x^2 \equiv (p-x)^2 \equiv y \pmod{p}$ pf:  $\star QR_p = \{g^2, g^4, \dots, g^{p-1}\}, |Z_p^*| = p-1, \text{ and } |QR_p| = (p-1)/2$ \* For each  $y \equiv g^{2k}$  in QR<sub>p</sub>, there are at least two distinct  $x \in Z_p^*$  s.t.  $x^2 \equiv y \pmod{p}$ , i.e.,  $g^k$  and  $p - g^k$  (if one is even, the other is odd) \* Since  $|QR_p| = (p-1)/2$ , we can obtain a set of p-1 square roots  $S = \{g, p-g, g^2, p-g^2, \dots, g^{(p-1)/2}, p-g^{(p-1)/2}\}$ \* Claim: the elements of S are all distinct  $(1, g^i \neq g^j \pmod{p})$  when  $i \neq j$  since g is a primitive, 2.  $g^i \neq -g^j \pmod{p}$  when  $i \neq j$ , otherwise  $(g^{i}+g^{j})(g^{i}-g^{j}) \equiv g^{2i}-g^{2j} \equiv 0 \pmod{p}$  implies  $i \neq j \pmod{(p-1)/2}$ , 3.  $g^i \neq -g^i \pmod{p}$  since if one is even, the other is odd)

Exactly Two Square Roots Every  $y \in QR_p$  has exactly two square roots i.e. x and p-x such that  $x^2 \equiv (p-x)^2 \equiv y \pmod{p}$ pf:  $\mathbf{A} QR_p = \{g^2, g^4, \dots, g^{p-1}\}, |Z_p^*| = p-1, \text{ and } |QR_p| = (p-1)/2$ \* For each  $y \equiv g^{2k}$  in QR<sub>p</sub>, there are at least two distinct  $x \in Z_p^*$  s.t.  $x^2 \equiv y \pmod{p}$ , i.e.,  $g^k$  and  $p - g^k$  (if one is even, the other is odd) \* Since  $|QR_p| = (p-1)/2$ , we can obtain a set of p-1 square roots  $S = \{g, p-g, g^2, p-g^2, \dots, g^{(p-1)/2}, p-g^{(p-1)/2}\}$ \* Claim: the elements of S are all distinct  $(1, g^i \neq g^j \pmod{p})$  when  $i \neq j$  since g is a primitive, 2.  $g^i \neq -g^j \pmod{p}$  when  $i \neq j$ , otherwise  $(g^{i}+g^{j})(g^{i}-g^{j}) \equiv g^{2i}-g^{2j} \equiv 0 \pmod{p}$  implies  $i \neq j \pmod{(p-1)/2}$ , 3.  $g^i \neq -g^i \pmod{p}$  since if one is even, the other is odd) \* If there is one more square root z of  $y \equiv g^{2k}$  which is not  $g^k$  and

- $g^k$ , it must belong to S (which is  $Z_p^*$ ), say  $g^j$ ,  $j \neq k$ , which would imply that  $g^{2j} \equiv g^{2k} \pmod{p}$ , and leads to contradiction 45

# Order q Subgroup $G_q$ of $Z_p^*$

♦ Let *p* be a prime number, *g* be a primitive in  $Z_p^*$ 

۲

# Order q Subgroup $G_q$ of $Z_p^*$

♦ Let p be a prime number, g be a primitive in Z<sub>p</sub>\*
♦ Let p = k · q + 1 i.e. q | p-1 where q is also a prime number

# Order q Subgroup $G_q$ of $Z_p^*$

♦ Let p be a prime number, g be a primitive in Z<sub>p</sub>\*
♦ Let p = k · q + 1 i.e. q | p-1 where q is also a prime number
♦ Let G<sub>q</sub> = {g<sup>k</sup>, g<sup>2k</sup>, ..., g<sup>q · k</sup> ≡ 1}
♦ Let p be a prime number, g be a primitive in Z<sub>p</sub>\*
♦ Let  $p = k \cdot q + 1$  i.e.  $q \mid p-1$  where q is also a prime number
♦ Let G<sub>q</sub> = { $g^k, g^{2k}, \ldots, g^{q \cdot k} \equiv 1$ }
♦ Is G<sub>q</sub> a subgroup in Z<sub>p</sub>\*? YES

♦ Let p be a prime number, g be a primitive in Z<sub>p</sub>\*
♦ Let  $p = k \cdot q + 1$  i.e.  $q \mid p-1$  where q is also a prime number
♦ Let  $G_q = \{g^k, g^{2k}, \dots, g^{q+k} \equiv 1\}$ ♦ Is  $G_q$  a subgroup in Z<sub>p</sub>\*? YES
∀ x, y G<sub>q</sub>, it is clear that z  $g^{i+k} = x \cdot y = g^{(i+i2)+k} \pmod{p}$ 

♦ Let p be a prime number, g be a primitive in Z<sub>p</sub>\*
♦ Let p = k · q + 1 i.e. q | p-1 where q is also a prime number
♦ Let G<sub>q</sub> = {g<sup>k</sup>, g<sup>2k</sup>, ..., g<sup>q · k</sup> ≡ 1}
♦ Is G<sub>q</sub> a subgroup in Z<sub>p</sub>\*? YES
∀ x, y G<sub>q</sub>, it is clear that z g<sup>i · k</sup> x · y g<sup>(i1+i2) · k</sup> (mod p) is also in G<sub>q</sub>, where i ≡ i<sub>1</sub> + i<sub>2</sub> (mod q)

Let p be a prime number, g be a primitive in Z<sub>p</sub>\*
Let p = k · q + 1 i.e. q | p-1 where q is also a prime number
Let G<sub>q</sub> = {g<sup>k</sup>, g<sup>2k</sup>, ..., g<sup>q · k</sup> ≡1}
Is G<sub>q</sub> a subgroup in Z<sub>p</sub>\*? YES
∀ x, y G<sub>q</sub>, it is clear that z g<sup>i · k</sup> x · y g<sup>(i1+i2) · k</sup> (mod p) is also in G<sub>q</sub>, where i ≡ i<sub>1</sub> + i<sub>2</sub> (mod q)
Is the order of the subgroup G<sub>q</sub> q? YES

♦ Let p be a prime number, g be a primitive in Z<sub>p</sub>\*
♦ Let  $p = k \cdot q + 1$  i.e.  $q \mid p-1$  where q is also a prime number
♦ Let  $G_q = \{g^k, g^{2k}, \dots, g^{q+k} \equiv 1\}$ ♦ Is  $G_q$  a subgroup in  $Z_p^*$ ? YES
∀ x, y G<sub>q</sub>, it is clear that z  $g^{i+k} = x \cdot y = g^{(i+i)+k} \pmod{p}$ is also in  $G_q$ , where  $i \equiv i_1 + i_2 \pmod{q}$ ♦ Is the order of the subgroup  $G_q = q$ ? YES
∀  $i_1, i_2 = Z_q, i_1 = i_2, g^{i_1+k} = g^{i_2+k} \pmod{p}$  otherwise g is not a

 $\diamond$  Let p be a prime number, g be a primitive in  $Z_p^*$  $\Rightarrow$  Let  $p = k \cdot q + 1$  i.e.  $q \mid p-1$  where q is also a prime number  $\Rightarrow \text{ Let } \mathbf{G}_q = \{ g^k, g^{2k}, \dots, g^{q-k} \equiv 1 \}$  $\diamond$  Is G<sub>*q*</sub> a subgroup in Z<sub>*p*</sub><sup>\*</sup>? YES  $\forall x, y \in G_q$ , it is clear that  $z = g^{i \cdot k} = x \cdot y = g^{(i_1+i_2) \cdot k} \pmod{p}$ is also in  $G_q$ , where  $i \equiv i_1 + i_2 \pmod{q}$  $\diamond$  Is the order of the subgroup G<sub>q</sub> q? YES  $\forall i_1, i_2 \quad Z_a, i_1 \quad i_2, g^{i_1 \cdot k} \quad g^{i_2 \cdot k} \pmod{p}$  otherwise g is not a primitive in  $Z_p^*$ , also  $g^{q+k} \equiv 1 \pmod{p}$ 

♦ Let p be a prime number, g be a primitive in  $Z_p^*$  $\Rightarrow$  Let  $p = k \cdot q + 1$  i.e.  $q \mid p-1$  where q is also a prime number  $\Rightarrow \text{ Let } \mathbf{G}_q = \{ g^k, g^{2k}, \dots, g^{q^k} \in \mathbb{I} \}$  $\diamond$  Is G<sub>*q*</sub> a subgroup in Z<sub>*p*</sub><sup>\*</sup>? YES  $\forall x, y \in G_q$ , it is clear that  $z = g^{i \cdot k} = x \cdot y = g^{(i_1+i_2) \cdot k} \pmod{p}$ is also in  $G_q$ , where  $i \equiv i_1 + i_2 \pmod{q}$  $\diamond$  Is the order of the subgroup G<sub>q</sub> q? YES  $\forall i_1, i_2 \quad Z_a, i_1 \quad i_2, g^{i_1 \cdot k} \quad g^{i_2 \cdot k} \pmod{p}$  otherwise g is not a primitive in  $Z_p^*$ , also  $g^{q+k} \equiv 1 \pmod{p}$  $\diamond$  How many generators are there in  $G_q$ ?  $\phi(q)=q-1$ 

♦ Let p be a prime number, g be a primitive in  $Z_p^*$  $\Rightarrow$  Let  $p = k \cdot q + 1$  i.e.  $q \mid p-1$  where q is also a prime number  $\Rightarrow \text{ Let } \mathbf{G}_q = \{ g^k, g^{2k}, \dots, g^{q^k} \in \mathbb{I} \}$  $\Rightarrow$  Is  $G_a$  a subgroup in  $Z_p^*$ ? YES  $\forall x, y \in G_q$ , it is clear that  $z = g^{i \cdot k} = x \cdot y = g^{(i_1+i_2) \cdot k} \pmod{p}$ is also in  $G_q$ , where  $i \equiv i_1 + i_2 \pmod{q}$  $\diamond$  Is the order of the subgroup G<sub>q</sub> q? YES  $\forall i_1, i_2 \quad Z_a, i_1 \quad i_2, g^{i_1 \cdot k} \quad g^{i_2 \cdot k} \pmod{p}$  otherwise g is not a primitive in  $Z_p^*$ , also  $g^{q+k} \equiv 1 \pmod{p}$  $\diamond$  How many generators are there in  $G_q$ ?  $\phi(q)=q-1$ 

a. there are  $\phi(p-1)$  generators in  $Z_p^* = \{g^1, g^2, \dots, g^x, \dots, g^{p-1}\}$ , since

 $\diamond$  Let p be a prime number, g be a primitive in  $Z_p^*$  $\Rightarrow$  Let  $p = k \cdot q + 1$  i.e.  $q \mid p-1$  where q is also a prime number  $\Rightarrow \text{ Let } \mathbf{G}_{a} = \{ g^{k}, g^{2k}, \dots, g^{q^{k}} \in \mathbb{I} \}$  $\Rightarrow$  Is  $G_a$  a subgroup in  $Z_p^*$ ? YES  $\forall x, y \in G_q$ , it is clear that  $z = g^{i \cdot k} = x \cdot y = g^{(i_1+i_2) \cdot k} \pmod{p}$ is also in  $G_q$ , where  $i \equiv i_1 + i_2 \pmod{q}$  $\diamond$  Is the order of the subgroup G<sub>q</sub> q? YES  $\forall i_1, i_2 \quad Z_a, i_1 \quad i_2, g^{i_1 \cdot k} \quad g^{i_2 \cdot k} \pmod{p}$  otherwise g is not a primitive in  $Z_p^*$ , also  $g^{q+k} \equiv 1 \pmod{p}$  $\diamond$  How many generators are there in  $G_q$ ?  $\phi(q)=q-1$ a. there are  $\phi(p-1)$  generators in  $Z_p^* = \{g^1, g^2, \dots, g^x, \dots, g^{p-1}\}$ , since gcd(p-1, x) = d > 1 implies that  $ord_p(g^x) = (p-1)/d$ 

also  $(g^x)^y = 1 \pmod{p}$  and  $g^{p-1} = 1 \pmod{p}$  implies that either

also  $(g^x)^y = 1 \pmod{p}$  and  $g^{p-1} = 1 \pmod{p}$  implies that either  $x \cdot y | p-1$  or  $p-1 | x \cdot y, \gcd(x, p-1) = 1$  implies that p-1 | y

also  $(g^x)^y = 1 \pmod{p}$  and  $g^{p-1} = 1 \pmod{p}$  implies that either  $x \cdot y | p-1$  or  $p-1 | x \cdot y$ , gcd(x, p-1) = 1 implies that p-1 | y therefore,  $ord_p(g^x) = p-1$ 

also  $(g^x)^y = 1 \pmod{p}$  and  $g^{p-1} = 1 \pmod{p}$  implies that either  $x \cdot y | p-1 \text{ or } p-1 | x \cdot y, \gcd(x, p-1) = 1$  implies that p-1 | ytherefore,  $\operatorname{ord}_p(g^x) = p-1$ 

b. there are  $\phi(q)$  primitives in  $G_q = \{g^k, g^{2k}, \dots, g^{q \cdot k} = 1\}$  since

also  $(g^x)^y = 1 \pmod{p}$  and  $g^{p-1} = 1 \pmod{p}$  implies that either  $x \cdot y | p-1 \text{ or } p-1 | x \cdot y, \gcd(x, p-1) = 1$  implies that p-1 | ytherefore,  $\operatorname{ord}_p(g^x) = p-1$ 

b. there are  $\phi(q)$  primitives in  $G_q = \{g^k, g^{2k}, ..., g^{q \cdot k} \mid 1\}$  since q is also a prime number

also  $(g^x)^y = 1 \pmod{p}$  and  $g^{p-1} = 1 \pmod{p}$  implies that either  $x \cdot y | p-1 \text{ or } p-1 | x \cdot y, \gcd(x, p-1) = 1$  implies that p-1 | ytherefore,  $\operatorname{ord}_p(g^x) = p-1$ 

b. there are  $\phi(q)$  primitives in  $G_q = \{g^k, g^{2k}, ..., g^{q \cdot k} \mid 1\}$  since q is also a prime number

 $\diamond$  Is G<sub>q</sub> a unique order q subgroup in Z<sub>p</sub><sup>\*</sup>? YES

- also  $(g^x)^y = 1 \pmod{p}$  and  $g^{p-1} = 1 \pmod{p}$  implies that either  $x \cdot y | p-1$  or  $p-1 | x \cdot y$ , gcd(x, p-1) = 1 implies that p-1 | ytherefore,  $ord_p(g^x) = p-1$
- b. there are  $\phi(q)$  primitives in  $G_q = \{g^k, g^{2k}, ..., g^{q \cdot k} \mid 1\}$  since q is also a prime number
- ♦ Is G<sub>q</sub> a unique order q subgroup in Z<sub>p</sub>\*? YES
  Let S be an order-q cyclic subgroup, S= {g, g<sup>2</sup>, ..., g<sup>q</sup> 1}. Since

- also  $(g^x)^y = 1 \pmod{p}$  and  $g^{p-1} = 1 \pmod{p}$  implies that either  $x \cdot y | p-1 \text{ or } p-1 | x \cdot y, \gcd(x, p-1) = 1$  implies that p-1 | ytherefore,  $\operatorname{ord}_p(g^x) = p-1$
- b. there are  $\phi(q)$  primitives in  $G_q = \{g^k, g^{2k}, ..., g^{q \cdot k} \mid 1\}$  since q is also a prime number
- ♦ Is G<sub>q</sub> a unique order q subgroup in Z<sub>p</sub>\*? YES
  Let S be an order-q cyclic subgroup, S= {g, g<sup>2</sup>, ..., g<sup>q</sup> 1}. Since
  p is prime, ∃ a unique k-th root g<sub>1</sub> Z<sub>p</sub>\*, s.t. g g<sub>1</sub><sup>k</sup> (mod p)

- also  $(g^x)^y = 1 \pmod{p}$  and  $g^{p-1} = 1 \pmod{p}$  implies that either  $x \cdot y \mid p-1$  or  $p-1 \mid x \cdot y$ , gcd(x, p-1) = 1 implies that  $p-1 \mid y$ therefore,  $ord_p(g^x) = p-1$
- b. there are  $\phi(q)$  primitives in  $G_q = \{g^k, g^{2k}, ..., g^{q \cdot k} \mid 1\}$  since q is also a prime number
- ♦ Is G<sub>q</sub> a unique order q subgroup in Z<sub>p</sub>\*? YES Let S be an order-q cyclic subgroup, S= {g, g<sup>2</sup>, ..., g<sup>q</sup> 1}. Since p is prime, ∃ a unique k-th root g<sub>1</sub> Z<sub>p</sub>\*, s.t. g g<sub>1</sub><sup>k</sup> (mod p) Let g<sub>1</sub> g be another primitive, clearly g<sub>1</sub> g<sup>s</sup> (mod p),

- also  $(g^x)^y = 1 \pmod{p}$  and  $g^{p-1} = 1 \pmod{p}$  implies that either  $x \cdot y \mid p-1$  or  $p-1 \mid x \cdot y$ , gcd(x, p-1) = 1 implies that  $p-1 \mid y$ therefore,  $ord_p(g^x) = p-1$
- b. there are  $\phi(q)$  primitives in  $G_q = \{g^k, g^{2k}, ..., g^{q \cdot k} \mid 1\}$  since q is also a prime number
- ♦ Is G<sub>q</sub> a unique order q subgroup in Z<sub>p</sub>\*? YES Let S be an order-q cyclic subgroup, S= {g, g<sup>2</sup>, ..., g<sup>q</sup> 1}. Since p is prime, ∃ a unique k-th root g<sub>1</sub> Z<sub>p</sub>\*, s.t. g g<sub>1</sub><sup>k</sup> (mod p) Let g<sub>1</sub> g be another primitive, clearly g<sub>1</sub> g<sup>s</sup> (mod p), Is the set S={g<sub>1</sub><sup>k</sup>, g<sub>1</sub><sup>2k</sup>, ..., g<sub>1</sub><sup>q·k</sup> 1} different from G<sub>q</sub>?

- also  $(g^x)^y = 1 \pmod{p}$  and  $g^{p-1} = 1 \pmod{p}$  implies that either  $x \cdot y | p-1 \text{ or } p-1 | x \cdot y, \gcd(x, p-1) = 1$  implies that p-1 | ytherefore,  $\operatorname{ord}_p(g^x) = p-1$
- b. there are  $\phi(q)$  primitives in  $G_q = \{g^k, g^{2k}, ..., g^{q \cdot k} \mid 1\}$  since q is also a prime number
- ♦ Is G<sub>q</sub> a unique order q subgroup in Z<sub>p</sub>\*? YES Let S be an order-q cyclic subgroup, S= {g, g<sup>2</sup>, ..., g<sup>q</sup> 1}. Since p is prime, ∃ a unique k-th root g<sub>1</sub> Z<sub>p</sub>\*, s.t. g g<sub>1</sub><sup>k</sup> (mod p) Let g<sub>1</sub> g be another primitive, clearly g<sub>1</sub> g<sup>s</sup> (mod p), Is the set S= {g<sub>1</sub><sup>k</sup>, g<sub>1</sub><sup>2k</sup>, ..., g<sub>1</sub><sup>q·k</sup> 1} different from G<sub>q</sub>? let x S, i.e. x g<sub>1</sub><sup>i1·k</sup> (mod p), i<sub>1</sub> ∈ Z<sub>q</sub>

- also  $(g^x)^y = 1 \pmod{p}$  and  $g^{p-1} = 1 \pmod{p}$  implies that either  $x \cdot y \mid p-1$  or  $p-1 \mid x \cdot y$ , gcd(x, p-1) = 1 implies that  $p-1 \mid y$ therefore,  $ord_p(g^x) = p-1$
- b. there are  $\phi(q)$  primitives in  $G_q = \{g^k, g^{2k}, ..., g^{q \cdot k} \mid 1\}$  since q is also a prime number
- ♦ Is G<sub>q</sub> a unique order q subgroup in Z<sub>p</sub>\*? YES Let S be an order-q cyclic subgroup, S= {g, g<sup>2</sup>, ..., g<sup>q</sup> 1}. Since p is prime, ∃ a unique k-th root g<sub>1</sub> Z<sub>p</sub>\*, s.t. g g<sub>1</sub><sup>k</sup> (mod p) Let g<sub>1</sub> g be another primitive, clearly g<sub>1</sub> g<sup>s</sup> (mod p), Is the set S={g<sub>1</sub><sup>k</sup>, g<sub>1</sub><sup>2k</sup>, ..., g<sub>1</sub><sup>q·k</sup> 1} different from G<sub>q</sub>? let x S, i.e. x g<sub>1</sub><sup>i1·k</sup> (mod p), i<sub>1</sub> ∈ Z<sub>q</sub> x g<sub>1</sub><sup>i1·k</sup> g<sup>s·i1·k</sup> g<sup>i·k</sup> (mod p) where i s · i<sub>1</sub> (mod q), i.e. S G<sub>q</sub>

- also  $(g^x)^y$  1 (mod p) and  $g^{p-1}$  1 (mod p) implies that either  $x \cdot y \mid p-1$  or  $p-1 \mid x \cdot y$ , gcd(x, p-1) = 1 implies that  $p-1 \mid y$ therefore,  $ord_p(g^x) = p-1$
- b. there are  $\phi(q)$  primitives in  $G_q = \{g^k, g^{2k}, ..., g^{q \cdot k} = 1\}$  since q is also a prime number
- ♦ Is G<sub>q</sub> a unique order q subgroup in Z<sub>p</sub>\*? YES Let S be an order-q cyclic subgroup, S= {g, g<sup>2</sup>, ..., g<sup>q</sup> 1}. Since p is prime, ∃ a unique k-th root g<sub>1</sub> Z<sub>p</sub>\*, s.t. g g<sub>1</sub><sup>k</sup> (mod p) Let g<sub>1</sub> g be another primitive, clearly g<sub>1</sub> g<sup>s</sup> (mod p), Is the set S={g<sub>1</sub><sup>k</sup>, g<sub>1</sub><sup>2k</sup>, ..., g<sub>1</sub><sup>q·k</sup> 1} different from G<sub>q</sub>? let x S, i.e. x g<sub>1</sub><sup>i1·k</sup> (mod p), i<sub>1</sub> ∈ Z<sub>q</sub> x g<sub>1</sub><sup>i1·k</sup> g<sup>s·i1·k</sup> g<sup>i·k</sup> (mod p) where i s · i<sub>1</sub> (mod q), i.e. S G<sub>q</sub>

The proof is similar for  $G_q$  S. Therefore,  $S = G_q$ 

#### Gauss' Lemma

**Lemma**: let p be a prime, a is an integer s.t. gcd(a, p)=1, define  $\{\alpha_j \equiv j \cdot a \pmod{p}\}_{j=1,...,(p-1)/2}$ , let n be the number of  $\alpha_j$ 's s.t.  $\alpha_j > p/2$  then  $L(a, p) = (-1)^n$  pf.

\*  $\alpha_j \in \{r_1, ..., r_n\}$  if  $\alpha_j > p/2$  and  $\alpha_j \in \{s_1, ..., s_{(p-1)/2-n}\}$  if  $\alpha_j < p/2$ 

- \* Since gcd(a, p)=1,  $r_i$  and  $s_i$  are all distinct and non-zero
- \* Clearly,  $0 < p-r_i < p/2$  for i=1,...,n
- ★ no p-r<sub>i</sub> is an s<sub>j</sub>: if p-r<sub>i</sub>=s<sub>j</sub> then s<sub>j</sub> ≡ -r<sub>i</sub> (mod p) rewrite in terms of a: u a ≡ -v a (mod p) where 1 ≤ u, v ≤ (p-1)/2 ⇒ u ≡ -v (mod p) where 1 ≤ u, v ≤ (p-1)/2 ⇒ impossible
  ⇒ {s<sub>1</sub>, ..., s<sub>(p-1)/2-n</sub>, p-r<sub>1</sub>, ..., p-r<sub>n</sub>} is a reordering of {1, 2, ..., (p-1)/2}
  ★ Thus, ((p-1)/2)! ≡ s<sub>1</sub> ··· s<sub>(p-1)/2-n</sub> ·(-r<sub>1</sub>) ··· (-r<sub>n</sub>) ≡ (-1)<sup>n</sup> s<sub>1</sub> ··· s<sub>(p-1)/2-n</sub> ·r<sub>1</sub> ··· r<sub>n</sub> ≡ (-1)<sup>n</sup> ((p-1)/2)! a<sup>(p-1)/2</sup> (mod p) ⇒ L(a, p) = (-1)<sup>n</sup>

$$\begin{array}{l} \hline \label{eq:constraint} \textbf{Theorem: J(2, p)} = (-1)^{(p^2-1)/8} \\ \hline \textbf{Theorem: let p be a prime, gcd(a, p) = 1 then L(a, p) = (-1)^t} \\ & \text{where t} = \sum_{j=1}^{(p-1)/2} \lfloor j \cdot a/p \rfloor. \ \text{Also L}(2, p) = (-1)^{(p^2-1)/8} \\ \hline \textbf{pf.} \\ & * \alpha_j \in \{r_1, \ldots, r_n\} \ \text{if } \alpha_j > p/2 \ \text{and } \alpha_j \in \{s_1, \ldots, s_{(p-1)/2-n}\} \ \text{if } \alpha_j < p/2 \\ & * j \ a = p \lfloor j \cdot a/p \rfloor + \alpha_j \ \text{for } j = 1, \ \ldots, (p-1)/2 \\ & \qquad \Rightarrow \sum_{j=1}^{(p-1)/2} j \ a = \sum_{j=1}^{(p-1)/2} p \lfloor j \cdot a/p \rfloor + \sum_{j=1}^n r_j + \sum_{j=1}^{(p-1)/2-n} s_j \\ & * \{s_1, \ldots, s_{(p-1)/2-n}, p \cdot r_1, \ldots, p \cdot r_n\} \ \text{is a reordering of } \{1, 2, \ldots, (p-1)/2\} \\ & \qquad \Rightarrow \sum_{j=1}^{(p-1)/2} j = \sum_{j=1}^n (p \cdot r_j) + \sum_{j=1}^{(p-1)/2-n} s_j = np - \sum_{j=1}^n r_j + \sum_{j=1}^{(p-1)/2-n} s_j \\ & * \ \text{Subtracting the above two equations, we have} \\ & \qquad (a - 1)^{\binom{(p-1)/2}{2}} j = p \left( \sum_{j=1}^{(p-1)/2} \lfloor j \cdot a/p \rfloor - n \right) + 2 \sum_{j=1}^n r_j \end{array}$$

lacksquare

$$J(2, p) = (-1)^{(p^2-1)/8} (\text{cont'd})$$
  
\*  $\sum_{j=1}^{(p-1)/2} j = 1 + ... + (p-1)/2 = (p-1)/2 (1 + (p-1)/2) / 2 = (p^2-1)/8$   
\* Thus, we have (a-1)  $(p^2-1)/8 \equiv \sum_{j=1}^{(p-1)/2} \lfloor j \cdot a/p \rfloor$  - n (mod 2)

★ If a is odd, n = ∑<sub>j=1</sub><sup>(p-1)/2</sup> ↓ j·a/p↓
★ If a = 2, ↓ j·2/p↓ = 0 for j=1, ..., (p-1)/2, n ≡ (p<sup>2</sup>-1)/8 (mod 2)
therefore, J(2, p) = (-1)<sup>(p<sup>2</sup>-1)/8</sup>

## Lemma. ord-k elements in $Z_p^* \le \phi(k)$

**Lemma**. There are at most  $\phi(k)$  ord-k elements in  $Z_p^*$ , k | p-1

### Lemma. ord-k elements in $Z_p^* \le \phi(k)$ Lemma. There are at most $\phi(k)$ ord-k elements in $Z_p^*$ , $k \mid p-1$ pf. $\Rightarrow Z_p^*$ is a field $\Rightarrow x^k-1 \equiv 0 \pmod{p}$ has at most k roots

e.g. p = 13 2 is a generator in  $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$ 

e.g. p = 13 {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1} 2 is a generator in  $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$ 

e.g. p = 13 {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1} 2 is a generator in  $Z_{13}^{*} = \{2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}, 2^{8}, 2^{9}, 2^{10}, 2^{11}, 2^{12}\}$ k=12, {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1}

e.g. p = 13 {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1} 2 is a generator in  $Z_{13}^{*} = \{2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}, 2^{8}, 2^{9}, 2^{10}, 2^{11}, 2^{12}\}$ k=12, {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1} k=6, {4, 3, 12, 9, 10, 1} (2<sup>(p-1)/k</sup>)<sup>j</sup>=(2<sup>2</sup>)<sup>j</sup> Lemma. ord-k elements in  $Z_p^* \leq \phi(k)$ Lemma. There are at most  $\phi(k)$  ord-k elements in  $Z_p^*$ ,  $k \mid p-1$ pf.  $\langle Z_p^*$  is a field  $\Rightarrow x^k-1 \equiv 0 \pmod{p}$  has at most k roots  $\langle \text{ if } a \text{ is a nontrivial root } (a \neq 1), \text{ then } \{a^0, a^1, a^2, \dots, a^{k-1}\}$ is the set of the k distinct roots.  $\langle \text{ Those } a^\ell \text{ with } \gcd(\ell, k) = d > 1 \text{ have order at most } k/d$ 

e.g. p = 13 {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1} 2 is a generator in  $Z_{13}^{*} = \{2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}, 2^{8}, 2^{9}, 2^{10}, 2^{11}, 2^{12}\}$ k=12, {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1} k=6, {4, 3, 12, 9, 10, 1} Lemma. ord-k elements in  $Z_p^* \leq \phi(k)$ Lemma. There are at most  $\phi(k)$  ord-k elements in  $Z_p^*$ ,  $k \mid p-1$ pf.  $\diamond Z_p^*$  is a field  $\Rightarrow x^k-1 \equiv 0 \pmod{p}$  has at most k roots  $\diamond$  if a is a nontrivial root ( $a \neq 1$ ), then { $a^0, a^1, a^2, ..., a^{k-1}$ } is the set of the k distinct roots.  $\diamond$  Those  $a^\ell$  with  $gcd(\ell, k) = d > 1$  have order at most k/d

e.g. p = 13 {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1} 2 is a generator in  $Z_{13}^{*} = \{2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}, 2^{8}, 2^{9}, 2^{10}, 2^{11}, 2^{12}\}$ k=12, {2, X, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1} k=6, {4, 3, 12, 9, 10, 1} Lemma. ord-k elements in  $Z_p^* \leq \phi(k)$ Lemma. There are at most  $\phi(k)$  ord-k elements in  $Z_p^*$ ,  $k \mid p-1$ pf.  $\langle Z_p^*$  is a field  $\Rightarrow x^k-1 \equiv 0 \pmod{p}$  has at most k roots  $\langle \text{ if } a \text{ is a nontrivial root } (a \neq 1), \text{ then } \{a^0, a^1, a^2, \dots, a^{k-1}\}$ is the set of the k distinct roots.  $\langle \text{ Those } a^\ell \text{ with } \gcd(\ell, k) = d > 1 \text{ have order at most } k/d$ 

e.g. p = 13 {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1} 2 is a generator in  $Z_{13}^{*} = \{2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}, 2^{8}, 2^{9}, 2^{10}, 2^{11}, 2^{12}\}$ k=12, {2, X, X, 3, 6, 12, 11, 9, 5, 10, 7, 1} k=6, {4, 3, 12, 9, 10, 1} Lemma. ord-k elements in  $Z_p^* \leq \phi(k)$ Lemma. There are at most  $\phi(k)$  ord-k elements in  $Z_p^*$ ,  $k \mid p-1$ pf.  $\langle Z_p^*$  is a field  $\Rightarrow x^k-1 \equiv 0 \pmod{p}$  has at most k roots  $\langle \text{ if } a \text{ is a nontrivial root } (a \neq 1), \text{ then } \{a^0, a^1, a^2, \dots, a^{k-1}\}$ is the set of the k distinct roots.  $\langle \text{ Those } a^\ell \text{ with } \gcd(\ell, k) = d > 1 \text{ have order at most } k/d$ 

e.g. p = 13 {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1} 2 is a generator in  $Z_{13}^{*} = \{2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}, 2^{8}, 2^{9}, 2^{10}, 2^{11}, 2^{12}\}$ k=12, {2, X, X, X, 6, 12, 11, 9, 5, 10, 7, 1} k=6, {4, 3, 12, 9, 10, 1}
Lemma. ord-k elements in  $Z_p^* \leq \phi(k)$ Lemma. There are at most  $\phi(k)$  ord-k elements in  $Z_p^*$ ,  $k \mid p-1$ pf.  $\diamond Z_p^*$  is a field  $\Rightarrow x^k-1 \equiv 0 \pmod{p}$  has at most k roots  $\diamond$  if a is a nontrivial root ( $a \neq 1$ ), then { $a^0, a^1, a^2, ..., a^{k-1}$ } is the set of the k distinct roots.  $\diamond$  Those  $a^\ell$  with  $gcd(\ell, k) = d > 1$  have order at most k/d

e.g. p = 13 {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1} 2 is a generator in  $Z_{13}^{*} = \{2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}, 2^{8}, 2^{9}, 2^{10}, 2^{11}, 2^{12}\}$ k=12, {2, X, X, X, 6, 11, 9, 5, 10, 7, 1} k=6, {4, 3, 12, 9, 10, 1} Lemma. ord-k elements in  $Z_p^* \leq \phi(k)$ Lemma. There are at most  $\phi(k)$  ord-k elements in  $Z_p^*$ ,  $k \mid p-1$ pf.  $\langle Z_p^*$  is a field  $\Rightarrow x^k-1 \equiv 0 \pmod{p}$  has at most k roots  $\langle \text{ if } a \text{ is a nontrivial root } (a \neq 1), \text{ then } \{a^0, a^1, a^2, \dots, a^{k-1}\}$ is the set of the k distinct roots.  $\langle \text{ Those } a^\ell \text{ with } \gcd(\ell, k) = d > 1 \text{ have order at most } k/d$ 

e.g. p = 13 {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1} 2 is a generator in  $Z_{13}^{*} = \{2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}, 2^{8}, 2^{9}, 2^{10}, 2^{11}, 2^{12}\}$ k=12, {2, X, X, X, 6, 11, X, 5, 10, 7, 1} k=6, {4, 3, 12, 9, 10, 1} Lemma. ord-k elements in  $Z_p^* \leq \phi(k)$ Lemma. There are at most  $\phi(k)$  ord-k elements in  $Z_p^*$ ,  $k \mid p-1$ pf.  $\langle Z_p^*$  is a field  $\Rightarrow x^k-1 \equiv 0 \pmod{p}$  has at most k roots  $\langle \text{ if } a \text{ is a nontrivial root } (a \neq 1), \text{ then } \{a^0, a^1, a^2, \dots, a^{k-1}\}$ is the set of the k distinct roots.  $\langle \text{ Those } a^\ell \text{ with } \gcd(\ell, k) = d > 1 \text{ have order at most } k/d$ 

e.g. p = 13 {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1} 2 is a generator in  $Z_{13}^{*} = \{2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}, 2^{8}, 2^{9}, 2^{10}, 2^{11}, 2^{12}\}$ k=12, {2, X, X, X, 6, 11, X, X, 10, 7, 1} k=6, {4, 3, 12, 9, 10, 1} Lemma. ord-k elements in  $Z_p^* \leq \phi(k)$ Lemma. There are at most  $\phi(k)$  ord-k elements in  $Z_p^*$ ,  $k \mid p-1$ pf.  $\langle Z_p^*$  is a field  $\Rightarrow x^k-1 \equiv 0 \pmod{p}$  has at most k roots  $\langle \text{ if } a \text{ is a nontrivial root } (a \neq 1), \text{ then } \{a^0, a^1, a^2, \dots, a^{k-1}\}$ is the set of the k distinct roots.  $\langle \text{ Those } a^\ell \text{ with } \gcd(\ell, k) = d > 1 \text{ have order at most } k/d$ 

e.g. p = 13 {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1} 2 is a generator in  $Z_{13}^{*} = \{2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}, 2^{8}, 2^{9}, 2^{10}, 2^{11}, 2^{12}\}$ k=12, {2, X, X, X, 6, 11, X, X, 10, 7, 1} k=6, {4, 3, 12, 9, 10, 1} Lemma. ord-k elements in  $Z_p^* \leq \phi(k)$ Lemma. There are at most  $\phi(k)$  ord-k elements in  $Z_p^*$ , k | p-1 pf.  $\diamond Z_p^*$  is a field  $\Rightarrow x^k$ -1 $\equiv 0 \pmod{p}$  has at most k roots  $\diamond$  if *a* is a nontrivial root ( $a \neq 1$ ), then { $a^0, a^1, a^2, ..., a^{k-1}$ } is the set of the k distinct roots.  $\diamond$  Those  $a^\ell$  with gcd( $\ell$ , k) = d > 1 have order at most k/d  $\diamond$  Only those  $a^\ell$  with gcd( $\ell$ , k) = 1 might have order k

e.g. p = 13 {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1} 2 is a generator in  $Z_{13}^{*} = \{2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}, 2^{8}, 2^{9}, 2^{10}, 2^{11}, 2^{12}\}$ k=12, {2, X, X, X, 6, 11, X, X, 10, 7, X},  $\phi(12)$ k=6, {4, 3, 12, 9, 10, 1}

Lemma. ord-k elements in  $Z_{p}^{*} \leq \phi(k)$ **Lemma**. There are at most  $\phi(k)$  ord-k elements in  $Z_{p}^{*}$ , k | p-1 pf.  $\diamond Z_p^*$  is a field  $\Rightarrow x^k - 1 \equiv 0 \pmod{p}$  has at most k roots  $\Rightarrow$  if a is a nontrivial root ( $a \neq 1$ ), then { $a^0, a^1, a^2, \dots, a^{k-1}$ } is the set of the k distinct roots. ♦ Those a<sup> $\ell$ </sup> with gcd( $\ell$ , k) = d > 1 have order at most k/d  $\diamond$  Only those a<sup> $\ell$ </sup> with gcd( $\ell$ , k) = 1 might have order k  $\diamond$  Hence, there are at most  $\phi(k)$  order k elements  $\{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$ e.g. p = 13 2 is a generator in  $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$  $k=12, \{2, X, X, X, 6, N, 11, X, X, N, 7, X\}, \phi(12)$  $k=6, \{4, 3, 12, 9, 10, 1\}$ 

Lemma. ord-k elements in  $Z_{p}^{*} \leq \phi(k)$ **Lemma**. There are at most  $\phi(k)$  ord-k elements in  $Z_{p}^{*}$ , k | p-1 pf.  $\diamond Z_p^*$  is a field  $\Rightarrow x^k - 1 \equiv 0 \pmod{p}$  has at most k roots  $\Rightarrow$  if a is a nontrivial root ( $a \neq 1$ ), then { $a^0, a^1, a^2, \dots, a^{k-1}$ } is the set of the k distinct roots. ♦ Those a<sup> $\ell$ </sup> with gcd( $\ell$ , k) = d > 1 have order at most k/d  $\diamond$  Only those a<sup> $\ell$ </sup> with gcd( $\ell$ , k) = 1 might have order k  $\diamond$  Hence, there are at most  $\phi(k)$  order k elements  $\{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$ e.g. p = 13 2 is a generator in  $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$  $k=12, \{2, X, X, X, 6, N, 11, X, X, N, 7, X\}, \phi(12)$  $k=6, \{4, X, 12, 9, 10, 1\}$ 

Lemma. ord-k elements in  $Z_{p}^{*} \leq \phi(k)$ **Lemma**. There are at most  $\phi(k)$  ord-k elements in  $Z_{p}^{*}$ , k | p-1 pf.  $\diamond Z_p^*$  is a field  $\Rightarrow x^k - 1 \equiv 0 \pmod{p}$  has at most k roots  $\Rightarrow$  if a is a nontrivial root ( $a \neq 1$ ), then { $a^0, a^1, a^2, \dots, a^{k-1}$ } is the set of the k distinct roots. ♦ Those a<sup> $\ell$ </sup> with gcd( $\ell$ , k) = d > 1 have order at most k/d  $\diamond$  Only those a<sup> $\ell$ </sup> with gcd( $\ell$ , k) = 1 might have order k  $\diamond$  Hence, there are at most  $\phi(k)$  order k elements  $\{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$ e.g. p = 13 2 is a generator in  $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$  $k=12, \{2, X, X, X, 6, N, 11, X, X, N, 7, X\}, \phi(12)$  $k=6, \{4, X, X, 9, 10, 1\}$ 

Lemma. ord-k elements in  $Z_{p}^{*} \leq \phi(k)$ **Lemma**. There are at most  $\phi(k)$  ord-k elements in  $Z_{p}^{*}$ , k | p-1 pf.  $\diamond Z_p^*$  is a field  $\Rightarrow x^k - 1 \equiv 0 \pmod{p}$  has at most k roots  $\Rightarrow$  if a is a nontrivial root ( $a \neq 1$ ), then { $a^0, a^1, a^2, \dots, a^{k-1}$ } is the set of the k distinct roots. ♦ Those a<sup> $\ell$ </sup> with gcd( $\ell$ , k) = d > 1 have order at most k/d  $\diamond$  Only those a<sup> $\ell$ </sup> with gcd( $\ell$ , k) = 1 might have order k  $\diamond$  Hence, there are at most  $\phi(k)$  order k elements  $\{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$ e.g. p = 13 2 is a generator in  $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$  $k=12, \{2, X, X, X, 6, N, 11, X, X, N, 7, X\}, \phi(12)$ k=6, {4,  $\times$ ,  $\times$ ,  $\times$ , 10, 1}

Lemma. ord-k elements in  $Z_{p}^{*} \leq \phi(k)$ **Lemma**. There are at most  $\phi(k)$  ord-k elements in  $Z_{p}^{*}$ , k | p-1 pf.  $\diamond Z_p^*$  is a field  $\Rightarrow x^k - 1 \equiv 0 \pmod{p}$  has at most k roots  $\Rightarrow$  if a is a nontrivial root ( $a \neq 1$ ), then { $a^0, a^1, a^2, \dots, a^{k-1}$ } is the set of the k distinct roots. ♦ Those a<sup> $\ell$ </sup> with gcd( $\ell$ , k) = d > 1 have order at most k/d  $\diamond$  Only those a<sup> $\ell$ </sup> with gcd( $\ell$ , k) = 1 might have order k  $\diamond$  Hence, there are at most  $\phi(k)$  order k elements  $\{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$ e.g. p = 13 2 is a generator in  $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$  $k=12, \{2, \varkappa, \varkappa, \varkappa, \varkappa, \delta, \varkappa, 11, \varkappa, \varkappa, \varkappa, \kappa, 7, \varkappa\}, \phi(12)$  $k=6, \{4, X, X, X, 10, X\}, \phi(6)$ 

Lemma. ord-k elements in  $Z_{p}^{*} \leq \phi(k)$ **Lemma**. There are at most  $\phi(k)$  ord-k elements in  $Z_p^*$ , k | p-1 pf.  $\diamond Z_p^*$  is a field  $\Rightarrow x^k - 1 \equiv 0 \pmod{p}$  has at most k roots  $\Rightarrow$  if a is a nontrivial root ( $a \neq 1$ ), then { $a^0, a^1, a^2, \dots, a^{k-1}$ } is the set of the k distinct roots.  $\Rightarrow$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d $\diamond$  Only those a<sup> $\ell$ </sup> with gcd( $\ell$ , k) = 1 might have order k  $\diamond$  Hence, there are at most  $\phi(k)$  order k elements  $\{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$ e.g. p = 13 2 is a generator in  $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$  $k=12, \{2, X, X, \delta, N, 11, X, X, N, 7, X\}, \phi(12)$ k=6,  $\{4, X, X, X, 10, X\}, \phi(6)$  $k=4, \{8, 12, 5, 1\}, \phi(4)$ 51

Lemma. ord-k elements in  $Z_{p}^{*} \leq \phi(k)$ **Lemma**. There are at most  $\phi(k)$  ord-k elements in  $Z_p^*$ , k | p-1 pf.  $\diamond Z_p^*$  is a field  $\Rightarrow x^k - 1 \equiv 0 \pmod{p}$  has at most k roots  $\Rightarrow$  if a is a nontrivial root ( $a \neq 1$ ), then { $a^0, a^1, a^2, \dots, a^{k-1}$ } is the set of the k distinct roots.  $\Rightarrow$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d $\diamond$  Only those a<sup> $\ell$ </sup> with gcd( $\ell$ , k) = 1 might have order k  $\diamond$  Hence, there are at most  $\phi(k)$  order k elements  $\{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$ e.g. p = 13 2 is a generator in  $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$  $k=12, \{2, X, X, \delta, N, 11, X, X, N, 7, X\}, \phi(12)$  $k=6, \{4, X, X, X, 10, X\}, \phi(6)$ k=4, {8,  $\aleph$ , 5, 1},  $\phi$ (4) 51

Lemma. ord-k elements in  $Z_{p}^{*} \leq \phi(k)$ **Lemma**. There are at most  $\phi(k)$  ord-k elements in  $Z_p^*$ , k | p-1 pf.  $\diamond Z_p^*$  is a field  $\Rightarrow x^k - 1 \equiv 0 \pmod{p}$  has at most k roots  $\Rightarrow$  if a is a nontrivial root ( $a \neq 1$ ), then { $a^0, a^1, a^2, \dots, a^{k-1}$ } is the set of the k distinct roots.  $\Rightarrow$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d $\diamond$  Only those a<sup> $\ell$ </sup> with gcd( $\ell$ , k) = 1 might have order k  $\diamond$  Hence, there are at most  $\phi(k)$  order k elements  $\{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$ e.g. p = 13 2 is a generator in  $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$  $k=12, \{2, X, X, \delta, N, 11, X, X, N, 7, X\}, \phi(12)$  $k=6, \{4, X, X, X, 10, X\}, \phi(6)$  $k=4, \{8, \aleph, 5, \varkappa\}, \phi(4)$ 51

Lemma. ord-k elements in  $Z_{p}^{*} \leq \phi(k)$ **Lemma**. There are at most  $\phi(k)$  ord-k elements in  $Z_p^*$ , k | p-1 pf.  $\diamond Z_p^*$  is a field  $\Rightarrow x^k - 1 \equiv 0 \pmod{p}$  has at most k roots  $\Rightarrow$  if a is a nontrivial root ( $a \neq 1$ ), then { $a^0, a^1, a^2, \dots, a^{k-1}$ } is the set of the k distinct roots.  $\Rightarrow$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d $\diamond$  Only those a<sup> $\ell$ </sup> with gcd( $\ell$ , k) = 1 might have order k  $\diamond$  Hence, there are at most  $\phi(k)$  order k elements  $\{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$ e.g. p = 13 2 is a generator in  $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$  $k=12, \{2, X, X, \overline{X}, 6, \overline{X}, 11, \overline{X}, \overline{X}, \overline{N}, 7, \overline{X}\}, \phi(12)$  $k=6, \{4, X, X, X, 10, X\}, \phi(6)$   $k=3, \{3, 9, 1\}, \phi(3)$  $k=4, \{8, \aleph, 5, \varkappa\}, \phi(4)$ 51

Lemma. ord-k elements in  $Z_{p}^{*} \leq \phi(k)$ **Lemma**. There are at most  $\phi(k)$  ord-k elements in  $Z_p^*$ , k | p-1 pf.  $\diamond Z_p^*$  is a field  $\Rightarrow x^k - 1 \equiv 0 \pmod{p}$  has at most k roots  $\Rightarrow$  if a is a nontrivial root ( $a \neq 1$ ), then { $a^0, a^1, a^2, \dots, a^{k-1}$ } is the set of the k distinct roots.  $\Rightarrow$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d $\diamond$  Only those a<sup> $\ell$ </sup> with gcd( $\ell$ , k) = 1 might have order k  $\diamond$  Hence, there are at most  $\phi(k)$  order k elements  $\{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$ e.g. p = 13 2 is a generator in  $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$  $k=12, \{2, X, X, \overline{X}, 6, \overline{X}, 11, \overline{X}, \overline{X}, \overline{N}, 7, \overline{X}\}, \phi(12)$  $k=6, \{4, X, X, X, 10, X\}, \phi(6)$   $k=3, \{3, 9, X\}, \phi(3)$  $k=4, \{8, \aleph, 5, \varkappa\}, \phi(4)$ 51

Lemma. ord-k elements in  $Z_{p}^{*} \leq \phi(k)$ **Lemma**. There are at most  $\phi(k)$  ord-k elements in  $Z_p^*$ , k | p-1 pf.  $\diamond Z_p^*$  is a field  $\Rightarrow x^k - 1 \equiv 0 \pmod{p}$  has at most k roots  $\Rightarrow$  if a is a nontrivial root ( $a \neq 1$ ), then { $a^0, a^1, a^2, \dots, a^{k-1}$ } is the set of the k distinct roots.  $\Rightarrow$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d $\diamond$  Only those a<sup> $\ell$ </sup> with gcd( $\ell$ , k) = 1 might have order k  $\diamond$  Hence, there are at most  $\phi(k)$  order k elements  $\{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$ e.g. p = 13 2 is a generator in  $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$  $k=12, \{2, X, X, \delta, N, 11, X, X, N, 7, X\}, \phi(12)$  $k=6, \{4, X, X, X, 10, X\}, \phi(6)$   $k=3, \{3, 9, X\}, \phi(3)$  $k=4, \{8, \aleph, 5, \varkappa\}, \phi(4)$   $k=2, \{12,1\}, \phi(2)$ 51

Lemma. ord-k elements in  $Z_{p}^{*} \leq \phi(k)$ **Lemma**. There are at most  $\phi(k)$  ord-k elements in  $Z_p^*$ , k | p-1 pf.  $\diamond Z_p^*$  is a field  $\Rightarrow x^k - 1 \equiv 0 \pmod{p}$  has at most k roots  $\Rightarrow$  if a is a nontrivial root ( $a \neq 1$ ), then { $a^0, a^1, a^2, \dots, a^{k-1}$ } is the set of the k distinct roots.  $\Rightarrow$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d $\diamond$  Only those a<sup> $\ell$ </sup> with gcd( $\ell$ , k) = 1 might have order k  $\diamond$  Hence, there are at most  $\phi(k)$  order k elements  $\{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$ e.g. p = 13 2 is a generator in  $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$  $k=12, \{2, X, X, \delta, N, 11, X, X, N, 7, X\}, \phi(12)$  $k=6, \{4, X, X, X, 10, X\}, \phi(6)$   $k=3, \{3, 9, X\}, \phi(3)$  $k=4, \{8, \aleph, 5, \varkappa\}, \phi(4)$   $k=2, \{12, \varkappa\}, \phi(2)$ 51

Lemma. ord-k elements in  $Z_{p}^{*} \leq \phi(k)$ **Lemma**. There are at most  $\phi(k)$  ord-k elements in  $Z_p^*$ , k | p-1 pf.  $\diamond Z_p^*$  is a field  $\Rightarrow x^k - 1 \equiv 0 \pmod{p}$  has at most k roots  $\Rightarrow$  if a is a nontrivial root ( $a \neq 1$ ), then { $a^0, a^1, a^2, \dots, a^{k-1}$ } is the set of the k distinct roots.  $\Rightarrow$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d $\diamond$  Only those a<sup> $\ell$ </sup> with gcd( $\ell$ , k) = 1 might have order k  $\diamond$  Hence, there are at most  $\phi(k)$  order k elements  $\{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$ e.g. p = 132 is a generator in  $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$  $k=12, \{2, X, X, \delta, N, 11, X, X, N, 7, X\}, \phi(12)$  $k=6, \{4, X, X, X, 10, X\}, \phi(6)$   $k=3, \{3, 9, X\}, \phi(3)$ k=4, {8,  $\aleph$ , 5, $\aleph$ },  $\phi$ (4) k=2, {12, $\aleph$ },  $\phi$ (2) k=1, {1},  $\phi$ (1) 51

#### Lemma. $\Sigma_{k|p-1} \phi(k) = p-1$ Lemma. $\Sigma_{k|p-1} \phi(k) = p-1$ let $\phi(1)=1$

$$Lemma. \Sigma_{k|p-1} \phi(k) = p-1$$

$$Lemma. \Sigma_{k|p-1} \phi(k) = p-1 \qquad let \phi(1)=1$$

$$p-1 = \Sigma_{k|p-1} (\# a \text{ in } Z_p^* \text{ s.t. } gcd(a, p-1) = k)$$

/

$$\begin{array}{l} \text{Lemma. } \Sigma_{k|p-1} \ \phi(k) = p-1 \\ \\ \hline \text{Lemma. } \Sigma_{k|p-1} \ \phi(k) = p-1 & \text{let } \phi(1)=1 \\ \\ \text{pf.} \\ p-1 = \Sigma_{k|p-1} \ (\# \ a \ in \ Z_p^* \ s.t. \ gcd(a, p-1) = k) \end{array}$$

let p=13,  $a \in Z_p^*$ gcd(a, p-1)=k  $\Rightarrow$  k | p-1

Lemma. 
$$\Sigma_{k|p-1} \phi(k) = p-1$$
  
Lemma.  $\Sigma_{k|p-1} \phi(k) = p-1$  let  $\phi(1)=1$   
pf.  
 $p-1 = \Sigma_{k|p-1} (\# a \text{ in } Z_p^* \text{ s.t. } gcd(a, p-1) = k)$ 

ռլբ

let p=13,  $a \in Z_p^*$ gcd(a, p-1)=k  $\Rightarrow$  k | p-1 k=1, {1,5,7,11},  $\phi(12/1)$ 

$$Lemma. \Sigma_{k|p-1} \phi(k) = p-1$$

$$Lemma. \Sigma_{k|p-1} \phi(k) = p-1 \qquad let \phi(1)=1$$

$$p-1 = \Sigma_{k|p-1} (\# a \text{ in } Z_{p}^{*} \text{ s.t. } gcd(a, p-1) = k)$$

мþ

let p=13,  $a \in Z_p^*$ gcd(a, p-1)=k  $\Rightarrow$  k | p-1 k=1, {1,5,7,11},  $\phi(12/1)$ k=2, {2,10},  $\phi(12/2)$ 

$$Lemma. \Sigma_{k|p-1} \phi(k) = p-1$$

$$Lemma. \Sigma_{k|p-1} \phi(k) = p-1 \qquad let \phi(1)=1$$

$$p-1 = \Sigma_{k|p-1} (\# a \text{ in } Z_{p}^{*} \text{ s.t. } gcd(a, p-1) = k)$$

ΓĮΡ

let p=13,  $a \in Z_p^*$ gcd(a, p-1)=k  $\Rightarrow$  k | p-1 k=1, {1,5,7,11},  $\phi(12/1)$ k=2, {2,10},  $\phi(12/2)$ k=3, {3,9},  $\phi(12/3)$ 

$$Lemma. \Sigma_{k|p-1} \phi(k) = p-1$$

$$Lemma. \Sigma_{k|p-1} \phi(k) = p-1 \qquad let \phi(1)=1$$

$$p-1 = \Sigma_{k|p-1} (\# a \text{ in } Z_p^* \text{ s.t. } gcd(a, p-1) = k)$$

let p=13,  $a \in Z_p^*$ gcd(a, p-1)=k  $\Rightarrow$  k | p-1 k=1, {1,5,7,11},  $\phi(12/1)$ k=2, {2,10},  $\phi(12/2)$ k=3, {3,9},  $\phi(12/3)$ k=4, {4,8},  $\phi(12/4)$ 

$$Lemma. \Sigma_{k|p-1} \phi(k) = p-1$$

$$Lemma. \Sigma_{k|p-1} \phi(k) = p-1 \qquad let \phi(1)=1$$

$$p-1 = \Sigma_{k|p-1} (\# a \text{ in } Z_p^* \text{ s.t. } gcd(a, p-1) = k)$$

let p=13,  $a \in Z_p^*$ gcd(a, p-1)=k  $\Rightarrow$  k | p-1 k=1, {1,5,7,11},  $\phi(12/1)$ k=2, {2,10},  $\phi(12/2)$ k=3, {3,9},  $\phi(12/3)$ k=4, {4,8},  $\phi(12/4)$ k=6, {6},  $\phi(12/6)$ 

$$Lemma. \Sigma_{k|p-1} \phi(k) = p-1$$

$$Lemma. \Sigma_{k|p-1} \phi(k) = p-1 \qquad let \phi(1)=1$$

$$p-1 = \Sigma_{k|p-1} (\# a \text{ in } Z_p^* \text{ s.t. } gcd(a, p-1) = k)$$

let p=13,  $a \in Z_p^*$ gcd(a, p-1)=k  $\Rightarrow$  k | p-1 k=1, {1,5,7,11},  $\phi(12/1)$ k=2, {2,10},  $\phi(12/2)$ k=3, {3,9},  $\phi(12/3)$ k=4, {4,8},  $\phi(12/4)$ k=6, {6},  $\phi(12/6)$ k=12, {12},  $\phi(12/12)$ 

Lemma.  $\Sigma_{k|p-1} \phi(k) = p-1$ **Lemma**.  $\Sigma_{k|p-1} \phi(k) = p-1$ let  $\phi(1)=1$ pf.  $p-1 = \sum_{k|p-1} (\# a \text{ in } Z_p^* \text{ s.t. } gcd(a, p-1) = k)$ =  $\sum_{k|p-1} (\# b \text{ in } \{1, \dots, (p-1)/k\} \text{ s.t. } gcd(b, (p-1)/k) = 1)$ let p=13,  $a \in Z_{p}^{*}$  $gcd(a, p-1) = k \Longrightarrow k \mid p-1$  $k=1, \{1,5,7,11\}, \phi(12/1)$  $k=2, \{2,10\}, \phi(12/2)$  $k=3, \{3,9\}, \phi(12/3)$  $k=4, \{4,8\}, \phi(12/4)$ k=6,  $\{6\}$ ,  $\phi(12/6)$  $k=12, \{12\}, \phi(12/12)$ 52

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \label{eq:linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_lin$$

**Theorem**:  $Z_p^*$  is a *cyclic* group for a prime number p

**Theorem**:  $Z_p^*$  is a *cyclic* group for a prime number p

pf. Lemma 1: # of ord-k elements in  $Z_p^* \le \phi(k)$ , where k | p-1 Lemma 2:  $\Sigma_{k|p-1} \phi(k) = p-1$ 

<u>**Theorem**</u>:  $Z_p^*$  is a *cyclic* group for a prime number p pf. Lemma 1: # of ord-k elements in  $Z_p^* \le \phi(k)$ , where  $k \mid p-1$ Lemma 2:  $\Sigma_{k\mid p-1} \phi(k) = p-1$ The order k of every element in  $Z_p^*$  divides p-1

**<u>Theorem</u>**:  $Z_p^*$  is a *cyclic* group for a prime number p pf. Lemma 1: # of ord-k elements in  $Z_p^* \le \phi(k)$ , where  $k \mid p-1$ Lemma 2:  $\Sigma_{k\mid p-1} \phi(k) = p-1$ The order k of every element in  $Z_p^*$  divides p-1  $\Rightarrow \Sigma_{k\mid p-1}$  (# of elements in  $Z_p^*$  with order k) = p-1
**Theorem**:  $Z_p^*$  is a *cyclic* group for a prime number p pf. Lemma 1: # of ord-k elements in  $Z_p^* \le \phi(k)$ , where  $k \mid p-1$ Lemma 2:  $\sum_{k \mid p-1} \phi(k) = p-1$ The order k of every element in  $Z_p^*$  divides p-1  $\Rightarrow \sum_{k \mid p-1} (\text{# of elements in } Z_p^* \text{ with order } k) = p-1$ (Lemma 1)  $\Rightarrow p-1 \le \sum_{k \mid p-1} \phi(k)$ , combined with lemma 2, we know that # of ord-k elements in  $Z_p^* = \phi(k)$ 

**<u>Theorem</u>**:  $Z_p^*$  is a *cyclic* group for a prime number p pf. Lemma 1: # of ord-k elements in  $Z_p^* \le \phi(k)$ , where k | p-1 Lemma 2:  $\Sigma_{k|p-1} \phi(k) = p-1$ The order k of every element in  $Z_{p}^{*}$  divides p-1  $\Rightarrow \Sigma_{k|p-1}$  (# of elements in  $Z_p^*$  with order k) = p-1 (Lemma 1)  $\Longrightarrow$  p-1  $\leq \Sigma_{k|p-1} \phi(k)$ , combined with lemma 2, we know that # of ord-k elements in  $Z_{p}^{*} = \phi(k)$  $\Rightarrow$  # of ord-(p-1) elements in  $Z_p^* = \phi(p-1) > 1$ 

**<u>Theorem</u>**:  $Z_p^*$  is a *cyclic* group for a prime number p pf. Lemma 1: # of ord-k elements in  $Z_p^* \le \phi(k)$ , where k | p-1 Lemma 2:  $\Sigma_{k|p-1} \phi(k) = p-1$ The order k of every element in  $Z_{p}^{*}$  divides p-1  $\Rightarrow \Sigma_{k|p-1}$  (# of elements in  $Z_p^*$  with order k) = p-1 (Lemma 1)  $\Rightarrow$  p-1  $\leq \Sigma_{k|p-1} \phi(k)$ , combined with lemma 2, we know that # of ord-k elements in  $Z_{p}^{*} = \phi(k)$  $\Rightarrow$  # of ord-(p-1) elements in  $Z_p^* = \phi(p-1) > 1$  $\Rightarrow$  There is at least one generator in  $Z_p^*$ , i.e.  $Z_p^*$  is cyclic

**<u>Theorem</u>**:  $Z_p^*$  is a *cyclic* group for a prime number p pf. Lemma 1: # of ord-k elements in  $Z_p^* \le \phi(k)$ , where k | p-1 Lemma 2:  $\Sigma_{k|p-1} \phi(k) = p-1$ The order k of every element in  $Z_{p}^{*}$  divides p-1  $\Rightarrow \Sigma_{k|p-1}$  (# of elements in  $Z_p^*$  with order k) = p-1(Lemma 1)  $\Rightarrow$  p-1  $\leq \Sigma_{k|p-1} \phi(k)$ , combined with lemma 2, we know that # of ord-k elements in  $Z_{p}^{*} = \phi(k)$  $\Rightarrow$  # of ord-(p-1) elements in  $Z_p^* = \phi(p-1) > 1$  $\Rightarrow$  There is at least one generator in  $Z_p^*$ , i.e.  $Z_p^*$  is cyclic Ex. p=13,  $p-1 = |\{2,6,11,7\}| + |\{4,10\}| + |\{8,5\}| + |\{3,9\}| + |\{12\}| + |\{1\}|$ k=6

### Generators in QR<sub>n</sub>

♦ Number of generators in  $Z_p^*$ :  $\phi(p-1)$ Let g be a primitive,  $Z_{p}^{*} = \langle g \rangle = \{g, g^{2}, g^{3}, ..., g^{k}, ..., g^{p-1}\}$ if  $gcd(k, p-1) = d \neq 1$  then  $g^k$  is not a primitive since  $(g^k)^{(p-1)/d} = (g^{k/d})^{p-1} = 1$ , i.e.  $\operatorname{ord}_p(g^k) \le (p-1)/d$ if gcd(k, p-1) = 1 and  $g^k$  is not a primitive, then  $d=ord_p(g^k) < p-1$ , i.e.  $(g^k)^d = 1$ ; g is a primitive  $\Rightarrow p-1 | k d \Rightarrow p-1 | d$  contradiction.  $\Rightarrow$  Z<sub>n</sub><sup>\*</sup> is not a cyclic group (n = p q, p=2p'+1, q=2q'+1, \lambda(n)=2p'q') Since  $x^{\lambda(n)} \equiv 1 \pmod{n}$ , there is no generator that can generate all members in  $Z_n^*$  $\Rightarrow$  QR<sub>n</sub> is a cyclic group of order  $\lambda(n)/2 = lcm(p-1, q-1)/2 = p'q'$  $\forall x \in Z_n^*, x^{\lambda(n)} \equiv 1 \pmod{n}$  Carmichael's Theorem clearly,  $(x^2)^{\lambda(n)/2} \equiv 1 \pmod{n}$ ,  $QR_n = \{x^2 \mid \forall x \in Z_n^*\}$ i.e.  $\forall y \in QR_n, ord_n(y) | p'q' \quad (ord_n(y) \in \{1, p', q', p'q'\})$ 

Generators in QR<sub>n</sub> (cont'd) cyclic?  $\exists x^* \in Z_n^* \text{ ord}_n(x^*) = \lambda(n) = 2 p' q' \Rightarrow$  $\exists y^* (=(x^*)^2) \in QR_n \text{ s.t. } ord_n(y^*) = \lambda(n)/2 = p' q'$  $\diamond$  Let y be a random element in QR<sub>n</sub>, the probability that y is a generator is close to 1 Let  $y^*$  be a generator of  $QR_n$ ,  $|QR_n = \langle y^* \rangle = \{y^*, (y^*)^2, (y^*)^3, \dots, (y^*)^k, \dots, (y^*)^{p'q'}\}$ if  $gcd(k, p'q') = d \neq 1$  then  $(y^*)^k$  is not a generator since  $((y^*)^k)^{p'q'/d} = ((y^*)^{k/d})^{p'q'} = 1$ , i.e.  $\operatorname{ord}_p((y^*)^k) \le (p'q')/d$  $\phi(p'q') = \phi(p') \phi(q') = (p'-1)(q'-1) = p'q' - p' - q' + 1$ = p'q' - (p'-1) - (q'-1) - 1 $\forall x \in \{(y^*)^{q'}, (y^*)^{2q'}, \dots, (y^*)^{(p'-1)q'}\} \text{ ord}_n(x) = p'$  $\forall x \in \{(y^*)^{p'}, (y^*)^{2p'}, \dots, (y^*)^{(q'-1)p'}\} \text{ ord}_n(x) = q'$  $ord_{n}(1) = 1$  $\Pr{x \text{ is a generator } | x \in QR_n} = \phi(p'q') / (p'q') \text{ is close to } 1$ 55

## Subgroups in Z<sub>n</sub>\*

Consider n = p q, p=2p'+1, q=2q'+1, m=p'q',  $\lambda(n) = lcm(p-1, q-1)=2m$ ,  $\phi(n) = (p-1)(q-1) = 4m$ 

 $\mathbf{Z}_{\mathbf{n}}^{*}$  is not a cyclic group

\* Carmichael's theorem asserts that no element in  $Z_n^*$  can generate all elements in  $Z_n^*$ . (maximum order is 2m instead of 4m)

- \* However,  $Z_n^*$  is still a group over modulo n multiplication.
- ♦ QR<sub>n</sub> is a cyclic subgroup of order m = λ(n)/2, QR<sub>n</sub> = {x<sup>2</sup> | ∀ x ∈ Z<sub>n</sub><sup>\*</sup>}
  ★ J<sub>00</sub> = {x ∈ Z<sub>n</sub><sup>\*</sup> | J(x,p)=1 and J(x,q)=1}
  - \* If there exists an element in  $Z_n^*$  whose order is 2m, then  $QR_n$  is clearly a cyclic group. (Will the precondition be true?)
  - ★  $\forall x \in Z_n^* x^{2m} \equiv 1 \pmod{n}$  implies that  $\forall y \in QR_n \operatorname{ord}_n(y) | p'q'$ i.e.  $\operatorname{ord}_n(y)$  is either 1, p', q', or p'q' (if there is one y s.t.  $\operatorname{ord}_n(y)=m$ then y is a generator and  $QR_n$  is cyclic). Let's construct one.

## Subgroups in $Z_n^*$ (cont'd)

Let  $g_1$  be a generator in  $Z_p^*$ , and  $g_2$  be a generator in  $Z_q^*$ Let  $\mathbf{g} \equiv \mathbf{g}_1 \pmod{\mathbf{p}} \equiv \mathbf{g}_2 \pmod{\mathbf{q}}$ , (note that  $J(g, n) = 1, g \in J_{11}$ )  $g^{p-1} \equiv g^{2p'} \equiv g_1^{2p'} \equiv 1 \pmod{p}, g^{q-1} \equiv g^{2q'} \equiv g_2^{2q'} \equiv 1 \pmod{q}$  $\Rightarrow$  g<sup>2p'q'</sup>  $\equiv$  1 (mod p) and g<sup>2q'p'</sup>  $\equiv$  1 (mod q) i.e. g<sup>2p'q'</sup>  $\equiv$  1 (mod n) if there exists a  $k \in \{1, 2, p', q', 2p', 2q', p'q'\}$  s.t.  $g^k \equiv 1 \pmod{n}$ then  $\operatorname{ord}_{n}(g)$  is not 2p'q'1. k=1:  $\Rightarrow$  g<sub>1</sub> = 1 (mod p) contradict with  $ord_p(g_1) = p-1$ 2. k=p':  $\Rightarrow$  g<sup>p'</sup>  $\equiv$  g<sub>1</sub><sup>p'</sup>  $\equiv$  1 (mod p) contradict with ord<sub>p</sub>(g<sub>1</sub>) = 2p' 3.  $k=q': \Rightarrow g^{q'} \equiv g_2^{q'} \equiv 1 \pmod{q}$  contradict with  $\operatorname{ord}_q(g_2) = 2q'$ 4. k=2:  $\Rightarrow g_1^2 \equiv 1 \pmod{p}$  contradict with  $\operatorname{ord}_p(g_1) = p-1$ 5. k=2p':  $\Rightarrow g^{2p'} \equiv g_2^{2p'} \equiv 1 \pmod{q}$  contradict with  $\operatorname{ord}_q(g_2) = 2q'$ 6. k=2q':  $\Rightarrow$  g<sup>2q'</sup>  $\equiv$  g<sub>1</sub><sup>2q'</sup>  $\equiv$  1 (mod p) contradict with ord<sub>p</sub>(g<sub>1</sub>) = 2p'

Subgroups in  $Z_n^*$  (cont'd) 7.  $k=p'q' \Rightarrow g^{p'q'} \equiv g_1^{p'q'} \equiv 1 \pmod{p}$ since  $g_1^{2p'} \equiv 1 \pmod{p}$  and  $gcd(q', 2) = 1 \implies \exists a, b s.t. a q' + b 2 = 1$  $\Rightarrow g_1^{p'} \equiv g_1^{p'} (a q' + b 2) \equiv (g_1^{p' q'})^a (g_1^{2 p'})^b \equiv 1 \pmod{p}$ contradict with  $\operatorname{ord}_{p}(g_{1}) = 2p'$  $1 \sim 7$  implies that  $\operatorname{ord}_{n}(g) = 2p'q'$ , i.e.  $QR_{o} = \{g^{2}, g^{4}, \dots, g^{p'q'}\}$ 

and QR<sub>n</sub> is a cyclic group.

\* Pr{Elements in QR<sub>n</sub> being a generator} =  $\phi(p'q') / (p'q')$ ♦ J<sub>n</sub> is a cyclic subgroup of order  $2m = \lambda(n)$ , J<sub>n</sub> = {x ∈ Z<sub>n</sub><sup>\*</sup> | J(x,n)=1} \*  $J_{11} = \{x \in Z_n^* \mid J(x,p) = -1 \text{ and } J(x,q) = -1\}$ \* The above proof also shows that  $J_n = \{g, g^2, ..., g^{2p'q'}\}$  is cyclic \* Pr{Elements in J<sub>n</sub> being a generator} =  $\phi(p'q') / (2p'q')$  $\downarrow J_{01} \cup J_{10} = Z_n^* \setminus \{J_{00} \cup J_{11}\}$  is not a subgroup in  $Z_n^*$ \* if  $x \in J_{01}$  then  $x * x \in J_{00}$ 

### Generator in QR<sub>n</sub>

- $\Rightarrow$  n = p q, p=2p'+1, q=2q'+1
- $\diamond$  Find a generator in QR<sub>n</sub>
  - 1. Find a generator  $g_1$  of  $Z_p^*$  (i.e.  $Z_p^* = \langle g_1 \rangle$ ) and  $g_2$  of  $Z_q^*$  (i.e.  $Z_q^* = \langle g_2 \rangle$ )
  - 2. Calculate the generator  $h_1 \equiv g_1^2 \pmod{p}$  of  $QR_p$  and  $h_2 \equiv g_2^2 \pmod{1}$  of  $QR_q$
  - 3. Let  $h \equiv h_1 \pmod{p} \equiv h_2 \pmod{q}$ .

It is clear that  $h \equiv g^2 \pmod{n}$ , i.e.  $h \in QR_n$ , where  $g \equiv g_1 \pmod{p} \equiv g_2 \pmod{q}$ . Claim: h is a generator of  $QR_n$ 

pf.

$$y \in QR_n \Rightarrow y \in QR_p \text{ and } y \in QR_q$$
  
i.e.  $\exists x_1 \in Z_{p'} \text{ and } x_2 \in Z_{q'}, y \equiv h_1^{x_1} \pmod{p} \equiv h_2^{x_2} \pmod{q}$   
 $\Rightarrow y \equiv g_1^{2x_1} \pmod{p} \equiv g_2^{2x_2} \pmod{q}$   
 $\Rightarrow y \equiv g^{2x} \pmod{n} \text{ if } 2x \equiv 2x_1 \pmod{p-1} \equiv 2x_2 \pmod{q-1}$   
a unique  $x \in Z_{p'q'}$  exists by CRT since  $gcd(p-1, q-1) \equiv gcd(2p', 2q') \equiv 2$   
 $\Rightarrow y \equiv h^x \pmod{n}$ 

### Generate Elements in Z<sub>n</sub>\*

- $Z_{n}^{*} = \{ g^{a} u^{-e b_{1}} (-1)^{b_{2}} | g \text{ is a generator in } QR_{n}, gcd(e, \phi(n)) = 1, \\ u \in_{R} Z_{n}^{*} \text{ and } J(u,n) = -1, \\ a \in \{0, \dots, m-1\}, b_{1} \in \{0,1\}, \text{ and } b_{2} \in \{0,1\} \} \}$
- Note: 1. J(-1, n) = 1 and  $-1 \in J_n \setminus QR_n$  since  $(-1)^{(p-1)/2} \equiv (-1)^{p'} \equiv -1 \pmod{p}$ 2. e is odd,  $\phi(n)$ -e is also odd,  $J(u^{-e}, n) = J(u, n) = -1$  $\diamond$  We can view the above as 4 parts

1.  $J_{00}(\overline{QR_n})$ :  $b_1 = b_2 = 0$ ,  $J_{00} = \{g^a \mid a \in \{0, ..., m-1\}\}$ 2.  $J_{11}(J_n \setminus QR_n)$ :  $b_1 = 0$ ,  $b_2 = 1$ ,  $J_{11} = \{-g^a \mid a \in \{0, ..., m-1\}\}$ Assume that J(u, p) = -1 and J(u, q) = 13.  $J_{01}$ :  $b_1 = 1$ ,  $b_2 = 0$ ,  $J_{01} = \{g^a u^{-e} \mid a \in \{0, ..., m-1\}\}$ 4.  $J_{10}$ :  $b_1 = 1$ ,  $b_2 = 1$ ,  $J_{01} = \{-g^a u^{-e} \mid a \in \{0, ..., m-1\}\}$ 

### Lagrange's Theorem

Theorem: for any finite group G, the order (number of elements) of every subgroup H of G divides the order of G.

★ proof sketch: divide G into left cosets H – equivalence classes, and show that they have the same size.

#### Lagrange's Theorem

Theorem: for any finite group G, the order (number of elements) of every subgroup H of G divides the order of G.

★ proof sketch: divide G into left cosets H – equivalence classes, and show that they have the same size.

♦ It implies that: the order of any element *a* of a finite group (i.e. the smallest positive integer number *k* with *a<sup>k</sup>* = 1) divides the order of the group. Since the order of *a* is equal to the order of the cyclic subgroup generated by *a*. Also, a<sup>|G|</sup> = 1 since order of *a* divides |G|.

### Lagrange's Theorem

Theorem: for any finite group G, the order (number of elements) of every subgroup H of G divides the order of G.

★ proof sketch: divide G into left cosets H – equivalence classes, and show that they have the same size.

♦ It implies that: the order of any element *a* of a finite group (i.e. the smallest positive integer number *k* with *a<sup>k</sup>* = 1) divides the order of the group. Since the order of *a* is equal to the order of the cyclic subgroup generated by *a*. Also, a<sup>|G|</sup> = 1 since order of *a* divides |G|.

♦ Any prime order group is cyclic.