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3

(10100) - (1099) 
ln 10100 ln 1099

-  3.9  10
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1 1 1 1 1 2 t 1
divide one of the factors qj, contradict the fact that “pi, qj are distinct 
primes”
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since gcd(j, p) = 1 for j  S, we can divide both side by 1, 2, 
3, … p-1, and obtain ap-11 (mod p)
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ex:  313, 322, 336, 344, 355, 361 (mod 7)
3 is a primitive root mod 73 is a primitive root mod 7

 sometimes called a multiplicative generator
 there are plenty of primitive roots, actually (p-1)

 ex. p=101, (p-1)=100ꞏ(1-1/2)ꞏ(1-1/5)=40

18

p=143537, (p-1)=143536ꞏ(1-1/2)ꞏ(1-1/8971)=71760
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ex. p=29, p-1=227, h=5, h28/2=1, h28/7=16, 5 is not a primitive
h=11, h28/2=28, h28/7=25, 11 is a primitive
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( ) q i, g ( p)
then ordp(g) = (p) and g is a primitive root modulo p
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How many elements in Zn
* can generate the maximal 

possible subgroup of Zn
*?
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Note: QRn is “Quadratic Residue in Zn
*” to be defined later
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 x2 = y(p+1)/2 = y(p-1)/2 ꞏ y  y (mod p)
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Why is the success probability > ½ ???
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q | (a+b) i.e. gcd(a+b, n) = q (ex. gcd(15+29, 77)=11)
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out of which there are (p-1) primitive roots




Quadratic Residues in Z *Quadratic Residues in Zp
1st proof:p
For each xZp

*, p-x  x (mod p) (since if x is odd, p-
x is even) it’s clear that x and p x are both squarex is even), it s clear that x and p-x are both square 
roots of a certain yZp

*, 
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1st proof:p
For each xZp

*, p-x  x (mod p) (since if x is odd, p-
x is even) it’s clear that x and p x are both squarex is even), it s clear that x and p-x are both square 
roots of a certain yZp

*, 
*Because there are only p-1 elements in Zp
*, we know 

that |QRp|  (p-1)/2p

Because | {g2, g4,…, gp-1} | = (p-1)/2, there can be no 
more quadratic residues outside this set Thereforemore quadratic residues outside this set.  Therefore, 
the set {g, g3,…, gp-2} contains only quadratic non-
residues
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Quadratic Residues in Z *Quadratic Residues in Zp
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 Because the squares of x and p-x are the same, the number of 
quadratic residues must be less than p-1 (i.e. some element in Zp

*
p

must be quadratic non-residue)
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 Elements in Zp
* can be grouped further according to their orderp g p g

since xZp
*, ordp(x) | p-1, we can list all possible orders

8 4 2 1168971

ordp(x) p-1 p-1
2

p-1
4

p-1
8

p-1
16

p-1
8971

p-1
8971ꞏ2

p-1
8971ꞏ4

p-1
8971ꞏ8

p-1
8971ꞏ16

8 4 2 1168971
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QRp QRpQRpQRp QRp QRp QRp QRp
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 Legendre symbol L(a, p) = -1 if a  QNRp

L(a, p) = 1 if a  QRp
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 Out of the set {2, 3, … p-2}, we can form (p-3)/2 pairs such that
i ꞏ j  1 (mod p), multiply them together, we obtain (p-2)!  1
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Multiply them together, we have (p-1)!  y(p-1)/2 (mod p)
 From Wilson’s theorem, y(p-1)/2  -1 (mod p)
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q y g g
-gk , it must belong to S (which is Zp

*), say g j, jk, which would 
imply that g2j  g2k (mod p), and leads to contradiction
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a. there are (p-1) generators in Zp
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gcd(p-1, x) = d > 1 implies that ordp(gx) = (p-1)/d
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g1 g g ( p) 1 ( q),
　 Gq
The proof is similar for Gq 　 S.  Therefore, S = Gq



Gauss’ LemmaGauss  Lemma
Lemma:  let p be a prime, a is an integer s.t. gcd(a, p)=1,

define {j  jꞏa (mod p)}j=1,…,(p-1)/2,
let n be the number of j’s s.t. j > p/2 then L(a, p) = (-1)n

pfpf.
 j  {r1, …, rn} if j > p/2 and j  {s1, …, s(p-1)/2-n} if j  p/2
 Since gcd(a p)=1 r and s are all distinct and non zero Since gcd(a, p)=1, ri and si are all distinct and non-zero
 Clearly, 0 < p-ri  p/2 for i=1,…,n
 no p r is an s : if p r =s then s  r (mod p) no p-ri is an sj:     if p-ri=sj then sj  -ri (mod p)

rewrite in terms of a:  u a  -v a (mod p) where 1  u, v  (p-1)/2 
 ( d ) h 1   ( 1)/2  i ibl u  -v (mod p) where 1  u, v  (p-1)/2  impossible

 {s1, …, s(p-1)/2-n, p-r1, …, p-rn} is a reordering of {1, 2,…, (p-1)/2}
 Th (( 1)/2)! ( ) ( ) ( 1)n

48

 Thus, ((p-1)/2)!  s1ꞏꞏꞏs(p-1)/2-nꞏ(-r1)ꞏꞏꞏ(-rn)  (-1)n s1ꞏꞏꞏs(p-1)/2-nꞏr1ꞏꞏꞏrn   

 (-1)n ((p-1)/2)! a(p-1)/2 (mod p)   L(a, p) = (-1)n �



Theorem: J(2 p) = ( 1)(p2-1)/8Theorem: J(2, p) = (-1)(p 1)/8
Theorem: let p be a prime, gcd(a, p) = 1 then L(a, p) = (-1)t

(p 1)/2
where t =  jꞏa/p.  Also L(2, p) = (-1)(p2-1)/8

pf.
j=1

(p-1)/2

p .

 j  {r1, …, rn} if j > p/2 and j  {s1, …, s(p-1)/2-n} if j  p/2
 j a = p jꞏa/p + j for j=1, …, (p-1)/2 j a  p j a/p  j for j 1, …, (p 1)/2

 j a =    p jꞏa/p +  rj +     sjj=1

(p-1)/2

j=1

(p-1)/2

j=1

n

j=1

(p-1)/2-n

 {s1, …, s(p-1)/2-n, p-r1, …, p-rn} is a reordering of {1, 2,…, (p-1)/2}

 j =  (p-rj) +  sj = np -  rj +  sj
(p-1)/2 n (p-1)/2-n n (p-1)/2-n

 j   (p rj)     sj  np  rj     sj

 Subtracting the above two equations, we have
j=1 j=1 j=1 j=1 j=1

( 1)/2 ( )/
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(a - 1)   j  =  p (    jꞏa/p - n  )  + 2    rjj=1

(p-1)/2

j=1

(p-1)/2

j=1

n



J(2 p) = ( 1)(p2-1)/8 (cont’d)J(2, p) = (-1)(p 1)/8 (cont d)
  j = 1 + … + (p-1)/2 = (p-1)/2 (1 + (p-1)/2) / 2 = (p2-1)/8

j 1

(p-1)/2
j (p ) (p ) ( (p ) ) (p )

 Thus, we have    (a-1) (p2-1)/8   jꞏa/p - n   (mod 2)
j=1

j=1

(p-1)/2

 If a is odd, n   jꞏa/p
j=1

(p-1)/2

 If a = 2,   jꞏ2/p = 0 for j=1, …, (p-1)/2,  n  (p2-1)/8 (mod 2)

therefore J(2 p) = (-1)(p2-1)/8

j 1

therefore, J(2, p) = (-1)(p )

�
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Lemma ord k elements in Z *  (k)Lemma. ord-k elements in Zp  (k)
Lemma. There are at most (k) ord-k elements in Zp

*, k | p-1 p
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51



Lemma ord k elements in Z *  (k)Lemma. ord-k elements in Zp  (k)
Lemma. There are at most (k) ord-k elements in Zp

*, k | p-1 p

 Zp
* is a field   xk-1 0 (mod p) has at most k roots

 if a is a nontrivial root (a1) then {a0 a1 a2 ak-1}
pf.
 if a is a nontrivial root (a1), then {a , a , a , …, a } 

is the set of the k distinct roots.

51



Lemma ord k elements in Z *  (k)Lemma. ord-k elements in Zp  (k)
Lemma. There are at most (k) ord-k elements in Zp

*, k | p-1 p

 Zp
* is a field   xk-1 0 (mod p) has at most k roots

 if a is a nontrivial root (a1) then {a0 a1 a2 ak-1}
pf.
 if a is a nontrivial root (a1), then {a , a , a , …, a } 

is the set of the k distinct roots.

2 i t i Z * = {21 22 23 24 25 26 27 28 29 210 211 212}
e.g. p = 13

2 is a generator in Z13 = {21,22,23,24,25,26, 27,28,29,2 ,2 ,2 }

51



Lemma ord k elements in Z *  (k)Lemma. ord-k elements in Zp  (k)
Lemma. There are at most (k) ord-k elements in Zp

*, k | p-1 p

 Zp
* is a field   xk-1 0 (mod p) has at most k roots

 if a is a nontrivial root (a1) then {a0 a1 a2 ak-1}
pf.
 if a is a nontrivial root (a1), then {a , a , a , …, a } 

is the set of the k distinct roots.

2 i t i Z * = {21 22 23 24 25 26 27 28 29 210 211 212}
{2, 4, 8, 3, 6, 12, 11, 9, 5, 10,  7,   1}e.g. p = 13

2 is a generator in Z13 = {21,22,23,24,25,26, 27,28,29,2 ,2 ,2 }

51



Lemma ord k elements in Z *  (k)Lemma. ord-k elements in Zp  (k)
Lemma. There are at most (k) ord-k elements in Zp

*, k | p-1 p

 Zp
* is a field   xk-1 0 (mod p) has at most k roots

 if a is a nontrivial root (a1) then {a0 a1 a2 ak-1}
pf.
 if a is a nontrivial root (a1), then {a , a , a , …, a } 

is the set of the k distinct roots.

2 i t i Z * = {21 22 23 24 25 26 27 28 29 210 211 212}
{2, 4, 8, 3, 6, 12, 11, 9, 5, 10,  7,   1}e.g. p = 13

2 is a generator in Z13 = {21,22,23,24,25,26, 27,28,29,2 ,2 ,2 }
k=12, {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1}

51



Lemma ord k elements in Z *  (k)Lemma. ord-k elements in Zp  (k)
Lemma. There are at most (k) ord-k elements in Zp

*, k | p-1 p

 Zp
* is a field   xk-1 0 (mod p) has at most k roots

 if a is a nontrivial root (a1) then {a0 a1 a2 ak-1}
pf.
 if a is a nontrivial root (a1), then {a , a , a , …, a } 

is the set of the k distinct roots.

2 i t i Z * = {21 22 23 24 25 26 27 28 29 210 211 212}
{2, 4, 8, 3, 6, 12, 11, 9, 5, 10,  7,   1}e.g. p = 13

2 is a generator in Z13 = {21,22,23,24,25,26, 27,28,29,2 ,2 ,2 }

k 6 {4 3 12 9 10 1}
k=12, {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1}

51

k=6, {4, 3, 12, 9, 10, 1}
(2(p-1)/k)j=(22)j



Lemma ord k elements in Z *  (k)Lemma. ord-k elements in Zp  (k)
Lemma. There are at most (k) ord-k elements in Zp

*, k | p-1 p

 Zp
* is a field   xk-1 0 (mod p) has at most k roots

 if a is a nontrivial root (a1) then {a0 a1 a2 ak-1}
pf.
 if a is a nontrivial root (a1), then {a , a , a , …, a } 

is the set of the k distinct roots.
 Those a with gcd( k) = d > 1 have order at most k/d Those a with gcd(, k)  d > 1 have order at most k/d

2 i t i Z * = {21 22 23 24 25 26 27 28 29 210 211 212}
{2, 4, 8, 3, 6, 12, 11, 9, 5, 10,  7,   1}e.g. p = 13

2 is a generator in Z13 = {21,22,23,24,25,26, 27,28,29,2 ,2 ,2 }

k 6 {4 3 12 9 10 1}
k=12, {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1}

51

k=6, {4, 3, 12, 9, 10, 1}



Lemma ord k elements in Z *  (k)Lemma. ord-k elements in Zp  (k)
Lemma. There are at most (k) ord-k elements in Zp

*, k | p-1 p

 Zp
* is a field   xk-1 0 (mod p) has at most k roots

 if a is a nontrivial root (a1) then {a0 a1 a2 ak-1}
pf.
 if a is a nontrivial root (a1), then {a , a , a , …, a } 

is the set of the k distinct roots.
 Those a with gcd( k) = d > 1 have order at most k/d Those a with gcd(, k)  d > 1 have order at most k/d

2 i t i Z * = {21 22 23 24 25 26 27 28 29 210 211 212}
{2, 4, 8, 3, 6, 12, 11, 9, 5, 10,  7,   1}e.g. p = 13

2 is a generator in Z13 = {21,22,23,24,25,26, 27,28,29,2 ,2 ,2 }

k 6 {4 3 12 9 10 1}
k=12, {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1}

51

k=6, {4, 3, 12, 9, 10, 1}



Lemma ord k elements in Z *  (k)Lemma. ord-k elements in Zp  (k)
Lemma. There are at most (k) ord-k elements in Zp

*, k | p-1 p

 Zp
* is a field   xk-1 0 (mod p) has at most k roots

 if a is a nontrivial root (a1) then {a0 a1 a2 ak-1}
pf.
 if a is a nontrivial root (a1), then {a , a , a , …, a } 

is the set of the k distinct roots.
 Those a with gcd( k) = d > 1 have order at most k/d Those a with gcd(, k)  d > 1 have order at most k/d

2 i t i Z * = {21 22 23 24 25 26 27 28 29 210 211 212}
{2, 4, 8, 3, 6, 12, 11, 9, 5, 10,  7,   1}e.g. p = 13

2 is a generator in Z13 = {21,22,23,24,25,26, 27,28,29,2 ,2 ,2 }

k 6 {4 3 12 9 10 1}
k=12, {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1}

51

k=6, {4, 3, 12, 9, 10, 1}



Lemma ord k elements in Z *  (k)Lemma. ord-k elements in Zp  (k)
Lemma. There are at most (k) ord-k elements in Zp

*, k | p-1 p

 Zp
* is a field   xk-1 0 (mod p) has at most k roots

 if a is a nontrivial root (a1) then {a0 a1 a2 ak-1}
pf.
 if a is a nontrivial root (a1), then {a , a , a , …, a } 

is the set of the k distinct roots.
 Those a with gcd( k) = d > 1 have order at most k/d Those a with gcd(, k)  d > 1 have order at most k/d

2 i t i Z * = {21 22 23 24 25 26 27 28 29 210 211 212}
{2, 4, 8, 3, 6, 12, 11, 9, 5, 10,  7,   1}e.g. p = 13

2 is a generator in Z13 = {21,22,23,24,25,26, 27,28,29,2 ,2 ,2 }

k 6 {4 3 12 9 10 1}
k=12, {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1}

51

k=6, {4, 3, 12, 9, 10, 1}



Lemma ord k elements in Z *  (k)Lemma. ord-k elements in Zp  (k)
Lemma. There are at most (k) ord-k elements in Zp

*, k | p-1 p

 Zp
* is a field   xk-1 0 (mod p) has at most k roots

 if a is a nontrivial root (a1) then {a0 a1 a2 ak-1}
pf.
 if a is a nontrivial root (a1), then {a , a , a , …, a } 

is the set of the k distinct roots.
 Those a with gcd( k) = d > 1 have order at most k/d Those a with gcd(, k)  d > 1 have order at most k/d

2 i t i Z * = {21 22 23 24 25 26 27 28 29 210 211 212}
{2, 4, 8, 3, 6, 12, 11, 9, 5, 10,  7,   1}e.g. p = 13

2 is a generator in Z13 = {21,22,23,24,25,26, 27,28,29,2 ,2 ,2 }

k 6 {4 3 12 9 10 1}
k=12, {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1}

51

k=6, {4, 3, 12, 9, 10, 1}



Lemma ord k elements in Z *  (k)Lemma. ord-k elements in Zp  (k)
Lemma. There are at most (k) ord-k elements in Zp

*, k | p-1 p

 Zp
* is a field   xk-1 0 (mod p) has at most k roots

 if a is a nontrivial root (a1) then {a0 a1 a2 ak-1}
pf.
 if a is a nontrivial root (a1), then {a , a , a , …, a } 

is the set of the k distinct roots.
 Those a with gcd( k) = d > 1 have order at most k/d Those a with gcd(, k)  d > 1 have order at most k/d

2 i t i Z * = {21 22 23 24 25 26 27 28 29 210 211 212}
{2, 4, 8, 3, 6, 12, 11, 9, 5, 10,  7,   1}e.g. p = 13

2 is a generator in Z13 = {21,22,23,24,25,26, 27,28,29,2 ,2 ,2 }

k 6 {4 3 12 9 10 1}
k=12, {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1}

51

k=6, {4, 3, 12, 9, 10, 1}



Lemma ord k elements in Z *  (k)Lemma. ord-k elements in Zp  (k)
Lemma. There are at most (k) ord-k elements in Zp

*, k | p-1 p

 Zp
* is a field   xk-1 0 (mod p) has at most k roots

 if a is a nontrivial root (a1) then {a0 a1 a2 ak-1}
pf.
 if a is a nontrivial root (a1), then {a , a , a , …, a } 

is the set of the k distinct roots.
 Those a with gcd( k) = d > 1 have order at most k/d Those a with gcd(, k)  d > 1 have order at most k/d

2 i t i Z * = {21 22 23 24 25 26 27 28 29 210 211 212}
{2, 4, 8, 3, 6, 12, 11, 9, 5, 10,  7,   1}e.g. p = 13

2 is a generator in Z13 = {21,22,23,24,25,26, 27,28,29,2 ,2 ,2 }

k 6 {4 3 12 9 10 1}
k=12, {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1}

51

k=6, {4, 3, 12, 9, 10, 1}



Lemma ord k elements in Z *  (k)Lemma. ord-k elements in Zp  (k)
Lemma. There are at most (k) ord-k elements in Zp

*, k | p-1 p

 Zp
* is a field   xk-1 0 (mod p) has at most k roots

 if a is a nontrivial root (a1) then {a0 a1 a2 ak-1}
pf.
 if a is a nontrivial root (a1), then {a , a , a , …, a } 

is the set of the k distinct roots.
 Those a with gcd( k) = d > 1 have order at most k/d Those a with gcd(, k)  d > 1 have order at most k/d

2 i t i Z * = {21 22 23 24 25 26 27 28 29 210 211 212}
{2, 4, 8, 3, 6, 12, 11, 9, 5, 10,  7,   1}e.g. p = 13

2 is a generator in Z13 = {21,22,23,24,25,26, 27,28,29,2 ,2 ,2 }

k 6 {4 3 12 9 10 1}
k=12, {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1}

51

k=6, {4, 3, 12, 9, 10, 1}



Lemma ord k elements in Z *  (k)Lemma. ord-k elements in Zp  (k)
Lemma. There are at most (k) ord-k elements in Zp

*, k | p-1 p

 Zp
* is a field   xk-1 0 (mod p) has at most k roots

 if a is a nontrivial root (a1) then {a0 a1 a2 ak-1}
pf.
 if a is a nontrivial root (a1), then {a , a , a , …, a } 

is the set of the k distinct roots.
 Those a with gcd( k) = d > 1 have order at most k/d Those a with gcd(, k)  d > 1 have order at most k/d
 Only those a with gcd(, k) = 1 might have order k

2 i t i Z * = {21 22 23 24 25 26 27 28 29 210 211 212}
{2, 4, 8, 3, 6, 12, 11, 9, 5, 10,  7,   1}e.g. p = 13

2 is a generator in Z13 = {21,22,23,24,25,26, 27,28,29,2 ,2 ,2 }

k 6 {4 3 12 9 10 1}
k=12, {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1}(12)

51

k=6, {4, 3, 12, 9, 10, 1}



Lemma ord k elements in Z *  (k)Lemma. ord-k elements in Zp  (k)
Lemma. There are at most (k) ord-k elements in Zp

*, k | p-1 p

 Zp
* is a field   xk-1 0 (mod p) has at most k roots

 if a is a nontrivial root (a1) then {a0 a1 a2 ak-1}
pf.
 if a is a nontrivial root (a1), then {a , a , a , …, a } 

is the set of the k distinct roots.
 Those a with gcd( k) = d > 1 have order at most k/d

 H th t t (k) d k l t

 Those a with gcd(, k)  d > 1 have order at most k/d
 Only those a with gcd(, k) = 1 might have order k
 Hence, there are at most (k) order k elements            

2 i t i Z * = {21 22 23 24 25 26 27 28 29 210 211 212}
{2, 4, 8, 3, 6, 12, 11, 9, 5, 10,  7,   1}e.g. p = 13

2 is a generator in Z13 = {21,22,23,24,25,26, 27,28,29,2 ,2 ,2 }

k 6 {4 3 12 9 10 1}
k=12, {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1}(12)

51

k=6, {4, 3, 12, 9, 10, 1}



Lemma ord k elements in Z *  (k)Lemma. ord-k elements in Zp  (k)
Lemma. There are at most (k) ord-k elements in Zp

*, k | p-1 p

 Zp
* is a field   xk-1 0 (mod p) has at most k roots

 if a is a nontrivial root (a1) then {a0 a1 a2 ak-1}
pf.
 if a is a nontrivial root (a1), then {a , a , a , …, a } 

is the set of the k distinct roots.
 Those a with gcd( k) = d > 1 have order at most k/d

 H th t t (k) d k l t

 Those a with gcd(, k)  d > 1 have order at most k/d
 Only those a with gcd(, k) = 1 might have order k
 Hence, there are at most (k) order k elements            

2 i t i Z * = {21 22 23 24 25 26 27 28 29 210 211 212}
{2, 4, 8, 3, 6, 12, 11, 9, 5, 10,  7,   1}e.g. p = 13

2 is a generator in Z13 = {21,22,23,24,25,26, 27,28,29,2 ,2 ,2 }

k 6 {4 3 12 9 10 1}
k=12, {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1}(12)

51

k=6, {4, 3, 12, 9, 10, 1}



Lemma ord k elements in Z *  (k)Lemma. ord-k elements in Zp  (k)
Lemma. There are at most (k) ord-k elements in Zp

*, k | p-1 p

 Zp
* is a field   xk-1 0 (mod p) has at most k roots

 if a is a nontrivial root (a1) then {a0 a1 a2 ak-1}
pf.
 if a is a nontrivial root (a1), then {a , a , a , …, a } 

is the set of the k distinct roots.
 Those a with gcd( k) = d > 1 have order at most k/d

 H th t t (k) d k l t

 Those a with gcd(, k)  d > 1 have order at most k/d
 Only those a with gcd(, k) = 1 might have order k
 Hence, there are at most (k) order k elements            

2 i t i Z * = {21 22 23 24 25 26 27 28 29 210 211 212}
{2, 4, 8, 3, 6, 12, 11, 9, 5, 10,  7,   1}e.g. p = 13

2 is a generator in Z13 = {21,22,23,24,25,26, 27,28,29,2 ,2 ,2 }

k 6 {4 3 12 9 10 1}
k=12, {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1}(12)

51

k=6, {4, 3, 12, 9, 10, 1}



Lemma ord k elements in Z *  (k)Lemma. ord-k elements in Zp  (k)
Lemma. There are at most (k) ord-k elements in Zp

*, k | p-1 p

 Zp
* is a field   xk-1 0 (mod p) has at most k roots

 if a is a nontrivial root (a1) then {a0 a1 a2 ak-1}
pf.
 if a is a nontrivial root (a1), then {a , a , a , …, a } 

is the set of the k distinct roots.
 Those a with gcd( k) = d > 1 have order at most k/d

 H th t t (k) d k l t

 Those a with gcd(, k)  d > 1 have order at most k/d
 Only those a with gcd(, k) = 1 might have order k
 Hence, there are at most (k) order k elements            

2 i t i Z * = {21 22 23 24 25 26 27 28 29 210 211 212}
{2, 4, 8, 3, 6, 12, 11, 9, 5, 10,  7,   1}e.g. p = 13

2 is a generator in Z13 = {21,22,23,24,25,26, 27,28,29,2 ,2 ,2 }

k 6 {4 3 12 9 10 1}
k=12, {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1}(12)

51

k=6, {4, 3, 12, 9, 10, 1}



Lemma ord k elements in Z *  (k)Lemma. ord-k elements in Zp  (k)
Lemma. There are at most (k) ord-k elements in Zp

*, k | p-1 p

 Zp
* is a field   xk-1 0 (mod p) has at most k roots

 if a is a nontrivial root (a1) then {a0 a1 a2 ak-1}
pf.
 if a is a nontrivial root (a1), then {a , a , a , …, a } 

is the set of the k distinct roots.
 Those a with gcd( k) = d > 1 have order at most k/d

 H th t t (k) d k l t

 Those a with gcd(, k)  d > 1 have order at most k/d
 Only those a with gcd(, k) = 1 might have order k
 Hence, there are at most (k) order k elements            

2 i t i Z * = {21 22 23 24 25 26 27 28 29 210 211 212}
{2, 4, 8, 3, 6, 12, 11, 9, 5, 10,  7,   1}e.g. p = 13

2 is a generator in Z13 = {21,22,23,24,25,26, 27,28,29,2 ,2 ,2 }

k 6 {4 3 12 9 10 1}
k=12, {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1}(12)

(6)

51

k=6, {4, 3, 12, 9, 10, 1}(6)



Lemma ord k elements in Z *  (k)Lemma. ord-k elements in Zp  (k)
Lemma. There are at most (k) ord-k elements in Zp

*, k | p-1 p

 Zp
* is a field   xk-1 0 (mod p) has at most k roots

 if a is a nontrivial root (a1) then {a0 a1 a2 ak-1}
pf.
 if a is a nontrivial root (a1), then {a , a , a , …, a } 

is the set of the k distinct roots.
 Those a with gcd( k) = d > 1 have order at most k/d

 H th t t (k) d k l t

 Those a with gcd(, k)  d > 1 have order at most k/d
 Only those a with gcd(, k) = 1 might have order k
 Hence, there are at most (k) order k elements            

2 i t i Z * = {21 22 23 24 25 26 27 28 29 210 211 212}
{2, 4, 8, 3, 6, 12, 11, 9, 5, 10,  7,   1}e.g. p = 13

2 is a generator in Z13 = {21,22,23,24,25,26, 27,28,29,2 ,2 ,2 }

k 6 {4 3 12 9 10 1}
k=12, {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1}(12)

(6)

51

k=6, {4, 3, 12, 9, 10, 1}
k=4, {8, 12, 5, 1}, (4)

(6)



Lemma ord k elements in Z *  (k)Lemma. ord-k elements in Zp  (k)
Lemma. There are at most (k) ord-k elements in Zp

*, k | p-1 p

 Zp
* is a field   xk-1 0 (mod p) has at most k roots

 if a is a nontrivial root (a1) then {a0 a1 a2 ak-1}
pf.
 if a is a nontrivial root (a1), then {a , a , a , …, a } 

is the set of the k distinct roots.
 Those a with gcd( k) = d > 1 have order at most k/d

 H th t t (k) d k l t

 Those a with gcd(, k)  d > 1 have order at most k/d
 Only those a with gcd(, k) = 1 might have order k
 Hence, there are at most (k) order k elements            

2 i t i Z * = {21 22 23 24 25 26 27 28 29 210 211 212}
{2, 4, 8, 3, 6, 12, 11, 9, 5, 10,  7,   1}e.g. p = 13

2 is a generator in Z13 = {21,22,23,24,25,26, 27,28,29,2 ,2 ,2 }

k 6 {4 3 12 9 10 1}
k=12, {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1}(12)

(6)

51

k=6, {4, 3, 12, 9, 10, 1}
k=4, {8, 12, 5, 1}, (4)

(6)



Lemma ord k elements in Z *  (k)Lemma. ord-k elements in Zp  (k)
Lemma. There are at most (k) ord-k elements in Zp

*, k | p-1 p

 Zp
* is a field   xk-1 0 (mod p) has at most k roots

 if a is a nontrivial root (a1) then {a0 a1 a2 ak-1}
pf.
 if a is a nontrivial root (a1), then {a , a , a , …, a } 

is the set of the k distinct roots.
 Those a with gcd( k) = d > 1 have order at most k/d

 H th t t (k) d k l t

 Those a with gcd(, k)  d > 1 have order at most k/d
 Only those a with gcd(, k) = 1 might have order k
 Hence, there are at most (k) order k elements            

2 i t i Z * = {21 22 23 24 25 26 27 28 29 210 211 212}
{2, 4, 8, 3, 6, 12, 11, 9, 5, 10,  7,   1}e.g. p = 13

2 is a generator in Z13 = {21,22,23,24,25,26, 27,28,29,2 ,2 ,2 }

k 6 {4 3 12 9 10 1}
k=12, {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1}(12)

(6)

51

k=6, {4, 3, 12, 9, 10, 1}
k=4, {8, 12, 5, 1}, (4)

(6)



Lemma ord k elements in Z *  (k)Lemma. ord-k elements in Zp  (k)
Lemma. There are at most (k) ord-k elements in Zp

*, k | p-1 p

 Zp
* is a field   xk-1 0 (mod p) has at most k roots

 if a is a nontrivial root (a1) then {a0 a1 a2 ak-1}
pf.
 if a is a nontrivial root (a1), then {a , a , a , …, a } 

is the set of the k distinct roots.
 Those a with gcd( k) = d > 1 have order at most k/d

 H th t t (k) d k l t

 Those a with gcd(, k)  d > 1 have order at most k/d
 Only those a with gcd(, k) = 1 might have order k
 Hence, there are at most (k) order k elements            

2 i t i Z * = {21 22 23 24 25 26 27 28 29 210 211 212}
{2, 4, 8, 3, 6, 12, 11, 9, 5, 10,  7,   1}e.g. p = 13

2 is a generator in Z13 = {21,22,23,24,25,26, 27,28,29,2 ,2 ,2 }

k 3 {3 9 1} (3)k 6 {4 3 12 9 10 1}
k=12, {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1}(12)

(6)

51

k=3, {3, 9, 1}, (3)k=6, {4, 3, 12, 9, 10, 1}
k=4, {8, 12, 5, 1}, (4)

(6)



Lemma ord k elements in Z *  (k)Lemma. ord-k elements in Zp  (k)
Lemma. There are at most (k) ord-k elements in Zp

*, k | p-1 p

 Zp
* is a field   xk-1 0 (mod p) has at most k roots

 if a is a nontrivial root (a1) then {a0 a1 a2 ak-1}
pf.
 if a is a nontrivial root (a1), then {a , a , a , …, a } 

is the set of the k distinct roots.
 Those a with gcd( k) = d > 1 have order at most k/d

 H th t t (k) d k l t

 Those a with gcd(, k)  d > 1 have order at most k/d
 Only those a with gcd(, k) = 1 might have order k
 Hence, there are at most (k) order k elements            

2 i t i Z * = {21 22 23 24 25 26 27 28 29 210 211 212}
{2, 4, 8, 3, 6, 12, 11, 9, 5, 10,  7,   1}e.g. p = 13

2 is a generator in Z13 = {21,22,23,24,25,26, 27,28,29,2 ,2 ,2 }

k 3 {3 9 1} (3)k 6 {4 3 12 9 10 1}
k=12, {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1}(12)

(6)

51

k=3, {3, 9, 1}, (3)k=6, {4, 3, 12, 9, 10, 1}
k=4, {8, 12, 5, 1}, (4)

(6)



Lemma ord k elements in Z *  (k)Lemma. ord-k elements in Zp  (k)
Lemma. There are at most (k) ord-k elements in Zp

*, k | p-1 p

 Zp
* is a field   xk-1 0 (mod p) has at most k roots

 if a is a nontrivial root (a1) then {a0 a1 a2 ak-1}
pf.
 if a is a nontrivial root (a1), then {a , a , a , …, a } 

is the set of the k distinct roots.
 Those a with gcd( k) = d > 1 have order at most k/d

 H th t t (k) d k l t

 Those a with gcd(, k)  d > 1 have order at most k/d
 Only those a with gcd(, k) = 1 might have order k
 Hence, there are at most (k) order k elements            

2 i t i Z * = {21 22 23 24 25 26 27 28 29 210 211 212}
{2, 4, 8, 3, 6, 12, 11, 9, 5, 10,  7,   1}e.g. p = 13

2 is a generator in Z13 = {21,22,23,24,25,26, 27,28,29,2 ,2 ,2 }

k 3 {3 9 1} (3)k 6 {4 3 12 9 10 1}
k=12, {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1}(12)

(6)

51k=2, {12,1}, (2)
k=3, {3, 9, 1}, (3)k=6, {4, 3, 12, 9, 10, 1}

k=4, {8, 12, 5, 1}, (4)
(6)



Lemma ord k elements in Z *  (k)Lemma. ord-k elements in Zp  (k)
Lemma. There are at most (k) ord-k elements in Zp

*, k | p-1 p

 Zp
* is a field   xk-1 0 (mod p) has at most k roots

 if a is a nontrivial root (a1) then {a0 a1 a2 ak-1}
pf.
 if a is a nontrivial root (a1), then {a , a , a , …, a } 

is the set of the k distinct roots.
 Those a with gcd( k) = d > 1 have order at most k/d

 H th t t (k) d k l t

 Those a with gcd(, k)  d > 1 have order at most k/d
 Only those a with gcd(, k) = 1 might have order k
 Hence, there are at most (k) order k elements            

2 i t i Z * = {21 22 23 24 25 26 27 28 29 210 211 212}
{2, 4, 8, 3, 6, 12, 11, 9, 5, 10,  7,   1}e.g. p = 13

2 is a generator in Z13 = {21,22,23,24,25,26, 27,28,29,2 ,2 ,2 }

k 3 {3 9 1} (3)k 6 {4 3 12 9 10 1}
k=12, {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1}(12)

(6)

51k=2, {12,1}, (2)
k=3, {3, 9, 1}, (3)k=6, {4, 3, 12, 9, 10, 1}

k=4, {8, 12, 5, 1}, (4)
(6)



Lemma ord k elements in Z *  (k)Lemma. ord-k elements in Zp  (k)
Lemma. There are at most (k) ord-k elements in Zp

*, k | p-1 p

 Zp
* is a field   xk-1 0 (mod p) has at most k roots

 if a is a nontrivial root (a1) then {a0 a1 a2 ak-1}
pf.
 if a is a nontrivial root (a1), then {a , a , a , …, a } 

is the set of the k distinct roots.
 Those a with gcd( k) = d > 1 have order at most k/d

 H th t t (k) d k l t

 Those a with gcd(, k)  d > 1 have order at most k/d
 Only those a with gcd(, k) = 1 might have order k
 Hence, there are at most (k) order k elements            

2 i t i Z * = {21 22 23 24 25 26 27 28 29 210 211 212}
{2, 4, 8, 3, 6, 12, 11, 9, 5, 10,  7,   1}e.g. p = 13

2 is a generator in Z13 = {21,22,23,24,25,26, 27,28,29,2 ,2 ,2 }

k 3 {3 9 1} (3)k 6 {4 3 12 9 10 1}
k=12, {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1}(12)

(6)

51k=1, {1}, (1)k=2, {12,1}, (2)
k=3, {3, 9, 1}, (3)k=6, {4, 3, 12, 9, 10, 1}

k=4, {8, 12, 5, 1}, (4)
(6)



Lemma  (k) = p 1Lemma. k|p-1 (k) = p-1
Lemma. k|p-1 (k) = p-1 let (1)=1|p













52



Lemma  (k) = p 1Lemma. k|p-1 (k) = p-1
Lemma. k|p-1 (k) = p-1 let (1)=1|p

pf.
p 1 =  (# a in Z * s t gcd(a p 1) = k)



p-1 = k|p-1 (# a in Zp s.t. gcd(a, p-1) = k)





52



Lemma  (k) = p 1Lemma. k|p-1 (k) = p-1
Lemma. k|p-1 (k) = p-1 let (1)=1|p

pf.
p 1 =  (# a in Z * s t gcd(a p 1) = k)



p-1 = k|p-1 (# a in Zp s.t. gcd(a, p-1) = k)

let p=13, a  Zp
*

gcd(a, p-1)=k  k | p-1 g ( , p ) | p



52



Lemma  (k) = p 1Lemma. k|p-1 (k) = p-1
Lemma. k|p-1 (k) = p-1 let (1)=1|p

pf.
p 1 =  (# a in Z * s t gcd(a p 1) = k)



p-1 = k|p-1 (# a in Zp s.t. gcd(a, p-1) = k)

let p=13, a  Zp
*

gcd(a, p-1)=k  k | p-1

k=1, {1,5,7,11}, (12/1)
g ( , p ) | p



52



Lemma  (k) = p 1Lemma. k|p-1 (k) = p-1
Lemma. k|p-1 (k) = p-1 let (1)=1|p

pf.
p 1 =  (# a in Z * s t gcd(a p 1) = k)



p-1 = k|p-1 (# a in Zp s.t. gcd(a, p-1) = k)

let p=13, a  Zp
*

gcd(a, p-1)=k  k | p-1

k=1, {1,5,7,11}, (12/1)
k=2, {2,10}, (12/2)

g ( , p ) | p



52



Lemma  (k) = p 1Lemma. k|p-1 (k) = p-1
Lemma. k|p-1 (k) = p-1 let (1)=1|p

pf.
p 1 =  (# a in Z * s t gcd(a p 1) = k)



p-1 = k|p-1 (# a in Zp s.t. gcd(a, p-1) = k)

let p=13, a  Zp
*

gcd(a, p-1)=k  k | p-1

k=1, {1,5,7,11}, (12/1)
k=2, {2,10}, (12/2)

g ( , p ) | p



k=3, {3,9}, (12/3)

52



Lemma  (k) = p 1Lemma. k|p-1 (k) = p-1
Lemma. k|p-1 (k) = p-1 let (1)=1|p

pf.
p 1 =  (# a in Z * s t gcd(a p 1) = k)



p-1 = k|p-1 (# a in Zp s.t. gcd(a, p-1) = k)

let p=13, a  Zp
*

gcd(a, p-1)=k  k | p-1

k=1, {1,5,7,11}, (12/1)
k=2, {2,10}, (12/2)

g ( , p ) | p



k=3, {3,9}, (12/3)
k=4, {4,8}, (12/4)

52



Lemma  (k) = p 1Lemma. k|p-1 (k) = p-1
Lemma. k|p-1 (k) = p-1 let (1)=1|p

pf.
p 1 =  (# a in Z * s t gcd(a p 1) = k)



p-1 = k|p-1 (# a in Zp s.t. gcd(a, p-1) = k)

let p=13, a  Zp
*

gcd(a, p-1)=k  k | p-1

k=1, {1,5,7,11}, (12/1)
k=2, {2,10}, (12/2)

g ( , p ) | p



k=3, {3,9}, (12/3)
k=4, {4,8}, (12/4)

52

k=6, {6}, (12/6)



Lemma  (k) = p 1Lemma. k|p-1 (k) = p-1
Lemma. k|p-1 (k) = p-1 let (1)=1|p

pf.
p 1 =  (# a in Z * s t gcd(a p 1) = k)



p-1 = k|p-1 (# a in Zp s.t. gcd(a, p-1) = k)

let p=13, a  Zp
*

gcd(a, p-1)=k  k | p-1

k=1, {1,5,7,11}, (12/1)
k=2, {2,10}, (12/2)

g ( , p ) | p



k=3, {3,9}, (12/3)
k=4, {4,8}, (12/4)

52

k=6, {6}, (12/6)
k=12, {12}, (12/12)



Lemma  (k) = p 1Lemma. k|p-1 (k) = p-1
Lemma. k|p-1 (k) = p-1 let (1)=1|p

pf.
p 1 =  (# a in Z * s t gcd(a p 1) = k)

= k|p-1 (# b in {1,…,(p-1)/k} s.t. gcd(b, (p-1)/k) = 1)

p-1 = k|p-1 (# a in Zp s.t. gcd(a, p-1) = k)
a/k

let p=13, a  Zp
*

gcd(a, p-1)=k  k | p-1

k|p 1



k=1, {1,5,7,11}, (12/1)
k=2, {2,10}, (12/2)

g ( , p ) | p



k=3, {3,9}, (12/3)
k=4, {4,8}, (12/4)

52

k=6, {6}, (12/6)
k=12, {12}, (12/12)



Lemma  (k) = p 1Lemma. k|p-1 (k) = p-1
Lemma. k|p-1 (k) = p-1 let (1)=1|p

pf.
p 1 =  (# a in Z * s t gcd(a p 1) = k)

= k|p-1 (# b in {1,…,(p-1)/k} s.t. gcd(b, (p-1)/k) = 1)

p-1 = k|p-1 (# a in Zp s.t. gcd(a, p-1) = k)
a/k

let p=13, a  Zp
*

gcd(a, p-1)=k  k | p-1

k|p 1

= k|p-1 ((p-1)/k)

k=1, {1,5,7,11}, (12/1)
k=2, {2,10}, (12/2)

g ( , p ) | p



k=3, {3,9}, (12/3)
k=4, {4,8}, (12/4)

52

k=6, {6}, (12/6)
k=12, {12}, (12/12)



Lemma  (k) = p 1Lemma. k|p-1 (k) = p-1
Lemma. k|p-1 (k) = p-1 let (1)=1|p

pf.
p 1 =  (# a in Z * s t gcd(a p 1) = k)

= k|p-1 (# b in {1,…,(p-1)/k} s.t. gcd(b, (p-1)/k) = 1)

p-1 = k|p-1 (# a in Zp s.t. gcd(a, p-1) = k)
a/k

let p=13, a  Zp
*

gcd(a, p-1)=k  k | p-1

k|p 1

= k|p-1 ((p-1)/k)

k=1, {1,5,7,11}, (12/1)
k=2, {2,10}, (12/2)

g ( , p ) | p



{(1}, (2), (3), (4), (6), (12)}
k=3, {3,9}, (12/3)
k=4, {4,8}, (12/4)

52

k=6, {6}, (12/6)
k=12, {12}, (12/12)



Lemma  (k) = p 1Lemma. k|p-1 (k) = p-1
Lemma. k|p-1 (k) = p-1 let (1)=1|p

pf.
p 1 =  (# a in Z * s t gcd(a p 1) = k)

= k|p-1 (# b in {1,…,(p-1)/k} s.t. gcd(b, (p-1)/k) = 1)

p-1 = k|p-1 (# a in Zp s.t. gcd(a, p-1) = k)
a/k

let p=13, a  Zp
*

gcd(a, p-1)=k  k | p-1

k|p 1

= k|p-1 ((p-1)/k)

k=1, {1,5,7,11}, (12/1)
k=2, {2,10}, (12/2)

g ( , p ) | p



{(1}, (2), (3), (4), (6), (12)}
k=3, {3,9}, (12/3)
k=4, {4,8}, (12/4)

52

k=6, {6}, (12/6)
k=12, {12}, (12/12)



Lemma  (k) = p 1Lemma. k|p-1 (k) = p-1
Lemma. k|p-1 (k) = p-1 let (1)=1|p

pf.
p 1 =  (# a in Z * s t gcd(a p 1) = k)

= k|p-1 (# b in {1,…,(p-1)/k} s.t. gcd(b, (p-1)/k) = 1)

p-1 = k|p-1 (# a in Zp s.t. gcd(a, p-1) = k)
a/k

let p=13, a  Zp
*

gcd(a, p-1)=k  k | p-1

k|p 1

= k|p-1 ((p-1)/k)

k=1, {1,5,7,11}, (12/1)
k=2, {2,10}, (12/2)

g ( , p ) | p

= k|p-1 (k)               �

{(1}, (2), (3), (4), (6), (12)}
k=3, {3,9}, (12/3)
k=4, {4,8}, (12/4)

52

k=6, {6}, (12/6)
k=12, {12}, (12/12)



Z * is a cyclic groupZp is a cyclic group
Theorem: Zp

* is a cyclic group for a prime number pp y






















53



Z * is a cyclic groupZp is a cyclic group
Theorem: Zp

* is a cyclic group for a prime number pp y
pf.

Lemma 2:  (k) = p 1
Lemma 1: # of ord-k elements in Zp

*  (k), where  k | p-1
Lemma 2: k|p-1 (k) = p-1














53



Z * is a cyclic groupZp is a cyclic group
Theorem: Zp

* is a cyclic group for a prime number pp y
pf.

Lemma 2:  (k) = p 1
Lemma 1: # of ord-k elements in Zp

*  (k), where  k | p-1
Lemma 2: k|p-1 (k) = p-1

The order k of every element in Zp
* divides p-1













53



Z * is a cyclic groupZp is a cyclic group
Theorem: Zp

* is a cyclic group for a prime number pp y
pf.

Lemma 2:  (k) = p 1
Lemma 1: # of ord-k elements in Zp

*  (k), where  k | p-1
Lemma 2: k|p-1 (k) = p-1

The order k of every element in Zp
* divides p-1

k|p-1 (# of elements in Zp
* with order k)  =  p-1











53



Z * is a cyclic groupZp is a cyclic group
Theorem: Zp

* is a cyclic group for a prime number pp y
pf.

Lemma 2:  (k) = p 1
Lemma 1: # of ord-k elements in Zp

*  (k), where  k | p-1
Lemma 2: k|p-1 (k) = p-1

The order k of every element in Zp
* divides p-1

k|p-1 (# of elements in Zp
* with order k)  =  p-1

(Lemma 1)  p-1  k|p 1 (k), combined with lemma 2,



(Lemma 1)  p 1  k|p-1 (k), combined with lemma 2,   
we know that # of ord-k elements in Zp

*  (k)




53



Z * is a cyclic groupZp is a cyclic group
Theorem: Zp

* is a cyclic group for a prime number pp y
pf.

Lemma 2:  (k) = p 1
Lemma 1: # of ord-k elements in Zp

*  (k), where  k | p-1
Lemma 2: k|p-1 (k) = p-1

The order k of every element in Zp
* divides p-1

k|p-1 (# of elements in Zp
* with order k)  =  p-1

(Lemma 1)  p-1  k|p 1 (k), combined with lemma 2,

# f d ( 1) l i Z * ( 1) 1

(Lemma 1)  p 1  k|p-1 (k), combined with lemma 2,   
we know that # of ord-k elements in Zp

*  (k)
 # of ord-(p-1) elements in Zp

*  (p-1) > 1


53



Z * is a cyclic groupZp is a cyclic group
Theorem: Zp

* is a cyclic group for a prime number pp y
pf.

Lemma 2:  (k) = p 1
Lemma 1: # of ord-k elements in Zp

*  (k), where  k | p-1
Lemma 2: k|p-1 (k) = p-1

The order k of every element in Zp
* divides p-1

k|p-1 (# of elements in Zp
* with order k)  =  p-1

(Lemma 1)  p-1  k|p 1 (k), combined with lemma 2,

# f d ( 1) l i Z * ( 1) 1

(Lemma 1)  p 1  k|p-1 (k), combined with lemma 2,   
we know that # of ord-k elements in Zp

*  (k)
 # of ord-(p-1) elements in Zp

*  (p-1) > 1
 There is at least one generator in Zp

*, i.e. Zp
* is cyclic �

53

g p , p y



Z * is a cyclic groupZp is a cyclic group
Theorem: Zp

* is a cyclic group for a prime number pp y
pf.

Lemma 2:  (k) = p 1
Lemma 1: # of ord-k elements in Zp

*  (k), where  k | p-1
Lemma 2: k|p-1 (k) = p-1

The order k of every element in Zp
* divides p-1

k|p-1 (# of elements in Zp
* with order k)  =  p-1

(Lemma 1)  p-1  k|p 1 (k), combined with lemma 2,

# f d ( 1) l i Z * ( 1) 1

(Lemma 1)  p 1  k|p-1 (k), combined with lemma 2,   
we know that # of ord-k elements in Zp

*  (k)
 # of ord-(p-1) elements in Zp

*  (p-1) > 1
 There is at least one generator in Zp

*, i.e. Zp
* is cyclic �

53
Ex. p=13, p-1 = |{2,6,11,7}| + |{4,10}| + |{8,5}| + |{3,9}| + |{12}| + |{1}| 

k=12           k=6        k=4        k=3         k=2        k=1

g p , p y



Generators in QRGenerators in QRn
 Number of generators in Zp

*: (p-1)
L t b i iti Z * < > { 2 3 k p 1}Let g be a primitive, Zp

* = <g> = {g, g2, g3, …, gk, …, gp-1}
if gcd(k, p-1) = d  1 then gk is not a primitive 

since (gk)(p-1)/d = (gk/d)p-1 = 1 i e ord (gk)  (p 1)/dsince (gk)(p 1)/d = (gk/d)p 1 = 1, i.e. ordp(gk)  (p-1)/d 
if gcd(k, p-1) = 1 and gk is not a primitive, then d=ordp(gk)  p-1, i.e.

(gk)d = 1; g is a primitive  p-1 | k d  p-1 | d contradiction(g )  1; g is a primitive  p-1 | k d  p-1 | d  contradiction.
 Zn

* is not a cyclic group (n = p q, p=2p'+1, q=2q'+1, (n)=2p'q')
Since x(n)  1 (mod n), there is no generator that can generateSince x 1 (mod n), there is no generator that can generate
all members in Zn

*

 QRn is a cyclic group of order (n)/2 = lcm(p-1, q-1)/2 =  p' q'Q n y g p ( ) (p , q ) p q
 x  Zn

*, x(n)  1 (mod n)     Carmichael’s Theorem
clearly, (x2)(n)/2  1 (mod n), QRn = {x2 |  x  Zn

*}
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i.e.  y  QRn, ordn(y) | p' q'     (ordn(y){1, p', q', p'q'})



Generators in QR (cont’d)Generators in QRn (cont d)
cyclic?       x*  Zn

* ordn(x*) = (n) = 2 p' q'  
 * ( ( *)2) QR t d ( *) ( )/2 ' ' y* (=(x*)2)  QRn s.t.  ordn(y*) = (n)/2 = p' q'

 Let y be a random element in QRn, the probability that y is a generator 
is close to 1is close to 1

Let y* be a generator of QRn,    
QRn = <y*> = {y*, (y*)2, (y*)3, …, (y*)k, …, (y*)p'q'}Q n y {y , (y ) , (y ) , , (y ) , , (y ) }

if gcd(k, p'q') = d  1 then (y*)k is not a generator 
since ((y*)k)p'q'/d = ((y*)k/d)p'q' = 1, i.e. ordp((y*)k)  (p'q')/d((y ) ) ((y ) ) p((y ) ) (p q )

(p'q') = (p') (q') = (p'-1)(q'-1) = p'q' - p' - q' + 1 
= p'q' - (p'-1) - (q'-1) - 1 

 x  {(y*)q', (y*)2q', …, (y*)(p'-1)q'} ordn(x) = p'
 x  {(y*)p', (y*)2p', …, (y*)(q'-1)p'} ordn(x) = q'
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ordn(1) = 1
Pr{x is a generator | xRQRn} = (p'q') / (p'q') is close to 1



Subgroups in Z *Subgroups in Zn
Consider n = p q, p=2p'+1, q=2q'+1, m=p'q', (n) = lcm(p-1, q-1)=2m,

(n) = (p-1)(q-1) = 4m
 Zn

* is not a cyclic group
 Carmichael’s theorem asserts that no element in Zn

* can generate 
all elements in Zn

*.  (maximum order is 2m instead of 4m)
* However, Zn
* is still a group over modulo n multiplication.

 QRn is a cyclic subgroup of order m = (n)/2, QRn = {x2 |  x  Zn
*}

 J00 = {x  Zn
* | J(x,p)=1 and J(x,q)=1}

 If there exists an element in Zn
* whose order is 2m, then QRn is 

l l li (Will h di i b ?)clearly a cyclic group.  (Will the precondition be true?)
  xZn

* x2m  1 (mod n) implies that  yQRn ordn(y) | p'q' 
i d ( ) i i h 1 ' ' ' ' (if h i d ( )
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i.e. ordn(y) is either 1, p', q', or p'q' (if there is one y s.t. ordn(y)=m
then y is a generator and QRn is cyclic).  Let’s construct one.



Subgroups in Z * (cont’d)Subgroups in Zn (cont d)
Let g1 be a generator in Zp

*, and g2 be a generator in Zq
*

Let g  g1 (mod p)  g2 (mod q), (note that J(g, n) = 1, g  J11)
gp-1  g2p'  g1

2p'  1 (mod p), gq-1  g2q'  g2
2q'  1 (mod q)

 g2p'q'  1 (mod p) and g2q'p'  1 (mod q) i.e. g2p'q'  1 (mod n)
if there exists a k  {1, 2, p', q', 2p', 2q', p'q'} s.t. gk  1 (mod n)

then ordn(g) is not 2p'q'
1. k=1:  g1  1 (mod p) contradict with ordp(g1) = p-1
2. k=p':  gp'  g1

p'  1 (mod p) contradict with ordp(g1) = 2p'
3. k=q':  gq'  g2

q'  1 (mod q) contradict with ordq(g2) = 2q'q

4. k=2:  g1
2  1 (mod p) contradict with ordp(g1) = p-1

5. k=2p':  g2p'  g2
2p'  1 (mod q) contradict with ordq(g2) = 2q'
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q

6. k=2q':  g2q'  g1
2q'  1 (mod p) contradict with ordp(g1) = 2p'



Subgroups in Z * (cont’d)Subgroups in Zn (cont d)
7. k=p'q':  gp'q'  g1

p'q'  1 (mod p)
i 2 ' 1 ( d ) dsince g1

2p'  1 (mod p) and 
gcd(q', 2) = 1   a, b s.t. a q' + b 2 = 1
 g p' g p' (a q' + b 2) g p' q' )a g 2 p')b 1 (mod p) g1

p  g1
p  (a q  + b 2)  g1

p  q  )a g1
2 p )b  1 (mod p)

contradict with ordp(g1) = 2p'
1~7 implies that ord (g) = 2p'q' i e QR = {g2 g4 gp'q'}1~7 implies that ordn(g) = 2p q , i.e.  QRo = {g , g , …, gp q }
and QRn is a cyclic group.

 Pr{Elements in QR being a generator} = (p'q') / (p'q') Pr{Elements in QRn being a generator}  (p q ) / (p q ) 
 Jn is a cyclic subgroup of order 2m = (n), Jn = {x  Zn

* | J(x,n)=1}
 J11 = {x  Zn

* | J(x,p)=-1 and J(x,q)=-1}11 { n | ( ,p) ( ,q) }
 The above proof also shows that Jn = {g, g2, …, g2p'q'} is cyclic
 Pr{Elements in Jn being a generator} = (p'q') / (2p'q') 
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 J01J10 = Zn
* \ {J00J11} is not a subgroup in Zn

*

 if x  J01 then x * x  J00



Generator in QRGenerator in QRn
 n = p q, p=2p'+1, q=2q'+1
 Find a generator in QRn

1. Find a generator g1 of Zp
* (i.e. Zp

* = <g1>) and g2 of Zq
* (i.e. Zq

* = <g2>)
2 C l l t th t h 2 ( d ) f QR d h 2 ( d 1) f QR2. Calculate the generator h1  g1

2 (mod p) of QRp and h2  g2
2 (mod 1) of QRq

3. Let h  h1 (mod p)  h2 (mod q).  
It is clear that h  g2 (mod n), i.e. hQRn, where g  g1 (mod p)  g2 (mod q).It is clear that h g (mod n), i.e. hQRn, where g g1 (mod p) g2 (mod q).  

Claim: h is a generator of QRn

pf.
y  QRn  y  QRp and y  QRq

i.e.  x1 Zp' and x2 Zq' , y  h1
x1 (mod p)  h2

x2 (mod q)
 2 x1 ( d ) 2 x2 ( d ) y  g1

2 x1 (mod p)  g2
2 x2 (mod q)

 y  g 2 x (mod n) if 2 x  2 x1 (mod p-1)  2 x2 (mod q-1)
a unique x  Zp'q' exists by CRT since gcd(p-1, q-1) = gcd(2p', 2q') = 2
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q p q y g (p , q ) g ( p , q )
 y  h x (mod n)



Generate Elements in Z *Generate Elements in Zn
 Zn

* is NOT a cyclic group (n = p q, p=2p'+1, q=2q'+1, m=p' q')
 H d t d l t i Z *? How do we generate random elements in Zn

*?
Zn

* = { ga u-e b1 (-1)b2 | g is a generator in QRn, gcd(e, (n)) = 1,
u Z * and J(u n) = 1uR Zn and J(u,n) = -1,                                       
a{0,…,m-1}, b1{0,1}, and b2{0,1} }

Note: 1 J(-1 n) = 1 and -1  J \QR since (-1)(p-1)/2  (-1)p'  -1 (mod p)Note: 1. J(-1, n)  1 and -1  Jn\QRn since (-1)(p )  (-1)p  -1 (mod p)
2. e is odd, (n)-e is also odd, J(u-e, n) = J(u, n) = -1

 We can view the above as 4 parts We can view the above as 4 parts
1. J00 (QRn): b1 = b2 = 0, J00 = {ga | a{0,…,m-1}}
2. J11 (Jn\QRn): b1 = 0, b2 = 1, J11 = {-ga | a{0,…,m-1}}11 ( n Q n) 1 , 2 , 11 { g | { , , }}
Assume that J(u, p) = -1 and J(u, q) = 1
3. J01: b1 = 1, b2 = 0, J01 = {ga u-e | a{0,…,m-1}}
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4. J10: b1 = 1, b2 = 1, J01 = {-ga u-e | a{0,…,m-1}}



Lagrange’s TheoremLagrange s Theorem
Theorem: for any finite group G, the order 

(number of elements) of every subgroup H of G 
divides the order of G.
proof sketch: divide G into left cosets H – equivalence 

classes, and  show that they have the same size.
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 It implies that: the order of any element a of a 

finite group (i.e. the smallest positive integer g p ( p g
number k with ak = 1) divides the order of the 
group. Since the order of a is equal to the ordergroup.  Since the order of a is equal to the order 
of the cyclic subgroup generated by  a.  Also, a|G|

= 1 since order of a divides |G|.
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 1 since order of a divides |G|.
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 1 since order of a divides |G|.
Any prime order group is cyclic.


