Prime Numbers

密碼學與應用 海洋大學資訊工程系 丁培毅

Prime Number Theorem

♦ Prime Number Theorem:

- * Let $\pi(x)$ be the number of primes less than x
- **★** Then

$$\pi(x) \approx \frac{x}{\ln x}$$

in the sense that the ratio $\pi(x)/(x/\ln x) \to 1$ as $x \to \infty$

- * Also, $\pi(x) \ge \frac{x}{\ln x}$ and for $x \ge 17$, $\pi(x) \le 1.10555 \frac{x}{\ln x}$
- \Rightarrow Ex: number of 100-digit primes $\frac{1.2}{1.1}$ $\pi(x)/\frac{x}{\ln x}$ $\pi(10^{100}) - \pi(10^{99}) \approx \frac{10^{100}}{\ln 10^{100}} - \frac{1.0}{0.9} \pi(x) / \int_{2}^{x} \frac{1}{\ln t} dt$

Prime Numbers

- ♦ **Prime number**: an integer p>1 that is divisible only by 1 and itself, ex. 2, 3,5, 7, 11, 13, 17...
- ♦ Composite number: an integer n>1 that is not prime
- ♦ **Fact**: there are infinitely many prime numbers. (by Euclid) pf: \Rightarrow on the contrary, assume a_n is the largest prime number
 - \Rightarrow let the finite set of prime numbers be $\{a_0, a_1, a_2, \dots a_n\}$
 - \Rightarrow the number $b = a_0 * a_1 * a_2 * ... * a_n + 1$ is not divisible by any a_i i.e. b does not have prime factors $\leq a_n$
 - 2 cases: \triangleright if b has a prime factor d, b>d> a_n , then "d is a prime number that is larger than a," ... contradiction
 - > if b does not have any prime factor less than b, then "b is a prime number that is larger than a," ... contradiction

Factors

- ♦ Every composite number can be expressible as a product a \cdot b of integers with 1 < a, b < n
- ♦ Every positive integer has a unique representation as a product of prime numbers raised to different powers.

$$\Rightarrow$$
 Ex. $504 = 2^3 \cdot 3^2 \cdot 7$, $1125 = 3^2 \cdot 5^3$

Factors

- \diamond Lemma: p is a prime number and p | a·b \Longrightarrow p | a or p | b, more generally, p is a prime number and p | $a \cdot b \cdot ... \cdot z$ \implies p must divide one of a, b, ..., z
 - * proof:
 - ¢ case 1: p | a
 - - \rightarrow p/ a and p is a prime number \Rightarrow gcd(p, a) = 1 \Rightarrow 1 = a x + p y
 - \rightarrow multiply both side by b, b = b a x + b p y
 - $\rightarrow p \mid a b \Rightarrow p \mid b$
 - **‡** In general: if p | a then we are done, if p ∤ a then p | bc...z, continuing this way, we eventually find that p divides one of the factors of the product

("Fair-MAH")

Fermat's Little Theorem

♦ If p is a prime, p∤a then $a^{p-1}\equiv 1 \pmod{p}$

Proof: \Rightarrow let $S = \{1, 2, 3, ..., p-1\}$ (Z_p^*) , define $\psi(x) \equiv a \cdot x \pmod{p}$ be a mapping $\psi: S \rightarrow Z$

> $\Rightarrow \forall x \in S, \psi(x) \neq 0 \pmod{p} \Rightarrow \forall x \in S, \psi(x) \in S, i.e. \psi: S \rightarrow S$ $\inf \psi(x) \equiv a \cdot x \equiv 0 \pmod{p} \implies x \equiv 0 \pmod{p} \text{ since } \gcd(a, p) = 1$

 $\Rightarrow \forall x, y \in S, \text{ if } x \neq y \text{ then } \psi(x) \neq \psi(y)$

if $\psi(x) \equiv \psi(y) \Rightarrow a \cdot x \equiv a \cdot y \Rightarrow x \equiv y$ since gcd(a, p) = 1

 \Rightarrow from the above two observations, $\psi(1)$, $\psi(2)$,... $\psi(p-1)$ are distinct elements of S

- $\Rightarrow 1 \cdot 2 \cdot \dots \cdot (p-1) \equiv \psi(1) \cdot \psi(2) \cdot \dots \cdot \psi(p-1) \equiv (a \cdot 1) \cdot (a \cdot 2) \cdot \dots \cdot (a \cdot (p-1))$ $\equiv a^{p-1} (1 \cdot 2 \cdot \dots \cdot (p-1)) \pmod{p}$
- \Rightarrow since gcd(i, p) = 1 for i \in S, we can divide both side by 1, 2, 3, ... p-1, and obtain $a^{p-1} \equiv 1 \pmod{p}$

Unique Prime Factorization Theorem

- ♦ Theorem: Every positive integer is a product of primes. This factorization into primes is unique, up to reordering of the factors. • Empty product equals 1.
 - Prime is a one factor product. * Proof: product of primes
 - * assume there exist positive integers that are not product of primes

 - \Rightarrow since n can not be 1 or a prime, n must be composite, i.e. $n = a \cdot b$
 - **★** since n is the smallest, both a and b must be products of primes.
 - \Rightarrow n = a·b must also be a product of primes, contradiction
 - * Proof: uniqueness of factorization
 - where p_i , q_i are all distinct primes.
 - $\Rightarrow \text{ let } \mathbf{m} = \mathbf{n} / (\mathbf{r_1}^{c_1} \mathbf{r_2}^{c_2} \cdots \mathbf{r_k}^{c_k})$
 - \Rightarrow consider p_1 for example, since p_1 divide $m = q_1q_1..q_1q_2...q_t$, p_1 must divide one of the factors q_i, contradict the fact that "p_i, q_i are distinct primes"

Fermat's Little Theorem

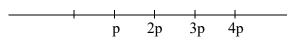
- \Rightarrow if n is prime, then $2^{n-1} \equiv 1 \pmod{n}$ i.e. if $2^{n-1} \neq 1 \pmod{n}$ then n is not prime \leftarrow (*) usually, if $2^{n-1} \equiv 1 \pmod{n}$, then n is prime
 - * exceptions: $2^{561-1} \equiv 1 \pmod{561}$ although $561 = 3 \cdot 11 \cdot 17$ $2^{1729-1} \equiv 1 \pmod{1729}$ although $1729 = 7 \cdot 13 \cdot 19$
 - * (*) is a quick test for eliminating composite number

Euler's Totient Function $\phi(n)$

- ϕ (n): the number of integers $1 \le a < n$ s.t. gcd(a,n)=1ex. n=10, $\phi(n)=4$ the set is $Z_{10}^* = \{1,3,7,9\}$
- \Rightarrow properties of $\phi(\bullet)$
 - $\star \phi(p) = p-1$, if p is prime
 - $*\phi(p^r) = p^r p^{r-1} = p^r \cdot (1-1/p)$, if p is prime
 - multiplicative property $\star \phi(n \cdot m) = \phi(n) \cdot \phi(m)$ if gcd(n,m)=1
 - $\star \phi(n \cdot m) = \phi((d_1/d_2/d_3)^2) \cdot \phi(d_2^3) \cdot \phi(d_3^3) \cdot \phi(n/d_1/d_2) \cdot \phi(m/d_1/d_3)$ if $gcd(n,m)=d_1$, $gcd(n/d_1,d_1)=d_2$, $gcd(m/d_1,d_1)=d_3$
- $\star \phi(n) = n \prod_{\forall p \mid n} (1-1/p)$ ex. $\phi(10)=(2-1)\cdot(5-1)=4$ $\phi(120)=120(1-1/2)(1-1/3)(1-1/5)=32$

How large is $\phi(n)$?

- $\Rightarrow \phi(n) \approx n \cdot 6/\pi^2$ as n goes large
- ♦ Probability that a random number r is multiples of a prime number p? 1/p think of 2 (even numbers), 3, 5 in the form kp



- \diamond Probability that two independent random numbers r_1 and r_2 both have a given prime number p as a factor? $1/p^2$
- ♦ The probability that they do not have p as a common factor is thus $1 - 1/p^2$
- \diamond The probability that two numbers r_1 and r_2 have no common prime factor? $P = (1-1/2^2)(1-1/3^2)(1-1/5^2)(1-1/7^2)...$

$Pr\{r_1 \text{ and } r_2 \text{ relatively prime }\}$

♦ Equalities:

$$\frac{1}{1-x} = 1+x+x^2+x^3+...$$

$$1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+... = \pi^2/6$$

$$\Rightarrow P = (1-1/2^2)(1-1/3^2)(1-1/5^2)(1-1/7^2) \cdot ...$$

$$\stackrel{=}{=} ((1+1/2^2+1/2^4+...)(1+1/3^2+1/3^4+...) \cdot ...)^{-1}$$

$$= (1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+...)^{-1}$$

$$= 6/\pi^2$$

$$\approx 0.61$$

each positive number has a unique prime number factorization ex. $45^2 = 3^4 \cdot 5^2$

How large is $\phi(n)$?

- \Rightarrow $\phi(n)$ is the number of integers less than n that are relative prime to n
- $\phi(n)/n$ is the probability that a randomly chosen integer is relatively prime to n
- ♦ Therefore, ϕ (n) ≈ n · 6/ π ²
- \Rightarrow P_n = Pr { n random numbers have no common factor }
 - * n independent random numbers all have a given prime p as a factor is $1/p^n$
 - * They do not all have p as a common factor $1 1/p^n$
 - $\star P_n = (1+1/2^n+1/3^n+1/4^n+1/5^n+1/6^n+...)^{-1}$ is the Riemann zeta function $\zeta(n)$ http://mathworld.wolfram.com/RiemannZetaFunction.html
 - * Ex. n=4, $\zeta(4) = \pi^4/90 \approx 0.92$

Euler's Theorem

true when n is prime

$$\Rightarrow$$
 If $gcd(a,n)=1$ then $a^{\phi(n)} \equiv 1 \pmod{n}$

true even when $n = p^k$

Proof: \Rightarrow let S be the set of integers $1 \le x \le n$, with gcd(x, n) = 1

- \Leftrightarrow define $\psi(x) \equiv a \cdot x \pmod{n}$ be a mapping $\psi: S \rightarrow Z$
- $\forall x \in S \text{ and } \gcd(a, n) = 1, \quad \text{if } \psi(x) \equiv a \cdot x \equiv 0 \pmod{n} \Rightarrow x \equiv 0 \pmod{n}$ $\psi(x) \neq 0 \pmod{n}$
- $\Leftrightarrow \forall \ x, y \in S, \text{ if } x \neq y \text{ then } \psi(x) \not\equiv \psi(y) \text{ (mod n)'}$ $\text{if } \psi(x) \equiv \psi(y) \Rightarrow a \cdot x \equiv a \cdot y \Rightarrow x \equiv y \text{ since } \gcd(a, n) = 1$
- \Rightarrow from the above two observations, $\forall x \in S$, $\psi(x)$ are distinct elements of S (i.e. $\{\psi(x) \mid \forall x \in S\}$ is S)
- $\stackrel{\Rightarrow}{\prod} x \equiv \prod_{x \in S} \psi(x) \equiv a^{\phi(n)} \prod_{x \in S} x \pmod{n}$
- \Rightarrow since gcd(x, n) = 1 for x \in S, we can cancel one by one x \in S of both sides, and obtain $a^{\phi(n)} \equiv 1 \pmod{n}$

13

A second proof of Euler's Theorem

Euler's Theorem: $\forall a \in \mathbb{Z}_n^*, a^{\phi(n)} \equiv 1 \pmod{n}$

- \Rightarrow We have proved the above theorem by showing that the function $\psi(x) \equiv a \cdot x \pmod{n}$ is a permutation.
- ♦ We can also prove it through Fermat's Little Theorem & CRT

$$\begin{array}{c} \succ \text{ consider } n = p \cdot q, \ \varphi(n) = (p-1)(q-1) \\ \forall a \in Z_p^*, \ a^{p-1} \equiv 1 \pmod{p} \Rightarrow (a^{p-1})^{q-1} \equiv a^{\varphi(n)} \equiv 1 \pmod{p} \\ \forall a \in Z_q^*, \ a^{q-1} \equiv 1 \pmod{q} \Rightarrow (a^{q-1})^{p-1} \equiv a^{\varphi(n)} \equiv 1 \pmod{q} \\ \gcd(p,q) = 1 \Rightarrow p \cdot q \mid a^{\varphi(n)} - 1, \ i.e. \ \forall a \in Z_p^* \ (p \not\mid a \text{ and } q \not\mid a), \ a^{\varphi(n)} \equiv 1 \pmod{n} \end{array}$$

$$\begin{array}{l} \text{\succ consider $n=p^r$, $\phi(n)=p^{r-1}(p-1)$} \\ \forall a \in Z_{p^r}^* \,, \, a^{p-1} \equiv 1 \pmod p \Rightarrow a^{p-1} = 1 + \lambda p \qquad a^{\phi(n)} \equiv \left(1 + \lambda p\right)^{p^{r-1}} \\ a^{\phi(n)} = \left(1 + \lambda p\right)^{p^{r-1}} = 1 + C_1^{p^{r-1}} \lambda p + C_2^{p^{r-1}} (\lambda p)^2 + \dots \\ = 1 + p^{r-1} \lambda p + p^{r-1} (p^{r-1} - 1)/2 \ (\lambda p)^2 + \dots \end{array}$$

Euler's Theorem

 \diamond Example: What are the last three digits of 7^{803} ?

i.e. we want to find
$$7^{803} \pmod{1000}$$

$$1000 = 2^3 \cdot 5^3$$
, $\phi(1000) = 1000(1-1/2)(1-1/5) = 400$
 $7^{803} = 7^{803 \pmod{400}} = 7^3 = 343 \pmod{1000}$

 \Rightarrow Example: Compute 2^{43210} (mod 101)?

$$101 = 1 \cdot 101, \qquad \phi(101) = 100$$

 $2^{43210} \equiv 2^{43210 \pmod{100}} \equiv 2^{10} \equiv 1024 \equiv 14 \pmod{101}$

14

A second proof (cont'd)

Carmichael Theorem

Theorem:

$$\forall a \in Z_n^*, \ a^{\lambda(n)} \equiv 1 \ (mod \ n) \ and \ a^{n \cdot \lambda(n)} \equiv 1 \ (mod \ n^2)$$
 where $n = p \cdot q, \ p \neq q, \ \lambda(n) = lcm(p-1, q-1), \ \lambda(n) \mid \phi(n)$

 \Rightarrow like Euler's Theorem, we can prove it through Fermat's Little Theorem, consider $n = p \cdot q$, where $p \neq q$,

$$\begin{split} \forall a \in Z_p^*, \ a^{p-1} &\equiv 1 \ (\text{mod} \ p) \Rightarrow (a^{p-1})^{(q-1)/\text{gcd}(p-1,q-1)} \equiv a^{\lambda(n)} \equiv 1 \ (\text{mod} \ p) \\ \forall a \in Z_q^*, \ a^{q-1} &\equiv 1 \ (\text{mod} \ q) \Rightarrow (a^{q-1})^{(p-1)/\text{gcd}(p-1,q-1)} \equiv a^{\lambda(n)} \equiv 1 \ (\text{mod} \ q) \\ \text{gcd}(p,q) &= 1 \Rightarrow pq \mid a^{\lambda(n)} - 1, \ \forall a \in Z_n^* \ (\text{i.e.} \ p \not \mid a \land q \not \mid a), \ a^{\lambda(n)} \equiv 1 \ (\text{mod} \ n) \\ \text{therefore,} \ \forall a \in Z_n^*, \ a^{\lambda(n)} = 1 + k \cdot n \\ \text{raise both side to the n-th power, we get } a^{n \cdot \lambda(n)} &= (1 + k \cdot n)^n, \\ \Rightarrow a^{n \cdot \lambda(n)} &= 1 + n \cdot k \cdot n + ... \Rightarrow \forall a \in Z_n^* \ (\text{or} \ Z_{n^2}^*), \ a^{n \cdot \lambda(n)} \equiv 1 \ (\text{mod} \ n^2) \end{split}$$

♦ Let a, n, x, y be integers with n≥1, and gcd(a,n)=1 if x ≡ y (mod ϕ (n)), then $a^x \equiv a^y$ (mod n).

 \Rightarrow If you want to work mod n, you should work mod $\phi(n)$ or $\lambda(n)$ in the exponent.

Basic Principle to do Exponentiation

18

Primitive Roots modulo p

- ♦ When p is a prime number, a primitive root modulo p is a number whose powers yield every nonzero element mod p. (equivalently, the order of a primitive root is p-1)
- \Rightarrow ex: $3^1 \equiv 3$, $3^2 \equiv 2$, $3^3 \equiv 6$, $3^4 \equiv 4$, $3^5 \equiv 5$, $3^6 \equiv 1 \pmod{7}$ 3 is a primitive root mod 7
- ♦ sometimes called a multiplicative generator
- \diamond there are plenty of primitive roots, actually $\phi(p-1)$
 - * ex. p=101, $\phi(p-1)=100\cdot(1-1/2)\cdot(1-1/5)=40$ p=143537, $\phi(p-1)=143536\cdot(1-1/2)\cdot(1-1/8971)=71760$

Primitive Testing Procedure

- ♦ How do we test whether h is a primitive root modulo p?
 - * naïve method:

go through all powers h^2 , h^3 , ..., h^{p-2} , and make sure they all $\neq 1$ modulo p

* faster method:

assume p-1 has prime factors $q_1, q_2, ..., q_n$, for all q_i , make sure $h^{(p-1)/q_i}$ modulo p is not 1, then h is a primitive root

Intuition: let $h \equiv g^a \pmod{p}$, if gcd(a, p-1) = d (i.e. g^a is not a primitive root), $(g^a)^{(p-1)/q_i} \equiv (g^{a/q_i})^{(p-1)} \equiv 1 \pmod{p}$ for some $q_i \mid d$

ex. p=29, p-1= $2 \cdot 2 \cdot 7$, h=5, h^{28/2}=1, h^{28/7}=16, $\underline{5}$ is not a primitive h=11, h^{28/2}=28, h^{28/7}=25, 11 is a primitive

Primitive Testing Procedure (cont'd)

♦ Procedure to test a primitive g:

```
let p-1 has prime factors q_1, q_2, ..., q_n, (i.e. \phi(p)=p-1=q_1^{r_1}...q_n^{r_n})
for all q_i, g^{(p-1)/q_i} (mod p) is not 1 \Rightarrow g is a primitive
```

Proof:

- (a) by definition, ord_p(g) is the smallest positive x s.t. $g^x \equiv 1 \pmod{p}$ Fermat Theorem: $g^{\phi(p)} \equiv 1 \pmod{p}$ therefore implies $\operatorname{ord}_{p}(g) \leq \phi(p)$ if $\phi(p) = \operatorname{ord}_{n}(g) * k + s \text{ with } 0 \le s < \operatorname{ord}_{n}(g)$ $g^{\phi(p)} \equiv g^{ord} p^{(g) * k} g^s \equiv g^s \equiv 1 \pmod{p}, \text{ but } s < ord_n(g) \Rightarrow s = 0, \text{ i.e. } ord_n(g) \mid \phi(p)$
- (b) assume g is not a primitive root i.e ord_p(g) $< \phi(p) = p-1$ then $\exists i$, such that $\operatorname{ord}_n(g) \mid (p-1)/q_i$ i.e. $g^{(p-1)/q_i} \equiv 1 \pmod{p}$ for some q.
- (c) if for all q_i , $g^{(p-1)/q_i} \neq 1 \pmod{p}$ then $\operatorname{ord}_{p}(g) = \phi(p)$ and g is a primitive root modulo p

21

Pratt's Primality Certificate

- ♦ Pratt's proved in 1975 that this polynomial-size structure can prove that a number is prime and is verifiable in polynomial time
- ♦ based on the Lucas Primality Test (LPT)

229 (
$$a = 6$$
, 229 – 1 = $2^2 \times 3 \times 19$) verification

2 (known prime)

3 ($a = 2$, 3 – 1 = 2)
2 (known prime)

19 ($a = 2$, 19 – 1 = 2×3^2)
2 (known prime)
3 ($a = 2$, 3 – 1 = 2)
2 (known prime)
3 ($a = 2$, 3 – 1 = 2)
2 (known prime)
3 ($a = 2$, 3 – 1 = 2)
2 (known prime)
23 (known prime)
3 ($a = 2$, 3 – 1 = 2)
2 (known prime)
3 ($a = 2$, 3 – 1 = 2)
4 (known prime)
3 ($a = 2$, 3 – 1 = 2)
3 (known prime)
4 (19) (a prime prim

Lucas Primality Test

- the converse of ♦ An integer n is **prime** iff Fermat Little Theorem $\exists a, s.t. \ \cap 1. \ a^{n-1} \equiv 1 \pmod{n}$ ¹2. \forall prime factor q of n-1, $a^{n-1/q} \neq 1 \pmod{n}$ **Proof:**
- catch: inefficient, factors of n-1 are required (\Rightarrow) if n is prime, Fermat's little theorem ensures that " $\forall a \neq kn$, $a^{n-1} \equiv 1 \pmod{n}$ " a primitive a ensures " \forall prime factor q of n-1, $a^{n-1/q} \neq 1 \pmod{n}$ "
- (\Leftarrow) if $\exists a, s.t. 1. a^{n-1} \equiv 1 \pmod{n}$ and 2. \forall prime factor q of n-1, $a^{n-1/q} \neq 1 \pmod{n}$ By definition, ord_n(a) is the smallest positive x s.t. $a^x \equiv 1 \pmod{n}$ the first condition implies that $\operatorname{ord}_n(a) \le n-1$, also, $\operatorname{ord}_n(a) \mid n-1$ the second condition then implies that $ord_n(a) = n-1$ (*) Euler thm says that $a^{\phi(n)} \equiv 1 \pmod{n}$, by definition $\phi(n) < n-1$ if n is

a composite number, i.e. $ord_n(a) \le n-1$, contradict with (*).

Number of Primitive Root in Z_n^*

- \diamond Why are there $\phi(p-1)$ primitive roots?

* $g, g^2, g^3, ..., g^{p-1}$ is a permutation of 1, 2, ..., p-1* if g c d (2, p-1) = 1 if g c

- * if gcd(a, p-1)=d, then $(g^a)^{(p-1)/d} \equiv (g^{a/d})^{(p-1)} \equiv 1 \pmod{p}$ which says that the order of g^a is at most (p-1)/d, therefore, g^a is not a primitive root \Rightarrow There are at most $\phi(p-1)$ primitive roots in Z_n^*
- * For an element g^a in Z_p^* where gcd(a, p-1) = 1, it is guaranteed that $(g^a)^{(p-1)/q_i} \neq 1 \pmod{p}$ for all q_i $(q_i$ is factors or p-1)

```
assume that for a certain q_i, (g^a)^{(p-1)/q_i} \equiv 1 \pmod{p}
\Rightarrow p-1 | a · (p-1) / q<sub>i</sub>
\Rightarrow \exists \text{ integer } k, a \cdot (p-1) / q_i = k \cdot (p-1) \text{ i.e. } a = k \cdot q_i
\Rightarrow q<sub>i</sub> | a
\Rightarrow q<sub>i</sub> | gcd(a, p-1) contradiction
```

Multiplicative Generators in Z_n*

- \Rightarrow How do we define a multiplicative generator in Z_n^* if n is a composite number?
 - * Is there an element in Z_n^* that can generate all elements of Z_n^* ?
 - * If $n = p \cdot q$, the answer is negative. From Carmichael theorem, $\forall a \in Z_n^*$, $a^{\lambda(n)} \equiv 1 \pmod{n}$, $\gcd(p-1, q-1)$ is at least 2, $\lambda(n) = \operatorname{lcm}(p-1, q-1)$ is at most $\phi(n) / 2$. The size of a maximal possible multiplicative subgroup in Z_n^* is therefore no larger than $\lambda(n)$.
 - * If $n = p^k$, the answer is yes
 - * How many elements in Z_n^* can generate the maximal possible subgroup of Z_n^* ?

Finding Square Roots mod n

- \Rightarrow For example: find x such that $x^2 \equiv 71 \pmod{77}$
 - **★** Is there any solution?
 - **★** How many solutions are there?
 - **★** How do we solve the above equation systematically?
- ♦ In general: find x s.t. $x^2 \equiv b \pmod{n}$, where $b \in QR_n$, $n = p \cdot q$, and p, q are prime numbers
- ♦ Easier case: find x s.t. $x^2 \equiv b \pmod{p}$, where p is a prime number, $b \in QR_p$

Note: QR_n is "Quadratic Residue in Z_n*" to be defined later

26

Finding Square Root mod *p*

 \Leftrightarrow Given $y \in \mathbb{Z}_p^*$, find x, s.t. $x^2 \equiv y \pmod{p}$, p is prime

Two cases: $p \equiv 1 \pmod{4}$ (i.e. p = 4k + 1): probabilistic algorithm $p \equiv 3 \pmod{4}$ (i.e. p = 4k + 3): deterministic algorithm

 \diamond Is there any solution? (Is y a QR_p?)

check
$$y^{\frac{p-1}{2}} \not\supseteq 1 \pmod{p}$$

Euler's Criterion

$$\Rightarrow p \equiv 3 \pmod{4}$$

$$x \equiv \pm y^{\frac{p+1}{4}} \pmod{p}$$

(p+1)/4 = (4k+3+1)/4 = k+1 is an integer

$$\Rightarrow x^2 = y^{(p+1)/2} = y^{(p-1)/2} \cdot y \equiv y \pmod{p}$$

Finding Square Root mod *p*

 $\Rightarrow p \equiv 1 \pmod{4}$

- * Peralta, Eurocrypt'86, $p = 2^s q + 1$, both p, q are prime
- * 3-step probabilistic procedure
 - f 1. Choose a random number f, if $f^2 \equiv y \pmod{p}$, output f = f
- $\stackrel{\checkmark}{\sim}$ 2. Calculate $(r+x)^{(p-1)/2} \equiv u + v x \pmod{f(x)}$, $f(x) = x^2 y$
- 3. If u = 0 then output $z \equiv v^{-1} \pmod{p}$, else goto step 1

note: $(b+cx)(d+ex) \equiv (bd+ce x^2) + (be+cd) x$ $\equiv (bd+ce y) + (be+cd) x \pmod{x^2-y}$ use *square-multiply* algorithm to calculate the polynomial $(r+x)^{(p-1)/2}$

* the probability to successfully find z for each $r \ge 1/2$

Finding Square Root mod p

 \Rightarrow ex: find z such that $z^2 \equiv 12 \pmod{13}$ solution:

```
$\pi 13 \equiv 1 \text{ (mod 4)} ie. 4k+1$
$\pi \text{choose } r = 3, 3^2 = 9 \neq 12$
$\pi (3+x)^{(13-1)/2} = (3+x)^6 \equiv 12 + 0 x \text{ (mod } x^2-12)$
$\pi \text{choose } r = 7, 7^2 \equiv 10 \neq 12$
$\pi (7+x)^{(13-1)/2} = (7+x)^6 \equiv 0 + 8 x \text{ (mod } x^2-12)$
$\Rightarrow z = 8^{-1} = 5 \text{ (mod 13)}$
```

Why does it work???

Why is the success probability $> \frac{1}{2}$???

29

Finding Square Roots mod p·q

 \Rightarrow find x such that $x^2 \equiv 71 \pmod{77}$

```
★ 77 = 7 · 11
```

* " x^* satisfies $f(x^*) \equiv 71 \pmod{77}$ " \Leftrightarrow " x^* satisfies both $f(x^*) \equiv 1 \pmod{7}$ and $f(x^*) \equiv 5 \pmod{11}$ "

* since 7 and 11 are prime numbers, we can solve $x^2 \equiv 1 \pmod{7}$ and $x^2 \equiv 5 \pmod{11}$ far more easily than $x^2 \equiv 71 \pmod{77}$ $x^2 \equiv 1 \pmod{7}$ has two solutions: $x \equiv \pm 1 \pmod{7}$ $x^2 \equiv 5 \pmod{11}$ has two solutions: $x \equiv \pm 4 \pmod{11}$

* put them together and use CRT to calculate the four solutions

 $x \equiv 1 \pmod{7} \equiv 4 \pmod{11} \Rightarrow x \equiv 15 \pmod{77}$ $x \equiv 1 \pmod{7} \equiv 7 \pmod{11} \Rightarrow x \equiv 29 \pmod{77}$ $x \equiv 6 \pmod{7} \equiv 4 \pmod{11} \Rightarrow x \equiv 48 \pmod{77}$ $x \equiv 6 \pmod{7} \equiv 7 \pmod{11} \Rightarrow x \equiv 62 \pmod{77}$

Finding Square Roots mod n

♦ Now let's return to the question of solving square roots in Z_n^* , i.e.

for an integer $y \in QR_n$, find $x \in Z_n^*$ such that $x^2 \equiv y \pmod{n}$

- \diamond We would like to transform the problem into solving square roots mod p.
- ♦ Question: for $n=p \cdot q$ Is solving " $x^2 \equiv y \pmod{n}$ " equivalent to solving " $x^2 \equiv y \pmod{p}$ and $x^2 \equiv y \pmod{q}$ "??? **yes** (⇒) $x^2-y=kn=kpq \Rightarrow p \mid x^2-y \text{ and } q \mid x^2-y \mid a$ (⇒) $p \mid x^2-y \text{ and } q \mid x^2-y \Rightarrow pq \mid x^2-y \text{ i.e. } x^2-y=kpq=kn \mid a$

Computational Equivalence to Factoring

- \diamond Previous slides show that once you know the factors of n are p and q, you can easily solve the square roots of n
- \diamond Indeed, if you can solve the square roots for one single quadratic residue mod n, you can factor n.

* from the four solutions $\pm a$, $\pm b$ on the previous slide $x \equiv c \pmod{p} \equiv d \pmod{q} \Rightarrow x \equiv a \pmod{p \cdot q}$ $x \equiv c \pmod{p} \equiv -d \pmod{q} \Rightarrow x \equiv b \pmod{p \cdot q}$ $x \equiv -c \pmod{p} \equiv d \pmod{q} \Rightarrow x \equiv -b \pmod{p \cdot q}$ $x \equiv -c \pmod{p} \equiv -d \pmod{q} \Rightarrow x \equiv -a \pmod{p \cdot q}$ we can find out $a \equiv b \pmod{p}$ and $a \equiv -b \pmod{q}$ (or equivalently $a \equiv -b \pmod{p}$ and $a \equiv b \pmod{q}$)

* therefore, $p \mid (a-b)$ i.e. gcd(a-b, n) = p (ex. gcd(15-29, 77)=7) $q \mid (a+b)$ i.e. gcd(a+b, n) = q (ex. gcd(15+29, 77)=11)

Quadratic Residues

- ♦ Consider $y \in \mathbb{Z}_n^*$, if $\exists x \in \mathbb{Z}_n^*$, such that $x^2 \equiv y \pmod{n}$, then y is called a quadratic residue mod n, i.e. $y \in \mathbb{QR}_n$
- ♦ If the modulus p is prime, there are (p-1)/2 quadratic residues in \mathbb{Z}_p^*
 - * let g be a primitive root in Z_p^* , $\{g, g^2, g^3, ..., g^{p-1}\}$ is a permutation of $\{1,2,...p-1\}$
 - * in the above set, $\{g^2, g^4, ..., g^{p-1}\}$ are quadratic residues (QR_p)
 - * $\{g, g^3, ..., g^{p-2}\}$ are quadratic non-residues (QNR_p), out of which there are $\phi(p-1)$ primitive roots

33

Quadratic Residues in Z_p^*

2nd proof:

- * Because the squares of x and p-x are the same, the number of quadratic residues must be less than p-1 (i.e. some element in Z_p^* must be quadratic non-residue)
- * Let g is a primitive, consider this set $\{g, g^3, ..., g^{p-2}\}$ directly
- * If $g \in QR_p$, then g cannot be a primitive (because g^k must all be quadratic residues). Thus, $g \in QNR_p$
- * If $g^{2k+1} \equiv g^{2k} \cdot g \in QR_p$, $\exists x \in Z_p^*$ such that $x^2 \equiv g^{2k} \cdot g \pmod{p}$ Since $\gcd(g^{2k}, p) = 1$, $g \equiv (g^{2k})^{-1} \cdot x^2 \equiv ((g^{-1})^k \cdot x)^2 \in QR_p$ contradiction Thus, $g^{2k+1} \in QNR_p$ $(g^{2k})^{-1}(g^{2k}) \equiv (g^{2k})^{-1}g \cdot g \cdot \dots \cdot g \equiv 1 \pmod{p}$ $\Rightarrow (g^{2k})^{-1} \equiv g^{-1} \cdot g^{-1} \cdot \dots \cdot g^{-1} \equiv (g^{-1})^{2k} \equiv ((g^{-1})^k)^2$

Quadratic Residues in \mathbb{Z}_p^*

1st proof:

- * For each $x \in \mathbb{Z}_p^*$, $p x \neq x \pmod{p}$ (since if x is odd, p x is even), it's clear that x and p x are both square roots of a certain $y \in \mathbb{Z}_p^*$
- **★** Because there are only p-1 elements in \mathbb{Z}_p^* , we know that $|\mathbb{QR}_p| \le (p$ -1)/2
- ★ Because $|\{g^2, g^4, ..., g^{p-1}\}| = (p-1)/2$, there can be no more quadratic residues outside this set. Therefore, the set $\{g, g^3, ..., g^{p-2}\}$ contains only quadratic non-residues

34

Quadratic Residues in Z_p^*

- \Rightarrow ex. p=143537, $p-1=143536=2^4 \cdot 8971$, $\phi(p-1)=2^4 \cdot 8971 \cdot (1-1/2) \cdot (1-1/8971)=71760$ primitives, (p-1)/2=71768 QR_n's and 71768 QNR_n's
 - * Note: if g is a primitive, then g^3 , g^5 ... are also primitives except the following 8 numbers g^{8971} , $g^{8971\cdot 3}$,..., $g^{8971\cdot 15}$
 - * Elements in Z_p^* can be grouped further according to their order since $\forall x \in Z_p^*$, $\operatorname{ord}_p(x) \mid p\text{-}1$, we can list all possible orders

						8971	16	8	4	2	1
	$\operatorname{ord}_p(x)$	n_1	<i>p</i> -1	<i>p</i> -1	<i>p</i> -1	<i>p</i> -1	<i>p</i> -1				
_	$\operatorname{Ord}_p(x)$	<i>p</i> -1	2	4	8	16	<i>p</i> -1 8971	8971.2	8971.4	8971.8	8971.16
		QNR_p		QR_p	QR_p				QR_p	QR_p	QR_p
-	#	φ(<i>p</i> -1)					8			2	1 36

\mathbf{QR}_n for Composite Modulus n

 \diamond If y is a quadratic residue modulo n, it must be a quadratic residue modulo all prime factors of n.

$$\exists x \in \mathbb{Z}_n^* \text{ s.t. } x^2 \equiv y \pmod{n} \Leftrightarrow x^2 = k \cdot n + y = k \cdot p \cdot q + y$$
$$\Rightarrow x^2 \equiv y \pmod{p} \text{ and } x^2 \equiv y \pmod{q}$$

 \diamond If y is a quadratic residue modulo p and also a quadratic residue modulo q, then y is a quadratic residue modulo n.

$$\exists r_1 \in \mathbb{Z}_p^* \text{ and } r_2 \in \mathbb{Z}_q^* \text{ such that}$$

$$y \equiv r_1^2 \pmod{p} \equiv (r_1 \bmod{p})^2 \pmod{p}$$

$$\equiv r_2^2 \pmod{q} \equiv (r_2 \bmod{q})^2 \pmod{q}$$
from CRT, $\exists ! r \in \mathbb{Z}_n^* \text{ such that } r \equiv r_1 \pmod{p} \equiv r_2 \pmod{q}$
therefore, $y \equiv r^2 \pmod{p} \equiv r^2 \pmod{q}$
again from CRT, $y \equiv r^2 \pmod{p \cdot q}$

Legendre Symbol

$$y \in QR_p \Leftrightarrow y^{(p-1)/2} \equiv 1 \pmod{p}$$

 (\Rightarrow)

- * If $y \in QR_p$
- **★** Then $\exists x \in \mathbb{Z}_p^*$ such that $y \equiv x^2 \pmod{p}$
- * Therefore, $y^{(p-1)/2} \equiv (x^2)^{(p-1)/2} \equiv x^{(p-1)} \equiv 1 \pmod{p}$

 (\Leftarrow)

* If $y \notin QR_p$ i.e. $y \in QNR_p$

 $\operatorname{ord}_{p}(g) = p-1$

- * Then $y \equiv g^{2k+1} \pmod{p}$
- * Therefore, $y^{(p-1)/2} \equiv (g^{2k} \cdot g)^{(p-1)/2} \equiv g^{k(p-1)} g^{(p-1)/2} \equiv g^{(p-1)/2} \equiv 1 \pmod{p}$

Legendre Symbol

- \diamond Legendre symbol L(a, p) is defined when a is any integer, p is a prime number greater than 2
 - $\star L(a, p) = 0 \text{ if } p \mid a$
 - * L(a, p) = 1 if a is a quadratic residue mod p
 - * L(a, p) = -1 if a is a quadratic non-residue mod p
- \diamond Two methods to compute (a/p)
 - $\star (a/p) = a^{(p-1)/2} \pmod{p}$
 - * recursively calculate by $L(a \cdot b, p) = L(a, p) \cdot L(b, p)$
 - 1. If a = 1, L(a, p) = 1
 - 2. If a is even, $L(a, p) = L(a/2, p) \cdot (-1)^{(p^2-1)/8}$
 - 3. If a is odd prime, $L(a, p) = L((p \mod a), a) \cdot (-1)^{(a-1)(p-1)/4}$
- ♦ Legendre symbol L(a, p) = -1 if $a \in QNR_p$ L(a, p) = 1 if $a \in QR_p$

38

Jacobi Symbol

- \diamond Jacobi symbol J(a, n) is a generalization of the Legendre symbol to a composite modulus n
- ♦ If *n* is a prime, J(a, n) is equal to the Legendre symbol i.e. $J(a, n) \equiv a^{(n-1)/2} \pmod{n}$
- \diamond Jacobi symbol cannot be used to determine whether a is a quadratic residue mod n (unless n is a prime)

ex.
$$J(7, 143) = J(7, 11) \cdot J(7, 13) = (-1) \cdot (-1) = 1$$

however, there is no integer *x* such that $x^2 \equiv 7 \pmod{143}$

Calculation of Jacobi Symbol

- \diamond The following algorithm computes the Jacobi symbol J(a, n), for any integer a and odd integer n, recursively:
 - * Def 1: J(0, n) = 0 also If n is prime, J(a, n) = 0 if n|a
 - * Def 2: If n is prime, J(a, n) = 1 if $a \in QR_n$ and J(a, n) = -1 if $a \notin QR_n$
 - * Def 3: If n is a composite, $J(a, n) = J(a, p_1 \cdot p_2 \dots \cdot p_m) = J(a, p_1) \cdot J(a, p_2) \dots \cdot J(a, p_m)$
 - * Rule 1: J(1, n) = 1
 - * Rule 2: $J(a \cdot b, n) = J(a, n) \cdot J(b, n)$
 - * Rule 3: J(2, n) = 1 if $(n^2-1)/8$ is even and J(2, n) = -1 otherwise
 - * Rule 4: $J(a, n) = J(a \mod n, n)$
 - * Rule 5: J(a, b) = J(-a, b) if a < 0 and (b-1)/2 is even, J(a, b) = -J(-a, b) if a < 0 and (b-1)/2 is odd
 - * Rule 6: $J(a, b_1 \cdot b_2) = J(a, b_1) \cdot J(a, b_2)$
 - * Rule 7: if gcd(a, b)=1, a and b are odd
 - \Rightarrow 7a: J(a, b) = J(b, a) if (a-1)·(b-1)/4 is even
 - ≉ 7b: J(a, b) = -J(b, a) if (a-1)·(b-1)/4 is odd

QR_n and Jacobi Symbol

 \diamond Consider $n = p \cdot q$, where p and q are prime numbers

$$x \in QR_n$$

 $\Leftrightarrow x \in QR_p \text{ and } x \in QR_q$

$$\Leftrightarrow$$
 J(x, p) = $x^{(p-1)/2} \equiv 1 \pmod{p}$ and J(x, q) = $x^{(q-1)/2} \equiv 1 \pmod{q}$

$$\Rightarrow$$
 J(x, n) = J(x, p) · J(x, q) = 1

	J(x, p)	J(x, q)	J(x, n)	
Q_{00}	1	1	1	$x \in QR_n$
Q_{01}	1	-1	-1	$x \in QNR_n$
Q_{10}	-1	1	-1	$x \in QNR_n$
Q_{11}	-1	-1	1	$x \in QNR_n$

42

Wilson's Theorem

 $(p-1)! \equiv -1 \pmod{p}$

Proof:

Goal: $(p-1)! \equiv 1 \cdot 2 \cdot 3 \cdot \cdots (p-1) \equiv -1 \equiv (p-1) \pmod{p}$

* Since gcd(p-1, p) = 1, the above is equivalent to $(p-2)! \equiv 1 \pmod{p}$

* e.g. p = 5, $3 \cdot 2 \cdot 1 \equiv 1 \pmod{5}$ p = 7, $5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \equiv 1 \pmod{7}$

* We know that $1^{-1} \equiv 1 \pmod{p}$ and $(-1)^{-1} \equiv -1 \pmod{p}$

* Claim: $\forall i \in \mathbb{Z}_p^* \setminus \{1,-1\}, i^{-1} \neq i \text{ (pf: if } i^{-1} \equiv i \text{ then } i^2 \equiv 1, i \in \{1,-1\})$

* Claim: $\forall i_1 \neq i_2 \in \mathbb{Z}_p^* \setminus \{1,-1\}, i_1^{-1} \neq i_2^{-1}$ (pf: if $i_1^{-1} \equiv i_2^{-1}$ then $i_1 \cdot i_2^{-1} \equiv 1$ then $i_1 \equiv i_2$, contradiction)

* Out of the set $\{2, 3, \dots p-2\}$, we can form (p-3)/2 pairs such that $i \cdot j \equiv 1 \pmod{p}$, multiply them together, we obtain $(p-2)! \equiv 1$

Another Proof of QR_p test

$$y \in QR_p \Leftrightarrow y^{(p-1)/2} \equiv 1 \pmod{p}$$

- (⇒) * If $y \in QR_p$
 - * Then $\exists x \in \mathbb{Z}_p^*$ such that $y \equiv x^2 \pmod{p}$
 - * Therefore, $y^{(p-1)/2} \equiv (x^2)^{(p-1)/2} \equiv x^{(p-1)} \equiv 1 \pmod{p}$
- $(\Leftarrow) * \forall i, y \in \mathbb{Z}_p^*, \gcd(i, p) = 1, \exists j \text{ such that } i \cdot j \equiv y \pmod{p}$
 - * If $y \notin QR_p$, the congruence $x^2 \equiv y \pmod{p}$ has no solution, therefore, $j \neq i \pmod{p}$
 - * We can group the integers 1, 2, ..., p-1 into (p-1)/2 pairs (i, j), each satisfying $i \cdot j \equiv y \pmod{p}$
 - * Multiply them together, we have $(p-1)! \equiv y^{(p-1)/2} \pmod{p}$
 - * From Wilson's theorem, $y^{(p-1)/2} \equiv -1 \pmod{p}$

45

Order q Subgroup G_q of Z_p^*

- \diamond Let p be a prime number, g be a primitive in $\mathbb{Z}_n^{\frac{1}{2}}$
- \Rightarrow Let $p = k \cdot q + 1$ i.e. $q \mid p-1$ where q is also a prime number
- $\Leftrightarrow \text{ Let } G_q = \{g^k, g^{2k}, ..., g^{q+k} \equiv 1\}$
- ♦ Is G_q a subgroup in Z_p^* ? YES $\forall x, y \in G_q$, it is clear that $z \equiv g^{i+k} \equiv x \cdot y \equiv g^{(i_1+i_2)+k} \pmod{p}$ is also in G_q , where $i \equiv i_1 + i_2 \pmod{q}$
- ♦ Is the order of the subgroup G_q q? YES $\forall i_1, i_2 \in Z_q, i_1 \neq i_2, \ g^{i_1 + k} \neq g^{i_2 + k} \ (\text{mod } p) \text{ otherwise } g \text{ is not a}$ primitive in Z_p^* , also $g^{q+k} \equiv 1 \ (\text{mod } p)$
- \Rightarrow How many generators are there in G_q ? $\phi(q)=q-1$ a. there are $\phi(p-1)$ generators in $Z_p^*=\{g^1,g^2,...,g^x,...,g^{p-1}\}$, since $\gcd(p-1,x)=d>1$ implies that $\gcd_p(g^x)=(p-1)/d$

Exactly Two Square Roots

Every $y \in QR_p$ has exactly two square roots i.e. x and p-x such that $x^2 \equiv (p-x)^2 \equiv y \pmod{p}$

- pf: $\star QR_p = \{g^2, g^4, ..., g^{p-1}\}, |Z_p^*| = p-1, \text{ and } |QR_p| = (p-1)/2$
 - * For each $y = g^{2k}$ in QR_p, there are at least two distinct $x \in \mathbb{Z}_p^*$ s.t. $x^2 = y \pmod{p}$, i.e., g^k and $p g^k$ (if one is even, the other is odd)
 - * Since $|QR_p| = (p-1)/2$, we can obtain a set of p-1 square roots $S = \{g, p-g, g^2, p-g^2, \dots, g^{(p-1)/2}, p-g^{(p-1)/2}\}$
 - * Claim: the elements of S are all distinct $(1. g^i \neq g^j \pmod{p})$ when $i \neq j$ since g is a primitive, $2. g^i \neq -g^j \pmod{p}$ when $i \neq j$, otherwise $(g^i + g^j)(g^i g^j) \equiv g^{2i} g^{2j} \equiv 0 \pmod{p}$ implies $i \neq j \pmod{(p-1)/2}$, $3. g^i \neq -g^i \pmod{p}$ since if one is even, the other is odd)
 - * If there is one more square root z of $y \equiv g^{2k}$ which is not g^k and $-g^k$, it must belong to S (which is Z_p^*), say g^j , $j \ne k$, which would imply that $g^{2j} \equiv g^{2k} \pmod{p}$, and leads to contradiction

Order q Subgroup G_q (cont'd)

also $(g^x)^y \equiv 1 \pmod{p}$ and $g^{p-1} \equiv 1 \pmod{p}$ implies that either $x \cdot y \mid p-1$ or $p-1 \mid x \cdot y, \gcd(x, p-1) = 1$ implies that $p-1 \mid y$ therefore, $\operatorname{ord}_p(g^x) = p-1$

- b. there are $\phi(q)$ primitives in $G_q = \{g^k, g^{2k}, ..., g^{q-k} \equiv 1\}$ since q is also a prime number
- ♦ Is G_q a unique order q subgroup in Z_p^* ? YES

 Let S be an order-q cyclic subgroup, $S = \{g, g^2, ..., g^q \equiv 1\}$. Since p is prime, \exists a unique k-th root $g_1 \in Z_p^*$, s.t. $g \equiv g_1^k \pmod{p}$ Let $g_1 \neq g$ be another primitive, clearly $g_1 \equiv g^s \pmod{p}$,

 Is the set $S = \{g_1^k, g_1^{2k}, ..., g_1^{q \cdot k} \equiv 1\}$ different from G_q ?

 let $x \in S$, i.e. $x \equiv g_1^{i_1 \cdot k} \pmod{p}$, $i_1 \in Z_q$ $x \equiv g_1^{i_1 \cdot k} \equiv g^{s \cdot i_1 \cdot k} \equiv g^{i \cdot k} \pmod{p}$ where $i \equiv s \cdot i_1 \pmod{q}$, i.e. $S \subseteq G_q$ The proof is similar for $G_q \subseteq S$. Therefore, $S = G_q$

Gauss' Lemma

Lemma: let p be a prime, a is an integer s.t. gcd(a, p)=1, define $\{\alpha_i \equiv j \cdot a \pmod{p}\}_{i=1,\dots,(p-1)/2}$, let n be the number of α_i 's s.t. $\alpha_i > p/2$ then $L(a, p) = (-1)^n$ pf.

$$\bigstar \ \alpha_j \in \{r_1, \, ..., \, r_n\} \ if \ \alpha_j \geq p/2 \ and \ \alpha_j \in \{s_1, \, ..., \, s_{(p-1)/2-n}\} \ if \ \alpha_j < p/2$$

- * Since gcd(a, p)=1, r_i and s_i are all distinct and non-zero
- * Clearly, $0 < p-r_i < p/2$ for i=1,...,n
- * no p- r_i is an s_i : if p- $r_i = s_i$ then $s_i = -r_i \pmod{p}$ rewrite in terms of a: $u = v \pmod{p}$ where $1 \le u, v \le (p-1)/2$ \Rightarrow u = -v (mod p) where $1 \le u, v \le (p-1)/2 \Rightarrow$ impossible
- \Rightarrow {s₁, ..., s_{(p-1)/2-n}, p-r₁, ..., p-r_n} is a reordering of {1, 2,..., (p-1)/2}
- * Thus, $((p-1)/2)! \equiv s_1 \cdots s_{(p-1)/2-n} \cdot (-r_1) \cdots (-r_n) \equiv (-1)^n s_1 \cdots s_{(p-1)/2-n} \cdot r_1 \cdots r_n$ $\equiv (-1)^n ((p-1)/2)! \ a^{(p-1)/2} \pmod{p} \implies L(a, p) = (-1)^n$

$J(2, p) = (-1)^{(p^2-1)/8}$ (cont'd)

- * $\sum_{j=1}^{(p-1)/2} j = 1 + ... + (p-1)/2 = (p-1)/2 (1 + (p-1)/2) / 2 = (p^2-1)/8$
- * Thus, we have $(a-1)(p^2-1)/8 \equiv \sum_{j=1}^{(p-1)/2} \lfloor j \cdot a/p \rfloor n \pmod{2}$
- * If a is odd, $n = \sum_{i=1}^{(p-1)/2} \lfloor j \cdot a/p \rfloor$
- * If a = 2, $\lfloor j \cdot 2/p \rfloor = 0$ for $j=1, ..., (p-1)/2, n = (p^2-1)/8 \pmod{2}$ therefore, $J(2, p) = (-1)^{(p^2-1)/8}$

Theorem: $J(2, p) = (-1)^{(p^2-1)/8}$

Theorem: let p be a prime,
$$gcd(a, p) = 1$$
 then $L(a, p) = (-1)^t$ where $t = \sum_{j=1}^{(p-1)/2} \lfloor j \cdot a/p \rfloor$. Also $L(2, p) = (-1)^{(p^2-1)/8}$

pf.

- * $\alpha_i \in \{r_1, ..., r_n\}$ if $\alpha_i > p/2$ and $\alpha_i \in \{s_1, ..., s_{(p-1)/2-n}\}$ if $\alpha_i < p/2$
- * $\mathbf{j} \mathbf{a} = \mathbf{p} \lfloor \mathbf{j} \cdot \mathbf{a} / \mathbf{p} \rfloor + \alpha_i \text{ for } \mathbf{j} = 1, \dots, (\mathbf{p} 1)/2$

$$\Rightarrow \sum_{j=1}^{(p-1)/2} j \ a = \sum_{j=1}^{(p-1)/2} p \lfloor j \cdot a/p \rfloor + \sum_{j=1}^{n} r_j + \sum_{j=1}^{(p-1)/2-n} s_j$$

* $\{s_1,\,...,\,s_{(p\text{-}1)/2\text{-}n},\,p\text{-}r_1,\,...,\,p\text{-}r_n\}$ is a reordering of $\{1,\,2,...,\,(p\text{-}1)/2\}$

$$\Rightarrow \sum_{j=1}^{(p-1)/2} j = \sum_{j=1}^{n} (p-r_j) + \sum_{j=1}^{(p-1)/2-n} s_j = np - \sum_{j=1}^{n} r_j + \sum_{j=1}^{(p-1)/2-n} s_j$$

* Subtracting the above two equations, we have

$$(a-1)^{\sum_{j=1}^{(p-1)/2} j} = p \left(\sum_{j=1}^{(p-1)/2} \lfloor j \cdot a/p \rfloor - n \right) + 2 \sum_{j=1}^{n} r_{j}$$

50

Lemma. ord-k elements in $Z_p^* \le \phi(k)$

Lemma. There are at most $\phi(k)$ ord-k elements in Z_p^* , $k \mid p-1$

pf. $\Leftrightarrow Z_p^*$ is a field $\Rightarrow x^k-1 \equiv 0 \pmod{p}$ has at most k roots

- \Leftrightarrow if **a** is a nontrivial root $(a \ne 1)$, then $\{a^0, a^1, a^2, ..., a^{k-1}\}$ is the set of the k distinct roots.
- \Rightarrow Those a^{ℓ} with gcd(ℓ , k) = d > 1 have order at most k/d
- \diamond Only those a^{ℓ} with $gcd(\ell, k) = 1$ might have order k
- \diamond Hence, there are at most $\phi(k)$ order k elements

e.g. p = 13 {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1}
2 is a generator in
$$Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$$

k=12, {2, **X**, **X**, **X**, 6, **X**, 11, **X**, **X**, **N**, 7, **X**}, ϕ (12)

k=6, {4, **X**, **X**, **X**, 10, **X**},
$$\phi$$
(6) k=3, {3, 9, **X**}, ϕ (3) k=4, {8, **X**, 5, **X**}, ϕ (4) k=2, {12, **X**}, ϕ (2) k=1, {1}, ϕ (1)

Lemma. $\Sigma_{k|p-1} \phi(k) = p-1$

$$\begin{array}{l} \underline{\textbf{Lemma}}. \ \Sigma_{k|p\text{-}1} \ \phi(k) = p\text{-}1 & \text{let } \phi(1) = 1 \\ \\ pf. \\ p-1 = \Sigma_{k|p\text{-}1} \ (\# \ a \ in \ Z_p^* \ s.t. \ gcd(a, p\text{-}1) = k) \\ = \Sigma_{k|p\text{-}1} \ (\# \ b \ in \ \{1, \ldots, (p\text{-}1)/k\} \ s.t. \ gcd(b, \ (p\text{-}1)/k) = 1) \\ = \Sigma_{k|p\text{-}1} \ \phi((p\text{-}1)/k) & \text{let } p = 13, \ a \in Z_p^* \\ gcd(a, p\text{-}1) = k \Rightarrow k \mid p\text{-}1 \\ = \Sigma_{k|p\text{-}1} \ \phi(k) & \text{k=}1, \ \{1,5,7,11\}, \ \phi(12/1) \\ k = 2, \ \{2,10\}, \ \phi(12/2) \\ k = 3, \ \{3,9\}, \ \phi(12/3) \\ k = 4, \ \{4,8\}, \ \phi(12/4) \\ k = 6, \ \{6\}, \ \phi(12/6) \end{array}$$

pf. Lemma 1: # of ord-k elements in $Z_p^* \le \phi(k)$, where $k \mid p-1$ Lemma 2: $\Sigma_{k\mid p-1} \phi(k) = p-1$ The order k of every element in Z_p^* divides p-1 $\Rightarrow \Sigma_{k\mid p-1}$ (# of elements in Z_p^* with order k) = p-1

(Lemma 1) \Longrightarrow p-1 $\leq \Sigma_{k|p-1} \phi(k)$, combined with lemma 2, we know that # of ord-k elements in $Z_n^* = \phi(k)$

 Z_p^* is a *cyclic* group

 \Rightarrow # of ord-(p-1) elements in $Z_p^* = \phi(p-1) > 1$

Theorem: Z_p^* is a *cyclic* group for a prime number p

 \Rightarrow There is at least one generator in Z_p^* , i.e. Z_p^* is cyclic

Ex.
$$p=13$$
, $p-1 = |\{2,6,11,7\}| + |\{4,10\}| + |\{8,5\}| + |\{3,9\}| + |\{12\}| + |\{1\}|$
 $k=12$
 $k=6$
 $k=4$
 $k=3$
 $k=2$
 $k=1$
⁵⁴

Generators in QR_n

 $k=12, \{12\}, \phi(12/12)$

```
 \begin{array}{l} \Leftrightarrow \mbox{ Number of generators in } Z_p^{\ *} \colon \varphi(p\text{-}1) \\ \mbox{ Let $g$ be a primitive, } Z_p^{\ *} = < g> = \{g, \, g^2, \, g^3, \, ..., \, g^k, \, ..., \, g^{p\text{-}1}\} \\ \mbox{ if $\gcd(k, \, p\text{-}1) = d \neq 1$ then $g^k$ is not a primitive} \\ \mbox{ since } (g^k)^{(p\text{-}1)/d} = (g^{k/d})^{p\text{-}1} = 1, \mbox{ i.e. } \mbox{ ord}_p(g^k) \leq (p\text{-}1)/d \\ \mbox{ if $\gcd(k, \, p\text{-}1) = 1$ and $g^k$ is not a primitive, then $d\text{=}ord_p(g^k) < p\text{-}1$, i.e.} \\ \mbox{ } (g^k)^d = 1; \mbox{ $g$ is a primitive} \Rightarrow p\text{-}1 \mid k \ d \Rightarrow p\text{-}1 \mid d \ \mbox{ contradiction.} \\ \end{array}
```

- ♦ Z_n^* is not a cyclic group (n = p q, p=2p'+1, q=2q'+1, λ (n)=2p'q') Since $x^{\lambda(n)} \equiv 1 \pmod{n}$, there is no generator that can generate all members in Z_n^*

Generators in QR_n (cont'd)

cyclic?
$$\exists x^* \in Z_n^* \text{ ord}_n(x^*) = \lambda(n) = 2 \text{ p' } q' \Rightarrow \exists y^* (=(x^*)^2) \in QR_n \text{ s.t. } \text{ ord}_n(y^*) = \lambda(n)/2 = p' q'$$

♦ Let y be a random element in QR_n, the probability that y is a generator is close to 1

Let y* be a generator of QR_n,

$$\begin{split} QR_n = & <\!\!y^*\!\!> = \{y^*, (y^*)^2, (y^*)^3, \ldots, (y^*)^k, \ldots, (y^*)^{p'q'}\} \\ \text{if } gcd(k, p'q') = d \neq 1 \text{ then } (y^*)^k \text{ is not a generator} \\ \text{since } ((y^*)^k)^{p'q'/d} = ((y^*)^{k/d})^{p'q'} = 1, \text{ i.e. } ord_p((y^*)^k) \leq (p'q')/d \\ \varphi(p'q') = \varphi(p') \ \varphi(q') = (p'-1)(q'-1) = p'q' - p' - q' + 1 \\ = p'q' - (p'-1) - (q'-1) - 1 \\ \forall \ x \in \{(y^*)^{q'}, (y^*)^{2q'}, \ldots, (y^*)^{(p'-1)q'}\} \ ord_n(x) = p' \\ \forall \ x \in \{(y^*)^{p'}, (y^*)^{2p'}, \ldots, (y^*)^{(q'-1)p'}\} \ ord_n(x) = q' \\ ord_n(1) = 1 \end{split}$$

 $Pr\{x \text{ is a generator } | x \in_R QR_n\} = \phi(p'q') / (p'q') \text{ is close to } 1$

Subgroups in Z_n*

Consider
$$n = p \ q$$
, $p=2p'+1$, $q=2q'+1$, $m=p'q'$, $\lambda(n) = lcm(p-1, q-1)=2m$, $\phi(n) = (p-1)(q-1) = 4m$

- $\diamond \mathbf{Z_n}^*$ is not a cyclic group
 - * Carmichael's theorem asserts that no element in Z_n^* can generate all elements in Z_n^* . (maximum order is 2m instead of 4m)
 - * However, Z_n^* is still a group over modulo n multiplication.
- \Leftrightarrow **QR**_n is a cyclic subgroup of order $m = \lambda(n)/2$, QR_n = $\{x^2 \mid \forall x \in Z_n^*\}$
 - * $J_{00} = \{x \in Z_n^* \mid J(x,p)=1 \text{ and } J(x,q)=1\}$
 - * If there exists an element in Z_n^* whose order is 2m, then QR_n is clearly a cyclic group. (Will the precondition be true?)
 - * $\forall x \in Z_n^* x^{2m} \equiv 1 \pmod{n}$ implies that $\forall y \in QR_n \text{ ord}_n(y) \mid p'q'$ i.e. $\text{ord}_n(y)$ is either 1, p', q', or p'q' (if there is one y s.t. $\text{ord}_n(y) = m$ then y is a generator and QR_n is cyclic). Let's construct one.

Subgroups in Z_n^* (cont'd)

Let g_1 be a generator in Z_p^* , and g_2 be a generator in Z_q^* Let $\mathbf{g} \equiv \mathbf{g_1} \pmod{\mathbf{p}} \equiv \mathbf{g_2} \pmod{\mathbf{q}}$, (note that $J(g, n) = 1, g \in J_{11}$) $g^{p-1} \equiv g^{2p'} \equiv g_1^{2p'} \equiv 1 \pmod{p}, g^{q-1} \equiv g^{2q'} \equiv g_2^{2q'} \equiv 1 \pmod{q}$ $\Rightarrow g^{2p'q'} \equiv 1 \pmod{p} \text{ and } g^{2q'p'} \equiv 1 \pmod{q} \text{ i.e. } g^{2p'q'} \equiv 1 \pmod{n}$ if there exists a $k \in \{1, 2, p', q', 2p', 2q', p'q'\}$ s.t. $g^k \equiv 1 \pmod{n}$ then $\operatorname{ord}_n(g)$ is not 2p'q'

- 1. k=1: $\Rightarrow g_1 \equiv 1 \pmod{p}$ contradict with $\operatorname{ord}_p(g_1) = p-1$
- 2. $k=p': \Rightarrow g^{p'} \equiv g_1^{p'} \equiv 1 \pmod{p}$ contradict with $\operatorname{ord}_p(g_1) = 2p'$
- 3. k=q': $\Rightarrow g^{q'} \equiv g_2^{q'} \equiv 1 \pmod{q}$ contradict with $\operatorname{ord}_q(g_2) = 2q'$
- 4. k=2: \Rightarrow $g_1^2 \equiv 1 \pmod{p}$ contradict with ord_p $(g_1) = p-1$
- 5. k=2p': \Rightarrow g^{2p'} \equiv g₂^{2p'} \equiv 1 (mod q) contradict with ord_q(g₂) = 2q'
- 6. k=2q': \Rightarrow g^{2q'} \equiv g₁^{2q'} \equiv 1 (mod p) contradict with ord_p(g₁) = 2p'

58

Subgroups in Z_n^* (cont'd)

7. k=p'q':
$$\Rightarrow$$
 $g^{p'q'} \equiv g_1^{p'q'} \equiv 1 \pmod{p}$
since $g_1^{2p'} \equiv 1 \pmod{p}$ and
$$gcd(q', 2) = 1 \Rightarrow \exists a, b \text{ s.t. a } q' + b \text{ } 2 = 1$$

$$\Rightarrow g_1^{p'} \equiv g_1^{p' (a q' + b \text{ } 2)} \equiv (g_1^{p' q'})^a (g_1^{2 p'})^b \equiv 1 \pmod{p}$$
contradict with $ord_p(g_1) = 2p'$
1~7 implies that $ord_n(g) = 2p'q'$, i.e. $QR_o = \{g^2, g^4, ..., g^{p'q'}\}$
and QR_n is a cyclic group.

- * Pr{Elements in QR_n being a generator} = $\phi(p'q') / (p'q')$
- \Rightarrow J_n is a <u>cyclic</u> subgroup of order $2m = \lambda(n)$, $J_n = \{x \in Z_n^* \mid J(x,n)=1\}$
 - * $J_{11} = \{x \in Z_n^* \mid J(x,p)=-1 \text{ and } J(x,q)=-1\}$
 - * The above proof also shows that $J_p = \{g, g^2, ..., g^{2p'q'}\}\$ is cyclic
 - * Pr{Elements in J_n being a generator} = $\phi(p'q') / (2p'q')$
- \Rightarrow $J_{01} \cup J_{10} = Z_n^* \setminus \{J_{00} \cup J_{11}\}$ is not a subgroup in Z_n^*
 - * if $x \in J_{01}$ then $x * x \in J_{00}$

Generator in QR_n

- \Rightarrow n = p q, p=2p'+1, q=2q'+1
- ♦ Find a generator in QR_n

59

- 1. Find a generator g_1 of Z_p^* (i.e. $Z_p^* = \langle g_1 \rangle$) and g_2 of Z_q^* (i.e. $Z_q^* = \langle g_2 \rangle$)
- 2. Calculate the generator $h_1 \equiv g_1^2 \pmod{p}$ of QR_p and $h_2 \equiv g_2^2 \pmod{1}$ of QR_q
- 3. Let $h \equiv h_1 \pmod{p} \equiv h_2 \pmod{q}$.

It is clear that $h \equiv g^2 \pmod{n}$, i.e. $h \in QR_n$, where $g \equiv g_1 \pmod{p} \equiv g_2 \pmod{q}$.

Claim: h is a generator of QR_n

$$\begin{aligned} &y \in QR_n \Rightarrow \ y \in QR_p \ \text{and} \ y \in QR_q \\ &\text{i.e.} \ \exists \ x_1 \in Z_{p'} \ \text{and} \ x_2 \in Z_{q'} \ , \ y \equiv h_1^{\ x_1} \ (\text{mod} \ p) \equiv h_2^{\ x_2} \ (\text{mod} \ q) \\ &\Rightarrow y \equiv g_1^{\ 2 \, x_1} \ (\text{mod} \ p) \equiv g_2^{\ 2 \, x_2} \ (\text{mod} \ q) \\ &\Rightarrow y \equiv g^{\ 2 \, x} \ (\text{mod} \ n) \ \text{if} \ 2 \ x \equiv 2 \ x_1 \ (\text{mod} \ p\text{-}1) \equiv 2 \ x_2 \ (\text{mod} \ q\text{-}1) \\ &\text{a unique} \ x \in Z_{p'q'} \ \text{exists} \ \text{by} \ CRT \ \text{since} \ gcd(p\text{-}1, q\text{-}1) = gcd(2p', 2q') = 2 \\ &\Rightarrow y \equiv h^x \ (\text{mod} \ n) \end{aligned}$$

Generate Elements in Z_n^*

- Z_n^* is NOT a cyclic group (n = p q, p=2p'+1, q=2q'+1, m=p' q')
- \diamond How do we generate random elements in Z_n^* ?

$$Z_n^* = \{ g^a u^{-e b_1} (-1)^{b_2} | g \text{ is a generator in } QR_n, gcd(e, \phi(n)) = 1, \\ u \in_R Z_n^* \text{ and } J(u,n) = -1, \\ a \in \{0, \dots, m-1\}, b_1 \in \{0,1\}, \text{ and } b_2 \in \{0,1\} \}$$

Note: 1. J(-1, n) = 1 and $-1 \in J_n \setminus QR_n$ since $(-1)^{(p-1)/2} \equiv (-1)^{p'} \equiv -1 \pmod{p}$ 2. e is odd, $\phi(n)$ -e is also odd, $J(u^{-e}, n) = J(u, n) = -1$

- ♦ We can view the above as 4 parts
 - 1. $J_{00}(QR_n)$: $b_1 = b_2 = 0$, $J_{00} = \{g^a \mid a \in \{0,...,m-1\}\}$
 - $2.\ J_{11}\ (J_{n}\backslash QR_{n})\!\!:b_{1}=0,\ b_{2}=1,\ J_{11}=\{-g^{a}\ |\ a\!\in\!\{0,\ldots,\!m\text{-}1\}\}$

Assume that J(u, p) = -1 and J(u, q) = 1

- 3. J_{01} : $b_1 = 1$, $b_2 = 0$, $J_{01} = \{g^a u^{-e} \mid a \in \{0, ..., m-1\}\}$
- 4. J_{10} : $b_1 = 1$, $b_2 = 1$, $J_{01} = \{-g^a u^{-e} \mid a \in \{0,...,m-1\}\}$

Lagrange's Theorem

- ♦ Theorem: for any finite group G, the order (number of elements) of every subgroup H of G divides the order of G.
 - ★ proof sketch: divide G into left cosets H equivalence classes, and show that they have the same size.
- ♦ It implies that: the order of any element a of a finite group (i.e. the smallest positive integer number k with $a^k = 1$) divides the order of the group. Since the order of a is equal to the order of the cyclic subgroup generated by a. Also, $a^{|G|} = 1$ since order of a divides |G|.
- ♦ Any prime order group is cyclic.