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Prime Numbers

< Prime number: an integer p>1 that is divisible only by 1
and 1itself, ex. 2, 3,5, 7, 11, 13, 17...

< Composite number: an integer n>1 that is not prime
< Fact: there are infinitely many prime numbers. (by Euclid)

pf: #=on the contrary, assume a, is the largest prime number
% et the finite set of prime numbers be {a, a;, a,, .... a,}
% the number b = ay*a,*a,*...*a, + 1 is not divisible by any a;
i.e. b does not have prime factors <a,

2 cases: »if b has a prime factor d, b>d> a,, then “d is a prime
number that is larger than a,” ... contradiction
> 1f b does not have any prime factor less than b, then “b is a

prime number that is larger than a” ... contradiction
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Prime Number Theorem

< Prime Number Theorem:

* Let (x) be the number of primes less than x
* Then

Tx) ~ In x

in the sense that the ratio n(x) / (x/Inx) > 1 as x —> o

X X

* Also, m(x) > and for x>17, m(x) < 1.10555
In x In x
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Factors

< Every composite number can be expressible as a
product a'b of integers with 1 <a, b<n

< Every positive integer has a unique representation
as a product of prime numbers raised to different

powers.
s Ex. 504=23-32-7 1125=32-53




Factors

< Lemma: p is a prime number andp | a-b=>p|aorp|b,
more generally, p is a prime number and p | a-b-...'z
—> p must divide one of a, b, ..., z
* proof:

wcase l: p|a

wcase2: pfa,
> pfaand p is a prime number = ged(p,a)=1 = 1=ax+py
> multiply both side by b, b=bax+bpy
>plab=plb

% In general: if p | a then we are done, if p{ a then p | be...z, continuing
this way, we eventually find that p divides one of the factors of the
product

Unique Prime Factorization Theorem

< Theorem: Every positive integer is a product of primes.
This factorization into primes is unique, up to
reordering of the factors. « Empty product equals 1.

* Proof: product of primes * Prime is a one factor product.
% assume there exist positivef/@s that are not product of primes

% let n be the smallest suclyinteger

& since n can not be 1 or 8" prime, n must be composite, i.e. n=ab

% since n is the smallest, both a and b must be products of primes.

% n = a'b must also be a product of primes, contradiction

* Proof: uniqueness of factorization

% assume n = 1,1, 2 1k p, Ipy 2 pgs = 1y 2 'rkck%bl(hbz' : 'qut
where p;, q; are all distinct primes.

& letm=n/(r,r, 2 1,%)

% consider p; for example, since p; divide m = q,q;..q;9q;...q;, p; must
divide one of the factors q;, contradict the fact that “p;, q; are distinct
primes”

(“Fair-MAH”)

Fermat’s Little Theorem

< Ifpisaprime, pfa then aP'=1 (mod p)
Proof: #letS={1,2,3,...,p-1} (Zp*), define y(x) =a - x (mod p) be
a mapping y: S—>Z
aVx € S, y(x)#0 (mod p) = Vx € S, y(x) € S, i.e. y: S>S
ify(x)=a-x=0(modp) = x=0 (mod p) since ged(a, p) =1 ‘
aV x,y €S, ifx#y then y(x) # y(y)

ify(x)=y(y)=a-x=a-y=x=ysince gcd(a, p) = 1‘
% from the above two observations, y(1), y(2),... y(p-1) are
distinct elements of S
12 (p-D)=y(1)y(2) ... y(p-1) = (a-1)-(a-2) ...~ (a:(p-1))
=aP! (12 ... “(p-1)) (mod p)
wsince ged(j, p) = 1 for j € S, we can divide both side by 1, 2,
3, ... p-1, and obtain aP'=1 (mod p)

Fermat’s Little Theorem

+ Ex:2'19=1024 =1 (mod 11)
253 = (21923 =1°23 =8 (mod 11)
je. 223 =233mod 10293 -8 (1mod 11)

4 if n is prime, then 2™ = 1 (mod n)
fe. if21=1 (mod n) then n is not prime <—(*)
usually, if 2= (mod n), then n is prime
* exceptions: 2°°!"1 = 1 (mod 561) although 561 =3-11-17
2172912 1 (mod 1729) although 1729 =7-13-19

* (*) is a quick test for eliminating composite number




Euler’s Totient Function ¢(n)
< d(n): the number of integers 1<a<n s.t. gcd(a,n)-1
ex. n=10, ¢(n)-4 the setis Z,," = {1,3,7,9}
< properties of ¢(*)
*d(p) = p-1, if p is prime
*(p") - p'-p"'-p" - (1-1/p), if p is prime
*¢(n'm) = §(n) - §(m) if ged(mm)=1 P
* o(n'm) = $((d,/dy/d3)") ¢(d, ") 0(ds”) d(n/d, /dy)-¢(mid, /d5)
if ged(n,m)=d,, ged(n/d,,d,)=d,, ged(m/d,,d,)=d,
*d(n)=n II (1-1/p)
Vpln
ex. §(10)=(2-1)-(5-1)=4 ¢(120)=120(1-1/2)(1-1/3)(1-1/5)=32

How large 1s ¢(n)?
< d(n) ~ n - 6/ as n goes large
< Probability that a random number r is multiples of a prime
number p? | /p think of 2 (even numbers), 3, & .coq oo kp

| P 2 3p 4p
< Probability that two independent random numbers r, and r,
both have a given prime number p as a factor? 1/p2
< The probability that they do not have p as a common factor
is thus 1 — 1/p?
< The probability that two numbers r, and r, have no common

prime factor? P = (1-1/22)(1-1/32)(1-1/52)(1-1/72)...

0

Pr{ r, and r, relatively prime }

< Equalities: |

T 1-x
1+1/22+1/32+ 1/4> + 1/52 + 1/6> + ... = 1%/6

Tt P = (1-1/22)(1-1/32)(1-1/53)(1-1/72) - ... :
T (1224124 ) (1417324 1/34+.) - L)t
= (122417324 /42 4+1/52+1/6%+..) ! |

= IHx+xHx3+...

~..each positive number has a unique prime number factorization
ex. 452=34-52

How large 1s ¢(n)?
< ¢(n) 1s the number of integers less than n that are relative
prime to n

< ¢(n)/n is the probability that a randomly chosen integer is
relatively prime to n

% Therefore, ¢p(n) ~ n - 6/7?

< P, = Pr { n random numbers have no common factor }

* n independent random numbers all have a given prime p as a
factor is 1/p"

* They do not all have p as a common factor 1 — 1/p"

* P = (1+1/2"+1/3"+1/4"+1/5"+1/6"+...)" is the Riemann zeta
function (n) http://mathworld.wolfram.com/RiemannZetaFunction.html

* Ex. n=4, {(4) =1"90 ~ 0.92




Euler’s Theorem

true when n is prime

¢ If ged(a,n)=1 then a®™ =1 (modn) trueevenwhenn-pt
Proof: % let S be the set of integers 1<x<n, with gcd(x, n) = 1
xdefine y(x) = a - x (mod n) be a mapping y: S—>Z

X:X VX c S and gcd(a’ n) e 1, lf\V(A} 4? A 10 pss lUd u) A : =0 (mOd n)

geata; m=t-and ébu\)& m=t

\|I(X) #0 (mod Il) —vx c ,(1‘149 (}95[1120&[)];111}‘6 factgi\s
ged(w(x), n) =1
aV X,y €S, ‘if x#y then y(x) # y(y) (mod n)’
ify(x)=y(y) >a-x=a-y=x=ysince gcd(a,n) =1

% from the above two observations, VxeS, y(x) are distinct
elements of S (i.e. {y(x) | VxeS} is S)

* [Tx=I1 y(x) = a®™ H X (modn)

xeS  xeS
usince ged(x,n) =1 forx e S, we can cancel one by one
x € S of both sides, and obtain at(M=1 (mod n)

Euler’s Theorem

< Example: What are the last three digits of 7502
i.e. we want to find 75%3 (mod 1000)
1000 =23-53,  $(1000) = 1000(1-1/2)(1-1/5) = 400
7803 = 7803 (mod 400) — 73 = 343 (mod 1000))

< Example: Compute 243210 (mod 101)?
101=1- 101, ¢(101)— 100

A second proof of Euler’s Theorem
Euler’s Theorem: VaeZ *, a®™ =1 (mod n)

< We have proved the above theorem by showing that the function
y(x) =a - x (mod n) is a permutation.

< We can also prove it through Fermat’s Little Theorem & CRT
> considern=p - q, ¢(n) = (p-1)(g-1)
VaeZ), aP! =1 (mod p) = @)% =™ = | (mod p)
vaez," a%!l =1 (mod q) = @@ = 2™ = | (mod q)
ged(p,q)=1 = p-q|a®™-1,i.c. VacZ (pfaand qfa),a®™ =1 (mod n)

> consider n = p’, ¢(n) = p~!(p-1) .
VaeZ,aP!' =1 (mod p) = aP! = 1+2p 2™ = (1+2p)’

a0 = (sapf = 1+C) apre ppe., T 4D

=1+p~! ap +p=l(p™!-1)/2 (Ap)?+...

A second proof (cont'd)
> considern=p" * g5, ¢(n) = p~(p-1) ¢*'(g-1)
Van;r ,aPl=1 (mod p)= (PP o (mod p*)
— (a(p-l)pr'l)(q-l)qs'lE 20— 1 (mod p*) = p' | 20 _q
VancTs, a%! = 1 (mod q) = (aq'l)qS—IE 1 (mod g°)
— @D YEDPL 2902 | (mod ¢f) = ¢f | 291
ged(pr,gd)=1= p'q® | a®™-1, i.e. VaeZ! (pfa and qfa),a®™ = 1 (mod n)

> considern=p,"'p,2-pk, d(n)=n IT (1-1/p) Unique Prime
Vpln Factorization

-1
Van:n, aPil =1 (mod p;) = (ap"l)p‘ =1 (mod p;")

il H(p -Dp;
= (a (-1)P" ) iz et ¥ (mod p) = pfi| adm_1

all p;'i are — o) _
relatively prime HP i[a¥™-1, ie. VaeZ, (Vip; fa),a?" =1 (mod n




Carmichael Theorem
Theorem:
VaeZ * a*™ =1 (modn) and a"*" =1 (mod n?)
where n=p-q, p # q, Mn) = lem(p-1, g-1), A(n) | ¢(n)
< like Euler’s Theorem, we can prove it through Fermat’s
Little Theorem, consider n=p - q, where p#q,
VaeZ/, aP! =1 (mod p) = (aP)@D/eedp-1aD = g0 = | (mod p)
VaeZ/, a%! =1 (mod q) = (a%1)P-D/eede-1aD = g1 = | (mod q)
ged(p,q)=1 = pq | a*V-1, VaeZ *(i.e. pfarqfa), a*™ = 1 (mod n)
therefore, VaeZ ", M =1+k-n

raise both side to the n-th power, we get a" *™ = (1 + k - n)",
=a" W =14nkn+..=VaeZ"(orZ,*),a" =1 (mod n?)
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Basic Principle to do Exponentiation

< Let a, n, X, y be integers with n>1, and gcd(a,n)=1
if x =y (mod ¢(n)), then a* = a¥ (mod n).

< If you want to work mod n, you should work mod
d(n) or A(n) in the exponent.

Primitive Roots modulo p

< When p is a prime number, a primitive root
modulo p is a number whose powers yield every
nonzero element mod p. (equivalently, the order of
a primitive root is p-1)
sex: 313, 3%=2, 3°=6, 3%=4, 3°=5, 3°=1 (mod 7)
3 is a primitive root mod 7
<-sometimes called a multiplicative generator

< there are plenty of primitive roots, actually ¢(p-1)

* ex. p=101, d(p-1)=100-(1-1/2)-(1-1/5)=40
p=143537, d(p-1)=143536-(1-1/2)-(1-1/8971)=71760

Primitive Testing Procedure

< How do we test whether h is a primitive root modulo p?
* naive method:
go through all powers h2, b3, ..., h"?, and make sure
they all # 1 modulo p
* faster method:
assume p-1 has prime factors q;, q,, ..., q,»
for all q;, make sure h®1% modulo p is not 1,
then h is a primitive root

Intuition: let h = g* (mod p), if gcd(a, p-1)=d (i.e. g* isnot a
primitive root), (g%) P14 = (g¥%)®D = | (mod p) for
some q, | d
ex. p=29, p-1=2-2-7, h=5, h?¥2=1, h?¥7=16, 5 is not a primitive
h=11, h?¥2=28, h287=25, 11 is a primitive
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Primitive Testing Procedure (cont’d)
< Procedure to test a primitive g:
let p-1 has prime factors q, q,, ..., 4y, (i.e. §(p)=p-1=q,"...q,")
for all q;, g® D% (mod p) is not 1 = g is a primitive
Proof:
(a) by definition, ord,(g) is the smallest positive x s.t. g*= 1 (mod p)

Fermat Theorem: g®® = 1 (mod p) therefore implies ord,(g) < ¢(p)

if ¢(p) = ord(g) *k +s with 0 <s <ord,(g)

gt = gordp(g) ¥g%=g*=1 (mod p), but s < ord (8) =s=0,i.e. ord(g) | d(p)
(b) assume g is not a primitive root i.e ord,(g) < ¢(p)=p-1

then 31, such that ord,(g) [ (p-1)/q;  i.e. gPV4i=1 (mod p) for some q,
(c) if for all q;, gD 3 1 (mod p)

then ord (g) = ¢(p) and g is a primitive root modulo p

21

Lucas Primality Test

< An integer n is prime iff the converse of
Ja,s.t. 1.2 =1 (modn) Fermat Little Theorem

Proof: {2. Vprime factor q of n-1, a4 # 1 (mod n)
(=) ifnis prime, catch: inefficient, factors of n-1 are required

Fermat's little theorem ensures that "Vazkn, a™! = 1 (mod n)"

a primitive a ensures "V prime factor q of n-1, a»4 = 1 (mod n)"
(<) ifJa,s.t. 1. a™! = 1 (mod n) and

2. Vprime factor q of n-1, a®4 % 1 (mod n)

By definition, ord, (a) is the smallest positive x s.t. a* = 1 (mod n)

the first condition implies that ord,(a) < n-1, also, ord, (a) | n-1

the second condition then implies that ord (a) = n-1 (*)

Euler thm says that a®™ = 1 (mod n), by definition ¢(n)<n-1 if n is
a composite number, i.e. ord, (a) < n-1, contradict with (*). -

Pratt's Primality Certificate

< Pratt's proved in 1975 that this polynomial-size
structure can prove that a number is prime and is
verifiable in polynomial time

< based on the Lucas Primality Test (LPT)

< example:

229 (a=6,229-1=22x3x19) verification
2 (known prime) B39} { (b33 9)
3(@=2,3-1=2) 2 B@Esh H9)29)

2 (known prime) B Ry rch bdiang)

19(@=2,19-1=2x3? ByLmnﬁAapgge(ms,

2 (known prime) éheﬂl;? %lsg rime

B L are primes,
3(@=2,3-1 B 2) then 229 is also a prime
2 (known prime) 23

Number of Primitive Root in Zp*

< Why are there ¢(p-1) primitive roots?

* let g be a primitive root (the order of g is p-1) | :Sns itrﬁtaef%rl

xg el g, .., 1sapermutat10nof12 .p-1

* if ged(a, p-1)=d, then (g @) (p-1)/d 2 (ga/d)(p D=1 (mod p) which
says that the order of g® is at most (p-1)/d, therefore, g* is not a
primitive root = There are at most ¢(p-1) primitive roots in Z, *

* For an element g” in Z," where ged(a, p-1) = 1, it is guaranteed
that (g*)P"% = 1 (mod p) for all q; (q; is factors or p-1)
assume that for a certain q,, (g 3PV = 1 (mod p)
=p-lla-(p-1)/q
= Jintegerk,a - (p-1)/q,=k - (p-1) ie.a=k"q,
=q;la
= q; | gcd(a, p-1) contradiction

24




Multiplicative Generators in Z_*

< How do we define a multiplicative generator in
Z," if n is a composite number?

* Is there an element in Z* that can generate all elements
of Z,*?

*[fn=p - q, the answer is negative. From Carmichael
theorem, VaeZ ", at™ = (mod n), ged(p-1, g-1) is at
least 2, A(n) = lcm(p-1, g-1) is at most ¢(n) / 2. The
size of a maximal possible multiplicative subgroup in

Z." is therefore no larger than A(n).

* If n = pk, the answer is yes

* How many elements in Z_* can generate the maximal
possible subgroup of Z *? 2

Finding Square Roots mod n

< For example: find x such that x> = 71 (mod 77)
* [s there any solution?
* How many solutions are there?
* How do we solve the above equation systematically?

< In general: find x s.t. x* = b (mod n),

where b € QR, , n =p-q, and p, g are prime numbers
< Easier case: find x s.t. x*> = b (mod p),

where p is a prime number, b € QR,

Note: QR, is “Quadratic Residue in Z_ ™ to be defined later
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Finding Square Root mod p

< GivenyeZ, find x, s.t. x* =y (mod p), p is prime
»>p=1(mod4) (i.e. p=4k+ 1) : probabilistic algorithm

T :
WO casest p =3 (mod4) (i.e. p =4k + 3) : deterministic algorithm

< Is there any solutionl? (IsyaQR,?)
-
check y 2 21 (mod p)

$p=3(mod4) P

x=t+y 4 (modp)
& (p+1)/4 = (4k+3+1)/4 = k+1 is an integer
& 2= yPD2 D223 (mod p)

Euler's Criterion
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Finding Square Root mod p

$p=1(mod4)
* Peralta, Eurocrypt’86, p =2° ¢ + 1, both p, ¢ are prime
* 3-step probabilistic procedure

1. Choose a random number 7, if 7 = y (mod p), output z = r
{ 2. Calculate ( + x)@ D2 =y + v x (mod f(x)), f(x)=x2-y
3. If u =0 then output z = v'' (mod p), else goto step 1

note: (b+cx)(d+ex) = (bd+ce x?) + (betcd) x
= (bd+ce y) + (beted) x (mod x2-y)
use square-multiply algorithm to calculate the
polynomial (r + x)@-1/2

* the probability to successfully find z for each » > 1/2




Finding Square Root mod p

<ex: find z such that z2 = 12 (mod 13)

solution:
#13=1(mod4) ie.4k+1
wchoose r=3,32=9%12
5(3+x)BD2=3+x)0=12+0x (modx3-12)
wchoose r=7,72=10# 12
%(7+x)BD2=7+x)0=0+8x (modx?12)
=z=81=5 (mod 13)

Why does it work???
Why is the success probability > 2 77?

29

Finding Square Roots mod n

< Now let's return to the question of solving square roots
inZ5 ie.
for an integer yeQR,,
find xeZ_* such that x> = y (mod n)
< We would like to transform the problem into solving
square roots mod p.
< Question: for n=p-q
Is solving “x?= y (mod n)” equivalent to solving
“x* =y (mod p) and x* = y (mod ¢)"???
YOS (=) x2y=kn-kpg = p |-y and ¢ | x>y [
(<) p|x*-yand q | x*-y= pq | x*-y i.e. x2>-y=kpg=kn [

Finding Square Roots mod p-q

< find x such that x* = 71 (mod 77)
*77="7-11
* “x* satisfies f(x*) = 71 (mod 77)” <
“x* satisfies both f(x*) =1 (mod 7) and f(x*) =5 (mod 11)”
* since 7 and 11 are prime numbers, we can solve x> = 1 (mod 7)
and x2 = 5 (mod 11) far more easily than x* = 71 (mod 77)
x2 = 1 (mod 7) has two solutions: x = +1 (mod 7)
x%= 5 (mod 11) has two solutions: x = +4 (mod 11)
* put them together and use CRT to calculate the four solutions
x=1(mod7)= 4 (mod 11)=x= 15 (mod 77)
x= 1(mod7)= 7(mod 11) = x= 29 (mod 77)

x= 6(mod7)= 4 (mod 11) = x= 48 (mod 77)

x= 6(mod7)= 7(mod 11) = x= 62 (mod 77)
31

Computational Equivalence to Factoring

< Previous slides show that once you know the factors of n
are p and ¢, you can easily solve the square roots of n

< Indeed, if you can solve the square roots for one single
quadratic residue mod 7, you can factor .

* from the four solutions *a, +b on the previous slide
x =c (mod p) =d (mod g) = x =a (mod p-q)
x=c (mod p) =-d (mod ¢) = x=b (mod p-q)
x =-¢ (mod p) =d (mod ¢) = x =-b (mod p-q)
x=-c (mod p) =-d (mod q) = x =-a (mod p-q)
we can find out @ = b (mod p) and a = -b (mod q)
(or equivalently a = -b (mod p) and a = b (mod gq))
* therefore, p | (a-b) i.e. gcd(a-b, n) =p (ex. gcd(15-29, 77)=7)
q | (atb) i.e. ged(atb, n) =q (ex. ged(15+29, 77)=11)

32




Quadratic Residues

<+ Consider yeZ *, if 3 x €Z,, such that x> = y (mod n),
then y is called a quadratic residue mod n, 1.e. yeQR,
< If the modulus p is prime, there are (p-1)/2 quadratic
residues in Z,”
*let g be a primitive rootin Z,%, {g, g%, &°, ..., g"'} isa
permutation of {1,2,...p-1}
x in the above set, {g°, g%,..., g"!} are quadratic
residues (QR))
x {g, g, ..., g"*} are quadratic non-residues (QNR)),
out of which there are ¢(p-1) primitive roots

33

Quadratic Residues in Z
15t proof:

* For each erp*, p-x #x (mod p) (since if x is odd, p-
X is even), it’s clear that x and p-x are both square
roots of a certain yeZ,”

* Because there are only p-1 elements in Zp*, we know
that |QR | < (p-1)/2

* Because | {g%, g*,..., "'} | = (p-1)/2, there can be no
more quadratic residues outside this set. Therefore,
the set {g, g°,..., "%} contains only quadratic non-
residues

34

Quadratic Residues in Z
2" proof:

* Because the squares of x and p-x are the same, the number of
quadratic residues must be less than p-1 (i.e. some element in Z*
must be quadratic non-residue)

x Let g is a primitive, consider this set {g, g°,..., g”*} directly

* If geQR,, , then g cannot be a primitive (because g* must all be
quadratic residues). Thus, geQNR,

* If g?*l=g?-g € QR , I xeZ,” such that x* = g?-g (mod p)
Since ged(g, p)=1, g = (g?) ' x2 = Aé(g“)"-x)2 €QR, contradiction

Thus, g1 eQNR
U & EQNRy [ oty (g2) = (%) gg-...-g = 1 (mod p)

=@ '=glg" gl =)= ((g?

35

Quadratic Residues in Z

% ex. p=143537, p-1=143536=24-8971,
d(p-1)=24-8971-(1-1/2)-(1-1/8971)=71760 primitives,
(p-1)/2=71768 QR,’s and 71768 QNR’s

* Note: if g is a primitive, then g3 , g5 ... are also primitives
except the following 8 numbers g1, g8713 | 897115

* Elements in Z," can be grouped further according to their order

since VxeZ,, ord,(x) | p-1, we can list all possible orders

8971 16 8 4 2 1
plypliplipl) pl | p-l p-1 p-1 p-1
Ordl’(x) p-1 16 | 8971 | 8971-2 | 8971-4 | 8971-8 | 897116
QNR,| QR,| QR,[ QR QR,| QNR,| QR, QR, QR, QR,
#  |o@-1 8 2 1,




QR,, for Composite Modulus »

< If y 1s a quadratic residue modulo #, it must be a
quadratic residue modulo all prime factors of #.
dxeZ, st X =y (mod n) o =kn +ty=kpqgty
— x* =y (mod p) and x* = y (mod ¢)
< If y 1s a quadratic residue modulo p and also a quadratic
residue modulo ¢, then y is a quadratic residue modulo 7.
3reZ, and r,eZ *such that
y =ry? (mod p) = (ry mod p)* (mod p)
=r,* (mod g) = (r, mod ¢)* (mod q)
from CRT, 3! r €Z," such that » = r; (mod p) = r, (mod q)
therefore, y = 72 (mod p) = r? (mod q)
again from CRT, y = r? (mod p-q)
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Legendre Symbol

< Legendre symbol L(a, p) is defined when a is any integer,
p 1s a prime number greater than 2
*xL(a,p)=0ifp|a
* L(a, p) = 1 if a is a quadratic residue mod p
* L(a, p) = -1 if a is a quadratic non-residue mod p
< Two methods to compute (a/p)
* (a/p) = a?VY2 (mod p)
* recursively calculate by L(a - b, p) = L(a, p) - L(b, p)
l.Ifa=1,L(a,p)=1
2. If a is even, L(a, p) = L(a/2, p)-(-1)?*D
3. If a is odd prime, L(a, p) = L((p mod a), a)-(-1)@D@-D/4
< Legendre symbol L(a, p) =-1 if a € QNR,
L(a,p)=1ifa € QR, 38

Legendre Symbol

yeQR, < y-D2=1 (mod p)
=)
* IfyeQR,
* Then 3xeZ," such that y=x* (mod p)
* Therefore, y?-V2 = (x2)-12 = x-D =1 (mod p)

(<)

* Ify2QR  i.e. yeQNR, ord,(g) = p-1

* Then y=g?*! (mod p) /\/

* Therefore, yr-D2= (g2 - g)0-12 = ghw-D) gl0-1)2= g2 X1 (mod p)
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Jacob1 Symbol

< Jacobi symbol J(a, n) is a generalization of the

Legendre symbol to a composite modulus »

< If n 1s a prime, J(a, n) is equal to the Legendre symbol
i.e. J(a, n) = a"Y2(mod n)
< Jacobi symbol cannot be used to determine whether a
is a quadratic residue mod z (unless 7 is a prime)
ex. J(7,143)=J(7, 11)-J(7, 13) =(-1)-(-1) =1
however, there is no integer x such that
x> =7 (mod 143)
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Calculation of Jacobi Symbol

< The following algorithm computes the Jacobi symbol J(a, #), for any
integer a and odd integer n, recursively:

Def 1:
Def 2:
Def 3:
Rule 1:
Rule 2:
Rule 3:
Rule 4:
Rule 5:

Rule 6:
Rule 7:
% 7a:
& 7b:

J(0, n) =0 also If n is prime, J(a, n) = 0 if nja

If n is prime, J(a, n) =1 ifa € QR,, and J(a, n) =-1ifa ¢ QR,
If n is a composite, J(a, n) = J(a, p,"'p,-.- Py) = Ia,p,)-Iap,)...-J(a,p,,)
I, n)=1

J(a-b, n)=1J(a, n) - J(b, n)

J(2, n) = 1 if (n>-1)/8 is even and J(2, n) = -1 otherwise

J(a, n) =J(a mod n, n)

J(a, b) =J(-a, b) if a <0 and (b-1)/2 is even,

J(a, b) =-J(-a, b) if a<0 and (b-1)/2 is odd

Ia, b,"b,)=1(a, b)) - J(a, b,)

if ged(a, b)=1, a and b are odd

I(a, b) =1(b, a) if (a-1)-(b-1)/4 is even

Ja, b) = -J(b, @) if (a-1)-(b-1)/4 is odd i

QR, and Jacobi Symbol

< Consider n = p-q, where p and g are prime numbers

x € QR,

<xeQR,andx € QR,
< J(x, p) =x?D2 =1 (mod p) and J(x, g) =x¢D2 =1 (mod q)
=10, n)=J(x, p) - J(x,q) =1

Qoo
Qo1
Qio
Qll

Jxp) | Ixq) | Ix, n)
1 1 1
1 -1 -1
-1 1 -1
-1 -1 1

xeQR,

xeQNR,
xeQNR,
xeQNR,

4
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Proof:

Wilson’s Theorem

(p-1)! =-1 (mod p)

Goal: (p-I)!'=1-2-3 - (p-1)=-1=(p-1) (mod p)
* Since ged(p-1, p) = 1, the above is equivalent to (p-2)! = 1(mod p)
xeg.p=5 3-2-1=1(mod5)

p=T,

5-4-3-2-1=1(mod?7)

* We know that 1" = 1 (mod p) and (-1)" = -1 (mod p)

* Claim: VieZ,\{1,-1}, 7' #i (pfifi'=ithen’=1,ie{l,-1})

* Claim: Vi,#i,eZ,"\{1,-1},i,"=i," (pf:if i, =i, theni, - i," =1
then i, = i, , contradiction)

* Out of the set {2, 3, ... p-2}, we can form (p-3)/2 pairs such that

i - j =1 (mod p), multiply them together, we obtain (p-2)! =1 )

4




Another Proof of QR test

12—
yeQR, < y-D2=1 (mod p)
(=) *IfyeQR,

* Then 3xeZ," such that y = x? (mod p)

* Therefore, y?-12 = (x2)-1)2 = x-D =1 (mod p)

(&) * Vi,yeZ,, ged(i, p)=1, 3 j such that i;j = y (mod p)
* If y2QR, the congruence x* =y (mod p) has no solution,
therefore, j # i (mod p)
* We can group the integers 1, 2, ..., p-1 into (p-1)/2 pairs (i, j),
each satisfying i-j = y (mod p)
* Multiply them together, we have (p-1)! = y@2 (mod p)

* From Wilson’s theorem, y»-2 = -1 (mod p) i

Exactly Two Square Roots

Every yeQR, has exactly two square roots
i.e. x and p-x such that x’= (p-x)’= y (mod p)

PR« QR = (g% ¢*,.... g1}, 2,7 = p-1, and [QR | = (p-1)2

* For each y=g?/ in QR,, there are at least two distinct erp* s.t.
x*=y (mod p), i.e., g and p-g* (if one is even, the other is odd)

* Since |QR | = (p-1)/2, we can obtain a set of p-1 square roots
S={g,p-g. & p-g’....g"""? p-g¥ "}

* Claim: the elements of S are all distinct (1. g'#g/ (mod p) when
i#j since g is a primitive, 2. g’#-g/ (mod p) when i/, otherwise
(g'tg/)(g"-g’)= g*-g¥ =0 (mod p) implies i# (mod (p-1)/2),

3. g'#-g’ (mod p) since if one is even, the other is odd)

* If there is one more square root z of y=g which is not g and
-gk, it must belong to S (which is Z,"), say g/, j#k, which would
imply that g% = g% (mod p), and leads to contradiction 46

*
Order g Subgroup G, of Z,
< Let p be a prime number, g be a primitive in Z*
<+ Letp=k-q+1 1ie. g|p-1 whereq is alsoa prime number
< LetG, = (g, 2 . g k=1
<+ Is G, a subgroup in Z,"? YES

(i) +iy) - k(modp)

Vx,yeG,itis clearthatz=g' *=x-y=¢
is also in G, where i = i; + i, (mod ¢)

< Is the order of the subgroup G, ¢? YES
Vi,iyeZ,i #i, g" *#g? *(mod p) otherwise g is not a
primitive in Z ", also g*' ¥=1 (mod p)

< How many generators are there in G,? ¢(¢)=g-1
a. there are ¢(p-1) generators in Zp*= (g & ...g" ...g""}, since

ged(p-1, x) = d > 1 implies that ord (g") = (p-1)/d 47

’
Order g Subgroup G, (cont’d)
also (g°Y = 1 (mod p) and g = 1 (mod p) implies that either
x-y|p-1 or p-1|x-y,gced(x, p-1) =1 implies that p-1 | y
therefore, ord,(g") = p-1
b. there are ¢(¢) primitives in G, = (g, &%, ..., g""=1} since
q 1s also a prime number
< Is G, a unique order ¢ subgroup in Zp* ? YES
Let S be an order-¢ cyclic subgroup, S= {g, g°, ..., g’=1}. Since
p is prime, 3 a unique k-th root g, € Z,7, s.t. g = g* (mod p)
Let g, # g be another primitive, clearly g, = g’ (mod p),
Is the set S={g /%, g%, ..., g,7=1} different from G,?
letx € S,i.e x Egli"k (modp), i, € Z,
x=g 1= g""" = g™ (mod p) where i =5 - i; (mod ¢),i.e. S G,
The proof is similar for Gq < S. Therefore, S = Gq
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Gauss’ Lemma

Lemma: let p be a prime, a is an integer s.t. gcd(a, p)=1,

pf.

define {aj =j-a (mod P)}j:1,__.,(p-1)/2a
let n be the number of o;’s s.t. o, > p/2 then L(a, p) = (-1)"

* oy € {ry, ..., 1} ifoa;>p/2and o € {sy, ..., S, 1)t 1F 0y <p/2

* Since ged(a, p)=1, r; and s, are all distinct and non-zero

* Clearly, 0 < p-r; < p/2 for i=1,.

*no p-ryisans;  if 1=, then s; = -1; (mod p)
rewrite in terms of a: ua=-va (mod p) where 1 <u, v<(p-1)/2
= u=-v(mod p) where 1 <u, v < (p-1)/2 = impossible

= {81, -+ Sp-1)2-0 PT1s -+-» P-T,} 18 @ reordering of {1, 2,..., (p-1)/2}

* Thus, ((p-1)/2)! =818 1y0.0" (1) (1) = (1) 81781y 07Ty Ty

= (-1 ((p-1)/2)! a®D (mod p) = L(a, p) = (-1)"
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Theorem: J(2, p) = (-1)®>D8

Theorem: let p be a prime, gcd(a, p) = 1 then L(a, p) = (-1)!
(p-1)/2
where t = ;1 Lj-a/pJ. Also L(2, p) = (-1)®*Dr8
pf. =
* o € {1y, ..., 1.} ifoy>p2and a; € {s, ...,
*x ja=plj-aipl+oforj=1, ..., (p-1)2

(-2, (p- 1)/2
= Z ja=
j=1

S(p-1y2-ns 1f 0 <p/2

(p-1)/2-n

plLi- a/pJJrZr S:

S0

j=1

* {sp, ..., s(p_l)/z_n, p-ry, ..., p-I,} isa reordermg of {1,2,..., (p-1)/2}
(p-1)/2 n (p-1)/2-n (p-1)/2-n

= 2 j=X(pr)+t X s=np- Zr+ X s
I i

=1 =1
* Subtracting the above two equations we have
(p-1)/2 n
(a- 1)2J—p( z “ljampl - n) +2 Z
50

2.
J2,p) = (-1)®=D% (cont’d)
* (pi)/zj—u O D/2= D2 (1 (pe1)/2) /2 (p2-1)/8
*Thus we have (a-1) (p*- l)/8_ Z |_] a/p) - n (mod2)

x Ifaisodd, n= (pii/z lj-a/p]
pu

*xIfa=2, [j2/pl=0forj=1, ..., (p-1)/2, n=(p*-1)/8 (mod 2)
therefore, J(2, p) = (-1)®*>1’8
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Lemma. ord-k elements in Z * < ¢(k)

Lemma. There are at most ¢(k) ord-k elements in Z 7, k | p-1
pf. < Zp* is a field = x*-1=0 (mod p) has at most k roots
% if a is a nontrivial root (a#1), then {a a!, a, ..., ak!}
is the set of the k distinct roots.
% Those af with gcd(4, k) = d > 1 have order at most k/d

% Only those af with gcd(#, k) = 1 might have order k
< Hence, there are at most ¢(k) order k elements
eg.p=13 {2,4,8,3,6,12,11,9,5,10, 7, 1}
2 is a generator in Z,;" = {21,22,23,24,25 26, 27 28 29 »10 o1 512y
k=12, {2,%X,% 6, B, 11,% X 0, 74}, d(12)
k=6, {4, %, K%, 10,X}, ¢(68( e 3)}{3 9,X}, 6(3)
k=4, {8, K, 5X}, ¢(4) _2 12.8.,6(2) k=1, {1}, o(1) 4




Lemma. X, ¢(k) = p-1
Lemma. X, ¢(k) =p-1 let ¢(1)=1

pf.
p-1=%,, (#ainZs.t ged(a, p-1) =k) ak
=2 o1 Fbin {1,..(p-D/k} s.t. gcd(bi (p-1)/k)=1)
_ letp=13,ae Z’
= Z p1 9((p-1/k) ged(a, p-1)=k :p> k|p-1
. ¢(k) k=1, {1,5,7,11}, &(12/1)
k=2, (2,10}, (12/2)

k=3, {3,9}, §(12/3
{¢(1} ¢(2) ¢(3) ¢(4) ¢(6) 4)(12)} k=4 §4 Si $§12/4;

e k=6, {6}, $(12/6)
k=12, {12}, $(12/12) 53

Z, 1s a cyclic group

Theorem: Zp* is a cyclic group for a prime number p
Pf. Lemma 1: # of ord-k elements in Z," < ¢(k), where k | p-1
Lemma 2: %, | ¢(k) = p-1
The order k of every element in Z* divides p-1
= Xy, (# of elements in Z " with order k) = p-1

(Lemma 1) = p-1 <%, ¢(k), combined with lemma 2,
we know that # of ord-k elements in Z ™ = ¢(k)

= # of ord-(p-1) elements in Z* = ¢(p-1) > 1

—=> There is at least one generator in Z 7, i.e. Z, " is cyclic

Ex. p=13, p-1 = [{2,6,1 1,7} + [{4,10}] + [{8,5} + [{3,9}| + [{12}] + [ {1}
k=12 k=6 k=4 k=3 k=2 k=1 54

Generators in QR |

< Number of generators in Z": ¢(p-1)
Let g be a primitive, Z," = <g>= {g, g%, &, ..., g, ..., g"'}
if ged(k, p-1) = d # 1 then g* is not a primitive
since (gk)®P-Dd = (g¥d)p-1 = 1, i.e. ord (") < (p-1)/d
if ged(k, p-1) = 1 and g* is not a primitive, then d=ord (g") < p-1, i.e.
(g4 =1; gis aprimitive = p-1 |k d = p-1 | d contradiction.
< Z."is not a cyclic group (n = p q, p=2p'+1, ¢=2q'+1, M(n)=2p'q")
Since x*™ = 1 (mod n), there is no generator that can generate
all members in Z *
< QR, is a cyclic group of order A(n)/2 = lcm(p-1, g-1)/2= p'q'
VxeZ ,x*W=1(modn) Carmichael’s Theorem
clearly, (x?)*™2 =1 (mod n), QR, = {x*> |V x € Z,"}
ie.Vye QR ord(y)|p'q (ord(y)e{l,p\q,p'q})
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Generators in QR (cont’d)
cyclic? 3Ix*eZ ord (x)=An)=2p'q =
Iy (<)) € QR, s.t. ord,(y) = Am)/2=p'
< Lety be a random element in QR,, the probability that y is a generator
is close to 1
Let y* be a generator of QR ,
QR, =<y™>={y", ) ) ..., @) .., P9}
if ged(k, p'q') = d # 1 then (y*)* is not a generator
since ((y"))P9 = ((y")“)P9 =1, i.e. ord ((y")") < (p'q')d
o(p'q) = o(p") ¢(q) = (p-1)(q-1) =p'q'-p'-q' + 1
=p'q-(@-1-(q-1)-1
Vx e ()% ¢, - ()P ord,(x) = p'
Vx e {y), ), ..., ¢y} ord, (x) =
ord (1)=1
Pr{x is a generator | xezQR,} = ¢(p'q") / (p'q) is close to 1 iy




. *
Subgroups in Z,,
Consider n =p q, p=2p'+1, g=2q'+1, m=p'q', M(n) = lcm(p-1, q-1)=2m,
¢(n) = (p-1)(g-1) = 4m
< Z," is not a cyclic group
* Carmichael’s theorem asserts that no element in Z_* can generate
all elements in Z_*. (maximum order is 2m instead of 4m)
* However, Z " is still a group over modulo n multiplication.
<+ QR, is a cyclic subgroup of order m = A(n)/2, QR, = {x?* |V x € Z"}
*x Joo={x € Z," | J(x,p)=1 and J(x,q)=1}
* If there exists an element in Z," whose order is 2m, then QR, is
clearly a cyclic group. (Will the precondition be true?)
* V xeZ " x* =1 (mod n) implies that V yeQR,, ord (y) | p'q’
1.e. ord, (y) is either 1, p', q', or p'q' (if there is one y s.t. ord (y)=m

then y is a generator and QR is cyclic). Let’s construct one. 5

. % )
Subgroups in Z " (cont’d)
Let g, be a generator in Zp*, and g, be a generator in Zq*
Let g =g, (mod p) =g, (mod q), (note thatJ(g,n)=1,g € J))
gl =g =g 2" =1 (mod p), g = g2 = g,2¢ = 1 (mod q)
= g9 =1 (mod p) and g2 = 1 (mod q) i.e. g??9 =1 (mod n)
if there exists ak € {1, 2,p', q, 2p", 24, p'q'} s.t. g¢=1 (mod n)
then ord,(g) is not 2p'q’
1. k=1: = g, = 1 (mod p) contradict with ord (g,) = p-1
2.k=p": = g =g,P =1 (mod p) contradict with ord (g,) = 2p'
3.k=q": = g¥=g,9 = 1 (mod q) contradict with ord(g,) = 2q'
4.k=2: = g, =1 (mod p) contradict with ord (g,) = p-1
5.k=2p": = g¥ = g, = 1 (mod q) contradict with ord (g,) = 2¢'
6. k=2q": = g?¥ =g, = 1 (mod p) contradict with ord (g,) = 2p'
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Subgroups in Z_* (cont’d)
7.k=p'q": = gP'v =g,P4 =1 (mod p)
since g,%*' = 1 (mod p) and
ged(q,2)=1= Ja,bst.aq+b2=1
=g =gP@arbD = (gr'e) (g,2%)° =1 (mod p)
contradict with ord (g,) = 2p'
1~7 implies that ord (g) = 2p'q|, i.e. QR, = {g?, g* ..., g}
and QR is a cyclic group.
* Pr{Elements in QR being a generator} = ¢(p'q") / (p'q")
< J, is a cyclic subgroup of order 2m = A(n), J, = {x € Z,* | J(x,n)=1}
xJ,,={x e Z, | Ix,p)=-1 and J(x,q)=-1}
* The above proof also shows that J, = {g, g%, ..., g2} is cyclic
* Pr{Elements in J, being a generator} = ¢(p'q’) / (2p'q")
& T D0 =27\ {JpoWJ,,} is not a subgroup in Z_*
*x if x € Jj, thenx * x € ], 59

Generator in QR

<+ n=pq, p=2p+1, g=2q'+1
< Find a generator in QR
1. Find a generator g; of Z," (i.e. Z," = <g;>) and g, of Z" (i.e. Z;" = <g,>)
2. Calculate the generator h, = g;* (mod p) of QR and h, = g,* (mod 1) of QR
3. Leth=h, (mod p) = h, (mod q).
It is clear that h = g2 (mod n), i.e. heQR, where g = g, (mod p) = g, (mod q).
Claim: h is a generator of QR
pf.
y€QR, = ye QR andy € QR
ie. 3x,€ Z and x,€ Z,, y =h," (mod p) = h,"™ (mod q)
= y=g, " (mod p) = g,”* (mod q)
=y=g?*(modn)if2x=2x, (modp-1)=2x, (mod g-1)
aunique X € Z,, exists by CRT since ged(p-1, g-1) = ged(2p', 2q') =2
= y=h"(modn)
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Generate Elements in Z_°
< Z."is NOT a cyclic group (n=p q, p=2p'+1, ¢=2q'+1, m=p' q")
< How do we generate random elements in Z_*?
Z."={g"u® (-1)™| g is a generator in QR_, gcd(e, d(n)) = 1,
uer Z." and J(u,n) = -1,
ae{0,...,m-1}, b,€{0,1}, and b, {0,1} }
Note: 1. J(-1,n) =1 and -1 € J,\QR, since (-1)-D2 = (-1) = -1 (mod p)
2. e is odd, ¢p(n)-¢ is also odd, J(u™®, n) = J(u, n) = -1
< We can view the above as 4 parts
1. Joo (QR,): by =b, =0, Jyy = {g* | a€{0,....m-1}}
2.J,,J\QR): b, =0,b,=1,J,, = {-g* | a€{0,....m-1}}
Assume that J(u, p) =-1 and J(u, q) =1
3.J:b,=1,b,=0,J,, = {g?u*® | ae{0,...,m-1}}
4.J,0:b,=1,b,=1,]), = {-g*u* | ae{0,....m-1}}
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Lagrange’s Theorem

< Theorem: for any finite group G, the order
(number of elements) of every subgroup H of G
divides the order of G.

* proof sketch: divide G into left cosets H — equivalence
classes, and show that they have the same size.

< It implies that: the order of any element a of a
finite group (i.e. the smallest positive integer
number k with a* = 1) divides the order of the
group. Since the order of a is equal to the order
of the cyclic subgroup generated by a. Also, all
= 1 since order of a divides |G|.

<~ Any prime order group is cyclic.

62




