♦  $\phi(n)$ : the number of integers 1≤a<n s.t. gcd(a,n)=1

♦  $\phi(n)$ : the number of integers 1≤a<n s.t. gcd(a,n)=1</p>
★ ex. n=10,  $\phi(n)$ =4 the set is {1,3,7,9}

 $\Leftrightarrow$   $\phi$ (n): the number of integers 1≤a<n s.t. gcd(a,n)=1

- \* ex. n=10,  $\phi(n)=4$  the set is {1,3,7,9}
- $\diamond$  properties of  $\phi(\bullet)$

- $\Leftrightarrow$   $\phi$ (n): the number of integers 1≤a<n s.t. gcd(a,n)=1
  - \* ex. n=10,  $\phi(n)$ =4 the set is {1,3,7,9}
- $\diamond$  properties of  $\phi(\bullet)$ 
  - \*  $\phi(p) = p-1$ , if p is prime

- $\Leftrightarrow$   $\phi$ (n): the number of integers 1≤a<n s.t. gcd(a,n)=1
  - \* ex. n=10,  $\phi(n)$ =4 the set is {1,3,7,9}
- $\diamond$  properties of  $\phi(\bullet)$ 
  - \*  $\phi(p) = p-1$ , if p is prime
  - \*  $\phi(p^{r}) = p^{r} p^{r-1} = p^{r} \cdot (1 1/p)$ , if p is prime

- $\Leftrightarrow$   $\phi$ (n): the number of integers 1≤a<n s.t. gcd(a,n)=1
  - \* ex. n=10,  $\phi(n)$ =4 the set is {1,3,7,9}
- $\diamond$  properties of  $\phi(\bullet)$ 
  - \*  $\phi(p) = p-1$ , if p is prime
  - \*  $\phi(p^{r}) = p^{r} p^{r-1} = p^{r} \cdot (1 1/p)$ , if p is prime
  - \*  $\phi(n \cdot m) = \phi(n) \cdot \phi(m)$  if gcd(n,m)=1 multiplicative property

- ♦  $\phi(n)$ : the number of integers 1≤a<n s.t. gcd(a,n)=1
  - \* ex. n=10,  $\phi(n)$ =4 the set is {1,3,7,9}
- $\diamond$  properties of  $\phi(\bullet)$ 
  - \*  $\phi(p) = p-1$ , if p is prime
  - \*  $\phi(p^{r}) = p^{r} p^{r-1} = p^{r} \cdot (1 1/p)$ , if p is prime
  - \*  $\phi(n \cdot m) = \phi(n) \cdot \phi(m)$  if gcd(n,m)=1 multiplicative property
  - $\star \phi(\mathbf{n} \cdot \mathbf{m}) = \phi((d_1/d_2/d_3)^2) \cdot \phi(d_2^3) \cdot \phi(d_3^3) \cdot \phi(\mathbf{n}/d_1/d_2) \cdot \phi(\mathbf{m}/d_1/d_3)$

if  $gcd(n,m)=d_1$ ,  $gcd(n/d_1,d_1)=d_2$ ,  $gcd(m/d_1,d_1)=d_3$ 

- ♦  $\phi(n)$ : the number of integers 1≤a<n s.t. gcd(a,n)=1
  - \* ex. n=10,  $\phi(n)$ =4 the set is {1,3,7,9}
- $\diamond$  properties of  $\phi(\bullet)$ 
  - \*  $\phi(p) = p-1$ , if p is prime
  - \*  $\phi(p^{r}) = p^{r} p^{r-1} = p^{r} \cdot (1 1/p)$ , if p is prime
  - \*  $\phi(n \cdot m) = \phi(n) \cdot \phi(m)$  if gcd(n,m)=1 multiplicative property
  - $\star \phi(\mathbf{n} \cdot \mathbf{m}) = \phi((d_1/d_2/d_3)^2) \cdot \phi(d_2^3) \cdot \phi(d_3^3) \cdot \phi(\mathbf{n}/d_1/d_2) \cdot \phi(\mathbf{m}/d_1/d_3)$

if  $gcd(n,m)=d_1$ ,  $gcd(n/d_1,d_1)=d_2$ ,  $gcd(m/d_1,d_1)=d_3$ 

\*  $\phi(n) = n \prod_{\forall p \mid n} (1-1/p)$ 

- ♦  $\phi(n)$ : the number of integers 1≤a<n s.t. gcd(a,n)=1
  - \* ex. n=10,  $\phi(n)$ =4 the set is {1,3,7,9}
- $\diamond$  properties of  $\phi(\bullet)$ 
  - \*  $\phi(p) = p-1$ , if p is prime
  - \*  $\phi(p^{r}) = p^{r} p^{r-1} = p^{r} \cdot (1 1/p)$ , if p is prime
  - \*  $\phi(n \cdot m) = \phi(n) \cdot \phi(m)$  if gcd(n,m)=1 multiplicative property
  - $\star \phi(\mathbf{n} \cdot \mathbf{m}) = \phi((d_1/d_2/d_3)^2) \cdot \phi(d_2^3) \cdot \phi(d_3^3) \cdot \phi(\mathbf{n}/d_1/d_2) \cdot \phi(\mathbf{m}/d_1/d_3)$

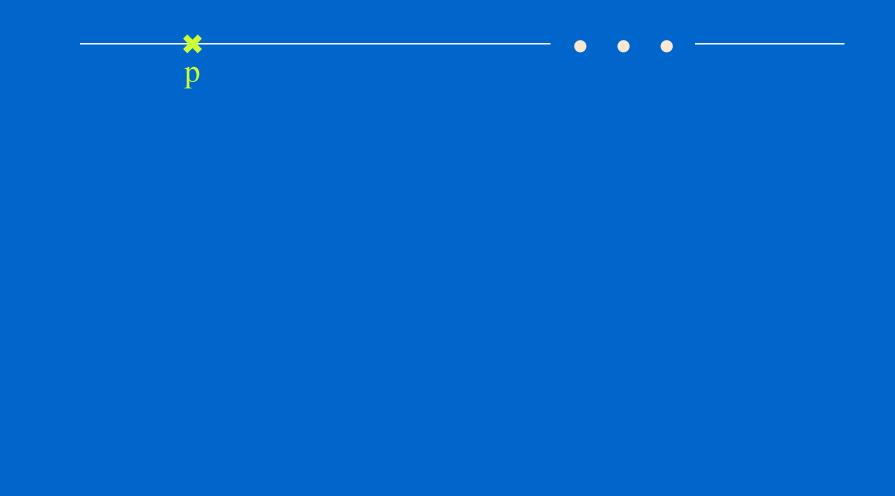
if  $gcd(n,m)=d_1$ ,  $gcd(n/d_1,d_1)=d_2$ ,  $gcd(m/d_1,d_1)=d_3$ 

\*  $\phi(n) = n \prod_{\substack{\forall p \mid n}} (1-1/p)$  $\Rightarrow ex. \phi(10) = (2-1) \cdot (5-1) = 4 \quad \phi(120) = 120(1-1/2)(1-1/3)(1-1/5) = 32$ 

## $\forall \text{prime } \mathbf{p}, \phi(\mathbf{p}^r) = \mathbf{p}^r - \mathbf{p}^{r-1} = \mathbf{p}^r \cdot (1-1/p)$

 $\Rightarrow$  φ(p<sup>r</sup>): the number of integers 1≤x<p<sup>r</sup> s.t. gcd(x, p<sup>r</sup>)=1

# $\forall \text{prime } p, \phi(p^r) = p^r - p^{r-1} = p^r \cdot (1-1/p)$



# $\forall \text{prime } \mathbf{p}, \phi(\mathbf{p}^r) = \mathbf{p}^r - \mathbf{p}^{r-1} = \mathbf{p}^r \cdot (1-1/p)$



# $\forall \text{prime } p, \phi(p^r) = p^r - p^{r-1} = p^r \cdot (1 - 1/p)$



# $\forall \text{prime p, } \phi(p^r) = p^r - p^{r-1} = p^r \cdot (1 - 1/p)$



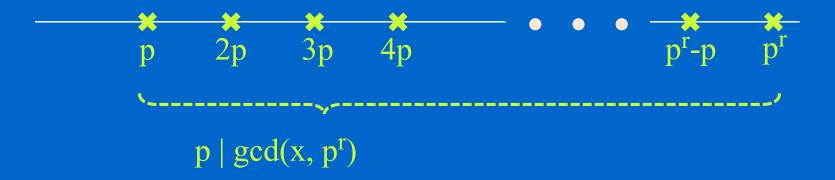
### $\forall prime p, \phi(p^r) = p^r - p^{r-1} = p^r \cdot (1-1/p)$



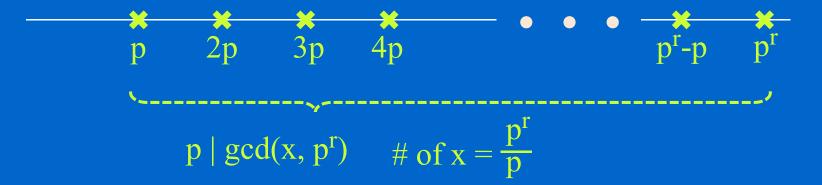
## $\forall \text{prime } p, \phi(p^r) = p^r - p^{r-1} = p^r \cdot (1-1/p)$



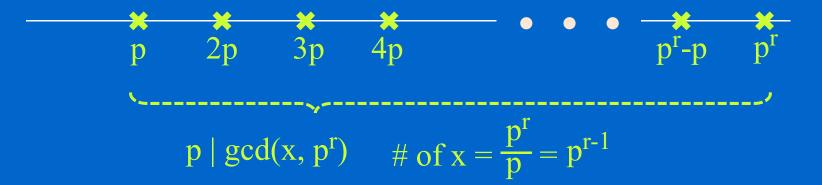
### $\forall \text{prime } p, \phi(p^r) = p^r - p^{r-1} = p^r \cdot (1-1/p)$



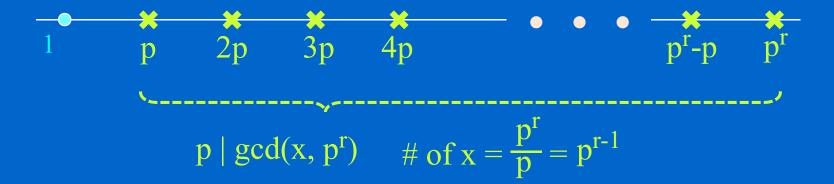
### $\forall \text{prime p, } \phi(p^r) = p^r - p^{r-1} = p^r \cdot (1-1/p)$



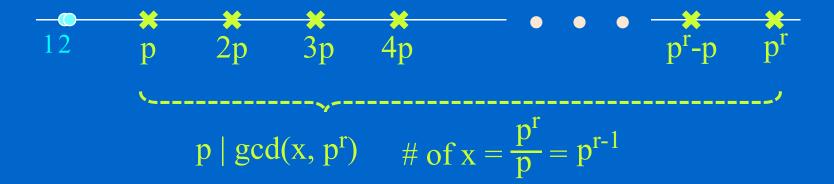
### $\forall \text{prime } p, \phi(p^r) = p^r - p^{r-1} = p^r \cdot (1 - 1/p)$



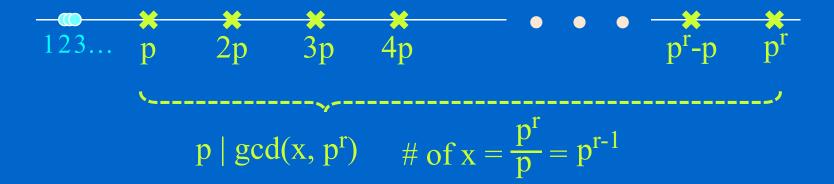
### $\forall \text{prime } \mathbf{p}, \phi(\mathbf{p}^r) = \mathbf{p}^r - \mathbf{p}^{r-1} = \mathbf{p}^r \cdot (1-1/p)$



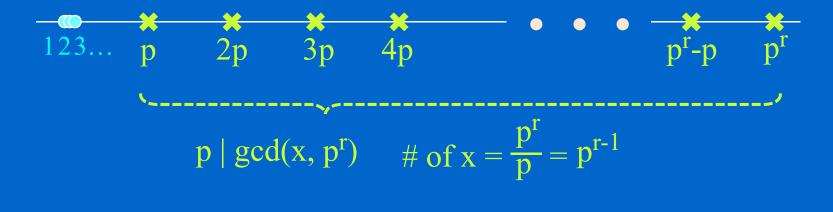
### $\forall \text{prime } \mathbf{p}, \phi(\mathbf{p}^r) = \mathbf{p}^r - \mathbf{p}^{r-1} = \mathbf{p}^r \cdot (1-1/p)$



### $\forall \text{prime } p, \phi(p^r) = p^r - p^{r-1} = p^r \cdot (1-1/p)$



### $\forall \text{prime } \mathbf{p}, \phi(\mathbf{p}^r) = \mathbf{p}^r - \mathbf{p}^{r-1} = \mathbf{p}^r \cdot (1-1/p)$



# $\forall \text{prime } \mathbf{p}, \phi(\mathbf{p}^r) = \mathbf{p}^r - \mathbf{p}^{r-1} = \mathbf{p}^r \cdot (1-1/p)$

$$\frac{\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}^{\mathrm{T}}}{p^{\mathrm{T}} \cdot \mathbf{p} \cdot \mathbf{p}^{\mathrm{T}}} = p^{\mathrm{T}} \cdot \mathbf{p}^{\mathrm{T}}$$

$$p \mid \gcd(x, p^{\mathrm{T}}) \quad \# \text{ of } x = \frac{p^{\mathrm{T}}}{p} = p^{\mathrm{T}-1}$$

$$p^{\mathrm{T}}$$

$$\phi(\mathbf{p}^{\mathrm{T}}) = \mathbf{p}^{\mathrm{T}} - \mathbf{p}^{\mathrm{T}-1} = \mathbf{p}^{\mathrm{T}} \cdot (1-1/p)$$

#### $\phi(n \cdot m) = \phi(n) \cdot \phi(m) \text{ if } gcd(n,m)=1$ gcd(n, m) = 1 $Z_{nm}^* = \{x = n n^{-1} m a + m m^{-1} n b \pmod{nm}, a \in Z_n^*, b \in Z_m^*\}$

 $\phi(\mathbf{n} \cdot \mathbf{m}) = \phi(\mathbf{n}) \cdot \phi(\mathbf{m}) \text{ if } gcd(\mathbf{n}, \mathbf{m}) = 1$   $gcd(\mathbf{n}, \mathbf{m}) = 1$   $\mathbf{Z}_{\mathbf{nm}}^* = \{\mathbf{x} = \mathbf{n} \ \mathbf{n}^{-1} \ \mathbf{m} \ \mathbf{a} + \mathbf{m} \ \mathbf{m}^{-1} \ \mathbf{n} \ \mathbf{b} \ (\mathbf{mod} \ \mathbf{nm}), \mathbf{a} \in \mathbf{Z}_{\mathbf{n}}^*, \mathbf{b} \in \mathbf{Z}_{\mathbf{m}}^*\}$  $gcd(\mathbf{a}, \mathbf{n}) = 1, gcd(\mathbf{b}, \mathbf{m}) = 1, gcd(\mathbf{x}, \mathbf{n} \ \mathbf{m}) = 1$   $\phi(\mathbf{n} \cdot \mathbf{m}) = \phi(\mathbf{n}) \cdot \phi(\mathbf{m}) \text{ if } gcd(\mathbf{n}, \mathbf{m}) = 1$   $gcd(\mathbf{n}, \mathbf{m}) = 1$   $\mathbf{Z}_{\mathbf{nm}}^* = \{\mathbf{x} \equiv \mathbf{n} \ \mathbf{n}^{-1} \ \mathbf{m} \ \mathbf{a} + \mathbf{m} \ \mathbf{m}^{-1} \ \mathbf{n} \ \mathbf{b} \ (\mathbf{mod} \ \mathbf{nm}), \mathbf{a} \in \mathbf{Z}_{\mathbf{n}}^*, \mathbf{b} \in \mathbf{Z}_{\mathbf{m}}^*\}$   $gcd(\mathbf{a}, \mathbf{n}) = 1, gcd(\mathbf{b}, \mathbf{m}) = 1, gcd(\mathbf{x}, \mathbf{n} \ \mathbf{m}) = 1$   $\mathbf{n} \ \mathbf{n}^{-1} \equiv 1 \ (\mathbf{mod} \ \mathbf{m})$ 

 $\phi(\mathbf{n} \cdot \mathbf{m}) = \phi(\mathbf{n}) \cdot \phi(\mathbf{m}) \text{ if } gcd(\mathbf{n}, \mathbf{m}) = 1$   $gcd(\mathbf{n}, \mathbf{m}) = 1$   $\mathbf{Z}_{\mathbf{nm}}^* = \{\mathbf{x} \equiv \mathbf{n} \ \mathbf{n}^{-1} \ \mathbf{m} \ \mathbf{a} + \mathbf{m} \ \mathbf{m}^{-1} \ \mathbf{n} \ \mathbf{b} \ (\mathbf{mod} \ \mathbf{nm}), \ \mathbf{a} \in \mathbf{Z}_{\mathbf{n}}^*, \mathbf{b} \in \mathbf{Z}_{\mathbf{m}}^*\}$   $gcd(\mathbf{a}, \mathbf{n}) = 1, gcd(\mathbf{b}, \mathbf{m}) = 1, gcd(\mathbf{x}, \mathbf{n} \ \mathbf{m}) = 1$   $\mathbf{n} \ \mathbf{n}^{-1} \equiv 1 \ (\mathbf{mod} \ \mathbf{m}), \ \mathbf{m} \ \mathbf{m}^{-1} \equiv 1 \ (\mathbf{mod} \ \mathbf{n})$ 

 $\begin{aligned} \varphi(\mathbf{n} \cdot \mathbf{m}) &= \varphi(\mathbf{n}) \cdot \varphi(\mathbf{m}) \quad \text{if } gcd(\mathbf{n}, \mathbf{m}) = \mathbf{1} \\ gcd(\mathbf{n}, \mathbf{m}) &= 1 \\ \mathbf{Z}_{\mathbf{nm}}^* &= \{\mathbf{x} \equiv \mathbf{n} \ \mathbf{n}^{-1} \ \mathbf{m} \ \mathbf{a} + \mathbf{m} \ \mathbf{m}^{-1} \ \mathbf{n} \ \mathbf{b} \ (\mathbf{mod} \ \mathbf{nm}), \ \mathbf{a} \in \mathbf{Z}_{\mathbf{n}}^*, \mathbf{b} \in \mathbf{Z}_{\mathbf{m}}^* \} \\ \phi(\mathbf{n}) \ \mathbf{a} \qquad gcd(\mathbf{a}, \mathbf{n}) &= 1, \ gcd(\mathbf{b}, \mathbf{m}) = 1, \ gcd(\mathbf{x}, \mathbf{n} \ \mathbf{m}) = 1 \\ \mathbf{n} \ \mathbf{n}^{-1} &\equiv 1 \ (\mathbf{mod} \ \mathbf{m}), \ \mathbf{m} \ \mathbf{m}^{-1} \equiv 1 \ (\mathbf{mod} \ \mathbf{n}) \end{aligned}$ 

 $x_n \equiv m a \pmod{n}$ 

 $\phi(\mathbf{n} \cdot \mathbf{m}) = \phi(\mathbf{n}) \cdot \phi(\mathbf{m}) \text{ if } gcd(\mathbf{n}, \mathbf{m}) = 1$   $gcd(\mathbf{n}, \mathbf{m}) = 1$   $\mathbf{Z}_{\mathbf{nm}}^* = \{\mathbf{x} \equiv \mathbf{n} \ \mathbf{n}^{-1} \ \mathbf{m} \ \mathbf{a} + \mathbf{m} \ \mathbf{m}^{-1} \ \mathbf{n} \ \mathbf{b} \pmod{\mathbf{nm}}, \mathbf{a} \in \mathbf{Z}_{\mathbf{n}}^*, \mathbf{b} \in \mathbf{Z}_{\mathbf{m}}^*\}$   $\phi(\mathbf{n}) \ \mathbf{a} \qquad gcd(\mathbf{a}, \mathbf{n}) = 1, gcd(\mathbf{b}, \mathbf{m}) = 1, gcd(\mathbf{x}, \mathbf{n} \ \mathbf{m}) = 1$   $\mathbf{n} \ \mathbf{n}^{-1} \equiv 1 \pmod{\mathbf{m}}, \ \mathbf{m} \ \mathbf{m}^{-1} \equiv 1 \pmod{\mathbf{n}}$   $f(\mathbf{n}) = \mathbf{n} \ \mathbf{n} \$ 

 $\phi(\mathbf{n} \cdot \mathbf{m}) = \phi(\mathbf{n}) \cdot \phi(\mathbf{m}) \text{ if } \gcd(\mathbf{n}, \mathbf{m}) = 1$   $\gcd(\mathbf{n}, \mathbf{m}) = 1$   $\mathbf{Z}_{\mathbf{nm}}^* = \{\mathbf{x} = \mathbf{n} \ \mathbf{n}^{-1} \ \mathbf{m} \ \mathbf{a} + \mathbf{m} \ \mathbf{m}^{-1} \ \mathbf{n} \ \mathbf{b} \pmod{\mathbf{nm}}, \mathbf{a} \in \mathbf{Z}_n^*, \mathbf{b} \in \mathbf{Z}_m^*\}$   $\phi(\mathbf{n}) \ \mathbf{a} \qquad \gcd(\mathbf{a}, \mathbf{n}) = 1, \ \gcd(\mathbf{b}, \mathbf{m}) = 1, \ \gcd(\mathbf{x}, \mathbf{n} \ \mathbf{m}) = 1$   $\operatorname{n} \ \mathbf{n}^{-1} \equiv 1 \pmod{\mathbf{m}}, \ \mathbf{m} \ \mathbf{m}^{-1} \equiv 1 \pmod{\mathbf{n}}$   $\operatorname{injective mappings} \leftarrow \gcd(\mathbf{n}, \mathbf{m}) = 1$   $\operatorname{x}_n \stackrel{\text{def}}{=} \mathbf{m} \ \mathbf{a} \pmod{\mathbf{n}} \qquad \text{there are } \phi(\mathbf{n}) \ \mathbf{x}_n$ 

 $\phi(n \cdot m) = \phi(n) \cdot \phi(m)$  if gcd(n,m)=1gcd(n, m) = 1 $Z_{nm}^* = \{x \equiv n \ n^{-1} \ m \ a + m \ m^{-1} \ n \ b \ (mod \ nm), \ a \in Z_n^*, b \in Z_m^*\}$ f(a,n) = 1, gcd(b,m) = 1, gcd(x, n, m) = 1 $\phi(n)$  a  $\phi(m)$  b  $n n^{-1} \equiv 1 \pmod{m}, m m^{-1} \equiv 1 \pmod{n}$ -- injective mappings  $\leftarrow \gcd(n,m)=1$  $x_n \stackrel{\texttt{s}}{=} m a \pmod{n}$  there are  $\phi(n) x_n$  $x_m \equiv n b \pmod{m}$ 

 $\phi(n \cdot m) = \phi(n) \cdot \phi(m)$  if gcd(n,m)=1gcd(n, m) = 1 $Z_{nm}^* = \{x \equiv n \ n^{-1} \ m \ a + m \ m^{-1} \ n \ b \ (mod \ nm), \ a \in Z_n^*, b \in Z_m^*\}$ f(a,n) = 1, gcd(b,m) = 1, gcd(x, n, m) = 1 $\phi(n)$  a  $\phi(m) b$  $n n^{-1} \equiv 1 \pmod{m}, m m^{-1} \equiv 1 \pmod{n}$ injective mappings  $\leftarrow$  gcd(n,m)=1  $f(m a \pmod{n})$  there are  $\phi(n) x_n$  $x_m \equiv n b \pmod{m}$ 

 $\phi(n \cdot m) = \phi(n) \cdot \phi(m)$  if gcd(n,m)=1gcd(n, m) = 1 $Z_{nm}^* = \{x \equiv n \ n^{-1} \ m \ a + m \ m^{-1} \ n \ b \ (mod \ nm), \ a \in Z_n^*, b \in Z_m^*\}$ f(a,n) = 1, gcd(b,m) = 1, gcd(x, n, m) = 1 $\phi(n)$  a  $\phi(m) b$  $n n^{-1} \equiv 1 \pmod{m}, m m^{-1} \equiv 1 \pmod{n}$ injective mappings  $\leftarrow \gcd(n,m)=1$  $f(m a \pmod{n})$  there are  $\phi(n) x_n$  $x_m \equiv n b \pmod{m}$  there are  $\phi(m) x_m$ 

 $\phi(n \cdot m) = \phi(n) \cdot \overline{\phi(m)}$  if gcd(n,m) = 1gcd(n, m) = 1 $Z_{nm}^* = \{x \equiv n \ n^{-1} \ m \ a + m \ m^{-1} \ n \ b \ (mod \ nm), \ a \in Z_n^*, b \in Z_m^*\}$  $\phi(m)$  b gcd(a,n) = 1, gcd(b,m) = 1, gcd(x, n m) = 1 $\phi(n)$  a  $n n^{-1} \equiv 1 \pmod{m}, m m^{-1} \equiv 1 \pmod{n}$ ----- injective mappings  $\leftarrow \gcd(n,m)=1$  $z = m a \pmod{n}$  there are  $\phi(n) x_n$  $x_m \stackrel{\texttt{l}}{=} n b \pmod{m}$  there are  $\phi(m) x_m$ 

 $x \equiv n n^{-1} m a + m m^{-1} n b \equiv n n^{-1} x_m^{-1} m m^{-1} x_n \pmod{n}$ 

 $\phi(n \cdot m) = \phi(n) \cdot \overline{\phi(m)}$  if gcd(n,m) = 1gcd(n, m) = 1 $Z_{nm}^* = \{x \equiv n \ n^{-1} \ m \ a + m \ m^{-1} \ n \ b \ (mod \ nm), \ a \in Z_n^*, b \in Z_m^*\}$  $\phi(m)$  b\_-----gcd(a,n) = 1, gcd(b,m) = 1, gcd(x, n m) = 1  $\phi(n)$  a  $n n^{-1} \equiv 1 \pmod{m}, m m^{-1} \equiv 1 \pmod{n}$ ----- injective mappings  $\leftarrow$  gcd(n,m)=1  $x_n \neq m a \pmod{n}$  there are  $\phi(n) x_n$  $x_m \stackrel{\texttt{i}}{=} n b \pmod{m}$  there are  $\phi(m) x_m$ 

 $x \equiv n n^{-1} m a + m m^{-1} n b \equiv n n^{-1} x_m + m m^{-1} x_n \pmod{n m}$  $x \equiv x_n \pmod{n} \equiv x_m \pmod{m}$ 

 $\phi(n \cdot m) = \phi(n) \cdot \phi(m)$  if gcd(n,m) = 1gcd(n, m) = 1 $Z_{nm}^* = \{x = n n^{-1} m a + m m^{-1} n b \pmod{nm}, a \in Z_n^*, b \in Z_m^*\}$ f(m) = 1, gcd(a,n) = 1, gcd(b,m) = 1, gcd(x, n, m) = 1 $\phi(n)$  a .  $n n^{-1} \equiv 1 \pmod{m}, m m^{-1} \equiv 1 \pmod{n}$ ----- injective mappings  $\leftarrow$  gcd(n,m)=1  $x_n \neq m a \pmod{n}$  there are  $\phi(n) x_n$  $x_m \stackrel{\checkmark}{=} n b \pmod{m}$  there are  $\phi(m) x_m$ 

 $x \equiv n n^{-1} m a + m m^{-1} n b \equiv n n^{-1} x_m^{+} m m^{-1} x_n \pmod{n}$  $x \equiv x_n \pmod{n} \equiv x_m \pmod{m}$ 

Through CRT, each one of  $\phi(n)\phi(m)$  pairs, i.e.  $(x_{n}, x_{m})$ , uniquely maps to an x in  $Z_{nm}$  which is relatively prime to n m

from Unique Prime Factorization Theorem:  $n = p_1^{c_1} p_2^{c_2} \cdots p_k^{c_k}$ 

from Unique Prime Factorization Theorem:  $n = p_1^{c_1} p_2^{c_2} \cdots p_k^{c_k}$ 

from Euler totion function's multiplicative property:  $\phi(n m) = \phi(n) \cdot \phi(m)$ 

from Unique Prime Factorization Theorem:  $n = p_1^{c_1} p_2^{c_2} \cdots p_k^{c_k}$ 

from Euler totion function's multiplicative property:  $\phi(n m) = \phi(n) \cdot \phi(m)$ 

 $\phi(n) = \phi(p_1^{c_1} p_2^{c_2} \cdots p_k^{c_k}) = \phi(p_1^{c_1}) \cdot \phi(p_2^{c_2} \cdots p_k^{c_k})$ 

from Unique Prime Factorization Theorem:  $n = p_1^{c_1} p_2^{c_2} \cdots p_k^{c_k}$ 

from Euler totion function's multiplicative property:  $\phi(n m) = \phi(n) \cdot \phi(m)$ 

 $\phi(\mathbf{n}) = \phi(\mathbf{p}_1^{c_1} \mathbf{p}_2^{c_2} \cdots \mathbf{p}_k^{c_k}) = \phi(\mathbf{p}_1^{c_1}) \cdot \phi(\mathbf{p}_2^{c_2} \cdots \mathbf{p}_k^{c_k})$  $= (\mathbf{p}_1^{c_1} - \mathbf{p}_1^{c_1 - 1}) \cdot \phi(\mathbf{p}_2^{c_2} \cdots \mathbf{p}_k^{c_k})$ 

from Unique Prime Factorization Theorem:  $n = p_1^{c_1} p_2^{c_2} \cdots p_k^{c_k}$ 

from Euler totion function's multiplicative property:  $\phi(n m) = \phi(n) \cdot \phi(m)$ 

 $\phi(n) = \phi(p_1^{c_1} p_2^{c_2} \cdots p_k^{c_k}) = \phi(p_1^{c_1}) \cdot \phi(p_2^{c_2} \cdots p_k^{c_k})$  $= (p_1^{c_1} p_1^{c_1 - 1}) \cdot \phi(p_2^{c_2} \cdots p_k^{c_k})$  $= p_1^{c_1} (1 - 1/p_1) \cdot \phi(p_2^{c_2} \cdots p_k^{c_k})$ 

from Unique Prime Factorization Theorem:  $n = p_1^{c_1} p_2^{c_2} \cdots p_k^{c_k}$ 

from Euler totion function's multiplicative property:  $\phi(n m) = \phi(n) \cdot \phi(m)$ 

$$\begin{split} \phi(n) &= \phi(p_1^{c_1} p_2^{c_2} \cdots p_k^{c_k}) = \phi(p_1^{c_1}) \cdot \phi(p_2^{c_2} \cdots p_k^{c_k}) \\ &= (p_1^{c_1} - p_1^{c_1 - 1}) \cdot \phi(p_2^{c_2} \cdots p_k^{c_k}) \\ &= p_1^{c_1} (1 - 1/p_1) \cdot \phi(p_2^{c_2} \cdots p_k^{c_k}) \\ &= p_1^{c_1} (1 - 1/p_1) \cdot p_2^{c_2} (1 - 1/p_2) \cdot \phi(p_3^{c_3} \cdots p_k^{c_k}) \end{split}$$

from Unique Prime Factorization Theorem:  $n = p_1^{c_1} p_2^{c_2} \cdots p_k^{c_k}$ 

from Euler totion function's multiplicative property:  $\phi(n m) = \phi(n) \cdot \phi(m)$ 

$$\begin{split} \phi(n) &= \phi(p_1^{c_1} p_2^{c_2} \cdots p_k^{c_k}) = \phi(p_1^{c_1}) \cdot \phi(p_2^{c_2} \cdots p_k^{c_k}) \\ &= (p_1^{c_1} - p_1^{c_1 - 1}) \cdot \phi(p_2^{c_2} \cdots p_k^{c_k}) \\ &= p_1^{c_1} (1 - 1/p_1) \cdot \phi(p_2^{c_2} \cdots p_k^{c_k}) \\ &= p_1^{c_1} (1 - 1/p_1) \cdot p_2^{c_2} (1 - 1/p_2) \cdot \phi(p_3^{c_3} \cdots p_k^{c_k}) \\ &= \dots \end{split}$$

from Unique Prime Factorization Theorem:  $n = p_1^{c_1} p_2^{c_2} \cdots p_k^{c_k}$ 

from Euler totion function's multiplicative property:  $\phi(n m) = \phi(n) \cdot \phi(m)$ 

$$\begin{split} \phi(n) &= \phi(p_1^{c_1} p_2^{c_2} \cdots p_k^{c_k}) = \phi(p_1^{c_1}) \cdot \phi(p_2^{c_2} \cdots p_k^{c_k}) \\ &= (p_1^{c_1} - p_1^{c_1 - 1}) \cdot \phi(p_2^{c_2} \cdots p_k^{c_k}) \\ &= p_1^{c_1} (1 - 1/p_1) \cdot \phi(p_2^{c_2} \cdots p_k^{c_k}) \\ &= p_1^{c_1} (1 - 1/p_1) \cdot p_2^{c_2} (1 - 1/p_2) \cdot \phi(p_3^{c_3} \cdots p_k^{c_k}) \\ &= \dots \\ &= n \prod_{\forall p \mid n} (1 - 1/p) \end{split}$$

♦  $\phi(n) \approx n \cdot 6/\pi^2$  as n goes large

 $\Rightarrow \phi(n) \approx n \cdot 6/\pi^2$  as n goes large

Probability that a prime number p is a factor of a random number r is 1/p



 $\Rightarrow \ \phi(n) \approx n \cdot 6/\pi^2 \text{ as } n \text{ goes large}$ 

Probability that a prime number p is a factor of a random number r is 1/p

♦ Probability that two independent random numbers r<sub>1</sub> and r<sub>2</sub> both have a given prime number p as a factor is  $1/p^2$ 

 $\Rightarrow \phi(n) \approx n \cdot 6/\pi^2$  as n goes large

Probability that a prime number p is a factor of a random number r is 1/p

♦ Probability that two independent random numbers r<sub>1</sub> and r<sub>2</sub> both have a given prime number p as a factor is 1/p<sup>2</sup>
♦ The probability that they do not have p as a common factor is thus 1 – 1/p<sup>2</sup>

 $\Rightarrow \phi(n) \approx n \cdot 6/\pi^2$  as n goes large

Probability that a prime number p is a factor of a random number r is 1/p

♦ Probability that two independent random numbers r<sub>1</sub> and r<sub>2</sub> both have a given prime number p as a factor is  $1/p^2$ 

♦ The probability that they do not have p as a common factor is thus  $1 - 1/p^2$ 

♦ The probability that two numbers r<sub>1</sub> and r<sub>2</sub> have no common prime factor is P = (1-1/2<sup>2</sup>)(1-1/3<sup>2</sup>)(1-1/5<sup>2</sup>)(1-1/7<sup>2</sup>)...

#### **Pr**{ r<sub>1</sub> and r<sub>2</sub> relatively prime }

♦ Equalities:

 $\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots$ 1 + 1/2<sup>2</sup> + 1/3<sup>2</sup> + 1/4<sup>2</sup> + 1/5<sup>2</sup> + 1/6<sup>2</sup> + \dots = \pi^2/6

#### 

#### 

#### $Pr{r_1 and r_2 relatively prime}$ ♦ Equalities: $\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots$ $1 + \frac{1}{2^2 + 1} + \frac{1}{4^2 + 1} + \frac{1}{5^2 + 1} + \frac{1}{6^2} +$ $\Rightarrow P = (1-1/2^2)(1-1/3^2)(1-1/5^2)(1-1/7^2) \cdot \dots$ $= ((1+1/2^2+1/2^4+...)(1+1/3^2+1/3^4+...) \cdot ...)^{-1}$ $= (1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+...)^{-1}$

each positive number has a unique prime number factorization ex.  $45^2 = 3^4 \cdot 5^2$ 

#### $Pr{r_1 and r_2 relatively prime}$ ♦ Equalities: $\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots$ $1 + 1/2^2 + 1/3^2 + 1/4^2 + 1/5^2 + 1/6^2 + \ldots = \pi^2/6$ $\Rightarrow P = (1-1/2^2)(1-1/3^2)(1-1/5^2)(1-1/7^2) \cdot \dots$ $= ((1+1/2^2+1/2^4+...)(1+1/3^2+1/3^4+...) \cdot ...)^{-1}$ $=(1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+...)^{-1}$ $= 6/\pi^2$

each positive number has a unique prime number factorization ex.  $45^2 = 3^4 \cdot 5^2$ 

#### $Pr{r_1 and r_2 relatively prime}$ ♦ Equalities: $\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots$ $1 + 1/2^2 + 1/3^2 + 1/4^2 + 1/5^2 + 1/6^2 + \ldots = \pi^2/6$ $\Rightarrow P = (1-1/2^2)(1-1/3^2)(1-1/5^2)(1-1/7^2) \cdot \dots$ $= ((1+1/2^2+1/2^4+...)(1+1/3^2+1/3^4+...) \cdot ...)^{-1}$ $= (1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+...)^{-1}$ $= 6/\pi^2$ 0.61

seach positive number has a unique prime number factorization ex.  $45^2 = 3^4 \cdot 5^2$ 

 $\Rightarrow \phi(n)$  is the number of integers less than n that are relative prime to n

 $\Rightarrow \phi(n)$  is the number of integers less than n that are relative prime to n

 $\Rightarrow \phi(n)/n$  is the probability that a randomly chosen integer is relatively prime to n

- $\Rightarrow \phi(n)$  is the number of integers less than n that are relative prime to n
- $\Rightarrow \phi(n)/n$  is the probability that a randomly chosen integer is relatively prime to n
- ♦ Therefore,  $\phi(n) \approx n \cdot 6/\pi^2$

- $\diamond \phi(n)$  is the number of integers less than n that are relative prime to n
- $\Rightarrow \phi(n)/n$  is the probability that a randomly chosen integer is relatively prime to n
- ♦ Therefore,  $\phi(n) \approx n \cdot 6/\pi^2$
- $P_n = Pr \{ n \text{ random numbers have no common factor } \}$

- $\diamond \phi(n)$  is the number of integers less than n that are relative prime to n
- $\Rightarrow \phi(n)/n$  is the probability that a randomly chosen integer is relatively prime to n
- ♦ Therefore,  $\phi(n) \approx n \cdot 6/\pi^2$
- P<sub>n</sub> = Pr { n random numbers have no common factor }
  \* n independent random numbers all have a given prime p as a
  - factor is 1/p<sup>n</sup>

- $\Rightarrow \phi(n)$  is the number of integers less than n that are relative prime to n
- \$\phi(n)/n\$ is the probability that a randomly chosen integer is relatively prime to n
- ♦ Therefore,  $\phi(n) \approx n \cdot 6/\pi^2$
- $P_n = Pr \{ n \text{ random numbers have no common factor } \}$ 
  - n independent random numbers all have a given prime p as a factor is 1/p<sup>n</sup>
  - \* They do not all have p as a common factor  $1 1/p^n$

- $\Rightarrow \phi(n)$  is the number of integers less than n that are relative prime to n
- \$\phi(n)/n\$ is the probability that a randomly chosen integer is relatively prime to n
- ♦ Therefore,  $\phi(n) \approx n \cdot 6/\pi^2$
- $P_n = Pr \{ n \text{ random numbers have no common factor } \}$ 
  - n independent random numbers all have a given prime p as a factor is 1/p<sup>n</sup>
  - \* They do not all have p as a common factor  $1 1/p^n$
  - \*  $P_n = (1+1/2^n+1/3^n+1/4^n+1/5^n+1/6^n+...)^{-1}$  is the Riemann zeta function  $\zeta(n)$  http://mathworld.wolfram.com/RiemannZetaFunction.html

- $\Rightarrow \phi(n)$  is the number of integers less than n that are relative prime to n
- $\Rightarrow \phi(n)/n$  is the probability that a randomly chosen integer is relatively prime to n
- ♦ Therefore,  $\phi(n) \approx n \cdot 6/\pi^2$
- $P_n = Pr \{ n \text{ random numbers have no common factor } \}$ 
  - n independent random numbers all have a given prime p as a factor is 1/p<sup>n</sup>
  - \* They do not all have p as a common factor  $1 1/p^n$
  - \*  $P_n = (1+1/2^n+1/3^n+1/4^n+1/5^n+1/6^n+...)^{-1}$  is the Riemann zeta function  $\zeta(n)$  http://mathworld.wolfram.com/RiemannZetaFunction.html
  - \* Ex. n=4,  $\zeta(4) = \pi^4/90 \approx 0.92$

### # of ord-k elements in $\mathbb{Z}_{p}^{*}$

**Lemma**. There are at most  $\phi(k)$  ord-*k* elements in  $Z_p^*$ ,  $k \mid p-1$ 

#### # of ord-k elements in $\mathbb{Z}_{p}^{*}$

**Lemma**. There are at most  $\phi(k)$  ord-k elements in  $Z_p^*$ ,  $k \mid p-1$ 

Special case:  $\phi(p-1) x$ 's in  $Z_p^*$  with  $\operatorname{ord}_p(x)=p-1$ , i.e.  $\phi(p-1)$  generators in  $Z_p^*$ 

### # of ord-k elements in $\mathbb{Z}_p^*$

**Lemma**. There are at most  $\phi(k)$  ord-*k* elements in  $Z_p^*$ ,  $k \mid p-1$ **pf.**  $\diamond$  If *a* is an ord-*k* element in  $Z_p^*$ , then  $\langle a \rangle = \{a^1, a^2, ..., a^{k-1}, a^k = 1\}$  is a subgroup G, |G| = k spanned by *a*.

# # of ord-k elements in $\mathbb{Z}_{p}^{*}$ <u>Lemma</u>. There are at most $\phi(k)$ ord-k elements in $\mathbb{Z}_{p}^{*}$ , $k \mid p-1$ pf. $\diamond$ If a is an ord-k element in $\mathbb{Z}_{p}^{*}$ , then $\langle a \rangle = \{a^{1}, a^{2}, ..., a^{k-1}, a^{k}=1\}$ is a subgroup G, |G|=k spanned by a.

e.g. p = 132 is a generator in  $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$ 

# # of ord-k elements in $\mathbb{Z}_{p}^{*}$ <u>Lemma</u>. There are at most $\phi(k)$ ord-k elements in $\mathbb{Z}_{p}^{*}$ , $k \mid p-1$ pf. $\Rightarrow$ If a is an ord-k element in $\mathbb{Z}_{p}^{*}$ , then $\langle a \rangle = \{a^{1}, a^{2}, ..., a^{k-1}, a^{k}=1\}$ is a subgroup G, |G|=k spanned by a.

#### e.g. p = 13 {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1} 2 is a generator in $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$

# # of ord-k elements in $\mathbb{Z}_{p}^{*}$ <u>Lemma</u>. There are at most $\phi(k)$ ord-k elements in $\mathbb{Z}_{p}^{*}$ , $k \mid p-1$ pf. $\diamond$ If a is an ord-k element in $\mathbb{Z}_{p}^{*}$ , then $\langle a \rangle = \{a^{1}, a^{2}, ..., a^{k-1}, a^{k}=1\}$ is a subgroup G, |G|=k spanned by a.

#### e.g. p = 13 {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1} 2 is a generator in $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$ $k=12, \{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$

### # of ord-k elements in $\mathbb{Z}_{p}^{*}$ Lemma. There are at most $\phi(k)$ ord-k elements in $\mathbb{Z}_{p}^{*}$ , $k \mid p-1$

pf.  $\diamond$  If *a* is an ord-*k* element in  $Z_p^*$ , then  $\langle a \rangle = \{a^1, a^2, ..., a^{k-1}, a^k=1\}$  is a subgroup G, |G|=k spanned by *a*.

#### e.g. p = 13 {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1} 2 is a generator in $Z_{13}^{*} = \{2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}, 2^{8}, 2^{9}, 2^{10}, 2^{11}, 2^{12}\}$ $k=12, \{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$ $k=6, \{4, 3, 12, 9, 10, 1\}$ $(2^{(p-1)/k})^{j} \equiv (2^{2})^{j}$

#### # of ord-k elements in $\mathbb{Z}_p$

**Lemma**. There are at most  $\phi(k)$  ord-*k* elements in  $Z_p^*$ ,  $k \mid p-1$  **pf.**  $\diamond$  If *a* is an ord-*k* element in  $Z_p^*$ , then  $\langle a \rangle = \{a^1, a^2, ..., a^{k-1}, a^k=1\}$  is a subgroup G, |G|=k spanned by *a*.  $\diamond$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d

e.g. p = 13 {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1} 2 is a generator in  $Z_{13}^{*} = \{2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}, 2^{8}, 2^{9}, 2^{10}, 2^{11}, 2^{12}\}$   $k=12, \{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$  $k=6, \{4, 3, 12, 9, 10, 1\}$ 

**Lemma**. There are at most  $\phi(k)$  ord-*k* elements in  $Z_p^*$ ,  $k \mid p-1$  **pf.**  $\diamond$  If *a* is an ord-*k* element in  $Z_p^*$ , then  $\langle a \rangle = \{a^1, a^2, ..., a^{k-1}, a^k=1\}$  is a subgroup G, |G|=k spanned by *a*.  $\diamond$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d

 $(a^{\ell})^{k/d} \equiv (a^{\ell/d})^k \equiv 1$ 

e.g. p = 13 {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1} 2 is a generator in  $Z_{13}^{*} = \{2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}, 2^{8}, 2^{9}, 2^{10}, 2^{11}, 2^{12}\}$   $k=12, \{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$  $k=6, \{4, 3, 12, 9, 10, 1\}$ 

**Lemma**. There are at most  $\phi(k)$  ord-*k* elements in  $\mathbb{Z}_p^*$ ,  $k \mid p-1$  **pf.**  $\diamond$  If *a* is an ord-*k* element in  $\mathbb{Z}_p^*$ , then  $\langle a \rangle = \{a^1, a^2, ..., a^{k-1}, a^k=1\}$  is a subgroup G, |G|=k spanned by *a*.  $\diamond$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d

 $(a^{\ell})^{k/d} \equiv (a^{\ell/d})^k \equiv 1$ 

e.g. p = 13 {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1} 2 is a generator in  $Z_{13}^{*} = \{2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}, 2^{8}, 2^{9}, 2^{10}, 2^{11}, 2^{12}\}$   $k=12, \{2, \varkappa, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$  $k=6, \{4, 3, 12, 9, 10, 1\}$ 

**Lemma**. There are at most  $\phi(k)$  ord-*k* elements in  $\mathbb{Z}_p^*$ ,  $k \mid p-1$  **pf.**  $\diamond$  If *a* is an ord-*k* element in  $\mathbb{Z}_p^*$ , then  $\langle a \rangle = \{a^1, a^2, ..., a^{k-1}, a^k=1\}$  is a subgroup G, |G|=k spanned by *a*.  $\diamond$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d

 $(a^{\ell})^{k/d} \equiv (a^{\ell/d})^k \equiv 1$ 

e.g. p = 13 {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1} 2 is a generator in  $Z_{13}^{*} = \{2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}, 2^{8}, 2^{9}, 2^{10}, 2^{11}, 2^{12}\}$   $k=12, \{2, \textbf{X}, \textbf{X}, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$  $k=6, \{4, 3, 12, 9, 10, 1\}$ 

**Lemma**. There are at most  $\phi(k)$  ord-*k* elements in  $\mathbb{Z}_p^*$ ,  $k \mid p-1$ pf.  $\diamond$  If *a* is an ord-*k* element in  $\mathbb{Z}_p^*$ , then  $\langle a \rangle = \{a^1, a^2, ..., a^{k-1}, a^k=1\}$  is a subgroup G, |G|=k spanned by *a*.  $\diamond$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d

 $(a^{\ell})^{k/d} \equiv (a^{\ell/d})^k \equiv 1$ 

e.g. p = 13 {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1} 2 is a generator in  $Z_{13}^{*} = \{2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}, 2^{8}, 2^{9}, 2^{10}, 2^{11}, 2^{12}\}$   $k=12, \{2, \textbf{X}, \textbf{X}, \textbf{X}, 6, 12, 11, 9, 5, 10, 7, 1\}$  $k=6, \{4, 3, 12, 9, 10, 1\}$ 

**Lemma**. There are at most  $\phi(k)$  ord-*k* elements in  $\mathbb{Z}_p^*$ ,  $k \mid p-1$  **pf.**  $\diamond$  If *a* is an ord-*k* element in  $\mathbb{Z}_p^*$ , then  $\langle a \rangle = \{a^1, a^2, ..., a^{k-1}, a^k=1\}$  is a subgroup G, |G|=k spanned by *a*.  $\diamond$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d

 $(a^{\ell})^{k/d} \equiv (a^{\ell/d})^k \equiv 1$ 

e.g. p = 13 {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1} 2 is a generator in  $Z_{13}^{*} = \{2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}, 2^{8}, 2^{9}, 2^{10}, 2^{11}, 2^{12}\}$   $k=12, \{2, X, X, X, 6, 12, 11, 9, 5, 10, 7, 1\}$  $k=6, \{4, 3, 12, 9, 10, 1\}$ 

**Lemma**. There are at most  $\phi(k)$  ord-*k* elements in  $\mathbb{Z}_p^*$ ,  $k \mid p-1$ pf.  $\diamond$  If *a* is an ord-*k* element in  $\mathbb{Z}_p^*$ , then  $\langle a \rangle = \{a^1, a^2, ..., a^{k-1}, a^k=1\}$  is a subgroup G, |G|=k spanned by *a*.  $\diamond$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d

 $(a^{\ell})^{k/d} \equiv (a^{\ell/d})^k \equiv 1$ 

e.g. p = 13 {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1} 2 is a generator in  $Z_{13}^{*} = \{2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}, 2^{8}, 2^{9}, 2^{10}, 2^{11}, 2^{12}\}$   $k=12, \{2, \textbf{X}, \textbf{X}, \textbf{X}, 6, \textbf{M}, 11, \textbf{X}, 5, 10, 7, 1\}$  $k=6, \{4, 3, 12, 9, 10, 1\}$ 

**Lemma**. There are at most  $\phi(k)$  ord-*k* elements in  $\mathbb{Z}_p^*$ ,  $k \mid p-1$ pf.  $\diamond$  If *a* is an ord-*k* element in  $\mathbb{Z}_p^*$ , then  $\langle a \rangle = \{a^1, a^2, ..., a^{k-1}, a^k=1\}$  is a subgroup G, |G|=k spanned by *a*.  $\diamond$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d

 $(a^{\ell})^{k/d} \equiv (a^{\ell/d})^k \equiv 1$ 

e.g. p = 13 {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1} 2 is a generator in  $Z_{13}^{*} = \{2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}, 2^{8}, 2^{9}, 2^{10}, 2^{11}, 2^{12}\}$   $k=12, \{2, \textbf{X}, \textbf{X}, \textbf{X}, 6, \textbf{M}, 11, \textbf{X}, \textbf{X}, 10, 7, 1\}$  $k=6, \{4, 3, 12, 9, 10, 1\}$ 

**Lemma**. There are at most  $\phi(k)$  ord-*k* elements in  $\mathbb{Z}_p^*$ ,  $k \mid p-1$ pf.  $\diamond$  If *a* is an ord-*k* element in  $\mathbb{Z}_p^*$ , then  $\langle a \rangle = \{a^1, a^2, ..., a^{k-1}, a^k=1\}$  is a subgroup G, |G|=k spanned by *a*.  $\diamond$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d

 $(a^{\ell})^{k/d} \equiv (a^{\ell/d})^k \equiv 1$ 

e.g. p = 13 {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1} 2 is a generator in  $Z_{13}^{*} = \{2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}, 2^{8}, 2^{9}, 2^{10}, 2^{11}, 2^{12}\}$   $k=12, \{2, \textbf{X}, \textbf{X}, \textbf{X}, 6, \textbf{M}, 11, \textbf{X}, \textbf{X}, \textbf{M}, 7, 1\}$  $k=6, \{4, 3, 12, 9, 10, 1\}$ 

**Lemma**. There are at most  $\phi(k)$  ord-*k* elements in  $\mathbb{Z}_p^*$ ,  $k \mid p-1$  **pf.**  $\diamond$  If *a* is an ord-*k* element in  $\mathbb{Z}_p^*$ , then  $\langle a \rangle = \{a^1, a^2, ..., a^{k-1}, a^{k}=1\}$  is a subgroup G, |G|=k spanned by *a*.  $\diamond$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d $\diamond$  Only the order of those  $a^{\ell}$  with  $gcd(\ell, k) = 1$  might be *k* 

e.g. p = 13 {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1} 2 is a generator in  $Z_{13}^{*} = \{2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}, 2^{8}, 2^{9}, 2^{10}, 2^{11}, 2^{12}\}$   $k=12, \{2, \textbf{X}, \textbf{X}, \textbf{X}, 6, \textbf{W}, 11, \textbf{X}, \textbf{X}, \textbf{W}, 7, \textbf{X}\}$  $k=6, \{4, 3, 12, 9, 10, 1\}$ 

**Lemma**. There are at most  $\phi(k)$  ord-k elements in  $Z_{p}^{*}$ ,  $k \mid p-1$ pf.  $\diamond$  If *a* is an ord-*k* element in  $\mathbb{Z}_p^*$ , then  $\langle a \rangle = \{a^1, a^2, \ldots, a^n\}$  $a^{k-1}$ ,  $a^{k}=1$  is a subgroup G, |G|=k spanned by a.  $\Rightarrow$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d $\diamond$  Only the order of those  $a^{\ell}$  with  $gcd(\ell, k) = 1$  might be k  $\diamond$  Hence, there are at most  $\phi(k)$  order k elements e.g. p = 13 $\{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$ 2 is a generator in  $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$  $k=12, \{2, X, X, \delta, N, 11, X, X, N, 7, X\}, \phi(12)$  $k=6, \{4, 3, 12, 9, 10, 1\}$ 

**Lemma**. There are at most  $\phi(k)$  ord-k elements in  $Z_{p}^{*}$ ,  $k \mid p-1$ pf.  $\diamond$  If *a* is an ord-*k* element in  $\mathbb{Z}_p^*$ , then  $\langle a \rangle = \{a^1, a^2, \ldots, a^n\}$  $a^{k-1}$ ,  $a^{k}=1$  is a subgroup G, |G|=k spanned by a.  $\Rightarrow$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d $\diamond$  Only the order of those  $a^{\ell}$  with  $gcd(\ell, k) = 1$  might be k  $\diamond$  Hence, there are at most  $\phi(k)$  order k elements e.g. p = 13 $\{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$ 2 is a generator in  $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$  $k=12, \{2, X, X, \delta, N, 11, X, X, N, 7, X\}, \phi(12)$  $k=6, \{4, X, 12, 9, 10, 1\}$ 

**Lemma**. There are at most  $\phi(k)$  ord-k elements in  $Z_{p}^{*}$ ,  $k \mid p-1$ pf.  $\diamond$  If *a* is an ord-*k* element in  $\mathbb{Z}_p^*$ , then  $\langle a \rangle = \{a^1, a^2, \ldots, a^n\}$  $a^{k-1}$ ,  $a^{k}=1$  is a subgroup G, |G|=k spanned by a.  $\Rightarrow$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d $\diamond$  Only the order of those  $a^{\ell}$  with  $gcd(\ell, k) = 1$  might be k  $\diamond$  Hence, there are at most  $\phi(k)$  order k elements e.g. p = 13 $\{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$ 2 is a generator in  $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$  $k=12, \{2, X, X, \delta, N, 11, X, X, N, 7, X\}, \phi(12)$  $k=6, \{4, X, N, 9, 10, 1\}$ 

**Lemma**. There are at most  $\phi(k)$  ord-k elements in  $Z_{p}^{*}$ ,  $k \mid p-1$ pf.  $\diamond$  If *a* is an ord-*k* element in  $\mathbb{Z}_p^*$ , then  $\langle a \rangle = \{a^1, a^2, \ldots, a^n\}$  $a^{k-1}$ ,  $a^{k}=1$  is a subgroup G, |G|=k spanned by a.  $\Rightarrow$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d $\diamond$  Only the order of those  $a^{\ell}$  with  $gcd(\ell, k) = 1$  might be k  $\diamond$  Hence, there are at most  $\phi(k)$  order k elements e.g. p = 13 $\{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$ 2 is a generator in  $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$  $k=12, \{2, X, X, X, 6, N, 11, X, X, N, 7, X\}, \phi(12)$  $k=6, \{4, X, X, X, 10, 1\}$ 

**Lemma**. There are at most  $\phi(k)$  ord-k elements in  $Z_{p}^{*}$ ,  $k \mid p-1$ pf.  $\diamond$  If *a* is an ord-*k* element in  $\mathbb{Z}_p^*$ , then  $\langle a \rangle = \{a^1, a^2, \ldots, a^n\}$  $a^{k-1}$ ,  $a^{k}=1$  is a subgroup G, |G|=k spanned by a.  $\Rightarrow$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d $\diamond$  Only the order of those  $a^{\ell}$  with  $gcd(\ell, k) = 1$  might be k  $\diamond$  Hence, there are at most  $\phi(k)$  order k elements e.g. p = 13 $\{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$ 2 is a generator in  $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$  $k=12, \{2, X, X, X, 6, N, 11, X, X, N, 7, X\}, \phi(12)$  $k=6, \{4, X, N, X, 10, X\}, \phi(6)$ 

**Lemma**. There are at most  $\phi(k)$  ord-k elements in  $Z_n^*$ ,  $k \mid p-1$ pf.  $\diamond$  If *a* is an ord-*k* element in  $\mathbb{Z}_p^*$ , then  $\langle a \rangle = \{a^1, a^2, \ldots, a^n\}$  $a^{k-1}$ ,  $a^{k-1}$  is a subgroup G, |G|=k spanned by a.  $\Rightarrow$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d $\diamond$  Only the order of those  $a^{\ell}$  with  $gcd(\ell, k) = 1$  might be k  $\diamond$  Hence, there are at most  $\phi(k)$  order k elements e.g. *p* = 13  $\{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$ 2 is a generator in  $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$  $k=12, \{2, X, X, X, 6, N, 11, X, X, N, 7, X\}, \phi(12)$  $k=6, \{4, X, N, X, 10, X\}, \phi(6)$  $k=4, \{8, 12, 5, 1\}, \phi(4)$ 

**Lemma**. There are at most  $\phi(k)$  ord-k elements in  $Z_n^*$ ,  $k \mid p-1$ pf.  $\diamond$  If *a* is an ord-*k* element in  $\mathbb{Z}_p^*$ , then  $\langle a \rangle = \{a^1, a^2, \ldots, a^n\}$  $a^{k-1}$ ,  $a^{k-1}$  is a subgroup G, |G|=k spanned by a.  $\Rightarrow$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d $\diamond$  Only the order of those  $a^{\ell}$  with  $gcd(\ell, k) = 1$  might be k  $\diamond$  Hence, there are at most  $\phi(k)$  order k elements e.g. *p* = 13  $\{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$ 2 is a generator in  $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$  $k=12, \{2, X, X, X, 6, N, 11, X, X, N, 7, X\}, \phi(12)$  $k=6, \{4, X, N, X, 10, X\}, \phi(6)$  $k=4, \{8, 2, 5, 1\}, \phi(4)$ 

**Lemma**. There are at most  $\phi(k)$  ord-k elements in  $Z_n^*$ ,  $k \mid p-1$ pf.  $\diamond$  If *a* is an ord-*k* element in  $\mathbb{Z}_p^*$ , then  $\langle a \rangle = \{a^1, a^2, \ldots, a^n\}$  $a^{k-1}$ ,  $a^{k-1}$  is a subgroup G, |G|=k spanned by a.  $\Rightarrow$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d $\diamond$  Only the order of those  $a^{\ell}$  with  $gcd(\ell, k) = 1$  might be k  $\diamond$  Hence, there are at most  $\phi(k)$  order k elements e.g. *p* = 13  $\{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$ 2 is a generator in  $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$  $k=12, \{2, X, X, X, 6, N, 11, X, X, N, 7, X\}, \phi(12)$  $k=6, \{4, X, N, X, 10, X\}, \phi(6)$  $k=4, \{8, \cancel{2}, 5, \cancel{3}, \cancel{4}\}, \cancel{4}$ 

**Lemma**. There are at most  $\phi(k)$  ord-k elements in  $Z_n^*$ ,  $k \mid p-1$ pf.  $\diamond$  If *a* is an ord-*k* element in  $\mathbb{Z}_p^*$ , then  $\langle a \rangle = \{a^1, a^2, \ldots, a^n\}$  $a^{k-1}$ ,  $a^{k}=1$  is a subgroup G, |G|=k spanned by a.  $\Rightarrow$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d $\diamond$  Only the order of those  $a^{\ell}$  with  $gcd(\ell, k) = 1$  might be k  $\diamond$  Hence, there are at most  $\phi(k)$  order k elements e.g. *p* = 13  $\{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$ 2 is a generator in  $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$  $k=12, \{2, X, X, X, 6, N, 11, X, X, N, 7, X\}, \phi(12)$  $k=6, \{4, X, N, X, 10, X\}, \phi(6)$  $k=4, \{8, \mathbb{N}, 5, \mathbb{K}\}, \phi(4)$  $k=3, \{3, 9, 1\}, \phi(3)$ 

16

**Lemma**. There are at most  $\phi(k)$  ord-k elements in  $Z_n^*$ ,  $k \mid p-1$ pf.  $\diamond$  If *a* is an ord-*k* element in  $\mathbb{Z}_p^*$ , then  $\langle a \rangle = \{a^1, a^2, \ldots, a^n\}$  $a^{k-1}$ ,  $a^{k}=1$  is a subgroup G, |G|=k spanned by a.  $\Rightarrow$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d $\diamond$  Only the order of those  $a^{\ell}$  with  $gcd(\ell, k) = 1$  might be k  $\diamond$  Hence, there are at most  $\phi(k)$  order k elements e.g. *p* = 13  $\{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$ 2 is a generator in  $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$  $k=12, \{2, X, X, X, 6, N, 11, X, X, N, 7, X\}, \phi(12)$  $k=6, \{4, X, N, X, 10, X\}, \phi(6)$  $k=4, \{8, \mathbb{N}, 5, \mathbb{K}\}, \phi(4)$  $k=3, \{3, 9, X\}, \phi(3)$ 

**Lemma**. There are at most  $\phi(k)$  ord-k elements in  $Z_{p}^{*}$ ,  $k \mid p-1$ pf.  $\diamond$  If *a* is an ord-*k* element in  $\mathbb{Z}_p^*$ , then  $\langle a \rangle = \{a^1, a^2, \ldots, a^n\}$  $a^{k-1}$ ,  $a^{k}=1$  is a subgroup G, |G|=k spanned by a.  $\Rightarrow$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d $\diamond$  Only the order of those  $a^{\ell}$  with  $gcd(\ell, k) = 1$  might be k  $\diamond$  Hence, there are at most  $\phi(k)$  order k elements e.g. *p* = 13  $\{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$ 2 is a generator in  $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$  $k=12, \{2, X, X, \delta, N, 11, X, X, N, 7, X\}, \phi(12)$  $k=6, \{4, X, N, X, 10, X\}, \phi(6)$  $k=2, \{12,1\}, \phi(2)$  $k=4, \{8, \mathbb{N}, 5, \mathbb{K}\}, \phi(4)$  $k=3, \{3, 9, X\}, \phi(3)$ 

16

**Lemma**. There are at most  $\phi(k)$  ord-k elements in  $Z_n^*$ ,  $k \mid p-1$ pf.  $\diamond$  If *a* is an ord-*k* element in  $\mathbb{Z}_p^*$ , then  $\langle a \rangle = \{a^1, a^2, \ldots, a^n\}$  $a^{k-1}$ ,  $a^{k}=1$  is a subgroup G, |G|=k spanned by a.  $\Rightarrow$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d $\diamond$  Only the order of those  $a^{\ell}$  with  $gcd(\ell, k) = 1$  might be k  $\diamond$  Hence, there are at most  $\phi(k)$  order k elements e.g. *p* = 13  $\{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$ 2 is a generator in  $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$  $k=12, \{2, X, X, \delta, N, 11, X, X, N, 7, X\}, \phi(12)$  $k=6, \{4, X, N, X, 10, X\}, \phi(6)$  $k=2, \{12, X\}, \phi(2)$  $k=4, \{8, \mathbb{N}, 5, \mathbb{K}\}, \phi(4)$  $k=3, \{3, 9, X\}, \phi(3)$ 

16

**Lemma**. There are at most  $\phi(k)$  ord-k elements in  $Z_n^*$ ,  $k \mid p-1$ pf.  $\diamond$  If *a* is an ord-*k* element in  $\mathbb{Z}_p^*$ , then  $\langle a \rangle = \{a^1, a^2, \ldots, a^n\}$  $a^{k-1}$ ,  $a^{k-1}$  is a subgroup G, |G|=k spanned by a.  $\Rightarrow$  Those  $a^{\ell}$  with  $gcd(\ell, k) = d > 1$  have order at most k/d $\diamond$  Only the order of those  $a^{\ell}$  with  $gcd(\ell, k) = 1$  might be k  $\diamond$  Hence, there are at most  $\phi(k)$  order k elements e.g. *p* = 13  $\{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\}$ 2 is a generator in  $Z_{13}^* = \{2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}\}$  $k=12, \{2, X, X, \delta, N, 11, X, X, N, 7, X\}, \phi(12)$  $k=6, \{4, X, N, X, 10, X\}, \phi(6)$  $k=2, \{12, X\}, \phi(2)$  $k=4, \{8, \mathbb{N}, 5, \mathbb{K}\}, \phi(4)$  $k=1, \{1\}, \phi(1)$  $k=3, \{3, 9, X\}, \phi(3)$ 

# $\Sigma_{k|p-1} \phi(k) = p-1$

#### **Lemma**. $\Sigma_{k|p-1} \phi(k) = p-1$

#### let $\phi(1)=1$

## $\overline{\Sigma_{k|p-1}} \phi(k) = p-1$

**Lemma**.  $\Sigma_{k|p-1} \phi(k) = p-1$  let  $\phi(1)=1$ pf.  $p-1 = \Sigma_{k|p-1} (\# a \text{ in } Z_p^* \text{ s.t. } \gcd(a, p-1) = k)$ 

### $\overline{\Sigma}_{k|p-1} \phi(k) = p-1$

<u>Lemma</u>.  $\Sigma_{k|p-1} \phi(k) = p-1$  let  $\phi(1)=1$ pf.  $p-1 = \Sigma_{k|p-1} (\# a \text{ in } Z_p^* \text{ s.t. } gcd(a, p-1) = k)$ 

> let  $p=13, a \in \mathbb{Z}_{p}^{*}$ gcd(a, p-1)=k, i.e.  $k \mid p-1$

### $\overline{\Sigma}_{k|p-1} \phi(k) = p-1$

<u>Lemma</u>.  $\Sigma_{k|p-1} \phi(k) = p-1$  let  $\phi(1)=1$ pf.  $p-1 = \Sigma_{k|p-1} (\# a \text{ in } Z_p^* \text{ s.t. } gcd(a, p-1) = k)$ 

> let  $p=13, a \in Z_p^*$ gcd(a, p-1)=k, i.e.  $k \mid p-1$  $k=1, \{1,5,7,11\}, \phi(12/1)$

### $\overline{\Sigma}_{k|p-1} \phi(k) = p-1$

**Lemma.**  $\Sigma_{k|p-1} \phi(k) = p-1$  let  $\phi(1)=1$ pf.  $p-1 = \Sigma_{k|p-1} (\# a \text{ in } Z_p^* \text{ s.t. } gcd(a, p-1) = k)$ 

> let  $p=13, a \in \mathbb{Z}_{p}^{*}$ gcd(a, p-1)=k, i.e.  $k \mid p-1$  $k=1, \{1,5,7,11\}, \phi(12/1)$  $k=2, \{2,10\}, \phi(12/2)$

### $\overline{\Sigma_{k|p-1}} \phi(k) = p-1$

**Lemma.**  $\Sigma_{k|p-1} \phi(k) = p-1$  let  $\phi(1)=1$ pf.  $p-1 = \Sigma_{k|p-1} (\# a \text{ in } Z_p^* \text{ s.t. } gcd(a, p-1) = k)$ 

> let  $p=13, a \in \mathbb{Z}_{p}^{*}$ gcd(a, p-1)=k, i.e.  $k \mid p-1$  $k=1, \{1,5,7,11\}, \phi(12/1)$  $k=2, \{2,10\}, \phi(12/2)$  $k=3, \{3,9\}, \phi(12/3)$

### $\Sigma_{k|p-1} \phi(k) = p-1$

**Lemma**.  $\Sigma_{k|p-1} \phi(k) = p-1$  let  $\phi(1)=1$ pf.  $p-1 = \Sigma_{k|p-1} (\# a \text{ in } Z_p^* \text{ s.t. } gcd(a, p-1) = k)$ 

> let  $p=13, a \in \mathbb{Z}_{p}^{*}$ gcd(a, p-1)=k, i.e.  $k \mid p-1$  $k=1, \{1,5,7,11\}, \phi(12/1)$  $k=2, \{2,10\}, \phi(12/2)$  $k=3, \{3,9\}, \phi(12/3)$  $k=4, \{4,8\}, \phi(12/4)$

### $\Sigma_{k|p-1} \phi(k) = p-1$

**Lemma**.  $\Sigma_{k|p-1} \phi(k) = p-1$  let  $\phi(1)=1$ pf.  $p-1 = \Sigma_{k|p-1} (\# a \text{ in } Z_p^* \text{ s.t. } gcd(a, p-1) = k)$ 

> let  $p=13, a \in \mathbb{Z}_{p}^{*}$ gcd(a, p-1)=k, i.e.  $k \mid p-1$  $k=1, \{1,5,7,11\}, \phi(12/1)$  $k=2, \{2,10\}, \phi(12/2)$  $k=3, \{3,9\}, \phi(12/3)$  $k=4, \{4,8\}, \phi(12/4)$  $k=6, \{6\}, \phi(12/6)$

**Lemma**.  $\Sigma_{k|p-1} \phi(k) = p-1$  let  $\phi(1)=1$ pf.  $p-1 = \Sigma_{k|p-1} (\# a \text{ in } Z_p^* \text{ s.t. } gcd(a, p-1) = k)$ 

> let p=13,  $a \in Z_p^*$ gcd(a, p-1)=k, i.e.  $k \mid p-1$  k=1, {1,5,7,11},  $\phi(12/1)$  k=2, {2,10},  $\phi(12/2)$  k=3, {3,9},  $\phi(12/3)$  k=4, {4,8},  $\phi(12/4)$  k=6, {6},  $\phi(12/6)$ k=12, {12},  $\phi(12/12)$

**Lemma**.  $\Sigma_{k|p-1} \phi(k) = p-1$  let  $\phi(1)=1$ pf.  $p-1 = \Sigma_{k|p-1} (\# a \text{ in } Z_p^* \text{ s.t. } \gcd(a, p-1) = k)$  $= \Sigma_{k|p-1} (\# b \text{ in } \{1, \dots, (p-1)/k\} \text{ s.t. } \gcd(b, (p-1)/k) = 1)$ 

> let  $p=13, a \in Z_p^*$ gcd(a, p-1)=k, i.e.  $k \mid p-1$  $k=1, \{1,5,7,11\}, \phi(12/1)$  $k=2, \{2,10\}, \phi(12/2)$  $k=3, \{3,9\}, \phi(12/3)$  $k=4, \{4,8\}, \phi(12/4)$  $k=6, \{6\}, \phi(12/6)$  $k=12, \{12\}, \phi(12/12)$

**Lemma**.  $\Sigma_{k|p-1} \phi(k) = p-1$  let  $\phi(1)=1$ pf.  $p-1 = \Sigma_{k|p-1} (\# a \text{ in } Z_p^* \text{ s.t. } \gcd(a, p-1) = k)$  $= \Sigma_{k|p-1} (\# b \text{ in } \{1, \dots, (p-1)/k\} \text{ s.t. } \gcd(b, (p-1)/k) = 1)$ 

 $= \sum_{k|p-1} \phi((p-1)/k)$ 

let  $p=13, a \in \mathbb{Z}_{p}^{*}$ gcd(a, p-1)=k, i.e.  $k \mid p-1$  $k=1, \{1,5,7,11\}, \phi(12/1)$  $k=2, \{2,10\}, \phi(12/2)$  $k=3, \{3,9\}, \phi(12/3)$  $k=4, \{4,8\}, \phi(12/4)$  $k=6, \{6\}, \phi(12/6)$  $k=12, \{12\}, \phi(12/12)$ 

**Lemma.**  $\Sigma_{k|p-1} \phi(k) = p-1$  let  $\phi(1)=1$ pf.  $p-1 = \Sigma_{k|p-1} (\# a \text{ in } Z_p^* \text{ s.t. } \gcd(a, p-1) = k)$   $= \Sigma_{k|p-1} (\# b \text{ in } \{1, \dots, (p-1)/k\} \text{ s.t. } \gcd(b, (p-1)/k) = 1)$  $= \Sigma_{k|p-1} \phi((p-1)/k)$ 

 $\phi(1) + \phi(12) + \phi(2) + \phi(6) + \phi(3) + \phi(4)$ 

let  $p=13, a \in \mathbb{Z}_{p}^{*}$ gcd(a, p-1)=k, i.e.  $k \mid p-1$  $k=1, \{1,5,7,11\}, \phi(12/1)$  $k=2, \{2,10\}, \phi(12/2)$  $k=3, \{3,9\}, \phi(12/3)$  $k=4, \{4,8\}, \phi(12/4)$  $k=6, \{6\}, \phi(12/6)$  $k=12, \{12\}, \phi(12/12)$ 

**Lemma.**  $\Sigma_{k|p-1} \phi(k) = p-1$  let  $\phi(1)=1$ pf.  $p-1 = \Sigma_{k|p-1} (\# a \text{ in } Z_p^* \text{ s.t. } \gcd(a, p-1) = k)$   $= \Sigma_{k|p-1} (\# b \text{ in } \{1, \dots, (p-1)/k\} \text{ s.t. } \gcd(b, (p-1)/k) = 1)$  $= \Sigma_{k|p-1} \phi((p-1)/k)$ 

 $\phi(1) + \phi(12) + \phi(2) + \phi(6) + \phi(3) + \phi(4)$ 

let  $p=13, a \in Z_p^*$ gcd(a, p-1)=k, i.e.  $k \mid p-1$  $k=1, \{1,5,7,11\}, \phi(12/1)$  $k=2, \{2,10\}, \phi(12/2)$  $k=3, \{3,9\}, \phi(12/3)$  $k=4, \{4,8\}, \phi(12/4)$  $k=6, \{6\}, \phi(12/6)$  $k=12, \{12\}, \phi(12/12)$ 

### $\Sigma_{k|p-1} \phi(k) = p-1$

**Lemma.**  $\Sigma_{k|p-1} \phi(k) = p-1$  let  $\phi(1)=1$ pf.  $p-1 = \Sigma_{k|p-1} (\# a \text{ in } Z_p^* \text{ s.t. } \gcd(a, p-1) = k)$   $= \Sigma_{k|p-1} (\# b \text{ in } \{1, \dots, (p-1)/k\} \text{ s.t. } \gcd(b, (p-1)/k) = 1)$  $= \Sigma_{k|p-1} \phi((p-1)/k)$ 

 $\phi(1) + \phi(12) + \phi(2) + \phi(6) + \phi(3) + \phi(4)$ 

let  $p=13, a \in Z_p^*$ gcd(a, p-1)=k, i.e.  $k \mid p-1$  $k=1, \{1,5,7,11\}, \phi(12/1)$  $k=2, \{2,10\}, \phi(12/2)$  $k=3, \{3,9\}, \phi(12/3)$  $k=4, \{4,8\}, \phi(12/4)$  $k=6, \{6\}, \phi(12/6)$  $k=12, \{12\}, \phi(12/12)$ 

### $\Sigma_{k|p-1} \phi(k) = p-1$

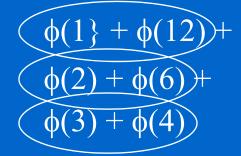
**Lemma.**  $\Sigma_{k|p-1} \phi(k) = p-1$  let  $\phi(1)=1$ pf.  $p-1 = \Sigma_{k|p-1} (\# a \text{ in } Z_p^* \text{ s.t. } \gcd(a, p-1) = k)$   $= \Sigma_{k|p-1} (\# b \text{ in } \{1, \dots, (p-1)/k\} \text{ s.t. } \gcd(b, (p-1)/k) = 1)$  $= \Sigma_{k|p-1} \phi((p-1)/k)$ 

 $\phi(1) + \phi(12) + \phi(2) + \phi(6) + \phi(3) + \phi(4)$ 

let p=13,  $a \in Z_p^*$ gcd(a, p-1)=k, i.e.  $k \mid p-1$ k=1, {1,5,7,11},  $\phi(12/1)$ k=2, {2,10},  $\phi(12/2)$ k=3, {3,9},  $\phi(12/3)$ k=4, {4,8},  $\phi(12/4)$ k=6, {6},  $\phi(12/6)$ k=12, {12},  $\phi(12/12)$ 

### $\sum_{k|p-1} \phi(k) = p-1$

**Lemma**.  $\Sigma_{k|p-1} \phi(k) = p-1$  let  $\phi(1)=1$ pf.  $p-1 = \sum_{k|p-1} (\# a \text{ in } Z_p^* \text{ s.t. } \gcd(a, p-1) = k)$   $= \sum_{k|p-1} (\# b \text{ in } \{1, \dots, (p-1)/k\} \text{ s.t. } \gcd(b, (p-1)/k) = 1)$   $= \sum_{k|p-1} \phi((p-1)/k)$  let  $p=13, a \in Z_p^*$   $= \sum_{k|p-1} \phi(k)$  gcd $(a, p-1)=k, \text{ i.e. } k \mid p-1$  $k=1, \{1,5,7,11\}, \phi(12/1)$ 



let p=13,  $a \in Z_p^*$ gcd(a, p-1)=k, i.e.  $k \mid p-1$ k=1, {1,5,7,11},  $\phi(12/1)$ k=2, {2,10},  $\phi(12/2)$ k=3, {3,9},  $\phi(12/3)$ k=4, {4,8},  $\phi(12/4)$ k=6, {6},  $\phi(12/6)$ k=12, {12},  $\phi(12/12)$ 

**<u>Theorem</u>**:  $Z_p^*$  is a *cyclic* group for a prime number p

pf.  $\begin{array}{l} & \overbrace{} \mathbf{Theorem} : Z_p^* \text{ is a$ *cyclic* $group for a prime number } p \\ & \bigcirc & \textcircled{} \text{ of ord-} k \text{ elements in } Z_p^* \leq \phi(k), \text{ where } k \mid p-1 \\ & \textcircled{} \sum_{k \mid p-1} \phi(k) = p-1 \end{array}$ 

pf. > ① # of ord-k elements in  $Z_p^* \le \phi(k)$ , where  $k \mid p-1$ ②  $\Sigma_{k \mid p-1} \phi(k) = p-1$ > The order k of every element in  $Z_p^*$  divides p-1

pf. pf. ⇒ ① # of ord-k elements in  $Z_p^* \le \phi(k)$ , where  $k \mid p-1$ ② Σ<sub>k|p-1</sub>  $\phi(k) = p-1$ ⇒ The order k of every element in  $Z_p^*$  divides p-1 ⇒ Σ<sub>k|p-1</sub> (# of ord-k elements in  $Z_p^*$ ) =  $|Z_p^*| = p-1$ 

pf. pf. ⇒ ① # of ord-k elements in  $Z_p^* \le \phi(k)$ , where  $k \mid p-1$ ②  $\Sigma_{k\mid p-1} \phi(k) = p-1$ ⇒ The order k of every element in  $Z_p^*$  divides p-1⇒  $\Sigma_{k\mid p-1}$  (# of ord-k elements in  $Z_p^*$ ) =  $|Z_p^*| = p-1$ > ① ⇒  $\Sigma_{k\mid p-1}$  (# of ord-k elements in  $Z_p^*$ ) ≤  $\Sigma_{k\mid p-1} \phi(k)$ , combined with ②, # of ord-k elements in  $Z_p^* = \phi(k)$ 

**<u>Theorem</u>**:  $Z_p^*$  is a *cyclic* group for a prime number p pf. ⇒ ① # of ord-*k* elements in  $Z_p^* \le \phi(k)$ , where  $k \mid p-1$  $\textcircled{2} \Sigma_{k|p-1} \phi(k) = p-1$ > The order k of every element in  $Z_p^*$  divides p-1  $\Rightarrow \Sigma_{k|p-1}$  (# of ord-k elements in  $Z_p^*$ ) =  $|Z_p^*| = p-1$  $\gg \bigcirc \implies \Sigma_{k|p-1} \ (\# \text{ of ord-}k \text{ elements in } Z_p^*) \le \Sigma_{k|p-1} \ \phi(k),$ combined with ②, # of ord-*k* elements in  $Z_p^* = \phi(k)$ > # of ord-(p-1) elements in  $Z_p^* = \phi(p-1) > 1$ 

**<u>Theorem</u>**:  $Z_p^*$  is a *cyclic* group for a prime number p pf. > ① # of ord-k elements in  $Z_p^* \le \phi(k)$ , where  $k \mid p-1$  $\sum_{k|p-1} \phi(k) = p-1$ > The order k of every element in  $Z_p^*$  divides p-1  $\Rightarrow \Sigma_{k|p-1}$  (# of ord-k elements in  $Z_p^*$ ) =  $|Z_p^*| = p-1$  $\gg \bigcirc \implies \Sigma_{k|p-1} \ (\# \text{ of ord-}k \text{ elements in } Z_p^*) \le \Sigma_{k|p-1} \ \phi(k),$ combined with ②, # of ord-*k* elements in  $Z_p^* = \phi(k)$ > # of ord-(p-1) elements in  $Z_p^* = \phi(p-1) > 1$ > There is at least one generator in  $Z_p^*$ , i.e.  $Z_p^*$  is cyclic

**Theorem**:  $Z_p^*$  is a *cyclic* group for a prime number *p* pf. > ① # of ord-k elements in  $Z_p^* \le \phi(k)$ , where  $k \mid p-1$  $\sum_{k|p-1} \phi(k) = p-1$ > The order k of every element in  $Z_p^*$  divides p-1  $\Rightarrow \Sigma_{k|p-1} \ (\# \text{ of ord-}k \text{ elements in } Z_p^*) = |Z_p^*| = p-1$  $\gg \bigcirc \implies \Sigma_{k|p-1} \ (\# \text{ of ord-}k \text{ elements in } Z_p^*) \le \Sigma_{k|p-1} \ \phi(k),$ combined with ②, # of ord-*k* elements in  $Z_p^* = \phi(k)$ > # of ord-(p-1) elements in  $Z_p^* = \phi(p-1) > 1$ > There is at least one generator in  $Z_p^*$ , i.e.  $Z_p^*$  is cyclic Ex. p=13,  $p-1 = |\{2,6,11,7\}| + |\{4,10\}| + |\{8,5\}| + |\{3,9\}| + |\{12\}| + |\{1\}|$ k=6

 $p^{s}-p+1, ..., p^{s}-1$ 

 $p^{s}-p+1, ..., p^{s}-1$ 

 $\Rightarrow \mathbf{Z}_{p^{s}}^{*} = \{1, 2, \dots, p^{-1}, \\ p^{+1}, \dots, 2p^{-1}, \\ \dots, \\ p^{s} - p^{+1}, \dots, p^{s} - 1\}$   $\Rightarrow \text{ group operator: multiplication mod } p^{s}$   $\Rightarrow |\mathbf{Z}_{p^{s}}^{*}| = \phi(p^{s}) = p^{s-1}(p-1)$   $\therefore, \\ p^{s} - p^{s} - p^{s} - 1\}$  pf.  $\textcircled{O} \mathbf{Z}_{p}^{*} \text{ is cyclic}$ 

 $\begin{array}{l} \diamond \quad \mathbf{Z}_{p^{s}}^{*} = \{1, 2, \dots, \quad p-1, \quad \diamond \text{ group operator: multiplication mod } p^{s} \\ p^{+1}, \dots, \quad 2p-1, \quad \diamond \quad |\mathbf{Z}_{p^{s}}^{*}| = \phi(p^{s}) = p^{s-1}(p-1) \\ \dots, \\ p^{s}-p+1, \dots, p^{s}-1\} \end{array}$   $\begin{array}{l} \textbf{pf.} \\ \textcircled{1} \quad \mathbf{Z}_{p}^{*} \text{ is cyclic} \\ \textcircled{2} \quad \text{assume } \mathbf{Z}_{p^{2}}^{*}, \mathbf{Z}_{p^{3}}^{*}, \dots, \mathbf{Z}_{p^{s-1}}^{*} \text{ are cyclic} \end{array}$ 

 $\Rightarrow \mathbf{Z}_{p^{s}}^{*} = \{1, 2, ..., p-1, \Rightarrow \text{ group operator: multiplication mod } p^{s} \}$ p+1,..., 2p-1,  $\diamond |\mathbf{Z}_{p^{s}}^{*}| = \phi(p^{s}) = p^{s-1}(p-1)$  $p^{s}-p+1, ..., p^{s}-1$ pf.  $\bigcirc \mathbf{Z}_{p}^{*}$  is cyclic 2 assume  $\mathbf{Z}_{p^2}^*, \mathbf{Z}_{p^3}^*, \dots, \mathbf{Z}_{p^{s-1}}^*$  are cyclic  $\exists g \in \mathbb{Z}_{p^{s-1}}^{*}, \langle g \rangle_{p^{s-1}} = \mathbb{Z}_{p^{s-1}}^{*}, \text{ ord}_{p^{s-1}}(g) = p^{s-2}(p-1), g^{p^{s-2}(p-1)} \equiv 1 \pmod{p^{s-1}}$ (4) consider the same g in (3),  $\langle g \rangle_{p^i} = \mathbb{Z}_{p^i}^*$ , i=1,2,...,s-2

 $\Rightarrow \mathbf{Z}_{p^{s}}^{*} = \{1, 2, ..., p-1, \Rightarrow \text{ group operator: multiplication mod } p^{s} \}$ p+1,..., 2p-1,  $\diamond |\mathbf{Z}_{p^s}^*| = \phi(p^s) = p^{s-1}(p-1)$  $p^{s}-p+1, ..., p^{s}-1$ pf.  $\bigcirc \mathbf{Z}_{n}^{*}$  is cyclic 2 assume  $\mathbf{Z}_{p^2}^*, \mathbf{Z}_{p^3}^*, \dots, \mathbf{Z}_{p^{s-1}}^*$  are cyclic  $\exists g \in \mathbb{Z}_{p^{s-1}}^{*}, \langle g \rangle_{p^{s-1}} = \mathbb{Z}_{p^{s-1}}^{*}, \text{ ord}_{p^{s-1}}(g) = p^{s-2}(p-1), g^{p^{s-2}(p-1)} \equiv 1 \pmod{p^{s-1}}$ ④ consider the same g in ③,  $\langle g \rangle_{p^i} = \mathbb{Z}_{p^i}^*$ , i=1,2,...,s-2 pf. (by contradiction, for each i=s-2, s-3, ..., 1)

 $\Rightarrow \mathbf{Z}_{p^{s}}^{*} = \{1, 2, ..., p-1, \Rightarrow \text{ group operator: multiplication mod } p^{s} \}$ p+1,..., 2p-1,  $\diamond |\mathbf{Z}_{p^s}^*| = \phi(p^s) = p^{s-1}(p-1)$  $p^{s}-p+1, ..., p^{s}-1$ pf.  $\bigcirc \mathbf{Z}_{n}^{*}$  is cyclic ② assume  $\mathbb{Z}_{p^2}^{*}, \mathbb{Z}_{p^3}^{*}, \dots, \mathbb{Z}_{p^{s-1}}^{*}$  are cyclic  $\exists g \in \mathbb{Z}_{p^{s-1}}^{*}, \langle g \rangle_{p^{s-1}} = \mathbb{Z}_{p^{s-1}}^{*}, \text{ ord}_{p^{s-1}}(g) = p^{s-2}(p-1), g^{p^{s-2}(p-1)} \equiv 1 \pmod{p^{s-1}}$ ④ consider the same g in ③,  $\langle g \rangle_{p^i} = \mathbb{Z}_{p^i}^*$ , i=1,2,...,s-2 pf. (by contradiction, for each i=s-2, s-3, ..., 1) if  $p^{k} \equiv 1 \pmod{p^{s-2}}$ , where  $k \leq p^{s-3}(p-1)$  and  $k \mid p^{s-3}(p-1)$ , then  $\exists \lambda, g^{k} = 1 + \lambda p^{s-2}$ 

 $\Rightarrow \mathbf{Z}_{p^{s}}^{*} = \{1, 2, ..., p-1, \Rightarrow \text{ group operator: multiplication mod } p^{s} \}$ p+1,..., 2p-1,  $\diamond |\mathbf{Z}_{p^s}^*| = \phi(p^s) = p^{s-1}(p-1)$  $p^{s}-p+1, ..., p^{s}-1$ pf.  $\bigcirc \mathbf{Z}_{n}^{*}$  is cyclic  $\bigcirc$  assume  $\mathbb{Z}_{p^2}^*, \mathbb{Z}_{p^3}^*, \dots, \mathbb{Z}_{p^{s-1}}^*$  are cyclic  $\exists g \in \mathbb{Z}_{p^{s-1}}^{*}, \langle g \rangle_{p^{s-1}} = \mathbb{Z}_{p^{s-1}}^{*}, \text{ ord}_{p^{s-1}}(g) = p^{s-2}(p-1), g^{p^{s-2}(p-1)} \equiv 1 \pmod{p^{s-1}}$ ④ consider the same g in ③,  $\langle g \rangle_{p^i} = \mathbb{Z}_{p^i}^*$ , i=1,2,...,s-2 pf. (by contradiction, for each i=s-2, s-3, ..., 1) if  $g^{k} \equiv 1 \pmod{p^{s-2}}$ , where  $k \leq p^{s-3}(p-1)$  and  $k \mid p^{s-3}(p-1)$ , then  $\exists \lambda, g^{k} = 1 + \lambda p^{s-2}$  $(g^k)^p \equiv (1+\lambda p^{s-2})^p \equiv 1 \pmod{p^{s-1}}$ , where  $kp \leq p^{s-2}(p-1)$ 

 $\Rightarrow \mathbf{Z}_{p^{s}}^{*} = \{1, 2, ..., p-1, \Rightarrow \text{ group operator: multiplication mod } p^{s} \}$ p+1,..., 2p-1,  $\diamond |\mathbf{Z}_{p^s}^*| = \phi(p^s) = p^{s-1}(p-1)$  $p^{s}-p+1, ..., p^{s}-1$ pf.  $\bigcirc \mathbf{Z}_{n}^{*}$  is cyclic ② assume  $\mathbb{Z}_{p^2}^*, \mathbb{Z}_{p^3}^*, \dots, \mathbb{Z}_{p^{s-1}}^*$  are cyclic  $\exists g \in \mathbb{Z}_{p^{s-1}}^{*}, \langle g \rangle_{p^{s-1}} = \mathbb{Z}_{p^{s-1}}^{*}, \text{ ord}_{p^{s-1}}(g) = p^{s-2}(p-1), g^{p^{s-2}(p-1)} \equiv 1 \pmod{p^{s-1}}$ ④ consider the same g in ③,  $\langle g \rangle_{p^i} = \mathbb{Z}_{p^i}^*$ , i=1,2,...,s-2 pf. (by contradiction, for each i=s-2, s-3, ..., 1) if  $g^{k} \equiv 1 \pmod{p^{s-2}}$ , where  $k \leq p^{s-3}(p-1)$  and  $k \mid p^{s-3}(p-1)$ , then  $\exists \lambda, g^{k} = 1 + \lambda p^{s-2}$  $(g^k)^p \equiv (1+\lambda p^{s-2})^p \equiv 1 \pmod{p^{s-1}}$ , where  $kp < p^{s-2}(p-1)$ i.e. g is not a generator in  $Z_{p^{s-1}}^*$ , contradiction with  $\Im$ 

( let  $n = \operatorname{ord}_{p^{s}}(g)$ , Euler's Thm  $g^{p^{s-1}(p-1)} \equiv 1 \pmod{p^{s}} \Rightarrow n \mid p^{s-1}(p-1)$ 

(5) let  $n = \operatorname{ord}_{p^{s}}(g)$ , Euler's Thm  $g^{p^{s-1}(p-1)} \equiv 1 \pmod{p^{s}} \Rightarrow n \mid p^{s-1}(p-1)$ 

 $(find p^{s}) \implies g^{n} \equiv 1 \pmod{p^{s-1}} \implies \operatorname{ord}_{p^{s-1}}(g) = p^{s-2}(p-1) \mid n$ 

(5) let  $n = \operatorname{ord}_{p^{s}}(g)$ , Euler's Thm  $g^{p^{s-1}(p-1)} \equiv 1 \pmod{p^{s}} \Rightarrow n \mid p^{s-1}(p-1)$ (6)  $g^{n} \equiv 1 \pmod{p^{s}} \Rightarrow g^{n} \equiv 1 \pmod{p^{s-1}} \Rightarrow \operatorname{ord}_{p^{s-1}}(g) \equiv p^{s-2}(p-1) \mid n$ (5), (6)  $\Rightarrow n = p^{s-2}(p-1)$  or  $n = p^{s-1}(p-1)$ 

$$\begin{split} & (\texttt{S} \text{ let } n = \operatorname{ord}_{p^{\mathsf{s}}}(g), \text{ Euler's Thm } g^{p^{\mathsf{s}^{-1}}(p-1)} \equiv 1 \pmod{p^{\mathsf{s}}} \Rightarrow n \mid p^{\mathsf{s}^{-1}}(p-1) \\ & (\texttt{S} g^{n} \equiv 1 \pmod{p^{\mathsf{s}}}) \Rightarrow g^{n} \equiv 1 \pmod{p^{\mathsf{s}^{-1}}} \Rightarrow \operatorname{ord}_{p^{\mathsf{s}^{-1}}}(g) = p^{\mathsf{s}^{-2}}(p-1) \mid n \\ & (\texttt{S}, \texttt{O} \Rightarrow n = p^{\mathsf{s}^{-2}}(p-1) \text{ or } n = p^{\mathsf{s}^{-1}}(p-1) \\ & (\texttt{A} = p^{\mathsf{s}^{-2}}(g)) = p^{\mathsf{s}^{-3}}(p-1) \Rightarrow \exists \lambda, g^{p^{\mathsf{s}^{-3}}(p-1)} = 1 + \lambda p^{\mathsf{s}^{-2}} \\ & (\texttt{ord}_{p^{\mathsf{s}^{-1}}}(g) = p^{\mathsf{s}^{-2}}(p-1) \Rightarrow g^{p^{\mathsf{s}^{-3}}(p-1)} \neq 1 \pmod{p^{\mathsf{s}^{-1}}} \\ & (\texttt{mod } p^{\mathsf{s}^{-1}}) = p^{\mathsf{s}^{-2}}(p-1) \Rightarrow g^{p^{\mathsf{s}^{-3}}(p-1)} \neq 1 \pmod{p^{\mathsf{s}^{-1}}} \\ & (\texttt{mod } p^{\mathsf{s}^{-1}}) = p^{\mathsf{s}^{-2}}(p-1) \Rightarrow g^{p^{\mathsf{s}^{-3}}(p-1)} \neq 1 \pmod{p^{\mathsf{s}^{-1}}} \\ & (\texttt{mod } p^{\mathsf{s}^{-1}}) = p^{\mathsf{s}^{-2}}(p-1) \Rightarrow g^{p^{\mathsf{s}^{-3}}(p-1)} \neq 1 \pmod{p^{\mathsf{s}^{-1}}} \\ & (\texttt{mod } p^{\mathsf{s}^{-1}}) = p^{\mathsf{s}^{-2}}(p-1) \Rightarrow g^{p^{\mathsf{s}^{-3}}(p-1)} \neq 1 \pmod{p^{\mathsf{s}^{-1}}} \\ & (\texttt{mod } p^{\mathsf{s}^{-1}}) = p^{\mathsf{s}^{-2}}(p-1) \Rightarrow g^{p^{\mathsf{s}^{-3}}(p-1)} \neq 1 \pmod{p^{\mathsf{s}^{-1}}} \\ & (\texttt{mod } p^{\mathsf{s}^{-1}}) = p^{\mathsf{s}^{-2}}(p-1) \Rightarrow g^{p^{\mathsf{s}^{-3}}(p-1)} \neq 1 \pmod{p^{\mathsf{s}^{-1}}} \\ & (\texttt{mod } p^{\mathsf{s}^{-1}}) = p^{\mathsf{s}^{-2}}(p-1) \Rightarrow g^{p^{\mathsf{s}^{-3}}(p-1)} \neq 1 \pmod{p^{\mathsf{s}^{-1}}} \\ & (\texttt{mod } p^{\mathsf{s}^{-1}}) = p^{\mathsf{s}^{-2}}(p-1) \Rightarrow g^{p^{\mathsf{s}^{-3}}(p-1)} \neq 1 \pmod{p^{\mathsf{s}^{-1}}} \\ & (\texttt{mod } p^{\mathsf{s}^{-1}}) = p^{\mathsf{s}^{-2}}(p-1) \Rightarrow g^{p^{\mathsf{s}^{-3}}(p-1)} \neq 1 \pmod{p^{\mathsf{s}^{-1}}} \\ & (\texttt{mod } p^{\mathsf{s}^{-1}}) = p^{\mathsf{s}^{-2}}(p-1) \Rightarrow g^{p^{\mathsf{s}^{-3}}(p-1)} \neq 1 \pmod{p^{\mathsf{s}^{-1}}} \\ & (\texttt{mod } p^{\mathsf{s}^{-1}}) = p^{\mathsf{s}^{-1}}(p-1) = p^{$$

 $\bigcirc$  let  $n = \operatorname{ord}_{p^{s}}(g)$ , Euler's Thm  $g^{p^{s-1}(p-1)} \equiv 1 \pmod{p^{s}} \Rightarrow n \mid p^{s-1}(p-1)$ (5), (6)  $\Rightarrow n = p^{s-2}(p-1) \text{ or } n = p^{s-1}(p-1)$  $\begin{array}{c} \textcircled{4} \\ \textcircled{0} \\ \textcircled{0} \\ \textcircled{0} \\ \textcircled{0} \\ \textcircled{0} \\ \swarrow} \end{array} \xrightarrow{p^{s-3}(p-1)} \Rightarrow \exists \lambda, g^{p^{s-3}(p-1)} = 1 + \lambda p^{s-2} \\ \textcircled{0} \\ \textcircled{0} \\ \textcircled{0} \\ \swarrow} \xrightarrow{p^{s-2}(p-1)} \Rightarrow g^{p^{s-3}(p-1)} \neq 1 \pmod{p^{s-1}} \end{array} \right\} \Rightarrow p \setminus \lambda$  $(g^{p^{s-3}(p-1)})^p \equiv (1+\lambda p^{s-2})^p \equiv 1 + p\lambda p^{s-2} + C_2^p \lambda^2 (p^{s-2})^2 + \dots$  $\equiv 1 + \lambda p^{s-1} \pmod{p^s}$ 

 $\bigcirc$  let  $n = \operatorname{ord}_{p^{s}}(g)$ , Euler's Thm  $g^{p^{s-1}(p-1)} \equiv 1 \pmod{p^{s}} \Rightarrow n \mid p^{s-1}(p-1)$ (5,6)  $\Rightarrow n = p^{s-2}(p-1) \text{ or } n = p^{s-1}(p-1)$  $\begin{array}{c} \textcircled{4} & & & & \\ \textcircled{6} & & & & \\ \hline \end{array} \\ \overrightarrow{7} \\ \hline \end{array} \\ \hline \end{array} \\ \overrightarrow{7} \\ \hline \end{array} \\ \overrightarrow{7} \\ \overrightarrow{7}$   $[(g^{p^{s-3}(p-1)})^p \equiv (1+\lambda p^{s-2})^p \equiv 1+p\lambda p^{s-2}+C_2^p\lambda^2(p^{s-2})^2+\dots]$  $\equiv 1 + \lambda p^{s-1} \pmod{p^s}$  $p \setminus \lambda \implies g^{p^{s-2}(p-1)} \neq 1 \pmod{p^s}$  i.e.  $n \neq p^{s-2}(p-1)$ 

 $\bigcirc$  let  $n = \operatorname{ord}_{p^{s}}(g)$ , Euler's Thm  $g^{p^{s-1}(p-1)} \equiv 1 \pmod{p^{s}} \Rightarrow n \mid p^{s-1}(p-1)$  $(5, 6) \Rightarrow n = p^{s-2}(p-1) \text{ or } n = p^{s-1}(p-1)$  $\begin{array}{c} \textcircled{4} \\ \textcircled{0} \\ \textcircled{0} \\ \textcircled{0} \\ \textcircled{0} \\ \textcircled{0} \\ \swarrow} \end{array} \begin{array}{c} p^{s-3}(p-1) \Rightarrow \exists \lambda, g^{p^{s-3}(p-1)} = 1 + \lambda p^{s-2} \\ \textcircled{0} \\ \textcircled{0} \\ \swarrow} \end{array} \begin{array}{c} p^{s-2}(g) & \rightleftharpoons p^{s-3}(p-1) \Rightarrow g^{p^{s-3}(p-1)} \neq 1 \pmod{p^{s-1}} \end{array} \end{array} \right\} \Rightarrow p \setminus \lambda$   $\begin{array}{c} \textcircled{0} \\ \textcircled{0} \\ \textcircled{0} \\ \swarrow} \end{array} \begin{array}{c} p^{s-2}(p-1) \Rightarrow g^{p^{s-3}(p-1)} \neq 1 \pmod{p^{s-1}} \end{array} \right\} \Rightarrow p \setminus \lambda$  $(g^{p^{s-3}(p-1)})^p \equiv (1+\lambda p^{s-2})^p \equiv 1+p\lambda p^{s-2}+C_2^p\lambda^2(p^{s-2})^2+\dots$  $\equiv 1 + \lambda p^{s-1} \pmod{p^s}$  $p \setminus \lambda \implies g^{p^{s-2}(p-1)} \neq 1 \pmod{p^s}$  i.e.  $n \neq p^{s-2}(p-1)$ 

 $\bigcirc$  let  $n = \operatorname{ord}_{p^{s}}(g)$ , Euler's Thm  $g^{p^{s-1}(p-1)} \equiv 1 \pmod{p^{s}} \Rightarrow n \mid p^{s-1}(p-1)$  $\textcircled{\texttt{o}} g^{n} \equiv 1 \pmod{p^{\text{s}}} \implies g^{n} \equiv 1 \pmod{p^{\text{s}-1}} \implies \operatorname{ord}_{p^{\text{s}-1}}(g) = p^{\text{s}-2}(p-1) \mid n$  $(5, 6) \Rightarrow n = p^{s-2}(p-1) \text{ or } n = p^{s-1}(p-1)$  $\begin{array}{c} \textcircled{4} \\ \textcircled{0} \\ \textcircled{0} \\ \textcircled{0} \\ \textcircled{0} \\ \textcircled{0} \\ \swarrow} \end{array} \begin{array}{c} p^{s-3}(p-1) \Rightarrow \exists \lambda, g^{p^{s-3}(p-1)} = 1 + \lambda p^{s-2} \\ \textcircled{0} \\ \textcircled{0} \\ \swarrow} \end{array} \begin{array}{c} p^{s-2}(g) & \rightleftharpoons p^{s-3}(p-1) \Rightarrow g^{p^{s-3}(p-1)} \neq 1 \pmod{p^{s-1}} \end{array} \end{array} \right\} \Rightarrow p \setminus \lambda$   $\begin{array}{c} \textcircled{0} \\ \textcircled{0} \\ \textcircled{0} \\ \swarrow} \end{array} \begin{array}{c} p^{s-2}(p-1) \Rightarrow g^{p^{s-3}(p-1)} \neq 1 \pmod{p^{s-1}} \end{array} \right\} \Rightarrow p \setminus \lambda$  $(g^{p^{s-3}(p-1)})^p \equiv (1+\lambda p^{s-2})^p \equiv 1+p\lambda p^{s-2}+C_2^p\lambda^2(p^{s-2})^2+\dots$  $\equiv 1 + \lambda p^{s-1} \pmod{p^s}$  $p \setminus \lambda \implies g^{p^{s-2}(p-1)} \neq 1 \pmod{p^s}$  i.e.  $n \neq p^{s-2}(p-1)$  $\otimes n = \operatorname{ord}_{p^{s}}(g) = p^{s-1}(p-1) = |\mathbf{Z}_{p^{s}}^{*}|$ 

 $\bigcirc$  let  $n = \operatorname{ord}_{p^{s}}(g)$ , Euler's Thm  $g^{p^{s-1}(p-1)} \equiv 1 \pmod{p^{s}} \Rightarrow n p^{s-1}(p-1)$  $\textcircled{\texttt{G}} g^{n} \equiv 1 \pmod{p^{s}} \implies g^{n} \equiv 1 \pmod{p^{s-1}} \implies \operatorname{ord}_{p^{s-1}}(g) = p^{s-2}(p-1) \mid n$  $(5, 6) \Rightarrow n = p^{s-2}(p-1) \text{ or } n = p^{s-1}(p-1)$  $\begin{array}{c} \textcircled{4} \\ \textcircled{0} \\ \textcircled{0} \\ \textcircled{0} \\ \textcircled{0} \\ \textcircled{0} \\ \textcircled{0} \\ \swarrow} \end{array} \xrightarrow{p^{s-3}(p-1)} \Rightarrow \exists \lambda, g^{p^{s-3}(p-1)} = 1 + \lambda p^{s-2} \\ \textcircled{0} \\ \textcircled{0} \\ \textcircled{0} \\ \textcircled{0} \\ \swarrow} \xrightarrow{p^{s-3}(p-1)} \Rightarrow g^{p^{s-3}(p-1)} \neq 1 \pmod{p^{s-1}} \end{array} \right\} \Rightarrow p \setminus \lambda$  $(g^{p^{s-3}(p-1)})^p \equiv (1+\lambda p^{s-2})^p \equiv 1+p\lambda p^{s-2}+C_2^p\lambda^2(p^{s-2})^2+\dots$  $\equiv 1 + \lambda p^{s-1} \pmod{p^s}$  $p \setminus \lambda \implies g^{p^{s-2}(p-1)} \neq 1 \pmod{p^s}$  i.e.  $n \neq p^{s-2}(p-1)$  $(a) = \operatorname{ord}_{p^{s}}(g) = p^{s-1}(p-1) = |\mathbf{Z}_{p^{s}}^{*}|, \text{ hence } \langle g \rangle_{p^{s}} = \mathbf{Z}_{p^{s}}^{*} \text{ is cyclic}$ 

\* For each  $x \in \mathbb{Z}_{p^{s}}^{*}$ ,  $p^{s}-x \neq x \pmod{p^{s}}$  (since if x is odd,  $p^{s}-x$  is even), it's clear that x and  $p^{s}-x$  are both square roots of a certain  $y \in \mathbb{Z}_{p^{s}}^{*}$ 

\* For each  $x \in \mathbb{Z}_{p^{s}}^{*}$ ,  $p^{s} - x \neq x \pmod{p^{s}}$  (since if x is odd,  $p^{s} - x$  is even), it's clear that x and  $p^{s} - x$  are both square roots of a certain  $y \in \mathbb{Z}_{p^{s}}^{*}$ 

\* Because there are only  $p^{s-1}(p-1)$  elements in  $\mathbb{Z}_{p^s}^*$ , we know that number of quadratic residues  $|QR_{p^s}| \le p^{s-1}(p-1)/2$ 

\* For each  $x \in \mathbb{Z}_{p^{s}}^{*}$ ,  $p^{s}-x \neq x \pmod{p^{s}}$  (since if x is odd,  $p^{s}-x$  is even), it's clear that x and  $p^{s}-x$  are both square roots of a certain  $y \in \mathbb{Z}_{p^{s}}^{*}$ 

\* Because there are only  $p^{s-1}(p-1)$  elements in  $\mathbb{Z}_{p^s}^*$ , we know that number of quadratic residues  $|QR_{p^s}| \le p^{s-1}(p-1)/2$ 

\* Because  $\mathbb{Z}_{p^{s}}^{*}$  is cyclic,  $|\{g^{2}, g^{4}, ..., g^{p^{s-1}(p-1)}\}| = p^{s-1}(p-1)/2$ , there can be no more quadratic residues outside this set. Therefore, the set  $\{g, g^{3}, ..., g^{p^{s-1}(p-1)-1}\}$  contains only quadratic non-residues

\* For each  $x \in \mathbb{Z}_{p^{s}}^{*}$ ,  $p^{s}-x \neq x \pmod{p^{s}}$  (since if x is odd,  $p^{s}-x$  is even), it's clear that x and  $p^{s}-x$  are both square roots of a certain  $y \in \mathbb{Z}_{p^{s}}^{*}$ 

\* Because there are only  $p^{s-1}(p-1)$  elements in  $\mathbb{Z}_{p^s}^*$ , we know that number of quadratic residues  $|QR_{p^s}| \le p^{s-1}(p-1)/2$ 

\* Because  $\mathbb{Z}_{p^{s}}^{*}$  is cyclic,  $|\{g^{2}, g^{4}, ..., g^{p^{s-1}(p-1)}\}| = p^{s-1}(p-1)/2$ , there can be no more quadratic residues outside this set. Therefore, the set  $\{g, g^{3}, ..., g^{p^{s-1}(p-1)-1}\}$  contains only quadratic non-residues

 $|\mathbf{QR}_{p^{s}}| = p^{s-1}(p-1)/2$ 

 $\succ$  Lemma:  $y \equiv z \pmod{p} \implies y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s}$ 

 $\blacktriangleright \text{ Lemma: } y \equiv z \pmod{p} \implies y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s}$ pf.  $y \equiv z \pmod{p} \implies y \equiv z + \lambda_1 p$ 

 $\succ \text{Lemma: } y \equiv z \pmod{p} \implies y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s}$   $\text{pf. } y \equiv z \pmod{p} \implies y = z + \lambda_1 p$   $\implies y^{p^{s-1}} \equiv (z + \lambda_1 p)^{p^{s-1}} \equiv z^{p^{s-1}} + p^{s-1} \lambda_1 p + \dots \pmod{p^s}$ 

 $\succ \text{Lemma: } y \equiv z \pmod{p} \implies y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s}$   $\text{pf. } y \equiv z \pmod{p} \implies y \equiv z + \lambda_1 p$   $\implies y^{p^{s-1}} \equiv (z + \lambda_1 p)^{p^{s-1}} \equiv z^{p^{s-1}} + p^{s-1} \lambda_1 p + \dots \pmod{p^s}$   $\implies y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s} \quad \Box$ 

 $\succ \text{Lemma: } y \equiv z \pmod{p} \implies y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s}$   $\text{pf. } y \equiv z \pmod{p} \implies y \equiv z + \lambda_1 p$   $\implies y^{p^{s-1}} \equiv (z + \lambda_1 p)^{p^{s-1}} \equiv z^{p^{s-1}} + p^{s-1} \lambda_1 p + \dots \pmod{p^s}$   $\implies y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s} \quad \Box$ 

$$\succ \text{Lemma: } y \equiv z \pmod{p} \implies y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s}$$

$$\text{pf. } y \equiv z \pmod{p} \implies y \equiv z + \lambda_1 p$$

$$\implies y^{p^{s-1}} \equiv (z + \lambda_1 p)^{p^{s-1}} \equiv z^{p^{s-1}} + p^{s-1} \lambda_1 p + \dots \pmod{p^s}$$

$$\implies y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s} \quad \Box$$

 $\succ$  Solve  $z^2 \equiv b \pmod{p^s}$ 

$$\succ \text{Lemma: } y \equiv z \pmod{p} \implies y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s}$$
pf.  $y \equiv z \pmod{p} \implies y \equiv z + \lambda_1 p$ 

$$\implies y^{p^{s-1}} \equiv (z + \lambda_1 p)^{p^{s-1}} \equiv z^{p^{s-1}} + p^{s-1} \lambda_1 p + \dots \pmod{p^s}$$

$$\implies y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s} = 1$$

 $\geq$  let *b* be a quadratic residue mod *p* and mod *p*<sup>s</sup>

 $\succ$  Solve  $z^2 \equiv b \pmod{p^s}$ 

$$\succ \text{Lemma: } y \equiv z \pmod{p} \implies y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s}$$

$$\text{pf. } y \equiv z \pmod{p} \implies y \equiv z + \lambda_1 p$$

$$\implies y^{p^{s-1}} \equiv (z + \lambda_1 p)^{p^{s-1}} \equiv z^{p^{s-1}} + p^{s-1} \lambda_1 p + \dots \pmod{p^s}$$

$$\implies y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s} \quad \Box$$

▶ let b be a quadratic residue mod p and mod p<sup>s</sup>
i.e. b<sup>(p-1)/2</sup> ≡ 1 (mod p) and b<sup>p<sup>s-1</sup>(p-1)/2</sup> ≡ 1 (mod p<sup>s</sup>)
▶ Solve z<sup>2</sup> ≡ b (mod p<sup>s</sup>)

$$\succ \text{ Lemma: } y \equiv z \pmod{p} \Rightarrow y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s}$$

$$\text{pf. } y \equiv z \pmod{p} \Rightarrow y = z + \lambda_1 p$$

$$\Rightarrow y^{p^{s-1}} \equiv (z + \lambda_1 p)^{p^{s-1}} \equiv z^{p^{s-1}} + p^{s-1} \lambda_1 p + \dots \pmod{p^s}$$

$$\Rightarrow y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s} \square$$

Let b be a quadratic residue mod p and mod p<sup>s</sup>
i.e. b<sup>(p-1)/2</sup> ≡ 1 (mod p) and b<sup>p<sup>s-1</sup>(p-1)/2</sup> ≡ 1 (mod p<sup>s</sup>)

 $\succ$  Solve  $z^2 \equiv b \pmod{p^s}$ 

not necessary

$$\succ \text{Lemma: } y \equiv z \pmod{p} \implies y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s}$$

$$\text{pf. } y \equiv z \pmod{p} \implies y \equiv z + \lambda_1 p$$

$$\implies y^{p^{s-1}} \equiv (z + \lambda_1 p)^{p^{s-1}} \equiv z^{p^{s-1}} + p^{s-1} \lambda_1 p + \dots \pmod{p^s}$$

$$\implies y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s} \quad \Box$$

▶ let *b* be a quadratic residue mod *p* and mod *p<sup>s</sup>*i.e. *b<sup>(p-1)/2</sup>* ≡ 1 (mod *p*) and *b<sup>p<sup>s-1</sup>(p-1)/2</sup>* ≡ 1 (mod *p<sup>s</sup>*)
▶ Solve *z<sup>2</sup>* ≡ *b* (mod *p<sup>s</sup>*)
let *q* = *p<sup>s</sup>*, *r* = *p<sup>s-1</sup>*, *e* = (*q*-2*r*+1) / 2 = (*p<sup>s</sup>*-2*p<sup>s-1</sup>*+1)/2

$$\succ \text{Lemma: } y \equiv z \pmod{p} \implies y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s}$$

$$\text{pf. } y \equiv z \pmod{p} \implies y \equiv z + \lambda_1 p$$

$$\implies y^{p^{s-1}} \equiv (z + \lambda_1 p)^{p^{s-1}} \equiv z^{p^{s-1}} + p^{s-1} \lambda_1 p + \dots \pmod{p^s}$$

$$\implies y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s} \quad \Box$$

> let b be a quadratic residue mod p and mod p<sup>s</sup>
 i.e. b<sup>(p-1)/2</sup> ≡ 1 (mod p) and b<sup>p<sup>s-1</sup>(p-1)/2</sup> ≡ 1 (mod p<sup>s</sup>)
 > Solve z<sup>2</sup> ≡ b (mod p<sup>s</sup>) φ(q) = φ(p<sup>s</sup>) = p<sup>s-1</sup>(p-1)
 let q = p<sup>s</sup>, r = p<sup>s-1</sup>, e = (q-2r+1) / 2 = (p<sup>s</sup>-2p<sup>s-1</sup>+1)/2

$$\succ \text{Lemma: } y \equiv z \pmod{p} \implies y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s}$$
pf.  $y \equiv z \pmod{p} \implies y \equiv z + \lambda_1 p$ 

$$\implies y^{p^{s-1}} \equiv (z + \lambda_1 p)^{p^{s-1}} \equiv z^{p^{s-1}} + p^{s-1} \lambda_1 p + \dots \pmod{p^s}$$

$$\implies y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s} \quad \Box$$

$$\succ \text{Lemma: } y \equiv z \pmod{p} \implies y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s}$$
pf.  $y \equiv z \pmod{p} \implies y \equiv z + \lambda_1 p$ 

$$\implies y^{p^{s-1}} \equiv (z + \lambda_1 p)^{p^{s-1}} \equiv z^{p^{s-1}} + p^{s-1} \lambda_1 p + \dots \pmod{p^s}$$

$$\implies y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s} \quad \Box$$

$$\succ \text{Lemma: } y \equiv z \pmod{p} \implies y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s}$$
pf.  $y \equiv z \pmod{p} \implies y \equiv z + \lambda_1 p$ 

$$\implies y^{p^{s-1}} \equiv (z + \lambda_1 p)^{p^{s-1}} \equiv z^{p^{s-1}} + p^{s-1} \lambda_1 p + \dots \pmod{p^s}$$

$$\implies y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s} \quad \Box$$

$$\succ \text{Lemma: } y \equiv z \pmod{p} \implies y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s}$$
pf.  $y \equiv z \pmod{p} \implies y \equiv z + \lambda_1 p$ 

$$\implies y^{p^{s-1}} \equiv (z + \lambda_1 p)^{p^{s-1}} \equiv z^{p^{s-1}} + p^{s-1} \lambda_1 p + \dots \pmod{p^s}$$

$$\implies y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s} \quad \Box$$

> let b be a quadratic residue mod p and mod p<sup>s</sup>

 i.e. b<sup>(p-1)/2</sup> ≡ 1 (mod p) and b<sup>p<sup>s-1</sup>(p-1)/2</sup> ≡ 1 (mod p<sup>s</sup>)

 > Solve z<sup>2</sup> ≡ b (mod p<sup>s</sup>) φ(q) = φ(p<sup>s</sup>) = p<sup>s-1</sup>(p-1)

 let q = p<sup>s</sup>, r = p<sup>s-1</sup>, e = (q-2r+1) / 2 = (p<sup>s</sup>-2p<sup>s-1</sup>+1)/2

 > If x satisfies x<sup>2</sup> ≡ b (mod p), then z = ± x<sup>r</sup>b<sup>e</sup> (mod p<sup>s</sup>)

 Tonelli's 1891 note
 pf. z<sup>2</sup> ≡ (x<sup>r</sup>b<sup>e</sup>)<sup>2</sup> ≡ b<sup>p<sup>s-1</sup></sup> ⋅ b<sup>p<sup>s</sup>-2p<sup>s-1+1</sup>

</sup>

$$\succ \text{Lemma: } y \equiv z \pmod{p} \implies y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s}$$
pf.  $y \equiv z \pmod{p} \implies y \equiv z + \lambda_1 p$ 

$$\implies y^{p^{s-1}} \equiv (z + \lambda_1 p)^{p^{s-1}} \equiv z^{p^{s-1}} + p^{s-1} \lambda_1 p + \dots \pmod{p^s}$$

$$\implies y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s} \quad \Box$$

$$\succ \text{Lemma: } y \equiv z \pmod{p} \implies y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s}$$
pf.  $y \equiv z \pmod{p} \implies y \equiv z + \lambda_1 p$ 

$$\implies y^{p^{s-1}} \equiv (z + \lambda_1 p)^{p^{s-1}} \equiv z^{p^{s-1}} + p^{s-1} \lambda_1 p + \dots \pmod{p^s}$$

$$\implies y^{p^{s-1}} \equiv z^{p^{s-1}} \pmod{p^s} \quad \Box$$

#### > Solve $z^2 \equiv b \pmod{n}$

#### > Solve $z^2 \equiv b \pmod{n}$

> from Unique Prime Factorization Theorem:  $n = p_1^{c_1} p_2^{c_2} \cdots p_k^{c_k}$ 

#### $\succ$ Solve $z^2 \equiv b \pmod{n}$

➢ from Unique Prime Factorization Theorem:  $n = p_1^{c_1} p_2^{c_2} \cdots p_k^{c_k}$ ◇ check if *b* is a quadratic residue modulo  $p_i^{c_i}$ 

#### $\succ$ Solve $z^2 \equiv b \pmod{n}$

➢ from Unique Prime Factorization Theorem:  $n = p_1^{c_1} p_2^{c_2} \cdots p_k^{c_k}$ ◇ check if *b* is a quadratic residue modulo  $p_i^{c_i}$ ◇ find square roots modulo each prime power  $p_i^{c_i}$ 

#### $\succ$ Solve $z^2 \equiv b \pmod{n}$

➢ from Unique Prime Factorization Theorem:  $n = p_1^{c_1} p_2^{c_2} \cdots p_k^{c_k}$ ◇ check if *b* is a quadratic residue modulo  $p_i^{c_i}$ ◇ find square roots modulo each prime power  $p_i^{c_i}$ 

combine the results using Chinese Remainer Theorem

#### $\succ$ Solve $z^2 \equiv b \pmod{n}$

from Unique Prime Factorization Theorem: n = p<sub>1</sub><sup>c<sub>1</sub></sup> p<sub>2</sub><sup>c<sub>2</sub>...p<sub>k</sub><sup>c<sub>k</sub>
 check if b is a quadratic residue modulo p<sub>i</sub><sup>c<sub>i</sub></sup>
 find square roots modulo each prime power p<sub>i</sub><sup>c<sub>i</sub></sup>
 combine the results using Chinese Remainer Theorem
</sup></sup>

 $\diamond$  there are  $2^k$  square roots