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pf. z2  (xrbe)2 ps-1 ps-2ps-1+1 b  b
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ps-1(p-1) b            b  b (mod ps)    �
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 f i i i i c1 c2 ck

 Solve z2  b (mod n)

 from Unique Prime Factorization Theorem: n = p1
c1 p2

c2ꞏꞏꞏpk
ck

 check if b is a quadratic residue modulo pi
ci

 find square roots modulo each prime power pi
ci

q pi

 combine the results using Chinese Remainer Theorem

 there are 2k square roots
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