Discrete Log Based Cryptosystems

SR LEE EX
FHLEA N

AENREENTIE A

J B

~

< Given a prime number p, a. €Z ", B = o (mod p)
‘finding X’ 1s called the discrete logarithm problem

<~ Not every discrete log problem has solution and not
every discrete log problem is hard

< if n is the smallest positive integer such that o = 1
(mod p) (1.e. n=ord,(ct)) we may assume 0 < X <n, and
then denote

Xx=L, (B
X 1s the discrete log of 3 with respect to a
$ex.p=11,0=2,2°=9 (mod 11), L,(9) = 6

Discrete Log Problem

< Often a 1s a primitive root modulo p, which means that every 3 in

Z" is a power of o (mod p).

< If o 1s not a primitive root, then the discrete log will not be defined
(i.e. no solution) for certain values of B in Z .

< If a 1s a primitive root modulo p, then

Lo(BiB2) = Lo(By) + Lo(B,) (mod p-1)

< When p 1s small, it 1s easy to compute discrete logs by exhaustive
search through all possible exponents

< When p 1s large and satisfying a certain properties, solving a
discrete logarithm problem is “believed to be hard”

<~ The bit length of the largest prime number for which discrete
logarithm can be computed 1s approximately the same size of the
largest integer that can be factored. (2001: 110-digit (370-bit) prime
numbers for discrete logs, 155-digit (512-bit) integers for factoring)

One-Way Function

< 1(X) 1s a one-way function if

* given X, f(X) 1s easy to compute
* given Y, it 1s “computationally infeasible” to find X s.t. f{(X) =Yy
< 1(X) 1s a trapdoor one-way function 1f

* 1t 1S a one-way function
* given the trapdoor t and Y, it 1s easy to find X s.t. f(X) =Y

< candidates:
* modular exponentiation (one-way)
* multiplication of large primes (one-way)
* RSA function (trapdoor one-way)

* modular square (trapdoor one-way)

<~ Diffie-Hellman Key Exchange

<~ Pohlig-Hellman Secret Key System
<~ ElGamal Cryptosystem / Signature Scheme

<~ Cramer-Shoup Cryptosystem

< Digital Signature Standard (DSS, DSA)

<~ Schnorr Signature Scheme

<~ Paillier Cryptosystem (both Factoring & DL)
<~ Boneh-Franklin Identity-based Encryption

<~ Pohlig-Hellman, Birthday Attack, Index-Calculus,
Baby-step Giant-step
<~ Preliminary:

* let o be a primitive root modulo P so p-1 1s the smallest
positive exponent such that o *~ = 1 (mod p)

o2 (mod p) & m, =m, (mod p-1)

oM =

* consider the discrete log problem B =a" (mod p), it is

difficult to find out the Value of X, but 1t 1S easy to find out

vhothe ndd 1 ~nd D rtha T QR Af Vv
wnetner X 1S even or oad 1.¢€. X \uluu 4,} Or inc J_JL)J._) Ol A

if B(p D2 (P-4 1 then x is even

o is -1 then x is odd; else if 3
p-1)/2 1s
an 1nteger\/ @® 2?2 = D= | (mod p) = o® %= £1 (mod p)

because a 1s a /Blmlthe rlo?zt oP" D2 _ = -1 (mod p)
therefore, B(p : X(p) = (- 1) (mod P)

* using the same method, if A | p-1, it is easy to calculate the k-
LSB bits of X

< Meet-in-the-middle algorithm for computing discrete logarithm
< D. Shanks, 1971

To solve o* = 3 (mod n),

@ write X =1im + j, 0<i,j<m= Vn |
@ test all 1,j, for B (™)' = o (mod n)

<~ Running time and space complexity 1s O(\/;l) (<< O(n) brute-force)

< A generic algorithm, works for every finite cyclic group.

<~ not necessary to know the order of the group G in advance. It still
works 1f n 1s merely an upper bound on the group order.

<~ Usually 1s used for groups whose order 1s prime. Pohlig-Hellman
algorithm 1s more efficient for composite order group.

Pohlig-Hellman Algorithm
<~ compute the discrete logs when p-1 has only small prime
factors

< let p-IZHqiIri be the factorization of p-1 into prime numbers
|

< Plans: compute L _(f3) (mod qiri) then use CRT to find L_(]3)
(mod p-1)
let X=X, +X,q+X0>+ ... +X_ 0~ +..

where x; € Z, 1.e. express X in (-ary representation

X[p—é]}:xo{p—c—lj}jwp'l) (x1+X2q+X3q2+,..)=X0{p—(;1J +(p-I)n

ﬂ(p-l)/q = D _ X, (p-1)ig (a(p-l))” = oo (mod p)

Pohlig-Hellman Algorithm

To find X,, we enumerate ock(p_l)/q (mod p), k=0,1,2,...9-1, and

match against with B(p_l)/q, there 1s a unique solution since
K(p-1)/q (mod p-1) are all different for k=0,1,2,...q-1

< extension of the above procedure yields the remaining coefficients

assume 02| p-1 B, =P o Xo= o 4T %9%) (mod p)
X+ X0t ...
)] 2' 73

g, (p-Da2 = o P-DX Xt)0 = o (-1 Ex(p-l
= oX1 P-4 (mod p)

to find X,, we enumerate o k(P-DA (mod p), k=0,1,2,...9-1, and
match against with §, (P-1)/d?
<~ Why should g be small for Pohlig-Hellman algorithm to work??
* The algorithm needs to enumerate aX(P-1/d (mod p), k=0,1,...9-1

Pohlig-Hellman Algorithm
< Note: the above enumerations are the same 1n computing
each X; (1.e. can be stored and used several times)

<~ In a Discrete Log based cryptosystem, we should make sure that
P-1 has at least a large prime factor.

$ Ifp-1=1t - q(.e. p-1 has a large prime factor q), the algorithm can
still determine L () (mod t) if t 1s composed of small prime
factors. (still leaks much information, if t = 21°, 10-LSB bats of L ([3)
will be known)

* Usually [1s chosen to be a power of o' such that L (B) (modt)
is zero. B=(a)" =a* (mod p) = x=tm (mod p-1) = x = 0 (mod t)
, the difficulty of this discrete log problem 1s reduced

no matter what 3 you choose. It only guarantees that L ([3)
(mod q) 1s difficult, you should not hide any information 1n

L,(B) (mod 1)

Index Calculus

< Idea 1s similar to the quadratic sieve method of factoring.
<~ Factor base: prime numbers less than a bound B, {p, p,, ... Py}

<> Example: p=131, a=2. Let B=10, consider the prime numbers {2, 3, 5, 7}

A
78
712
714

(mod 131) -1 =1,2) (mod 130)
(mod 131) 8 = 3L,05) (mod 130)
(mod 131) 12= L,(5)+ Ly(7) (mod 130)
(mod 131) 14 = 2L,(3) (mod 130)
(mod 131) ~34=L,(3)+2L,(5) (mod 130)

L,(2)=1 (mod 130) If we want to compute L,(37)

L,(3) =72 (mod 130) try a few random exponents and found
L,(5) =46 (mod 130) 37 -2¥=3-5-7 (mod 131), therefore,
L,(7) =96 (mod 130) L,(37) = -43 + L,(3) + L,(5) + L(7)
=41 (mod 130)

W

[\) .

W W WL W b
~

()]
(S

<~ Precomputation:

* Compute o (mod p) for several values of k

* Try to write 1t as a product of the primes less than B. 1.e.
o =TI p:%i (mod p) If this is not the case, try another k. Then

k=2 a L,(p,) (mod p-1)

when we have enough such relations, we can solve for L (p;)
for each 1

rayi

.. Pr}t 1.€. I p, 1(modp)
L,(B)=-r+ Z b; Lo (p;) (mod p-1)
<~ This algorithm is effective if p 1s of moderate size.

<~ This means that p should be chosen to have at least 200 digits
(~665 bits), 1f the discrete log problem 1s to be hard.

< Discrete Log Problem: Given a, 3, p solving X =L _(3)
such that B = o (mod p)

<~ Using Pohlig-Hellman Algorithm, if p = 1 (mod 4), then it
1s easy to compute L_(B) (mod 4)

<~ For p =3 (mod 4), Pohlig-Hellman Algorithm does not

show us a way to calculate L_([3) (mod 4) since it 1s easy to
raise an integer to the (p-1)/2 power but it 1s not easy to
raise an integer to the (p-1)/4 power.

$- Idea: we can take square root of a QR when p =3 (mod 4)

1.e. Given y, find X, s.t. X% = y (mod p)
p+1

< To find y(p'l)M: Can we find y(p'l)/z first and then take

square root of 1it? In this way, 1t seems that we can
calculate L () (mod 4) and even L (3) (mod 8) ...and
the Discrete Log Problem can be easily solved???

< What’s wrong with the above arguments?
1)/2

* From the formula on the previous slide, given y(p' you

won’t be able to get one single y(p'l)/4, instead you get two

possible values. Since L () (mod 4) has one bit more
equally ~ information than L (B) (mod 2), you actually do not get any
possible more information through the procedure just described.

* On the next slide, we prove this with a ‘reduction argument’.
“1f we have an algorithm that can calculate L ([3) (mod 4)
efficiently, we can use it to compute discrete log quickly”™

< Lemma. Let p=3 (mod 4) be prime, letr > 2, and lety
be an integer. Suppose o. and y are two elements 1n Z
such thaty = 2¥ (mod p). Then
(p+1>/4 o2 (mod p)

Proof:

(pr1)/4 _ r-2, _ -2, or-1 1y I-2
y (p+1)2 Yy = (p 1+2)2" “y = a2 y OL(p 12" “y
~I'- 1 ~

=g ¥ (mod p) 1

Note: this 1s similar to the method of taking square root
(p+1)/4

the key difference 1s that y 1is equal to a single
20

value instead of two, since o 7 1s a quadratic
residue (QR) which 1s always positive

$| “if we have an algorithm that can calculate L, (B) (mod 4)
efficiently, we can use it to compute discrete log quickly”™

Proof:

assume we have a machine that, given an input 3, outputs L (B) (mod 4)

assume B = o’ (mod p), let X = X, + 2X; + 4X, + ... + 2 _ be the binary
representation of X, using the L () (mod 4) machine, we determine x, and x,

let B, =P a*0t2X1) = g 22(2+2X3 +224*) (mod p), using the previous lemma,
(B,)PTD/A = ¢ 200723 #2244+) (mod p), using the L (B) (mod 4) machine, we

Aotoarmine v
UCLCLLIIIC Ay

repeat the above n-3 times, we can obtain x;, X4, Xs,... X, and the discrete log
L (B) (mod p-1) 1s easily solved!!!

Because we believe that discrete log is hard to compute in general,
we are comfortable to accept that L _([3) (mod 4) 1s difficult to
calculate.

[] ([] +

<~ The story

* Alice claims that she has a method to predict the outcome of
football games

* Alice wants to sell her method to Bob

* Bob asks her to prove her method works by predicting the result
of the game that will be played this weekend.

* “No way!!” says Alice. “Then you will simply make your bets
and not pay me. If you want me to prove my method works,
why don’t I show you my prediction for last weeks game?”

< Alice wants to send a bit b to Bob. The requirements:
* Bob cannot determine the value of the bit without Alice’s help
* Alice cannot change the bit once she sends it to Bob.

<~ Analogy: Sealed Envelop, Locked Safety Box

Bit C . DT

<~ Alice and Bob agree on a large prime p = 3 (mod 4) and a
primitive root o

< Commit

* Alice chooses a random number X < p-1 whose second bit X, is b
* Alice sends 3 = o (mod p) to Bob

< Reveal
* Alice sends Bob the full value of X
* Bob checks 3 = o (mod p) and finds b = x (mod 4).

< We assume that Bob cannot compute discrete logs for p.
Therefore, he can not compute discrete logs modulo 4 (1.e.
X, or D).

Bit C . DT

<~ To avoid Alice denying that she knows x at the
revealing stage, Bob could ask Alice to make a ZKP of
knowing x at the commitment stage.

< To avoid Alice denying that she had sent 3, Bob could
ask Alice to digitally sign f3.

< Two stages:
* Commit
* Reveal (Disclosure)

$- Formal Requirements:
* Secrecy (hiding)
* Unambiguity (binding)
<~ Various Schemes
* Using Symmetric Cryptography
* Using One Way Functions (eg. RSA, Discrete logs)

* Using Pseudo Random Number Generator (PRNG)
* Using Oblivious Transfer

()

< Secret Key system, Alice and Bob trust each other.

< Alice and Bob share a pair of secret key (X, x'') where
X+ x1=1 (mod p-1), gcd(x, p-1)=1 (i.e. x is odd), p is a
large prime number and (p-1)/2 1s also a large prime
number

< Encryption
c=m" (mod p)
<~ Decryption
m=cX" (mod p)
Note: 1. X! can be easily derived from X and p

2. ord (m) should be large (since ord (m)|p-1, 1t
has better be p-1 or (p-1)/2)

<~ Diffie and Hellman, 1976, first Public Key System

$- Used now 1n [PSec and SSL for jointly generating
encryption keys and exchanging symmetric data

1 the length of p is usually 1024 bits,
R tion keys (DES’ 3DES..) often the order of a can be constrained
% Protocol:

to a 160-bit (or 256-bit) g, therefore,
X, and x,, can be reduced to 160 bit
* Alice and Bob use a public modulus p and a primitive .

* Alice chooses a private exponent X, in Lp , computes the public
valuey, = *a(mod p), and sends Yy, to Bob.

* Bob chooses a private exponent X, 1n Zp , computes the public
value y, = o b (mod p), and sends yp to Alice.

* Alice calculates the shared key as yb a= o @"b (mod p) and Bob
calculates the shared key as yaxb = g/@'b (mod p)

<~ Any commutative one-way function can be used to
design this type of public key distribution system.
Other than the modulo exponential function, Lucas
Function and Elliptic Curve Function are also
candidates. all operations are modulo p, p is

a prime number and is chosen s.t.
2. gX (p-1)/2 also a large prime number

Alice
1. choose x

6. k=(g")’

Optional CA
Bob Alice

generate key k jointly 3. choose y S. g
and exchange key 4 k = (gX)y

DDH problem

<~ Computational Diffie-Hellman Assumption

x| given §* and g”, there is no efficient algorithm that can
compute g

x do not guarantee that partial bits of g¥ are hidden, the
Legendre symbol of g” is leaked

<~ Decision Diffie-Hellman Assumption

* Boneh, 1998, “The decision Diffie-Hellman Problem”

x| given g” and g”, there is no efficient algorithm that can
distinguish the distribution of <g*, g, g™>and<g”*, g”’, g
* far stronger than the DH assumption

* can be used to construct efficient cryptographic systems with
strong security properties

* In a group where DDH does not hold, ElGamal Cryptosystem

1s not semantically secure (the Legendre symbol of m 1s leaked)
24

DDH problem (cont’d)

< Legendre symbol of z in Zp*: zPV'2 (mod p)
if z 1s a QR then its Legendre symbol is 1, otherwise —1

< g7 1s a quadratic residue modulo p 1ff LSB of y 1s 0 (1.e. y 1s even)
< If one of x or y 1s even, then Xy 1s even and g™’ is a quadratic residue

<~ The DDH assumption 1s stronger than the DL assumption:
Assuming that adversary cannot solve discrete log cannot guarantee
that DH key exchange 1s safe. DH key exchange 1s only safe under
the DDH assumption.

< break DDH <« break CDH <= break DL
DDH 1s secure = CDH 1s secure = DL 1s secure

(intractable) (intractable) (intractable)

< break RSA < break FACT
RSA 1s secure = Fact is secure

DDHinZ_°
p

< Given g*, g’, g“ one can easily test if x 1s odd, y 1s odd, and z 1s

odd.

< Ex. If x 1s odd, y 1s odd and z is even, then z can not be xy

X y Zz

result

odd odd odd
odd odd even
odd even odd
odd even even
even odd odd
even odd even
even even odd
even even even

nothing
Z#XY
Z#XY

nothing

th
11V Ll.lll.ls
Z#XY
nothing

n Zp*, there are at least 1/2 probability that DDH does not hold

<~ Modification: consider the DDH problem 1n an order-q subgroup
generated by h=g? (mod p) in Zp* where p=2qg+1, p and q are
prime numbers, g 1s a primitive in Zp*

<~ Make the intractability assumption more adequate,
specific, and clear

< Design cryptosystem that depends on less strict
assumptions

<- Proven security

Security of Diffie-Hellman Algorithm

<~ still an assumption ... the ‘DH assumption’
<~ DH 1s secure = DL 1s secure (break DH <= break DL)

if DL 1s not secure, 1.€. given g* we can solve for X and given gV
we can solve for y, then DH 1s not secure. Eve can intercept g*
and gY and easily derives X or Yy and computes the shared key (g*)Y

or (g¥)*
< DL 1s secure ?zé DH 1s secure

if DH can be broken, i.e. given g* and ¢V, shared key k= g* can
be derived. Since k= (g*)Y = (g¥)*, not too much information
about X or ¥ can be derived from the above equation.
< In general, 1t 1s believed that DL 1s secure, but it does not
provide any assurance about whether DH 1s secure (Eve
might be able to predict some of the bits of g*)

< Three or more parties) g 12. K = (V7

2. g¥ 1. choose x
' Alice

3. choose y

Carol 6. g7
5.k = (g7 :

11. g¥7
Bob
5. choose z

0. gxy 10. k — (gxy)z

4. gy

$- Conference Key Distribution System (CKDS)

< Variants: Hughes Crypto’94
* Allow Alice to generate a key and send 1t to Bob

Alice

1. choose x 5. (gY)
2. Kk = g*

Bob y y'=1 (modp-1)
all other operations are (mod p)
3. choose y

o k=(@y)y =g

[- W A QAVFavYah olfa Pavya a 'y €Y 4Y¥YY°g/N =
C - V A Z19UULuL
-, -,

< If each pairs 1n a group (ex. {A, B, C, D, E, F}) want to use
symmetric encryption system (like AES) to communicate
frequently. They need to share, in this example, 30 keys.
Everyone need to share five keys with others.

< Alternative: Each one in the group chooses a secret number {x,,
Xps Xer Xg» Xo Xpf- We can have a central database to keep and

certify all public values {g*a, g*b, gXc, g*a, gXe o*r} and use DH
as follows:

CA
Alice| gxa
Bob
Carol| g

< RFC 2631, Diffie-Hellman Key Agreement Method, E.
Rescorla, June 1999

<~ small subgroup attack

* L. Law, A. Menezes, M. Qu, J. Solinas and S. Vanstone, "An efficient protocol

for authenticated key agreement", Technical report CORR 98-05, University of
Waterloo, 1998.

* C.H. Lim and P.J. Lee, "A key recovery attack on discrete log-based schemes
using a prime order subgroup", Crypto'97, pp. 249-263.

2 P

J -
< Shamir

<~ Alice wants to send a secret message m to Bob. They
use a common large prime number p

< Protocol: Alice

m
* Alice chooses a secret number X, and 1. choose X

Bob chooses a secret number X, such 5. (M¥a*b yal
that x,”! and X! (mod p-1) exist

* Alice sends y, = m*a (mod p) to Bob
= V. X 1
* Boob sends Y, = y,*b (_Ilnod p) to Alice £ (YN B
* Alice sends y; = y,*a" (mod p) to Bob 3. choose X,
* Bob computes m = y,%™' (mod p) 7.m = (M*0)%™

< Key 1dea: modulo exponentiation 1s commutative

<~ Analogy: a safety box with two locks

< Any commutative trapdoor oneway function can be used
33

ElGamal PKC

< ElGamal 1985 (9 years after Diffie-Hellman)

<~ Probabilistic Encryption System: For the same public
key, the same plaintext could give different ciphertexts
in distinct encryption sessions. This can resist low-
entropy attack.

Low entropy attack:
Number of messages 1s small.
Some messages occur much more often.
= low entropy in the source

For a deterministic encryption scheme,
attacker can record the ciphertext frequency
pattern and learn something or use chosen
plaintext attack to compile a codebook to
decipher the following ciphertext.

< Application of Diffie-Hellman Algorithm

ElGamal PKC

<~ Alice wants to send a message to Bob

<- Bob first chooses a large prime number p, p=2q + 1,
g is also prime, a prlmltlve root o/, calculate a=ao'"a
secret integer a in Z , and compute B = a®(mod p)

* Bob’s Private Key: a -

* Bob’s Public Key: (p, o, B) Alice

<~ Encryption: 3. choose k
x Alice downloads Bob’s public key (p, o, B) 4. key = pX

* Alice chooses a secret random integer
keZ" , and compute r = o K(mod p)

* Ahce computes t = [3 M (mod p)
* Alice sends the ciphertext (r, t) to Bob

< Decryption

* Bob computes m=t - r(mod p) 1. choose a

7. key=1r2
8. M=t-r?

ElGamal PKC

< Security

x If Eve knows a, she can calculate the key r 4= (ock)a and decrypt
(r, t) like Bob. Therefore, Bob has to keep a secret. By
looking at the public key p = 0@ and r = aX, Eve can either solve
the DH problem to recover the key o2 or solve the DLP to
recover a directly, and therefore, the key (ock)a.

x [f Eve knows the random value K, she can calculate the key by
calculating = (a®)¥, and decrypt (r, t) by calculatingm=t - p*
(mod p). Therefore, Alice has to keep Kk secret. By looking at
the public value r = aXand B = a2, Eve can either solve the DH
problem to recover the key o2 or solve the DLP to recover k
directly, and therefore, the key (a?).

(ElGamal PKC is secure << DDH 1s secure) = DL 1is secure

36

ElGamal PKC

< Security:

x [f K is a random integer in Z , and 1f B 1s a primitive 1n Z
then BX is a random 1nteger 1n Z and t=3 K-'m (mod p) i 1s a
random 1nteger in Z . (recall the y(X) In proving the
Fermat’s Little Theorem). Knowing t and r without knowing
a or k does not give Eve any information about m.

* Different k should be used for each m

If one K 1s used for two messages m, and m, sent to Bob, 1.e.
(r, t,) and (r, t,), then Eve can determine m, from m, or m,
from m, since

t,/m, = t,/m, = B (mod p)
Therefore, 1t Eve knows m,

m,=t,m,/t;, (mod p)

ElGamal PKC

< Is ElGamel Encryption commutative?
i.e. E,(E,(m)2E,(E,(m)) or
D, (E,(E,(m)) # E,(m)

x let’s say E, 1s for Alice to encrypt messages for Bob

and E, 1s for Bob to encrypt messages for Carol

* 1f both encryption use the same modulus p, then
D, (E,(E,(m)) = (B,*2- (B,*1-m)) - r;1= B,%2- m = E(m)

* answer 1s yes 1f using the same modulus

DI C19dlllc
< Is ElGamal encryption semantically secure?
* NOT 1n arbitrary group: ex. In Zp* with a primitive a

Public key: a is a primitive root, p = o® (mod p)
Ciphertext: (r,t)=(cX, BX- m)
Since a be a primitive root in Z
Let m = o* (mod p) and t = aY(mod p)
then y = a-k+x (mod p-1)

- /
- 1
- 1
a k y deduetion a k y | deduction
/” \ 4

odd odd odd“[xis even even odd odd | xis odd

odd odd even | xis odd even odd even | xis even
odd even odd | xis odd even even odd | xis odd
odd even even | xis even even even even | xis even

* Only in an order-q subgroup generated by a=g* (mod p) in Z

where p=2q+1, p and q are prime numbers, g 1s a primitive in Z
under the assumption of DDH

R @gﬂe K ej, A ttanb
VI

< A group insider registers public keys as a function of other’s
public key without demonstrating the possession of the
corresponding private keys. e.g.

Alice Bob registers two related public keys

pk,: g* pkg: g pkg,: g
sk,: X

Assume that sender S wants to broadcast to A, B, B, keys K,, K, K
with the following ElGamal ciphertext (g", (%) K, (g°)" K,)

Bob can obtain K, by calculating (g")' K, * (g™) K * ()

The problems are: shared randomness, CA does not verify the
ownership of the private key.

DL Number
Field Sieve

Bit Security result Schnorr ID/signature [GOr93l ANSI X9.62 and
for DL [BM82] scheme [Sch90] X9.63 for EC

Montgomery’s Method [M85] . ANSIX9.42 drafted
Index Calculus Authenticated | drafted

method [AdI179] Elliptic Curve proposed DH developed 1st ECC
by Miller and Koblitz [DVYW92] workshop

1990

[Mil86] [Kob87]

DSA, DSA
Diffie-Hellman]C);ppti“‘l‘:lth Chaum et al. ZK proposed DH proved equival.ent
invented [DH76] attaci on proof [CEGP87] to DL under certain

GF(2")[Cop84] Fast Modular | 2SSumptions [Mau94]

Exponentiation|
ElGamal cryptosystem [BGMW92] ANSI X9.42

invented [Elg85]
= EC reduced to DL ANSI X9.30 balloted

for certain curves drafted
[MOV90]

