Digital Signature And Hash Function
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<-Electronic Signature
* Digital Signature

* Biometric Signature

<-Electronic Signature Act

* ROC, 2002/04/01,

http://www.moea.gov.tw/~meco/doc/ndoc/s5 p05.htm
http://www.esign.org.tw/statutes.asp

* US Federal, 2000/06
* Japan, 2000/05




RSA

two large prime numbers p, g

modulusn=p -
public key e, gcd(e, ¢(n)) =1
private key d, e - d=1 (mod ¢(n))

* RSA cryptosystem
message meZ,
encryption: ciphertext ¢ = m® (mod n)
decryption: plaintext m = ¢ (mod n)

* RSA signature scheme
message digest (document) meZ_
signing: signature s =m Y (mod n)
verification: document m =5 ° (mod n)




<~ The signature S in RSA signature scheme 1s required to satisfy
m=s° (mod n)
<~ The signature in every digital signature scheme has to satisfy an
equation similar to the above equation which 1s formed by a
trapdoor one way function.

* Given the signature S, it 1s easy to verify its validity.

* Given the document m, it is difficult to forge a signature s for the
document m without the trapdoor information.

< Eve’s attack #1: Given a pair of document and Alice’s signature (m, S)
* wants to forge the signature of Alice for a second document m,

* (M, S) does not work, since m; # s ® (mod n). The same tough
* needs to solve m, =s,® (mod n) fors, & < problem as decrypting

an RSA ciphertext.

< Eve’s attack #2:
* wants to forge the signature of Alice

_c® It is very unlikely that
* chooses s, first and calculate m%ﬁw/ m, will be meaningful.




< RSA signature scheme: s = m9 (mod n)
< suppose Alice 1s not willing to sign the message m

almost always i1s meaningless
Vi

< Eve’s attacking scheme:
* decompose the message: m = nmi;- M, (mod n)

x ask Alice to sign m, and m, independently and get
s;=m,%(mod n) and s,=m,% (mod n)

* multiply the two signatures together to get
s=5,-S,=m9-m,9=(m;m,)4=md (mod n)

<~ Morale: never sign a message that does not make any
sense to you (never sign a message that contains
unrecognized binary data)
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< Key generation: public key n=p-q, private key p,
G f\ 1.e. QR,

< Si1gning:
* for a plamtext m, 0<m<n, me QR; NOQR,

* signature is S, such that m = s (mod n)

This 1s not easy if m is

% Verification required to be plaintext.

*x M= Ss? (mod n) j

$- Chosen Message Attack

| ‘ i) signature
* Eve chooses X and computes m = gﬁgﬁonﬁ%@

] . d message
*x Ask Alice for a signature S on M | can avoid this attack. Never

X PI’{ S # +X } =05 take square root directly!!




<~ Probabilistic: There are many signatures that are valid for a

given message.

< Key generation: Alice chooses a large prime number p, a
primitive o in Z 7, a secret integer a, and calculates B=o.?
(mod p) (p, a, B) are the public key, a 1s the secret key

<- Signing: Alice signs a message m

* select a secret random K such that ged(k, p-1) =1

* 1= oK (mod p)

xs=k-'(m-ar) (mod p-1)
<~ Verification: anyone can verify the signature (T, S)

* compute V, =B r’ (mod p) and v, = a™ (mod p)

* signature 1s valid iff v, = v, (mod p)

} (r, S) 1s the signature




< Proof:
V,=aM=a% = (a?) (a%°=p"r*=v, (mod p)

< Example
Alice wants to sign a message ‘one’ 1.e. m; = 151405
She chooses p=225119, a=11, a secret a=141421, B=0?=18191 (mod p)

To sign the message, she chooses a random number k=239, r =a*=164130,
s; = k' (m;-ar)=130777 (mod p-1) .... (m,, 1, s,) is the signature

Bob wants to verify if Alice signs the message m,
He calculates B r’l= 128841%193273 = 173527 ,a™ =173527

< Signature with Appendix
* message can not be recovered from the signature
* ElGamal, DSA

< Message Recovery Scheme

* message 1s readily obtained from the signature
* RSA, Rabin




< Security:
* 7 Discrete Log Decisional Diffie-Hellman

* given public 3, solving for a 1s a discrete log problem

* fixed r, solving v, = B " r$ (mod p) for s is a discrete log problem

* fixed s, solving v, = 3 "'rS (mod p) for r is not proven to be as

hard as a discrete log problem (believed to be non-polynomial
time)

* 1t 1s not known whether there is a way to choose I and S
simultaneously which satisfy v, = B' r® (mod p)

* Bleichenbacher, “Generating ElGamal signatures without
knowing the secret key,” Eurocrypt96

% forging ElGamal signature 1s sometimes easier than the
underlying discrete logarithm problem




Exictential Faroeres

$>RSA Chooses e Z *

Let m = s® (mod n)
(m, s) is a valid message signature pair

< ElGamal

| -parameter
Choose e eg Z,
Letr=g®°-y(modp),s=-r(modq), m=e-s (modp
(m, (r,s)) is a valid message signature pair

2-parameter
Choosee,vepZ
Letr=g°® -y’ (modp),s=-r-v'(mod q),
m=e -s (mod p)
(m, (r,s)) is a valid message signature pair

q




< Security:

* Should not use the same random number K twice for two distinct
messages. Eve can easily know this by comparing r in both
signatures. Eve can then break this system completely and
forge signatures at will.

S;k-m,=-ar=s,k-m, (mod p-1)
(S; - ;) k=m,; - m, (mod p-1)
There are ged(s, - S,, p-1) solutions for k.

Eve can enumerate all o ¥ until she finds .

After knowing k, Eve can solve the following equation for a
ar=m,-s, k(mod p-1)

There are gcd(r, p-1) solutions for a.

Eve can enumerate all o® until she finds 3.




Example

* Alice wants to sign a second message ‘two’ 1.e. m, = 202315

<~ Example continued

* She uses the same ElGamal parameters as before p=225119,
o=11, a secret a=141421, B=a"=18191 (mod p)

* She signs this message with the same random number k=239, r =
ak=164130, s, =k! (m,- ar) = 164899 (mod p-1) .... (m,, 1, S,)
1s the signature

* Eve can compute (S, - S,) k=-34122 k=m, - m, =-50910 (mod
p-1).

* Since gcd(-34122, p-1) = 2, k has two solutions 239 or 112798

* Because r = ak (mod p), Eve can verify easily that k = 239

x ks, =m, -ar (modp-1) = a=28862 or 141421

x B=a’(modp) =>a=141421




<~ General E1Gamal Signature Schemes

* Horster, Michels, and Petersen, “Meta-ElGamal Signature Schemes,” Tech.
Report TR-94-5, Univ. of Technology Chemnitz-Zwichau, 1994

* 6 types, 6500+ variations
* ¢X. Rearrangem, r,sofm=ar+ks (modp-1) as
A=aB+kC (mod p-1)
verification equation o = B By C (mod p)
A B C
m r

S m=ar+Kks
r m=as+kr
m S=ar+km
S=am-+Kkr

m
S
S

S
r
m

T
m m=as+km
N

N
m r=am-+Kks




ElGamal Signature Scheme
$-S1gning two messages at the same time

* 1 =ak (mod p)

xm,=am,r+Kks(modp-1)

x (1, S) 1s the signature for m,; and m, together

$- S1gning three messages at the same time

r = aX (mod p)

xm,=am, r+km;s(mod Q)
* (I, S) 1s the signature for m;, m, and m, together
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< D. Bleichenbacher, “Generating ElGamal Signatures Without
Knowing the Secret Key,” Eurocrypt’96

1. Prime p should be large enough to prevent GNFS on DL
2. d large prime q | p-1 s.t. Pohlig-Hellman method fails

3. Using collision resistant hash function on message to prevent
existential forgeries

4. Should verity 1< <p: otherwise leads to forgery from a known
ciaoanatiira w11l ka chavwn latar
DlsllaLULU, VW1ill UL D11U VW11 14alll

5. Avoid a smooth g which divides p-1, has trapdoor for forging
signatures

6. ElGamal over Z_" is not as secure as it appears: known signatures
leak the factorization of n and the computation of either Zp* or Zq*
1s sufficient to forge signatures
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< Vertifier should verify that 1 <r <p

< Otherwise anybody can forge a signature (r', s') for

arbitrary hash value h' from a known signature (r, s) on
hash value h

$- For an arbitrary message m' with hash value h'
u=h'-h"' (modp-1)
gh' — gh'u — yr'u rS°u (mOd p)

Calculate r' from CRT s.t. r' ET r - u(mod p-1)

r (mod p)
s'=s - u(mod p-1)
(r', s') 1s the ElGamal signature for h' = hash(m')
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< Input: arbitrary length of message, m

< Output: h(m), fixed length (ex. 160 bit) message digest

< Requirements: OIS

x efficient calculation of h(m)

h(-)

— message digest

x given Yy = h(m), it is computationally infeasible to find a distinct

signature scheme)

message M' such that h(m') =y (weak collision resistance, for

* 1t 1s computationally infeasible to find two distinct messages m,

and m, with h(m,) = h(m,) (strong collision resistance, for

resisting birthday attack)

< Examples: Snefru, N-Hash, MD2, MD4, MD5, RIPE-
MD160, SHA, SHA-1, SHA-(256, 384, 512) (2002/08)

17




One-way Function
<~ Definition based on Complexity theory not Mathematics

< OWF: a function that is easy to evaluate yet its inverse 1s
hard to compute

O

\/
For every probabilistic poly-time TM A’, hard

every positive polynomial p(+) and all sufficient large n

Pr{A'(f(U,), I") € f'f(U)} <1/p(n) negligible

< A weak collision free hash function is a one-way function

@ h(") o given Y, it is computationally infeasible to

find any message m such that h(m) =y
o




Popular Hash Functions

Extended MD4

N

RIPEMD

N\

RIPEMD-128 RIPEMD-160

SHA-256 SHA-384 SHA-512




Cryptographic

<~ Discrete Log Hash Function

* D. Chaum, E. van Heijst, B. Pfitzmann, “Cryptographically Strong Undeniable
Signatures Unconditionally Secure for the Signer”, Crypto’91

* satisfies the second and the third requirements
* too slow to be used

* select a prime number P, such that g=(p-1)/2 1s also a prime
number

* choose two random primitive roots o, 3 in Z,

* there exists unique a such that a? = B (mod p), assume a is
unknown (a discrete log problem, since a, B are chosen
independently)

* hash function h: Z, — Z,

h(m) = a0 % (mod p)
where m = X, + X, q with 0< x,, X; <q-1
note: h(m) is about half the bit length of m
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{- Proposition: If we have an algorithm A that can
find m'=m with h(m)=h(m"), then using A we can
determine the discrete loga=L_(3)

a reduction argument
proof: 1f we are given the output of A, e.g., m and m'
wecanwrite Mm=X,+ X, q and m'=x',+x' qQ
h(m) = h(m') = a* p* = aXo BX1 (mod p)
= = a2 &KX+ X" Xo) = 1 (mod p)
o 1S primitive = a (X,- X',) + (X,- X',)=0 (mod p-1)

this congruence equation has d = ged(X,- X',, p-1)
solutions, and can be found easily




Cryptographic E

since 1. X,# X', (otherwise run A again with different )
F'\\

2.only 1, 2, q, p-1 divides p-1 and
3.-(g-1) < x,-x, <(g-1)
— 0 can only be 1 or 2

random tape

—> we can easily test both solutions and
determine a = L_(J3)

< Given a, B, p (p=2q+1, a, [ are primitives, there are ¢(p-
1)=0(29)=0-1 primitives), find L_(j3):
1. using algorithm A to find m and m' s.t. h(m) = h(m')
2.writem=X,+X,q and m'=x',+ X', q
3.solve aX,-X)+X-X,)=0(modp-1) for a




Crypto 24
< Properties of h(m) = a*0 B*1 (mod p)

* N(-) 1s strongly collision resistant
from the above proposition, the efficient algorithm A that

finds m and m' such that h(m) = h(m') is unlikely to exist

* N(-) is weakly collision resistant

1. Assume h() 1s not w.c.r. = 3 an inverse function of h(-)

2. g(v): givenm € Zp, and y=h(m) € Z,, it is efficient

to compute m' = g(y) € Zy, such that h(m') =y
3. [Zp|>>|Z,| = it is very likely that g(y) #m
(otherwise try another m), therefore, we have an
algorithm A that can find m = m' but h(m)=h(m)

contradict to the ‘strong collision resistant’ property
23
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<- Discussion: ‘strong collision freeness of ()’
given h(+) it is hard to find m,, m, such that
h(m)=h(m,)

U T

computationally infeasible

* because the length of h(m) is far less than the length of
m, the mapping h(-) is definitely many to one

* to make 1t computationally infeasible to find two
distinct m, and m, such that h(m,)=h(m,)

intuitively, the set of m’s that map to the same h(m)
have to be randomly distributed among many many
other m’s that have different h(m)




<~ Hash function based on symmetric block cipher

* 1f the block algorithm 1s secure then the one-way hash function
1s secure?? (never proved, Damgard, Crypto’89)

Compression
h_1 — function
=

K£y (f

B . —P—
Encrypt

A, B, C can be either m;, h, ,, m; @ h. ,
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Cryptograpl
<~ Not all 81 assignments of A, B, C are secure, the following 12
assignments are OK (especially the first 4)
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< Digital Signature:

document message Digital signature

m digest h(m) Signature (m, sig(h(m)))

* efficient computation and storage




x security: weak collision resistant property of h(m)
thwarts forgers

‘Given (m, sig(h(m))) and another m'(= m),
Is Eve capable of finding sig(h(m"))?’

% the underlying signature algorithm guarantees that it 1s

computationally difficult to find sig(h(m')) given h(m')
without the trapdoor information

2 1f h(m') = h(m) then sig(h(m")) will be sig(h(m))
However, given m, we know h(m), ‘weakly collision
resistant property of ()’ guarantees that it is

computationally infeasible to find m' such that
h(m') = h(m)




<~ Data Integrity:

* data transmitted in noisy channel
* data transmitted 1n insecure channel

errors: insertion, deletion, modification, rearrangement

* non-cryptographic: parity, CRC32
only increase the detection probability of errors

* cryptographic: collision resistant, detect almost all
errors (slow)




Pr{any two of tl

Pr{any two of tl

Pr{any two of tl

he same birthd

he same birthd

he same birthd
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Pr { r people have different birthdays }

(1-1/365) = .997
(1-1/365)(1-2/365) = .992
(1-1/365)(1-2/365)(1-3/365) = .984

/

/7 1 1 /DN 77 £\
(1-1/365)

/ /)

(1-2/365)... (1-22/365) = .493

Pr { at least two having the same birthday }
=1 - Pr { all r people have different birthday } = .507
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se¥=1-x+x"/21-x /31 +...
if x is a small real number, ex. 1/365, then | —x = e™

r-1
& (1-1/365)(1-2/365)... (1-(--1)/365) = 1 I (1 —i/365)
1=1

y By o .
~ H e /365 _ e 2.1/365 _ e r(r-1)/(2*365)

& & = Pr{at least one collision} ~ 1 - ¢ "D/

-1(r-1)/(2n) = In (1-¢)
define A = - In (1-¢)
rr—rx~2nh

neglecting r, we obtain r ~ V2 nA




< In general,

* N kinds of objects (n 1s large, each kinds of objects
have infinite supplies)

* I people each chooses one object independently

Let € = Pr { at least two choose the same kind of object }
define A =-1In(1-¢) ie. e=1-¢*

From the previous derivation r ~ V2 A n

eg: if A=0.693 Pr{.} ~1-¢9%3=0.5
n =365 V2 .693 365 =22.49




Birthday Attack
$- A slightly different scenario

* N kinds of objects (n 1s large, each kinds of objects
have infinite supplies)

* two groups, each has r people, every one chooses one

object independently

=~ vAn
Pr { at least one 1n the first group chooses the same kind of

object as someone in the second group chooses } ~ 1 - e *

: . : i_ roA
note: Pr{ i matches } ~ Ale*/ i < \__ e =l A+ + 37+

ie. Pr { at least two matches} ~ 1 - e - Ae*




Birthday Attack
J A\

$EX. Pr{-} =1-e*=0.5
— A=0.693 0
= 1~0.693 n~ 0.83 V\n

n=365,r~ 15.9
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a Fa
Jay

document

 —

A

Receipt serial #12345678

.I.,. Fred, hereby owe
you, Alice, 10000
dollars.

Fred
01/01/04

message Digital | !  signature

 —

o digest h(m) Signature (m SEU)))

ST B .

If h(m) is a 50-bit string, Alice would

think that she 1s safe because if the hash

1s a random mapping, the computation time
to find another document with the same
hash as the given one, h(m), would be

0(2*%) ~ (10%)




A

a Fa
Jay

Receipt serial #12345678

I, AFred hereby A O
owe you,Alice, OO D
AN 100D dollars. H

A Fred O A
N01/01/040 O

Receipt serial #12345678

I,A Fred & ,hereby owe
you,Alice, 510000 D D
4 IEV S AYAYAYAYAYA

A | D TAYA
AN01/01/040 O

< Fred finds 30 places where he can make slight changes in

both favorable (F) and unfavorable (U) versions of
documents. 1.e.

*x1=20 n=20 A=r2/n=210=1024

* Fred have r variations of {F.}’s and r variations of {U.}’s

* Pr{ there is at least one match in h(F.) and h(U)) } x 1 -e*~ 1

let h(F;x) = h(U,.), Fred gave U.. to Alice when he got
$10000 from her but later clalmed that the document 1s F.,

37




<~ Alice changes slightly the document m to m' (wording,
spaces, formats, ...) before Fred signs the document
* so that h(m") # h(m)

* In order to obtain another document that has the same hash
h(m"), Fred needs to search on average 2°%? documents.

<~ Alice should choose a hash function with output twice as
long as what she feel safe. For example, in this case she
should ask Fred to use a hash function with 100-bit output.
(The birthday attack effectively halves that number of
bits.)




$- procedure
x step 1: calculate and save oX (mod p) for Vp random k

x step 2: calculate and save B a” (mod p) for Vp random i

* step 3: compare these two sets to find a match
< analysis
* A =1,Pr{3k, i, k=B o' (mod p)} = 1-e*=0.632
= let k*, i* be the index such that o" = o' (mod p)
= oK = (mod p)
= L, (B) = k* +1* (mod p-1)

Note: repeat step 1 and step 2 if k* and I can not be found
Pr{success}: 0.632 — 0.864 — 0.95

1 repetition 2nd repetition  3rd repetition
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<- Similar structure to birthday attack

<- Deterministic, always find the solution
<- Double DES Encryption:

let Ekl('), Ek2(°) be two 56-bit DES,

Can Ey,(Ey,(*)) achieve the level of security as a

rv 71yfNnoxrofa

119D i+ o Aty ")
1 1L~ UlL Dyllllllbtllb UlyPLUDy DL\/lll

Note: for RSA (m°®1)®2 1s equivalent to m®s (for the
same N)

for DES Ei,(Ex,(*)) 18 not equivalent to some
Ek3(')
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V,

< brute-force attack on DES: given m and c, try all 2°°
possible keys to see which key satisfies ¢ = Ex(m)

< direct extension of brute-force attack on Double DES:
given m and c, try all 2!!? possible keys to see which two
keys K; and k, satisfy ¢ = Ey,(Ex,(m))

< MITM attack (smarter brute-force attack):
given m and ¢, Eve is going to find Kk, and k, such that ¢ =
Ex,(Ex,(m)) with only 27 DES calculations
x step 1: calculate E (m) for all possible k
x step 2: calculate D, (c) for all possible k
* step 3: compare the two lists, there 1s at least one match
note: 1f there are multiple matches, try another (m, C) pair to resolve




<~ Analysis:
* storage: 2°7 blocks (=20 bytes ~ 230 GB ~10° 1T HD)

* computation: 2°7 DES + (2°%)? comparisons
far less than directly try out (2°°)? DES key
combinations. If Eve have plenty of power

to break E (M) 1n a brute-force way, she will
]’\Q f‘QﬂQ]’\]Q f\'F]’\T‘QQ]I1ﬂ(T E {E { \\ ﬁQCﬂ]}]

avll Ul UlTanlilg hkz\l_kl\llljj va

storage <> time tradeoff

< Triple Encryption: Ex,(Ek,(Ex,(mM)))

* given M and C, to break this system in a brute-force
way, it is necessary to compute (2!12 + 2°%) DES and
2168 comparisons




Ei, (") Di,(*)

Note: * DES 1s a permutation, means that for a given key, different
message M will be encrypted to different ciphertext c,, also
different ciphertext ¢ will be decrypted to different m,

* There could be multiple collisions for the above two lists
if E(+) and D(-) are DES and its inverse, respectively. A
single message M could be encrypted to the same ciphertext
c, with different keys. In single DES encryption, this might
not happen often, but in two concatenated DES operations,
this phenomenon would be frequent since number of key
combinations (2!1%) is far larger than number of ciphertexts

(294). [ in terms of BA: r=2°0, n=264, A=(2°%)%/2%4]




DUE U J0OuUd
< Why don’t we try to apply birthday attack on Double DES?
< In order to apply birthday attack, we prepare two lists:

for 232 random k; for 232 random k,
calculate Ex, (m) calculate Dy, (c)

Because DES encryption and decryption can be considered
random mappings, 2°? Ex,(m)’s and 232 Dy (C)’s are close to
random samples from 2% possible ciphertexts. According to
the birthday attack, the probability that there 1s a match 1n the
two lists 1s about 0.632. If you find that pair of keys out, Will
they be the unique pair of key used 1n the scheme?

Will “Double DES” be broken in 233 DES computations??

44




Ey, (") Ei,(*)

< For a given m and unknown (K, k,), ¢ has at most 2
possibilities since 1t 1s a 64-bit block. However, there are

2112 possible (K, k,) key combinations. Thus, for any m,
there are on average 24¢ key combinations that can
generate a given C. To find out the actual key used , we
need to analyze more (plaintext, ciphertext) pairs.

<~ The previous birthday attack scheme can only find one key
combination, 1t would be very difficult to find out all key
pairs with that kind of probabilistic scheme.




Dicital S; Joorithm

& NIST 1994 (FIPS 186), 2000 (FIPS 186-2)

< digital signature scheme with appendix,
use SHA-1 (FIPS 180-1) as the hash algorithm

$- Generation of keys

* ( 1s a 160-bit prime number, p 1s a 512-bit (768-bit,
1024-bit) prime number such that g | p-1
* ( 1s a primitive root modulo p
o= g™ (mod p) ol =(g"")=g""=1 (mod p)
* choose secret value a, 1< a < g-1 and calculate B = o (mod p)
* public key (p, g, o, ), secret key a




Dieital S; oorith

<~ S1gnature: given message m and p, g, o
* Alice selects a random secret kK 0<k<Qg-1
x compute I' = (aX (mod p)) (mod q)
* compute S =k (m+ar) (modq) (=0, kk"' =1 (mod q))

* signature 1s (I, S) note: I, S are both 160 bit

< Verification: given message m and signature (T, S)
* Bob downloads (p, g, a, ) s's' =1 (mod q)
* compute U, = s m (mod q) and U, = str (mod q)
* compute V = (a'13*2 (mod p)) (mod Q)
* Bob accepts if v=r




% Proof:

s=k! (m+ar) (mod q)
m=(-ar+ks) (modQq)
ged(s,g) =1 s exists
s'm=-ars!+k (modq)

k=s!m+ars!=u,+au, (modq)
r=oX (mod p) (mod Q)
= o"172"%2 719 (mod p) (mod Q)
=o'1 B2 o'% (fhod p) (mod Q)
=o'l B2 (mod p) (mod q) o’ =1 (mod p)
=V (mod p) (mod Q)




<-a must be kept secret
<K can not be used twice (same as ElGamal)

<~ partial information leaked from [3

*letp-1=1t-qand(gis aprimitive root modulo p,
if t has only small prime factors, given g2 (mod p),
a (mod t) can be calculated by Pohlig-Hellman algorithm

* o =g' (mod p) (i.e. o = gPY¥ (mod p), &% =1 (mod p))
B=oa?=g'¥modp) ie. Lyp)=0 (modt)
no information leaked by 3 about L () 1s useful even if
all prime factors of t are relatively small

*a=L,(p)=Ly(p)/t (mod p-1), theretore, no information
of L,(B) leaked by [3 1s useful
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Computation of DSA
< mod exp is O(n?)
<-bit length: : 160 bits  p: n bits
x ElGamal v,=a'p° (modp) Vv,=a™ (mod p)
where a, B, r,S, m, v,,V,, p are all n bits
*x DSA v=(a"1p"2 (mod p)) (mod Q)
where a, 3, p are n bits, U, ,U,,V, q are 160 bits

<~ overall verification computations
x ElGamal: O(3 - n’)
xDSA:  O(2 - n?- 160)




< Group Signature
<~ Undeniable Signature (Nontransferable Signature)

$ Designated Confirmer Signature

<~ Ring Signature

< Multi-Party Digital Signature




Other topics

<~ Security notions of signature schemes

<~ Schnorr signature scheme

< DSS and ElGamal are not provably secure
< First encryption or first signature?




