Number Theory for Cryptography

密碼學與應用 海洋大學資訊工程系 丁培毅

Greatest Common Divisor

- ♦ GCD of a and b is the largest positive integer dividing both a and b
- \Rightarrow gcd(a, b) or (a,b)
- \Rightarrow ex. gcd(6, 4) = 2, gcd(5, 7) = 1
- ♦ Euclidean algorithm remainder→divisor → dividend → ignore

 $216 = 4 \cdot 50 + 16$

Why does it work? Let $d = \gcd(482, 1180)$

> $d \mid 482 \text{ and } d \mid 1180 \Rightarrow d \mid 216$ because $216 = 1180 - 2 \cdot 482$

 $d \mid 216$ and $d \mid 482 \Rightarrow d \mid 50$

 $d \mid 50$ and $d \mid 216 \Rightarrow d \mid 16$

 $d \mid 16$ and $d \mid 50 \Rightarrow d \mid 2$

 $2 \mid 16 \Rightarrow d = 2$

Congruence

*** Modulo Operation:**

* Question: What is 12 mod 9?

* **Answer:** 12 mod $9 \equiv 3$ or $12 \equiv 3 \pmod{9}$

"12 is congruent to 3 modulo 9"

- \Rightarrow **Definition:** Let $a, r, m \in \mathbb{Z}$ (where \mathbb{Z} is the set of all integers) and m > 0. We write
 - * $a \equiv r \pmod{m}$ if m divides a r (i.e. m | a r)
 - * m is called the modulus
 - * r is called the *remainder*
 - * $a = q \cdot m + r$ $0 \le r < m$
- \Rightarrow **Example:** a = 42 and m=9
 - * $42 = 4 \cdot 9 + 6$ therefore $42 \equiv 6 \pmod{9}$

Greatest Common Divisor (cont'd)

♦ Euclidean Algorithm: calculating GCD

gcd(1180, 482)

(輾轉相除法)

2	482 432	1180 964	2
3	50 48	216 200	4
	(2)	16 16	8
		0	

Greatest Common Divisor (cont'd)

- \Rightarrow Def: a and b are relatively prime: gcd(a, b) = 1
- ♦ Theorem: Let a and b be two integers, with at least one of a, b nonzero, and let d = gcd(a,b). Then there exist integers x, y, gcd(x, y) = 1 such that $a \cdot x + b \cdot y = d$
 - * Constructive proof: Using Extended Euclidean Algorithm to find x and y

$$d = 2 = 50 - 3 \cdot 16$$

$$= (482 - 2 \cdot 216) - 3 \cdot (216 - 4 \cdot 50)$$

$$= 0.00 - 0.00 + 0.00$$

5

Extended Euclidean Algorithm

Let gcd(a, b) = d

- \Rightarrow Looking for s and t, gcd(s, t) = 1 s.t. $a \cdot s + b \cdot t = d$
- \Rightarrow When d = 1, $t \equiv b^{-1} \pmod{a}$

Ex.
$$1180 = 2 \cdot 482 + 216$$

 $1180 - 2 \cdot 482 = 216$
 $482 = 2 \cdot 216 + 50$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 50$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 50$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 50$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot (1180 - 2 \cdot 482) = 16$
 $482 - 2 \cdot$

 $-29 \cdot 1180 + 71 \cdot 482 = 2_{6}$

Greatest Common Divisor (cont'd)

- * The above proves only the existence of integers x and y
- * How about gcd(x, y)? $d = a \cdot x + b \cdot y$ \Rightarrow 1 = a/d · x + b/d · y $d = \gcd(a, b)$ If $gcd(x, y) = r, r \ge 1$ then $r \mid x \text{ and } r \mid y \implies r \mid a/d \cdot x + b/d \cdot y$ which means that $r \mid 1$ i.e. r = 1gcd(x, y) = 1

Note: gcd(x, y) = 1 but (x, y) is not unique e.g. $d = a x + b y = a (x-k \cdot b) + b (y+k \cdot a)$ when k increases, x-k·b decreases and become negative

Greatest Common Divisor (cont'd)

Lemma: $gcd(a,b) = gcd(x,y) = gcd(a,y) = gcd(x,b) = 1 \Leftrightarrow$ $\exists a, b, x, y \text{ s.t. } 1 = a x + b y$ pf:

- (\Rightarrow) following the previous theorem
- (\Leftarrow) let $d = \gcd(a, b), d \ge 1$ \Rightarrow d | a and d | b \Rightarrow d | a x + b y = 1 \Rightarrow d = 1 similarly, gcd(a, y)=1, gcd(x, b)=1, and gcd(x, y)=1

Operations under mod n

♦ Proposition:

Let a,b,c,d,n be integers with $n \neq 0$, suppose $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then $a+c \equiv b+d \pmod{n}$ $a-c \equiv b-d \pmod{n}$ $a\cdot c \equiv b\cdot d \pmod{n}$

♦ Proposition:

Let a,b,c,n be integers with $n \neq 0$ and gcd(a,n) = 1. If $a \cdot b \equiv a \cdot c \pmod{n}$ then $b \equiv c \pmod{n}$

9

Operations under mod n

♦ What is the multiplicative inverse of a (mod n)?

i.e. $a \cdot a^{-1} \equiv 1 \pmod{n}$ or $a \cdot a^{-1} = 1 + k \cdot n$ $\gcd(a, n) = 1 \Rightarrow \exists s \text{ and } t \text{ such that } a \cdot s + n \cdot t = 1$ Extended Euclidean Algo. $\Rightarrow a^{-1} \equiv s \pmod{n}$ $\Rightarrow a \cdot x \equiv b \pmod{n}, \gcd(a, n) = 1, x \equiv ?$ $x \equiv b \cdot a^{-1} \equiv b \cdot s \pmod{n}$ Are there any solution $\Rightarrow a \cdot x \equiv b \pmod{n}$ $\Rightarrow a \cdot x \equiv b \pmod{n}, \gcd(a, n) = d > 1, x \equiv ?$ if $d \mid b \pmod{n}, \gcd(a, n) = d > 1, x \equiv ?$ if $d \mid b \pmod{n}, \gcd(a, n) = d > 1, x \equiv ?$ if $d \mid b \pmod{n}, \gcd(a, n) = d > 1, x \equiv ?$ if $d \mid b \pmod{n}, \gcd(a, n) = d > 1, x \equiv ?$ if $d \mid b \pmod{n}, \gcd(a, n) = d > 1, x \equiv ?$ if $d \mid b \pmod{n}, \gcd(a, n) = d > 1, x \equiv ?$ if $d \mid b \pmod{n}, \gcd(a, n) = d > 1, x \equiv ?$ if $d \mid b \pmod{n}, \gcd(a, n) = d > 1, x \equiv ?$ if $d \mid b \pmod{n}, \gcd(a, n) = d > 1, x \equiv ?$ if $d \mid b \pmod{n}, \gcd(a, n) = d > 1, x \equiv ?$ if $d \mid b \pmod{n}$ if $d \mid b$

Matrix inversion under mod n

- ♦ A square matrix is invertible mod n if and only if its determinant and n are relatively prime
- ♦ ex: in real field R

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d - b \\ -c & a \end{pmatrix}$$

In a finite field $Z \pmod{n}$? we need to find the inverse for ad-bc (mod n) in order to calculate the inverse of the matrix

matrix
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} \equiv (ad - bc)^{-1} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \pmod{n}$$

Group

- → A group G is a finite or infinite set of elements and a binary operation × which together satisfy
 - 1. Closure: $\forall a,b \in G$ $a \times b = c \in G$ 封閉性
 - 2. Associativity: \forall a,b,c \in G $(a \times b) \times c = a \times (b \times c)$ 結合性
 - 3. Identity: $\forall a \in G$ $1 \times a = a \times 1 = a$ 單位元素
 - 4. Inverse: $\forall a \in G$ $a \times a^{-1} = 1 = a^{-1} \times a$ 反元素
- ♦ Abelian group 交換群 $\forall a,b \in G$ $a \times b = b \times a$ [_means g × g × g × ... × g
- Cyclic group G of order m: a group defined by an element g ∈ G such that g, g², g³, g^m are all distinct elements in G (thus cover all elements of G) and g^m = 1, the element g is called a generator of G. Ex: Z_n* (or Z/nZ)

11

Group (cont'd)

- ♦ The **order of a group**: the number of elements in a group G, denoted |G|. If the order of a group is a finite number, the group is said to be a finite group, note $g^{|G|} = 1$ (the identity element).
- ♦ The **order of an element g** of a finite group G is the smallest power m such that $g^m = 1$ (the identity element), denoted by $ord_G(g)$
- $\begin{array}{l} \Leftrightarrow \; ex\colon \boldsymbol{Z_n} \text{: additive group modulo n is the set } \{0,\,1,\,...,\,n\text{-}1\} \\ \text{binary operation:} + (\text{mod n}) \\ \text{identity:} \; 0 \\ \text{inverse:} \; -x \equiv \text{n-x (mod n) Algorithm} \end{array} \quad \begin{array}{l} \text{size of } Z_n \text{ is n,} \\ g+g+\ldots+g \equiv 0 \text{ (mod n)} \end{array}$
- $\begin{array}{ll} \Leftrightarrow \; ex\colon \boldsymbol{Z_n^*} \text{: multiplicative group modulo n is the set } \{i:0 < i < n, \; \gcd(i,n) = 1\} \\ & \text{binary operation: } \times (\text{mod n}) & \text{size of } \boldsymbol{Z_n^*} \text{ is } \varphi(n), \\ & \text{identity: 1} & g^{\varphi(n)} \equiv 1 \; (\text{mod n}) \\ & \text{inverse: } x^{-1} \text{ can be found using extended Euclidean Algorithm} \end{array}$

Ring Z_{m}

- \diamond **Definition:** The ring Z_m consists of
 - * The set $Z_m = \{0, 1, 2, ..., m-1\}$
 - * Two operations "+ (mod m)" and "× (mod m)" for all $a, b \in \mathbb{Z}_m$ such that they satisfy the properties on the next slide
- **Example:** m = 9 $Z_9 = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$ 6 + 8 = 14 ≡ 5 (mod 9) 6 × 8 = 48 ≡ 3 (mod 9)

14

Properties of the ring Z_m

- $\Leftrightarrow \text{Consider the ring } Z_{\text{m}} = \{0, 1, ..., m-1\}$
 - \Rightarrow The additive identity "0": $a + 0 \equiv a \pmod{m}$
 - \Rightarrow The additive inverse of a: -a m a s.t. $a + (-a) \equiv 0 \pmod{m}$
 - \Rightarrow Addition is closed i.e if $a, b \in \mathbb{Z}_m$ then $a + b \in \mathbb{Z}_m$
 - \Rightarrow Addition is associative $(a + b) + c \equiv a + (b + c) \pmod{m}$
 - \Rightarrow Addition is commutative $a + b \equiv b + a \pmod{m}$
 - \Rightarrow Multiplicative identity "1": $a \times 1 \equiv a \pmod{m}$
 - \Rightarrow The multiplicative inverse of *a* exists only when gcd(*a*,*m*) = 1 and denoted as a^{-1} s.t. $a^{-1} \times a \equiv 1 \pmod{m}$ might or might not exist
 - \Rightarrow Multiplication is closed i.e. if $a, b \in Z_m$ then $a \times b \in Z_m$
 - \Rightarrow Multiplication is associative $(a \times b) \times c \equiv a \times (b \times c) \pmod{m}$

15

 \Rightarrow Multiplication is commutative $a \times b \equiv b \times a \pmod{m}$

Some remarks on the ring Z_m

- ♦ A ring is an Abelian group under addition and an Abelian semigroup under multiplication..
- ♦ A semigroup is defined for a set and an associative binary operator. No other restrictions are placed on a semigroup; thus a semigroup need not have an identity element and its elements need not have inverses within the semigroup.

Some remarks on the ring Z_m (cont'd)

- ♦ Roughly speaking a ring is a mathematical structure in which we can add, subtract, multiply, and even sometimes divide. (A ring in which every element has multiplicative inverse is called a field.)
 - **Example:** Is the division 4/15 (mod 26) possible? In fact, 4/15 mod 26 ≡ 4 × 15⁻¹ (mod 26) Does 15⁻¹ (mod 26) exist? It exists only if gcd(15, 26) = 1. $15^{-1} \equiv 7 \pmod{26} \quad \text{therefore,}$ $4/15 \mod 26 \equiv 4 \times 7 \equiv 28 \equiv 2 \mod 26$

Some remarks on the group Z_m and Z_m^*

♦ The modulo operation can be applied whenever we want

in
$$Z_m$$

$$(a+b) \pmod{m} \equiv [(a \pmod{m}) + ((b \pmod{m}))] \pmod{m}$$
in Z_m^*

$$(a \times b) \pmod{m} \equiv [(a \pmod{m}) \times ((b \pmod{m}))] \pmod{m}$$

$$a^b \pmod{m} \equiv (a \pmod{m})^b \pmod{m}$$

Geometrian Question?
$$a^b \pmod{m} \stackrel{?}{=} a^{(b \mod m)} \pmod{m}$$

17

Exponentiation in Z_m

- ⇒ Example: $3^8 \pmod{7} \equiv ?$ $3^8 \pmod{7} \equiv 6561 \pmod{7} \equiv 2 \text{ since } 6561 \equiv 937 \times 7 + 2$ or $3^8 \pmod{7} \equiv 3^4 \times 3^4 \pmod{7} \equiv 3^2 \times 3^2 \times 3^2 \times 3^2 \pmod{7}$ $\equiv (3^2 \pmod{7}) \times (3^2 \pmod{7}) \times (3^2 \pmod{7}) \times (3^2 \pmod{7})$ $\equiv 2 \times 2 \times 2 \times 2 \pmod{7} \equiv 16 \pmod{7} \equiv 2$
- ♦ The cyclic group Z_m* and the modulo arithmetic is of central importance to modern public-key cryptography. In practice, the order of the integers involved in PKC are in the range of [2¹⁶⁰, 2¹⁰²⁴]. Perhaps even larger.

Exponentiation in Z_m (cont'd)

- ♦ How do we do the exponentiation efficiently?
- \Rightarrow 3¹²³⁴ (mod 789) many ways to do this
 - a. do 1234 times multiplication and then calculate remainder
 - b. repeat 1234 times (multiplication by 3 and calculate remainder)
 - c. repeated \[\log 1234 \] times (square, multiply and calculate remainder)
 - ex. first tabulate

$$3^{2} \equiv 9 \pmod{789} \qquad 3^{32} \equiv 459^{2} \equiv 18 \qquad 3^{512} \equiv 732^{2} \equiv 93$$

$$3^{4} \equiv 9^{2} \equiv 81 \qquad 3^{64} \equiv 18^{2} \equiv 324 \qquad 3^{1024} \equiv 93^{2} \equiv 759$$

$$3^{8} \equiv 81^{2} \equiv 249 \qquad 3^{128} \equiv 324^{2} \equiv 39$$

$$3^{16} \equiv 249^{2} \equiv 459 \qquad 3^{256} \equiv 39^{2} \equiv 732$$

$$1234 = 1024 + 128 + 64 + 16 + 2 \qquad (10011010010)_{2}$$

$$3^{1234} \equiv 3^{(1024+128+64+16+2)} \equiv (((759 \cdot 39) \cdot 324) \cdot 459) \cdot 9 \equiv 105 \pmod{789}$$

Exponentiation in Z_m (cont'd)

calculate $X^y \pmod{m}$ where $y = b_0 \cdot 2^2 + b_1 \cdot 2 + b_2$

♦ Method 1:

$$\underbrace{x^{b_2} \Longrightarrow (x^{b_2}) \cdot (\underline{x}^2)^{b_1} \Longrightarrow (x^{b_2} \cdot (x^2)^{b_1}) \cdot (\underline{x}^4)^{b_0}}_{\text{square}}$$

♦ Method 2:

$$x^{b_0} \Longrightarrow (x^{b_0})^2 \cdot x^{b_1} \Longrightarrow (x^{2 \cdot b_0 + b_1})^2 \cdot x^{b_2}$$
square

square and multiply log y times

21

Exponentiation in Z_m (cont'd)

Method 1:

$$1234 = 1024 + 128 + 64 + 16 + 2 \qquad (10011010010)_2$$

$$3^{1234} \equiv 3^{0+2}(1+2(0+2(0+2(1+2(0+2(1+2(0+2(0+2(1)))))))))$$

$$\equiv 9 \cdot 9^{2}(0+2(0+2(1+2(0+2(1+2(1+2(0+2(0+2(1)))))))))$$

$$\equiv 9 \cdot 81^{2}(0+2(1+2(0+2(1+2(1+2(0+2(0+2(1))))))))$$

$$\equiv 9 \cdot 249^{2}(1+2(0+2(1+2(1+2(0+2(0+2(1)))))))$$

$$\equiv 9 \cdot 459 \cdot 459 \cdot 2(0+2(1+2(1+2(0+2(0+2(1))))))$$

$$\equiv 9 \cdot 459 \cdot 18^{2}(1+2(1+2(0+2(0+2(1)))))$$

$$\equiv 9 \cdot 459 \cdot 324 \cdot 324^{2}(1+2(0+2(0+2(1))))$$

$$\equiv 9 \cdot 459 \cdot 324 \cdot 39 \cdot 732^{2}(0+2(1))$$

$$\equiv 9 \cdot 459 \cdot 324 \cdot 39 \cdot 732^{2}(0+2(1))$$

$$\equiv 9 \cdot 459 \cdot 324 \cdot 39 \cdot 759 \mod 789$$

22

Exponentiation in Z_m (cont'd)

Method 2: 1234 = 1024 + 128 + 64 + 16 + 2 $(10011010010)_2$ $3^{1234} \equiv 3^{0+2}(1+2(0+2(0+2(1+2(0+2(1+2(0+2(0+2(1)))))))))$ $\equiv (3 \cdot 3^{2}(0+2(1+2(0+2(1+2(0+2(0+2(1))))))))^2$ $\equiv (3 \cdot (3^{2}(1+2(0+2(1+2(1+2(0+2(0+2(1)))))))^2)^2$ $\equiv (3 \cdot ((3 \cdot 3^{2}(0+2(1+2(1+2(0+2(0+2(1))))))^2)^2)^2$ $\equiv (3 \cdot ((3 \cdot (3^{2}(1+2(1+2(0+2(0+2(1))))))^2)^2)^2)^2$ $\equiv (3 \cdot ((3 \cdot ((3 \cdot 3^{2}(1+2(1+2(0+2(0+2(1)))))^2)^2)^2)^2)^2$ $\equiv (3 \cdot ((3 \cdot ((3 \cdot (3 \cdot 3^{2}(0+2(0+2(1))))^2)^2)^2)^2)^2)^2$ $\equiv (3 \cdot ((3 \cdot ((3$

Chinese Remainder Theorem (CRT)

 \forall i≠j∈{1,2,...k}, gcd(r_i , r_j) = 1, 0 ≤ m_i < r_i Is there an m that satisfies simultaneously the following set of congruence equations?

$$m \equiv m_1 \pmod{r_1}$$

$$\equiv m_2 \pmod{r_2}$$

$$\equiv m_k \pmod{r_k}$$

$$\equiv m_k \pmod{r_k}$$

$$ex: m \equiv 1 \pmod{3}$$

$$\equiv 2 \pmod{5}$$

$$\equiv 3 \pmod{5}$$
Note: $gcd(3,5) = 1$

$$gcd(3,7) = 1$$

$$gcd(5,7) = 1$$

◆ 韓信點兵: 三個一數餘一, 五個一數餘二, 七個一數 餘三, 請問隊伍中至少有幾名士兵?

Chinese Remainder Theorem (CRT)

♦ first solution:

$$\begin{array}{l} n = r_1 \ r_2 \cdot \cdot \cdot \cdot r_k \\ z_i = n \ / \ r_i \\ \exists ! \ s_i \in Z_{r_i}^* \ \ s.t. \ \ s_i \cdot z_i \equiv 1 \ (\text{mod } r_i) \ (\text{since } \gcd(z_i, r_i) = 1) \\ m \equiv \sum\limits_{i=1}^{N} z_i \cdot s_i \cdot m_i \ (\text{mod } n) \end{array} \quad \begin{array}{l} \text{Unique solution in } Z_n? \\ & \Leftrightarrow ex: \ m_1 = 1, \ m_2 = 2, \ m_3 = 3 \\ r_1 = 3, \ r_2 = 5, \ r_3 = 7 \\ r_1 = 35, \ z_2 = 21, \ z_3 = 15 \\ s_1 = 2, \ \ s_2 = 1, \ s_3 = 1 \\ m \equiv 35 \cdot 2 \cdot 1 + 21 \cdot 1 \cdot 2 + 15 \cdot 1 \cdot 3 \equiv 157 \equiv 52 \ (\text{mod } 105) \end{array}$$

Chinese Remainder Theorem (CRT)

♦ Uniqueness:

- 1. If there exists $m' \in Z_n \neq m$ also satisfies the previous k congruence relations, then $\forall i, m'-m\equiv 0 \pmod{r_i}$.
- 2. This is equivalent to $\forall i, r_i \mid m'-m$
- 3. $\forall i,j, \gcd(r_i, r_i) = 1 \implies r_1 r_2 ... r_k \mid m' m$

$$m' = m + k \cdot r_1, r_2...r_k = m + k \cdot n$$

$$m' \notin Z_n \text{ for all } k \neq 0$$

contradiction!

26

Chinese Remainder Theorem (CRT)

⇒ second solution:

$$\begin{array}{l} R_i = r_1 \ r_2 \cdot \cdot \cdot r_{i-1} \\ \exists ! \ t_i \in Z_{r_i}^* \ \ \text{s.t.} \ t_i \cdot R_i \equiv 1 \ (\text{mod } r_i) \ (\text{since } \gcd(R_i, r_i) = 1) \\ & \stackrel{\frown}{m}_1 = m_1 \\ & \stackrel{\text{satisfies the first i-1 congruence relations}}{\text{mi}} = \stackrel{\frown}{m}_{i-1} + R_i \cdot (m_i - \stackrel{\frown}{m}_{i-1}) \cdot t_i \ (\text{mod } R_{i+1}) \quad i \geq 2 \\ & m = \stackrel{\frown}{m}_k \\ & \text{Note that } \stackrel{\frown}{m}_i \equiv m_1 \ (\text{mod } r_1) \\ & \equiv m_2 \ (\text{mod } r_2) \\ & \bullet \bullet \bullet \\ & \equiv m_i \ (\text{mod } r_i) \\ & = m$$

Incremental Manual Calculation

Chinese Remainder Theorem (CRT)

♦ special case:

$$X \equiv m \pmod{r_1} \equiv m \pmod{r_2} \cdot \cdot \cdot \equiv m_n \pmod{r_n} \Longrightarrow X \equiv m \pmod{r_1 r_2 \cdot \cdot \cdot r_n}$$

$$x \equiv m_1 \pmod{r_1}$$

$$\text{let } \hat{m}_1 = m_1$$

$$\text{general solution of } x \text{ must be } \hat{m}_1 + r_1$$

$$\text{general solution of } x \text{ must be } \hat{m}_1 + k R_2 \text{ for some } k$$

$$x \equiv m_1 \pmod{r_1}$$

$$\equiv m_2 \pmod{r_2}$$

$$\text{let } \hat{m}_2 \equiv \hat{m}_1 + k R_2 \pmod{r_3} \text{ where } k = t_2(m_2 - \hat{m}_1) \text{ and } t_2 R_2 \equiv 1 \pmod{r_2}$$

$$m_2 \text{ is the only solution for } x \text{ in } Z_{R_3}^*$$

$$\text{general solution of } x \text{ must be } \hat{m}_2 + k R_3 \text{ for some } k$$

29

Chinese Remainder Theorem (CRT)

- \Rightarrow Applications: solve $x^2 \equiv 1 \pmod{35}$
 - $*35 = 5 \cdot 7$
 - * x^* satisfies $f(x^*) \equiv 0 \pmod{35}$ \Leftrightarrow x^* satisfies both $f(x^*) \equiv 0 \pmod{5}$ and $f(x^*) \equiv 0 \pmod{7}$ Proof:

 (\Leftarrow)

$$p \mid f(x^*), q \mid f(x^*), \text{ and } gcd(p,q)=1 \text{ imply that } p \cdot q \mid f(x^*) \text{ i.e. } f(x^*) \equiv 0 \pmod{p \cdot q}$$

 (\Rightarrow)

$$f(x^*) = k \cdot p \cdot q$$
 implies that
 $f(x^*) = (k \cdot p) \cdot q = (k \cdot q) \cdot p$ i.e. $f(x^*) \equiv 0 \pmod{p}$
 $\equiv 0 \pmod{q}$

Chinese Remainder Theorem (CRT)

* since 5 and 7 are prime, we can solve

$$x^2 \equiv 1 \pmod{5}$$
 and $x^2 \equiv 1 \pmod{7}$
far more easily than $x^2 \equiv 1 \pmod{35}$

- $\Rightarrow x^2 \equiv 1 \pmod{5}$ has exactly two solutions: $x \equiv \pm 1 \pmod{5}$
- $\Rightarrow x^2 \equiv 1 \pmod{7}$ has exactly two solutions: $x \equiv \pm 1 \pmod{7}$
- * put them together and use CRT, there are four solutions

$$x \equiv 1 \pmod{5} \equiv 1 \pmod{7} \Rightarrow x \equiv 1 \pmod{35}$$

$$\Rightarrow x \equiv 1 \pmod{5} \equiv 6 \pmod{7} \Rightarrow x \equiv 6 \pmod{35}$$

$$x \equiv 4 \pmod{5} \equiv 1 \pmod{7} \Rightarrow x \equiv 29 \pmod{35}$$

$$x \equiv 4 \pmod{5} \equiv 6 \pmod{7} \Rightarrow x \equiv 34 \pmod{35}$$

Matlab tools

format rat format long

matrix inverse inv(A) matrix determinant det(A)

p = q d + rr = mod(p, d) or r = rem(p, d)

> q = floor(p/d)g = gcd(a, b)

g = a s + b t[g, s, t] = gcd(a, b)

factoring factor(N) prime numbers < N primes(N) test prime isprime(p) mod exponentiation * powermod(a,b,n)

find primitive root * primitiveroot(p)

crt * $crt([a_1 \ a_2 \ a_3...], [m_1 \ m_2 \ m_3...])$

 $\phi(N)$ * eulerphi(N)

Field

- → Field: a set that has the operation of addition, multiplication, subtraction, and division by nonzero elements. Also, the associative, commutative, and distributive laws hold.
- ♦ Ex. Real numbers, complex numbers, rational numbers, integers mod a prime are fields
- ♦ Ex. Integers, 2×2 matrices with real entries are not fields

$$\Rightarrow$$
 Ex. GF(4) = {0, 1, ω , ω^2 }

$$\Rightarrow 0 + x = x$$

$$x + x = 0$$

$$\Rightarrow 1 \cdot x = x$$

$$\Rightarrow \omega + 1 = \omega^2$$

- Addition and multiplication are commutative and associative, and the distributive law x(y+z)=xy+xz holds for all x, y, z
- $x^3 = 1$ for all nonzero elements

Galois Field

- ♦ Galois Field: A field with finite element, finite field
- ♦ For every power pⁿ of a prime, there is exactly one finite field with pⁿ elements, GF(pⁿ), and these are the only finite fields.
- \diamond For n > 1, {integers (mod p^n)} do not form a field.
 - * Ex. $p \cdot x \equiv 1 \pmod{p^n}$ does not have a solution (i.e. p does not have multiplicative inverse)

33

How to construct a $GF(p^n)$?

- ♦ Def: Z₂[X]: the set of polynomials whose coefficients are integers mod 2
 - * ex. 0, 1, $1+X^3+X^6$...
 - * add/subtract/multiply/divide/Euclidean Algorithm: process all coefficients mod 2

$$(1+X^2+X^4) + (X+X^2) = 1+X+X^4$$

bitwise XOR

$$(1+X+X^3)(1+X) = 1+X^2+X^3+X^4$$

How to construct $GF(2^n)$?

- \Rightarrow Define $\mathbb{Z}_{2}[X]$ (mod $X^{2}+X+1$) to be $\{0, 1, X, X+1\}$
 - * addition, subtraction, multiplication are done mod X²+X+1
 - * $f(X) \equiv g(X) \pmod{X^2 + X + 1}$
 - \Rightarrow if f(X) and g(X) have the same remainder when divided by X^2+X+1
 - \Rightarrow or equivalently \exists h(X) such that f(X) g(X) = (X²+X+1) h(X)
 - $\Leftrightarrow \text{ ex. } X \cdot X = X^2 \equiv X+1 \text{ (mod } X^2+X+1)$
 - * if we replace X by ω , we can get the same GF(4) as before
 - * the modulus polynomial X^2+X+1 should be irreducible

Irreducible: polynomial does not factor into polynomials of lower degree with mod 2 arithmetic ex. X^2+1 is not irreducible since $X^2+1=(X+1)(X+1)$

How to construct $GF(p^n)$?

- $\diamond Z_p[X]$ is the set of polynomials with coefficients mod p
- ♦ Choose P(X) to be any one irreducible polynomial mod p of degree n (other irreducible P(X)'s would result to isomorphisms)
- $\ \, \div \,\, Let \,\, GF(p^n) \,\, be \,\, Z_p[X] \,\, mod \,\, P(X)$
- An element in Z_p[X] mod P(X) must be of the form
 a₀ + a₁ X + ... + a_{n-1} Xⁿ⁻¹
 each a_i are integers mod p, and have p choices, hence there are pⁿ possible elements in GF(pⁿ)
- → multiplicative inverse of any element in GF(pⁿ) can be found using extended Euclidean algorithm(over polynomial)

$GF(2^8)$

- \Leftrightarrow AES (Rijndael) uses GF(2^8) with irreducible polynomial $X^8+X^4+X^3+X+1$
- \Rightarrow each element is represented as $b_7\,X^7 + b_6\,X^6 + b_5\,X^5 + b_4\,X^4 + b_3\,X^3 + b_2\,X^2 + b_1\,X + b_0$ each b_i is either 0 or 1
- → elements of GF(2⁸) can be represented as 8-bit bytes
 b₇b₆b₅b₄b₃b₂b₁b₀
- ♦ mod 2 operations can be implemented by XOR in H/W

 $GF(p^n)$

- \diamond Definition of generating polynomial g(X) is parallel to the generator in Z_n :
 - * every element in $GF(p^n)$ (except 0) can be expressed as a power of g(X)
 - * the smallest exponent k such that $g(X)^k \equiv 1$ is $p^n 1$
- \diamond Discrete log problem in GF(pⁿ):
 - * given h(X), find an integer k such that $h(X) \equiv g(X)^k \pmod{P(X)}$
 - * believed to be very hard in most situations

Recursive GCD

```
01 int gcd(int p, int q) // assume p >= q
02 {
03     int ans;
04
05     if (p % q == 0)
06         ans = q;
07     else
08         ans = gcd(q, p % q);
09
10     return ans;
11 }

01 in
02 {
03
04
```

```
01 int gcd(int p, int q)
02 {
03    int r = p%q;
04    if (r == 0)
05    return q;
06    return gcd(q, r);
07 }
```

Recursive Extended GCD

 \Rightarrow Given a>b\ge 0, find g=GCD(a,b) and x, y s.t. a x + b y = g where $|x| \le b+1$ and $|y| \le a+1$

```
 b Let a = q b + r, b > r ≥ 0 \Rightarrow (q b + r) x + b y = g 
 ⇒ b (q x + y) + r x = g 
 ⇒ b y' + r x = g, where y' = q x + y
```

 \Rightarrow This means that if we can find y' and x satisfying b y' + (a%b) x = g then x and y = y' - q x = y' - (a/b) x satisfies a x + b y = g Note that in this way r will eventually be 0

```
\begin{array}{lll} 01 \ void \ extgcd(int \ a, \ int \ b, \ int \ *g, \ int \ *x, \ int \ *y) \ \{ \ // \ a > b > = 0 \\ 02 & \ if \ (b == 0) \\ 03 & \ *g = a, \ *x = 1, \ *y = 0; \\ 04 & \ else \ \{ \\ 05 & \ extgcd(b, a\%b, g, y, x); \\ 06 & \ *y = *y - (a/b)*(*x); \\ 07 & \ \} \\ 08 \ \} \end{array}
```