RSA Cryptosystem

密碼學與應用 海洋大學資訊工程系 丁培毅

♦ Encryption and decryption algorithm are not the same

- ♦ Encryption and decryption algorithm are not the same
- ♦ Public/private key pair: private key is related to public key but can not be easily derived from public key

- ♦ Encryption and decryption algorithm are not the same
- Public/private key pair: private key is related to public key but can not be easily derived from public key
- ♦ Illustrating example:

$$m \in Z_{11}^*$$

- ♦ Encryption and decryption algorithm are not the same
- Public/private key pair: private key is related to public key but can not be easily derived from public key
- ♦ Illustrating example:

$$m \in Z_{11}^*$$

 $m * 1 = m \pmod{11}$

- ♦ Encryption and decryption algorithm are not the same
- Public/private key pair: private key is related to public key but can not be easily derived from public key
- ♦ Illustrating example:

$$m \in Z_{11}^*$$
 $m * 1 = m \pmod{11}$
 $m * 8 * 8^{-1} = m \pmod{11}$

- ♦ Encryption and decryption algorithm are not the same
- Public/private key pair: private key is related to public key but can not be easily derived from public key
- ♦ Illustrating example:

$$m \in Z_{11}^*$$
 $m * 1 = m \pmod{11}$
 $m * 8 * 8^{-1} = m \pmod{11}$
encryption

- ♦ Encryption and decryption algorithm are not the same
- Public/private key pair: private key is related to public key but can not be easily derived from public key
- ♦ Illustrating example:

$$m \in Z_{11}^*$$
 $m * 1 = m \pmod{11}$
 $m * 8 * 8^{-1} = m \pmod{11}$

encryption

decryption

- ♦ Encryption and decryption algorithm are not the same
- Public/private key pair: private key is related to public key but can not be easily derived from public key
- ♦ Illustrating example:

$$m \in Z_{11}^*$$
 $m * 1 = m \pmod{11}$
 $m * 8 * 8^{-1} = m \pmod{11}$

encryption

8 is the public key

- ♦ Encryption and decryption algorithm are not the same
- Public/private key pair: private key is related to public key but can not be easily derived from public key
- ♦ Illustrating example:

$$m \in Z_{11}^*$$
 $m * 1 = m \pmod{11}$
 $m * 8 * 8^{-1} = m \pmod{11}$

encryption

8 is the public keym * 8 is the ciphertext

- ♦ Encryption and decryption algorithm are not the same
- Public/private key pair: private key is related to public key but can not be easily derived from public key
- ♦ Illustrating example:

$$m \in Z_{11}^*$$
 $m * 1 = m \pmod{11}$
 $m * 8 * 8^{-1} = m \pmod{11}$

encryption

8 is the public key
m * 8 is the ciphertext
8-1 is the private key (if nobody can derive this from the public key, then this system is secure)

Merkel and Hellman, "Hiding Information and Signatures in Trapdoor Knapsacks," IT-24, 1978

- ♦ Merkel and Hellman, "Hiding Information and Signatures in Trapdoor Knapsacks," IT-24, 1978
 - * a good application of an NP problem on designing public key cryptosystem; no longer secure

- ♦ Merkel and Hellman, "Hiding Information and Signatures in Trapdoor Knapsacks," IT-24, 1978
 - * a good application of an NP problem on designing public key cryptosystem; no longer secure
- **♦ Super-increasing sequence:**

$$\{a_1, a_2, \dots a_n\}$$
 such that $a_i > \sum_{j=0}^{i-1} a_j$ e.g. 1, 3, 5, 10, 20, 40

- ♦ Merkel and Hellman, "Hiding Information and Signatures in Trapdoor Knapsacks," IT-24, 1978
 - * a good application of an NP problem on designing public key cryptosystem; no longer secure
- **♦ Super-increasing sequence:**

$$\{a_1, a_2, \dots a_n\}$$
 such that $a_i > \sum_{j=0}^{i-1} a_j$ e.g. 1, 3, 5, 10, 20, 40

♦ **Note:** 1. Given a number c, finding a subset $\{a_j\}$ s.t. $c = \sum_j a_j$ is an easy problem, e.g. 48 = 40 + 5 + 3

- ♦ Merkel and Hellman, "Hiding Information and Signatures in Trapdoor Knapsacks," IT-24, 1978
 - * a good application of an NP problem on designing public key cryptosystem; no longer secure
- **♦ Super-increasing sequence:**

$$\{a_1, a_2, \dots a_n\}$$
 such that $a_i > \sum_{j=0}^{i-1} a_j$ e.g. 1, 3, 5, 10, 20, 40

- ♦ **Note:** 1. Given a number c, finding a subset $\{a_j\}$ s.t. $c = \sum_j a_j$ is an easy problem, e.g. 48 = 40 + 5 + 3
 - 2. Sum of every subset S, $a_j < 2 \cdot a_M$ where $a_M = \max_{j \in S} \{a_j\}$

- ♦ Merkel and Hellman, "Hiding Information and Signatures in Trapdoor Knapsacks," IT-24, 1978
 - * a good application of an NP problem on designing public key cryptosystem; no longer secure
- **♦ Super-increasing sequence:**

$$\{a_1, a_2, \dots a_n\}$$
 such that $a_i > \sum_{j=0}^{i-1} a_j$ e.g. 1, 3, 5, 10, 20, 40

- ♦ **Note:** 1. Given a number c, finding a subset $\{a_j\}$ s.t. $c = \sum_j a_j$ is an easy problem, e.g. 48 = 40 + 5 + 3
 - 2. Sum of every subset S, $a_j < 2 \cdot a_M$ where $a_M = \max_{j \in S} \{a_j\}$
 - 3. Every possible subset sum is unique

♦ choose a number b in \mathbb{Z}_p^* , e.g. p = 101, b = 23, and convert the super-increasing sequence to a normal knapsack sequence $B = \{b_1, b_2, ..., b_n\}$ where $b_i \equiv a_i \cdot b \pmod{p}$

 \diamond choose a number **b** in \mathbb{Z}_p^* , e.g. p = 101, **b** = 23, and convert the super-increasing sequence to a normal knapsack sequence

B={
$$b_1, b_2, ..., b_n$$
} where $b_i \equiv a_i \cdot b \pmod{p}$
e.g. A={1, 3, 5, 10, 20, 40} B={23, 69, 14, 28, 56, 11}

 \diamond choose a number **b** in \mathbb{Z}_p^* , e.g. p = 101, **b** = 23, and convert the super-increasing sequence to a normal knapsack sequence

B={
$$b_1, b_2, ..., b_n$$
} where $b_i \equiv a_i \cdot b \pmod{p}$
e.g. A={1, 3, 5, 10, 20, 40} B={23, 69, 14, 28, 56, 11}

 \Rightarrow Since gcd(b, p)=1, this conversion is **invertible**, i.e.

$$a_i \equiv b_i \cdot b^{-1} \pmod{p}$$

 \diamond choose a number **b** in Z_p^* , e.g. p = 101, **b** = 23, and convert the super-increasing sequence to a normal knapsack sequence

B={
$$b_1, b_2, ..., b_n$$
} where $b_i \equiv a_i \cdot b \pmod{p}$
e.g. A={1, 3, 5, 10, 20, 40} B={23, 69, 14, 28, 56, 11}

 \Rightarrow Since gcd(b, p)=1, this conversion is **invertible**, i.e.

$$a_i \equiv b_i \cdot b^{-1} \pmod{p}$$

e.g. b^{-1} 22 (mod 101) such that $b \cdot b^{-1} \equiv 1 \pmod{p}$

 \diamond choose a number **b** in \mathbb{Z}_p^* , e.g. p = 101, **b** = 23, and convert the super-increasing sequence to a normal knapsack sequence

B={
$$b_1, b_2, ..., b_n$$
} where $b_i \equiv a_i \cdot b \pmod{p}$
e.g. A={1, 3, 5, 10, 20, 40} B={23, 69, 14, 28, 56, 11}

 \Rightarrow Since gcd(b, p)=1, this conversion is **invertible**, i.e.

$$a_i \equiv b_i \cdot b^{-1} \pmod{p}$$

e.g. b^{-1} 22 (mod 101) such that $b \cdot b^{-1} \equiv 1 \pmod{p}$

♦ Given a number d, finding a subset $\{b_i\}\subseteq B$ s.t.

$$d = \sum_{j} b_{j} \pmod{p}$$

is an NP-complete problem, e.g. 94 = 11 + 14 + 69

♦ Encryption:

- - * public key: normal knapsack seq. B={23, 69, 14, 28, 56, 11}

- ♦ Encryption:
 - * public key: normal knapsack seq. B={23, 69, 14, 28, 56, 11}
 - * message m, $0 \le m < 2^6$, e.g. $(60)_{10} = (111100)_2$

- ♦ Encryption:
 - * public key: normal knapsack seq. B={23, 69, 14, 28, 56, 11}
 - * message m, $0 \le m < 2^6$, e.g. $(60)_{10} = (111100)_2$
 - * sum up the corresponding elements of '1' bits, e.g.

$$23 + 69 + 14 + 28 = 134$$
 is the ciphertext

- ♦ Encryption:
 - * public key: normal knapsack seq. B={23, 69, 14, 28, 56, 11}
 - * message m, $0 \le m < 2^6$, e.g. $(60)_{10} = (111100)_2$
 - * sum up the corresponding elements of '1' bits, e.g.

$$23 + 69 + 14 + 28 = 134$$
 is the ciphertext

♦ Decryption:

- ♦ Encryption:
 - * public key: normal knapsack seq. B={23, 69, 14, 28, 56, 11}
 - * message m, $0 \le m < 2^6$, e.g. $(60)_{10} = (111100)_2$
 - * sum up the corresponding elements of '1' bits, e.g.
 - 23 + 69 + 14 + 28 = 134 is the ciphertext
- ♦ Decryption:
 - * private key: $b^{-1}=22$, p=101, $A=\{1, 3, 5, 10, 20, 40\}$

- ♦ Encryption:
 - * public key: normal knapsack seq. B={23, 69, 14, 28, 56, 11}
 - * message m, $0 \le m < 2^6$, e.g. $(60)_{10} = (111100)_2$
 - * sum up the corresponding elements of '1' bits, e.g. 23 + 69 + 14 + 28 = 134 is the ciphertext
- ♦ Decryption:
 - * private key: $b^{-1}=22$, p=101, $A=\{1, 3, 5, 10, 20, 40\}$
 - * calculate 134 * 22 mod 101 = 19

- ♦ Encryption:
 - * public key: normal knapsack seq. B={23, 69, 14, 28, 56, 11}
 - * message m, $0 \le m < 2^6$, e.g. $(60)_{10} = (1111100)_2$
 - * sum up the corresponding elements of '1' bits, e.g. 23 + 69 + 14 + 28 = 134 is the ciphertext
- ♦ Decryption:
 - * private key: $b^{-1}=22$, p=101, $A=\{1, 3, 5, 10, 20, 40\}$
 - * calculate 134 * 22 mod 101 = 19
 - * use the corresponding super-increasing knapsack seq. A={1, 3, 5, 10, 20, 40} to decrypt as follows:

- ♦ Encryption:
 - * public key: normal knapsack seq. B={23, 69, 14, 28, 56, 11}
 - * message m, $0 \le m < 2^6$, e.g. $(60)_{10} = (1111100)_2$
 - * sum up the corresponding elements of '1' bits, e.g.
 - 23 + 69 + 14 + 28 = 134 is the ciphertext
- ♦ Decryption:
 - * private key: $b^{-1}=22$, p=101, $A=\{1, 3, 5, 10, 20, 40\}$
 - * calculate 134 * 22 mod 101 = 19
 - * use the corresponding super-increasing knapsack seq. A={1, 3, 5, 10, 20, 40} to decrypt as follows:

- ♦ Encryption:
 - * public key: normal knapsack seq. B={23, 69, 14, 28, 56, 11}
 - * message m, $0 \le m < 2^6$, e.g. $(60)_{10} = (111100)_2$
 - * sum up the corresponding elements of '1' bits, e.g.

$$23 + 69 + 14 + 28 = 134$$
 is the ciphertext

- ♦ Decryption:
 - * private key: $b^{-1}=22$, p=101, $A=\{1, 3, 5, 10, 20, 40\}$
 - * calculate 134 * 22 mod 101 = 19
 - * use the corresponding super-increasing knapsack seq. A={1, 3, 5, 10, 20, 40} to decrypt as follows:

 - ≠ 19 < 20, mark a '0'

- ♦ Encryption:
 - * public key: normal knapsack seq. B={23, 69, 14, 28, 56, 11}
 - * message m, $0 \le m < 2^6$, e.g. $(60)_{10} = (1111100)_2$
 - * sum up the corresponding elements of '1' bits, e.g.

$$23 + 69 + 14 + 28 = 134$$
 is the ciphertext

- ♦ Decryption:
 - * private key: $b^{-1}=22$, p=101, $A=\{1, 3, 5, 10, 20, 40\}$
 - * calculate 134 * 22 mod 101 = 19
 - * use the corresponding super-increasing knapsack seq. A={1, 3, 5, 10, 20, 40} to decrypt as follows:

 - \Rightarrow 19 \geq 10, mark a '1' and subtract 10 from 19

- ♦ Encryption:
 - * public key: normal knapsack seq. B={23, 69, 14, 28, 56, 11}
 - * message m, $0 \le m < 2^6$, e.g. $(60)_{10} = (111100)_2$
 - * sum up the corresponding elements of '1' bits, e.g.

$$23 + 69 + 14 + 28 = 134$$
 is the ciphertext

- ♦ Decryption:
 - * private key: $b^{-1}=22$, p=101, $A=\{1, 3, 5, 10, 20, 40\}$
 - * calculate 134 * 22 mod 101 = 19
 - * use the corresponding super-increasing knapsack seq. A={1, 3, 5, 10, 20, 40} to decrypt as follows:

 - \Rightarrow 19 \geq 10, mark a '1' and subtract 10 from 19
 - \neq 9 \geq 5, mark a '1' and subtract 5 from 9

- ♦ Encryption:
 - * public key: normal knapsack seq. B={23, 69, 14, 28, 56, 11}
 - * message m, $0 \le m < 2^6$, e.g. $(60)_{10} = (111100)_2$
 - * sum up the corresponding elements of '1' bits, e.g.

$$23 + 69 + 14 + 28 = 134$$
 is the ciphertext

- ♦ Decryption:
 - * private key: $b^{-1}=22$, p=101, $A=\{1, 3, 5, 10, 20, 40\}$
 - * calculate 134 * 22 mod 101 = 19
 - * use the corresponding super-increasing knapsack seq. A={1, 3, 5, 10, 20, 40} to decrypt as follows:

 - \Rightarrow 19 \geq 10, mark a '1' and subtract 10 from 19
 - \neq 9 \geq 5, mark a '1' and subtract 5 from 9
 - \neq 4 \geq 3, mark a '1' and subtract 3 from 4

- ♦ Encryption:
 - * public key: normal knapsack seq. B={23, 69, 14, 28, 56, 11}
 - * message m, $0 \le m < 2^6$, e.g. $(60)_{10} = (1111100)_2$
 - * sum up the corresponding elements of '1' bits, e.g.

$$23 + 69 + 14 + 28 = 134$$
 is the ciphertext

- ♦ Decryption:
 - * private key: $b^{-1}=22$, p=101, $A=\{1, 3, 5, 10, 20, 40\}$
 - * calculate 134 * 22 mod 101 = 19
 - * use the corresponding super-increasing knapsack seq. A={1, 3, 5, 10, 20, 40} to decrypt as follows:

 - \Rightarrow 19 \geq 10, mark a '1' and subtract 10 from 19
 - \Rightarrow 9 \ge 5, mark a '1' and subtract 5 from 9
 - \Rightarrow 4 \ge 3, mark a '1' and subtract 3 from 4
 - * recovered message is $(1111100)_2 = (60)_{10}$

let the plaintext be
$$(111100)_2$$

ciphertext $c = b_1 + b_2 + b_3 + b_4$

```
let the plaintext be (1111100)_2
ciphertext c = b_1 + b_2 + b_3 + b_4
a_1 b + a_2 b + a_3 b + a_4 b \pmod{p}
```

```
let the plaintext be (1111100)_2
ciphertext c = b_1 + b_2 + b_3 + b_4
a_1 b + a_2 b + a_3 b + a_4 b \pmod{p}
decryption: c b^{-1} \pmod{p} a_1 + a_2 + a_3 + a_4 \pmod{p}
```

```
let the plaintext be (111100)_2
ciphertext c = b_1 + b_2 + b_3 + b_4
a_1 b + a_2 b + a_3 b + a_4 b \pmod{p}
decryption: c b^{-1} \pmod{p} a_1 + a_2 + a_3 + a_4 \pmod{p}
is a subset sum problem of a
```

```
let the plaintext be (111100)_2
ciphertext c = b_1 + b_2 + b_3 + b_4
a_1 b + a_2 b + a_3 b + a_4 b \pmod{p}
decryption: c b^{-1} \pmod{p} a_1 + a_2 + a_3 + a_4 \pmod{p}
is a subset sum problem of a super-increasing sequence
```

* two important cryptosystems based on the difficulty of integer factoring (an NP problem) are introduced as follows:

- * two important cryptosystems based on the difficulty of integer factoring (an NP problem) are introduced as follows:
- ♦ RSA's underlying problem

- two important cryptosystems based on the
 difficulty of integer factoring (an NP problem) are
 introduced as follows:
- ⇒ RSA's underlying problem

Solving e-th root modulo n is difficult

 $y = x^e \pmod{n}$

- two important cryptosystems based on the
 difficulty of integer factoring (an NP problem) are
 introduced as follows:
- ⇒ RSA's underlying problem

Solving e-th root modulo n is difficult

RSA function $y x^e \pmod{n}$

- two important cryptosystems based on the
 difficulty of integer factoring (an NP problem) are
 introduced as follows:
- ⇒ RSA's underlying problem

Solving e-th root modulo n is difficult

RSA function $y x^e \pmod{n}$

♦ Rabin's underlying problem

- * two important cryptosystems based on the difficulty of integer factoring (an NP problem) are introduced as follows:
- ⇒ RSA's underlying problem

Solving e-th root modulo n is difficult

RSA function $y x^e \pmod{n}$

Rabin's underlying problem

Solving square root modulo n is difficult

 \int y $x^2 \pmod{n}$

Rabin function

- * two important cryptosystems based on the difficulty of integer factoring (an NP problem) are introduced as follows:
- ⇒ RSA's underlying problem

 Solving e-th root modulo n is difficult

 Solv

RSA function $y x^e \pmod{n}$

Rabin's underlying problem

Solving square root modulo n is difficult

 \int y $x^2 \pmod{n}$

Rabin function

- two important cryptosystems based on the
 difficulty of integer factoring (an NP problem) are
 introduced as follows:
- ♦ RSA's underlying problem

 $n = p \cdot q$

Solving e-th root modulo n is difficult

RSA function

 $y x^e \pmod{n}$

Rabin's underlying problem

Solving square root modulo n is difficult

 $\int y x^2 \pmod{n}$

Rabin function

both functions are candidates for trapdoor one way function

♦ Solving e-th root of y modulo n is difficult!!!

 \Rightarrow Solving e-th root of y modulo n is difficult!!! y $x^e \pmod{n}$, where gcd(e, (n)) = 1

 \Rightarrow Solving e-th root of y modulo n is difficult!!! y $x^e \pmod{n}$, where gcd(e, (n)) = 1Why don't we take (e^{-1}) -th power of y?

```
♦ Solving e-th root of y modulo n is difficult!!!

y x^e \pmod{n}, where gcd(e, (n)) = 1

Why don't we take (e^{-1})-th power of y?

where e^{-1} \cdot e = 1 \pmod{n}
```

♦ Solving e-th root of y modulo n is difficult!!! y $x^e \pmod{n}$, where gcd(e, (n)) = 1Why don't we take (e^{-1}) -th power of y? where $e^{-1} \cdot e = 1 \pmod{(n)}$ e.g. $n = 11 \cdot 13 = 143$, e = 7

♦ Solving e-th root of y modulo n is difficult!!! y xe (mod n), where gcd(e, (n)) = 1 Why don't we take (e-1)-th power of y? where e-1 ⋅ e 1 (mod (n)) e.g. n = 11 ⋅ 13 = 143, e = 7 $\phi(n) = 10 \cdot 12 = 120, e^{-1} = 103$

 \Rightarrow Solving e-th root of y modulo n is difficult!!! y $x^e \pmod{n}$, where gcd(e, (n)) = 1

Why don't we take (e^{-1}) -th power of y? where $e^{-1} \cdot e = 1 \pmod{(n)}$

e.g. $n = 11 \cdot 13 = 143$, e = 7 $\phi(n) = 10 \cdot 12 = 120$, $e^{-1} = 103$

Trouble: How do we know $\phi(n)$?

 \Rightarrow Solving e-th root of y modulo n is difficult!!! y $x^e \pmod{n}$, where gcd(e, (n)) = 1

Why don't we take (e⁻¹)-th power of y?

where
$$e^{-1} \cdot e = 1 \pmod{(n)}$$

e.g. $n = 11 \cdot 13 = 143$, $e = 7$
 $\phi(n) = 10 \cdot 12 = 120$, $e^{-1} = 103$

Trouble: How do we know $\phi(n)$?

Solving square root of y modulo n is difficult!!!

♦ Solving e-th root of y modulo n is difficult!!!

y
$$x^e \pmod{n}$$
, where $gcd(e, (n)) = 1$

Why don't we take (e⁻¹)-th power of y?

where
$$e^{-1} \cdot e = 1 \pmod{(n)}$$

e.g. $n = 11 \cdot 13 = 143$, $e = 7$
 $\phi(n) = 10 \cdot 12 = 120$, $e^{-1} = 103$

Trouble: How do we know $\phi(n)$?

 \Rightarrow Solving square root of y modulo n is difficult!!! y $x^2 \pmod{n}$

 \Rightarrow Solving e-th root of y modulo n is difficult!!! y $x^e \pmod{n}$, where gcd(e, (n)) = 1

Why don't we take (e⁻¹)-th power of y?

```
where e^{-1} \cdot e = 1 \pmod{(n)}

e.g. n = 11 \cdot 13 = 143, e = 7

\phi(n) = 10 \cdot 12 = 120, e^{-1} = 103
```

Trouble: How do we know $\phi(n)$?

Solving square root of y modulo n is difficult!!!
 y x² (mod n)

Why don't we take (2^{-1}) -th power of y?

- \Rightarrow Solving e-th root of y modulo n is difficult!!! y $x^e \pmod{n}$, where gcd(e, (n)) = 1
 - Why don't we take (e⁻¹)-th power of y?

```
where e^{-1} \cdot e = 1 \pmod{(n)}
e.g. n = 11 \cdot 13 = 143, e = 7
\phi(n) = 10 \cdot 12 = 120, e^{-1} = 103
```

Trouble: How do we know $\phi(n)$?

- Solving square root of y modulo n is difficult!!!
 y x² (mod n)
 - Why don't we take (2^{-1}) -th power of y? where $2^{-1} \cdot 2 = 1 \pmod{(n)}$

♦ Solving e-th root of y modulo n is difficult!!!

y
$$x^e \pmod{n}$$
, where $gcd(e, (n)) = 1$

Why don't we take (e⁻¹)-th power of y?

```
where e^{-1} \cdot e = 1 \pmod{(n)}
e.g. n = 11 \cdot 13 = 143, e = 7
\phi(n) = 10 \cdot 12 = 120, e^{-1} = 103
```

Trouble: How do we know $\phi(n)$?

- ♦ Solving square root of y modulo n is difficult!!!
 y x² (mod n)
 - Why don't we take (2^{-1}) -th power of y?

where
$$2^{-1} \cdot 2 = 1 \pmod{(n)}$$
 e.g. $n = 11 \cdot 13 = 143$

- ♦ Solving e-th root of y modulo n is difficult!!!
 - y $x^e \pmod{n}$, where gcd(e, (n)) = 1
 - Why don't we take (e⁻¹)-th power of y?

```
where e^{-1} \cdot e = 1 \pmod{(n)}
e.g. n = 11 \cdot 13 = 143, e = 7
\phi(n) = 10 \cdot 12 = 120, e^{-1} = 103
```

Trouble: How do we know $\phi(n)$?

♦ Solving square root of y modulo n is difficult!!!

$$y x^2 \pmod{n}$$

Why don't we take (2^{-1}) -th power of y?

where
$$2^{-1} \cdot 2$$
 1 (mod (n))
e.g. $n = 11 \cdot 13 = 143$
(n) = $10 \cdot 12 = 120$, $gcd(2, (n)) = 2$

♦ Solving e-th root of y modulo n is difficult!!!

y
$$x^e \pmod{n}$$
, where $gcd(e, (n)) = 1$

Why don't we take (e⁻¹)-th power of y?

```
where e^{-1} \cdot e = 1 \pmod{(n)}

e.g. n = 11 \cdot 13 = 143, e = 7

\phi(n) = 10 \cdot 12 = 120, e^{-1} = 103
```

Trouble: How do we know $\phi(n)$?

Solving square root of y modulo n is difficult!!!
 y x² (mod n)

Why don't we take (2^{-1}) -th power of y?

where
$$2^{-1} \cdot 2 = 1 \pmod{(n)}$$

e.g. $n = 11 \cdot 13 = 143$
 $(n) = 10 \cdot 12 = 120, \gcd(2, (n)) = 2$

Trouble: d · 2 1 (mod (n)) has no solution

- ♦ Solving e-th root of y modulo n is difficult!!!
 - y $x^e \pmod{n}$, where gcd(e, (n)) = 1
 - Why don't we take (e⁻¹)-th power of y?

where
$$e^{-1} \cdot e = 1 \pmod{(n)}$$

e.g. $n = 11 \cdot 13 = 143$, $e = 7$
 $\phi(n) = 10 \cdot 12 = 120$, $e^{-1} = 103$

Trouble: How do we know $\phi(n)$?

- Solving square root of y modulo n is difficult!!!
 y x² (mod n)
 - Why don't we take (2⁻¹)-th power of y?

where
$$2^{-1} \cdot 2$$
 1 (mod (n))
e.g. $n = 11 \cdot 13 = 143$
(n) = $10 \cdot 12 = 120$, $gcd(2, (n)) = 2$

Remember solving square root of y modulo a prime number p is very easy

Trouble: d · 2 1 (mod (n)) has no solution

♦ R. Rivest, A. Shamir and L. Adleman, "A Method for Obtaining Digital Signatures and Public-Key Cryptosystems," Comm. ACM, pp.120-126, 1978

- ♦ R. Rivest, A. Shamir and L. Adleman, "A Method for Obtaining Digital Signatures and Public-Key Cryptosystems," Comm. ACM, pp.120-126, 1978
- ♦ Based on the *Integer Factorization* problem

- ♦ R. Rivest, A. Shamir and L. Adleman, "A Method for Obtaining Digital Signatures and Public-Key Cryptosystems," Comm. ACM, pp.120-126, 1978
- ♦ Based on the *Integer Factorization* problem
- \diamond Choose two large prime numbers: p, q (keep them secret!!)

- ♦ R. Rivest, A. Shamir and L. Adleman, "A Method for Obtaining Digital Signatures and Public-Key Cryptosystems," Comm. ACM, pp.120-126, 1978
- ♦ Based on the *Integer Factorization* problem
- \diamond Choose two large prime numbers: p, q (keep them secret!!)
- \diamond Calculate the modulus $n = p \cdot q$ (make it public)

- ♦ R. Rivest, A. Shamir and L. Adleman, "A Method for Obtaining Digital Signatures and Public-Key Cryptosystems," Comm. ACM, pp.120-126, 1978
- ♦ Based on the *Integer Factorization* problem
- \diamond Choose two large prime numbers: p, q (keep them secret!!)
- \diamond Calculate the modulus $n = p \cdot q$ (make it public)
- ⇒ Calculate $\Phi(n) = (p-1)\cdot(q-1)$ (keep it secret)

- ♦ R. Rivest, A. Shamir and L. Adleman, "A Method for Obtaining Digital Signatures and Public-Key Cryptosystems," Comm. ACM, pp.120-126, 1978
- ♦ Based on the *Integer Factorization* problem
- \diamond Choose two large prime numbers: p, q (keep them secret!!)
- \diamond Calculate the modulus $n = p \cdot q$ (make it public)
- ⇒ Calculate $\Phi(n) = (p-1)\cdot(q-1)$ (keep it secret)
- \diamond Select a random integer such that $e < \Phi$ and $gcd(e, \Phi) = 1$

- ♦ R. Rivest, A. Shamir and L. Adleman, "A Method for Obtaining Digital Signatures and Public-Key Cryptosystems," Comm. ACM, pp.120-126, 1978
- ♦ Based on the *Integer Factorization* problem
- \diamond Choose two large prime numbers: p, q (keep them secret!!)
- \diamond Calculate the modulus $n = p \cdot q$ (make it public)
- ⇒ Calculate $\Phi(n) = (p-1)\cdot(q-1)$ (keep it secret)
- \Rightarrow Select a random integer such that $e < \Phi$ and $gcd(e, \Phi) = 1$
- ♦ Calculate the unique integer d such that $e \cdot d \equiv 1 \pmod{\Phi}$

RSA Public Key Cryptosystem

- ♦ R. Rivest, A. Shamir and L. Adleman, "A Method for Obtaining Digital Signatures and Public-Key Cryptosystems," Comm. ACM, pp.120-126, 1978
- ♦ Based on the *Integer Factorization* problem
- \Rightarrow Choose two large prime numbers: p, q (keep them secret!!)
- \diamond Calculate the modulus $n = p \cdot q$ (make it public)
- ♦ Calculate $Φ(n) = (p-1) \cdot (q-1)$ (keep it secret)
- \Rightarrow Select a random integer such that $e < \Phi$ and $gcd(e, \Phi) = 1$
- \Leftrightarrow Calculate the unique integer d such that $e \cdot d \equiv 1 \pmod{\Phi}$
- \Rightarrow Public key: (n, e) Private key: d

♦ Alice wants to encrypt a message *m* for Bob

- ♦ Alice wants to encrypt a message m for Bob
- ♦ Alice obtains Bob's authentic public key (n, e)

- ♦ Alice wants to encrypt a message m for Bob
- ♦ Alice obtains Bob's authentic public key (n, e)
- \diamond Alice represents the message as an integer m in the interval [0, n-1]

- ♦ Alice wants to encrypt a message m for Bob
- ♦ Alice obtains Bob's authentic public key (n, e)
- \diamond Alice represents the message as an integer m in the interval [0, n-1]
- \Rightarrow Alice computes the modular exponentiation $c \equiv m^e \pmod{n}$

- ♦ Alice wants to encrypt a message m for Bob
- ♦ Alice obtains Bob's authentic public key (n, e)
- \diamond Alice represents the message as an integer m in the interval [0, n-1]
- \Rightarrow Alice computes the modular exponentiation $c \equiv m^e \pmod{n}$
- ♦ Alice sends the ciphertext c to Bob

- ♦ Alice wants to encrypt a message *m* for Bob
- \diamond Alice obtains Bob's authentic public key (n, e)
- \diamond Alice represents the message as an integer m in the interval [0, n-1]
- \Rightarrow Alice computes the modular exponentiation $c \equiv m^e \pmod{n}$
- ♦ Alice sends the ciphertext c to Bob
- ♦ Bob decrypts c with his private key (n, d)by computing the modular exponentiation \hat{m} $c^d \pmod{n}$

♦ Why does RSA work?

- ♦ Why does RSA work?
 - * Fact 1: $e \cdot d \equiv 1 \pmod{\Phi} \Rightarrow e \cdot d = 1 + k \Phi$

- ♦ Why does RSA work?
 - * Fact 1: $e \cdot d \equiv 1 \pmod{\Phi} \Rightarrow e \cdot d = 1 + k \Phi$
 - * Fact 2: $\forall m$, gcd(m,n)=1, $m^{\Phi} \equiv 1 \pmod{n}$ (by Euler's theorem)

- ♦ Why does RSA work?
 - * Fact 1: $e \cdot d \equiv 1 \pmod{\Phi} \Rightarrow e \cdot d = 1 + k \Phi$
 - * Fact 2: $\forall m$, gcd(m,n)=1, $m^{\Phi} \equiv 1 \pmod{n}$ (by Euler's theorem)
 - * From Fact 2: $\forall m$, gcd(m,n)=1,

- ♦ Why does RSA work?
 - * Fact 1: $e \cdot d \equiv 1 \pmod{\Phi} \Rightarrow e \cdot d = 1 + k \Phi$
 - * Fact 2: $\forall m$, gcd(m,n)=1, $m^{\Phi} \equiv 1 \pmod{n}$ (by Euler's theorem)
 - * From Fact 2: $\forall m$, $\gcd(m,n)=1$, $c^d \quad m^{ed} \quad m^{1+k} \Phi \equiv m^{1+k} (p-1)(q-1) \qquad m \pmod{n}$

- ♦ Why does RSA work?
 - * Fact 1: $e \cdot d \equiv 1 \pmod{\Phi} \Rightarrow e \cdot d = 1 + k \Phi$
 - * Fact 2: $\forall m$, gcd(m,n)=1, $m^{\Phi} \equiv 1 \pmod{n}$ (by Euler's theorem)
 - * From Fact 2: $\forall m$, $\gcd(m,n)=1$, $c^d \quad m^{ed} \quad m^{1+k} \Phi \equiv m^{1+k} (p-1)(q-1) \qquad m \pmod{n}$

note: 1. This only proves that for all m that are not multiples of p or q can be recovered after RSA encryption and decryption.

- ♦ Why does RSA work?
 - * Fact 1: $e \cdot d \equiv 1 \pmod{\Phi} \Rightarrow e \cdot d = 1 + k \Phi$
 - * Fact 2: $\forall m$, gcd(m,n)=1, $m^{\Phi} \equiv 1 \pmod{n}$ (by Euler's theorem)
 - * From Fact 2: $\forall m$, $\gcd(m,n)=1$, $c^d \quad m^{ed} \quad m^{1+k} \Phi \equiv m^{1+k} (p-1)(q-1) \qquad m \pmod{n}$
- note: 1. This only proves that for all m that are not multiples of p or q can be recovered after RSA encryption and decryption.
 - 2. For those m that are multiples of p or q, the Euler's theorem simply does not hold because $p^{\Phi} \equiv 0 \pmod{p}$ and $p^{\Phi} \equiv 1 \pmod{q}$ which means that $p^{\Phi} \not\equiv 1 \pmod{q}$ from CRT.

- ♦ Why does RSA work? Is this really a problem???
 - * Fact 1: $e \cdot d \equiv 1 \pmod{\Phi} \Rightarrow e \cdot d = 1 + k \Phi$
 - * Fact 2: $\forall m$, gcd(m,n)=1, $m^{\Phi} \equiv 1 \pmod{n}$ (by Euler's theorem)
 - * From Fact 2: $\forall m$, $\gcd(m,n)=1$, $c^d \quad m^{ed} \quad m^{1+k} \Phi \equiv m^{1+k} (p-1)(q-1) \qquad m \pmod{n}$
- note: 1. This only proves that for all m that are not multiples of p or q can be recovered after RSA encryption and decryption.
 - 2. For those m that are multiples of p or q, the Euler's theorem simply does not hold because $p^{\Phi} \equiv 0 \pmod{p}$ and $p^{\Phi} \equiv 1 \pmod{q}$ which means that $p^{\Phi} \not\equiv 1 \pmod{q}$ from CRT.

♦ Why does RSA work?

- ♦ Why does RSA work?
 - * Fact 1: $e \cdot d \equiv 1 \pmod{\Phi} \Rightarrow e \cdot d = 1 + k \Phi$

- ♦ Why does RSA work?
 - * Fact 1: $e \cdot d \equiv 1 \pmod{\Phi} \Rightarrow e \cdot d = 1 + k \Phi$
 - * Fact 2: $\forall m$, gcd(m,p)=1, $m^{p-1} \equiv 1 \pmod{p}$ (by Fermat's Little theorem)

- ♦ Why does RSA work?
 - * Fact 1: $e \cdot d \equiv 1 \pmod{\Phi} \Rightarrow e \cdot d = 1 + k \Phi$
 - * Fact 2: $\forall m$, gcd(m,p)=1, $m^{p-1} \equiv 1 \pmod{p}$ (by Fermat's Little theorem)
 - * From Fact 2: $\forall m$, gcd(m,p)=1

- ♦ Why does RSA work?
 - * Fact 1: $e \cdot d \equiv 1 \pmod{\Phi} \Rightarrow e \cdot d = 1 + k \Phi$
 - * Fact 2: $\forall m$, gcd(m,p)=1, $m^{p-1} \equiv 1 \pmod{p}$ (by Fermat's Little theorem)
 - * From Fact 2: $\forall m$, $\gcd(m,p)=1$ $m^{1+k(p-1)(q-1)} \equiv m \pmod{p}$

- ♦ Why does RSA work?
 - * Fact 1: $e \cdot d \equiv 1 \pmod{\Phi} \Rightarrow e \cdot d = 1 + k \Phi$
 - * Fact 2: $\forall m$, gcd(m,p)=1, $m^{p-1} \equiv 1 \pmod{p}$ (by Fermat's Little theorem)
 - * From Fact 2: $\forall m$, gcd(m,p)=1

note: this equation is trivially true when m = kp $1+k(p-1)(q-1) \equiv m \pmod{p}$

- ♦ Why does RSA work?
 - * Fact 1: $e \cdot d \equiv 1 \pmod{\Phi} \Rightarrow e \cdot d = 1 + k \Phi$
 - * Fact 2: $\forall m$, gcd(m,p)=1, $m^{p-1} \equiv 1 \pmod{p}$ (by Fermat's Little theorem)
 - * From Fact 2: $\forall m$, $\gcd(m,p)=1$

note: this equation is trivially true when m = kp $1+k(p-1)(q-1) \equiv m \pmod{p}$

* From Fact 2: $\forall m$, gcd(m,q)=1

- ♦ Why does RSA work?
 - * Fact 1: $e \cdot d \equiv 1 \pmod{\Phi} \Rightarrow e \cdot d = 1 + k \Phi$
 - * Fact 2: $\forall m$, gcd(m,p)=1, $m^{p-1} \equiv 1 \pmod{p}$ (by Fermat's Little theorem)
 - * From Fact 2: $\forall m$, $\gcd(m,p)=1$

note: this equation is trivially true when m = kp $1+k(p-1)(q-1) \equiv m \pmod{p}$

* From Fact 2: $\forall m$, $\gcd(m,q)=1$ $m^{1+k(p-1)(q-1)} \equiv m \pmod{q}$

- ♦ Why does RSA work?
 - * Fact 1: $e \cdot d \equiv 1 \pmod{\Phi} \Rightarrow e \cdot d = 1 + k \Phi$
 - * Fact 2: $\forall m$, gcd(m,p)=1, $m^{p-1} \equiv 1 \pmod{p}$ (by Fermat's Little theorem)
 - * From Fact 2: $\forall m$, gcd(m,p)=1

```
note: this equation is trivially true when m = kp 1+k(p-1)(q-1) \equiv m \pmod{p}
```

* From Fact 2: $\forall m$, gcd(m,q)=1

```
note: this equation is trivially true when m = kq 1+k(p-1)(q-1) \equiv m \pmod{q}
```

- ♦ Why does RSA work?
 - * Fact 1: $e \cdot d \equiv 1 \pmod{\Phi} \Rightarrow e \cdot d = 1 + k \Phi$
 - * Fact 2: $\forall m$, gcd(m,p)=1, $m^{p-1} \equiv 1 \pmod{p}$ (by Fermat's Little theorem)
 - * From Fact 2: $\forall m$, gcd(m,p)=1

note: this equation is trivially true when
$$m = kp$$
 $1+k(p-1)(q-1) \equiv m \pmod{p}$

* From Fact 2: $\forall m$, gcd(m,q)=1

note: this equation is trivially true when
$$m = kq$$
 $1+k(p-1)(q-1) \equiv m \pmod{q}$

* From CRT: $\forall m$,

- ♦ Why does RSA work?
 - * Fact 1: $e \cdot d \equiv 1 \pmod{\Phi} \Rightarrow e \cdot d = 1 + k \Phi$
 - * Fact 2: $\forall m$, gcd(m,p)=1, $m^{p-1} \equiv 1 \pmod{p}$ (by Fermat's Little theorem)
 - * From Fact 2: $\forall m$, gcd(m,p)=1

note: this equation is trivially true when
$$m = kp$$
 $1+k(p-1)(q-1) \equiv m \pmod{p}$

* From Fact 2: $\forall m$, gcd(m,q)=1

note: this equation is trivially true when
$$m = kq$$
 $1+k(p-1)(q-1) \equiv m \pmod{q}$

* From CRT: $\forall m$,

$$c^d m^{ed} m^{1+k} \Phi \equiv m^{1+k(p-1)(q-1)} m \pmod{n}$$

- ♦ Why does RSA work?
 - * Fact 1: $e \cdot d \equiv 1 \pmod{\Phi} \Rightarrow e \cdot d = 1 + k \Phi$
 - * Fact 2: $\forall m$, gcd(m,p)=1, $m^{p-1} \equiv 1 \pmod{p}$ (by Fermat's Little theorem)
 - * From Fact 2: $\forall m$, gcd(m,p)=1

note: this equation is trivially true when
$$m = kp$$
 $1+k(p-1)(q-1) \equiv m \pmod{p}$

* From Fact 2: $\forall m$, gcd(m,q)=1

note: this equation is trivially true when
$$m = kq$$
 $1+k(p-1)(q-1) \equiv m \pmod{q}$

* From CRT: $\forall m$,

$$c^d m^{ed} m^{1+k} \Phi \equiv m^{1+k} (p-1)(q-1) m \pmod{n}$$

♦ RSA function is a permutation: (1-1 and onto, bijective)

- ♦ RSA function is a permutation: (1-1 and onto, bijective)
- \Leftrightarrow Goal: " $\forall x_1, x_2 \in Z_n \text{ if } x_1^e \equiv x_2^e \pmod{n} \text{ then } x_1 = x_2$ "

- * RSA function is a permutation: (1-1 and onto, bijective)
- $\Rightarrow \text{ Goal: "} \forall x_1, x_2 \in Z_n \text{ if } x_1^e \equiv x_2^e \text{ (mod n) then } x_1 = x_2"$ $\forall x \neq r \cdot p, x^{p-1} \equiv 1 \text{ (mod p)}, \forall x \neq s \cdot q, x^{q-1} \equiv 1 \text{ (mod q)}$

- ♦ RSA function is a permutation: (1-1 and onto, bijective)
- \Rightarrow Goal: " $\forall x_1, x_2 \in Z_n \text{ if } x_1^e \equiv x_2^e \pmod{n} \text{ then } x_1 = x_2$ " $\forall x \neq r \cdot p, x^{p-1} \equiv 1 \pmod{p}, \forall x \neq s \cdot q, x^{q-1} \equiv 1 \pmod{q}$
 - $\Rightarrow \forall k, \forall x \neq r \cdot p, x^{k\phi(n)} \equiv 1 \pmod{p}, \forall x \neq s \cdot q, x^{k\phi(n)} \equiv 1 \pmod{q}$

- ♦ RSA function is a permutation: (1-1 and onto, bijective)
- \Rightarrow Goal: " $\forall x_1, x_2 \in Z_n \text{ if } x_1^e \equiv x_2^e \pmod{n} \text{ then } x_1 = x_2$ "

$$\forall x \neq r \cdot p, x^{p-1} \equiv 1 \pmod{p}, \ \forall x \neq s \cdot q, x^{q-1} \equiv 1 \pmod{q}$$

- $\Rightarrow \forall k, \forall x \neq r \cdot p, \ x^{k\phi(n)} \equiv 1 \ (\text{mod } p), \forall x \neq s \cdot q, \ x^{k\phi(n)} \equiv 1 \ (\text{mod } q)$
- $\Rightarrow \forall k, \forall x, x^{k\phi(n)+1} \equiv x \pmod{p}, x^{k\phi(n)+1} \equiv x \pmod{q}$

- ♦ RSA function is a permutation: (1-1 and onto, bijective)

- ♦ RSA function is a permutation: (1-1 and onto, bijective)

- ♦ RSA function is a permutation: (1-1 and onto, bijective)

- ♦ RSA function is a permutation: (1-1 and onto, bijective)
- \Leftrightarrow Goal: " $\forall x_1, x_2 \in Z_n \text{ if } x_1^e \equiv x_2^e \pmod{n} \text{ then } x_1 = x_2$ " $\forall x \neq r \cdot p, x^{p-1} \equiv 1 \pmod{p}, \forall x \neq s \cdot q, x^{q-1} \equiv 1 \pmod{q}$ $\Rightarrow \forall k, \forall x \neq r \cdot p, x^{k\phi(n)} \equiv 1 \pmod{p}, \forall x \neq s \cdot q, x^{k\phi(n)} \equiv 1 \pmod{q}$ $CRT \Rightarrow \forall k, \forall x, x^{k\phi(n)+1} \equiv x \pmod{p}, x^{k\phi(n)+1} \equiv x \pmod{q}$ $\Rightarrow \forall k, \forall x, x^{k\phi(n)+1} \equiv x \pmod{n}$ * $gcd(e,\phi(n))=1 \implies inverse of e \pmod{\phi(n)} exists$ \Rightarrow let d be the inverse s.t. $e \cdot d \equiv 1 \pmod{\phi(n)}$ * $\forall x_1, x_2 \in Z_n \text{ if } x_1^e \equiv x_2^e \pmod{n}$ \Rightarrow $(x_1^e)^d \equiv (x_2^e)^d \pmod{n}$

RSA Function is a Permutation

- ♦ RSA function is a permutation: (1-1 and onto, bijective)
- \Leftrightarrow Goal: " $\forall x_1, x_2 \in Z_n \text{ if } x_1^e \equiv x_2^e \pmod{n} \text{ then } x_1 = x_2$ " $\forall x \neq r \cdot p, x^{p-1} \equiv 1 \pmod{p}, \forall x \neq s \cdot q, x^{q-1} \equiv 1 \pmod{q}$ $\Rightarrow \forall k, \forall x \neq r \cdot p, x^{k\phi(n)} \equiv 1 \pmod{p}, \forall x \neq s \cdot q, x^{k\phi(n)} \equiv 1 \pmod{q}$ $\overrightarrow{CRT} \Longrightarrow \forall k, \forall x, x^{k\phi(n)+1} \equiv x \pmod{p}, x^{k\phi(n)+1} \equiv x \pmod{q}$ $\Rightarrow \forall k, \forall x, x^{k\phi(n)+1} \equiv x \pmod{n}$ * $gcd(e,\phi(n))=1 \implies inverse of e \pmod{\phi(n)} exists$ \Rightarrow let d be the inverse s.t. $e \cdot d \equiv 1 \pmod{\phi(n)}$ * $\forall x_1, x_2 \in Z_n \text{ if } x_1^e \equiv x_2^e \pmod{n}$ \Rightarrow $(x_1^e)^d \equiv (x_2^e)^d \pmod{n}$ \Rightarrow $(x_1)^{1+k} \phi(n) \equiv (x_2)^{1+k} \phi(n) \pmod{n}$

RSA Function is a Permutation

- ♦ RSA function is a permutation: (1-1 and onto, bijective)
- - * $gcd(e,\phi(n))=1$ \Rightarrow inverse of $e \pmod{\phi(n)}$ exists \Rightarrow let d be the inverse s.t. $e \cdot d \equiv 1 \pmod{\phi(n)}$
 - * $\forall x_1, x_2 \in Z_n \text{ if } x_1^e \equiv x_2^e \pmod{n}$ $\Rightarrow (x_1^e)^d \equiv (x_2^e)^d \pmod{n}$ $\Rightarrow (x_1)^{1+k} \phi(n) \equiv (x_2)^{1+k} \phi(n) \pmod{n}$ $\Rightarrow x_1 \equiv x_2 \pmod{n}$

RSA Function is a Permutation

- ♦ RSA function is a permutation: (1-1 and onto, bijective)
- $\Rightarrow \text{ Goal: "} \forall x_1, x_2 \in Z_n \text{ if } x_1^e \equiv x_2^e \text{ (mod n) then } x_1 = x_2"$ $\forall x \neq r \cdot p, x^{p-1} \equiv 1 \text{ (mod p)}, \forall x \neq s \cdot q, x^{q-1} \equiv 1 \text{ (mod q)}$
 - $\Rightarrow \forall k, \forall x \neq r \cdot p, x^{k\phi(n)} \equiv 1 \pmod{p}, \forall x \neq s \cdot q, x^{k\phi(n)} \equiv 1 \pmod{q}$
- $CRT \Rightarrow \forall k, \forall x, x^{k\phi(n)+1} \equiv x \pmod{p}, x^{k\phi(n)+1} \equiv x \pmod{q}$
 - $\Rightarrow \forall k, \forall x, x^{k\phi(n)+1} \equiv x \pmod{n}$
 - * $gcd(e,\phi(n))=1 \implies inverse of e \pmod{\phi(n)}$ exists
 - \Rightarrow let d be the inverse s.t. $e \cdot d \equiv 1 \pmod{\phi(n)}$
 - $\star \forall x_1, x_2 \in Z_n \text{ if } x_1^e \equiv x_2^e \pmod{n}$

Note: Euler Thm is valid only when
$$x \in \mathbb{Z}_n^*$$

$$\Rightarrow (x_1^e)^d \equiv (x_2^e)^d \pmod{n}$$
$$\Rightarrow (x_1)^{1+k} \phi(n) \equiv (x_2)^{1+k} \phi(n) \pmod{n}$$

$$\Rightarrow$$
 $x_1 \equiv x_2 \pmod{n}$

♦ Most popular PKC in practice

- Most popular PKC in practice
- ♦ Tens of dedicated crypto-processors are specifically designed to perform modular multiplication in a very efficient way.

- ♦ Most popular PKC in practice
- ♦ Tens of dedicated crypto-processors are specifically designed to perform modular multiplication in a very efficient way.
- Disadvantage: long key length,
 complex key generation scheme,
 deterministic encryption

- ♦ Most popular PKC in practice
- ♦ Tens of dedicated crypto-processors are specifically designed to perform modular multiplication in a very efficient way.
- Disadvantage: long key length,
 complex key generation scheme,
 deterministic encryption
- ♦ For acceptable level of security in commercial applications, 1024-bit (300 digits) keys are used. For a symmetric key system with comparable security, about 100 bits keys are used.

- ♦ Most popular PKC in practice
- ♦ Tens of dedicated crypto-processors are specifically designed to perform modular multiplication in a very efficient way.
- Disadvantage: long key length,
 complex key generation scheme,
 deterministic encryption
- ♦ For acceptable level of security in commercial applications, 1024-bit (300 digits) keys are used. For a symmetric key system with comparable security, about 100 bits keys are used.
- ♦ In constrained devices such as smart cards, cellular phones and PDAs, it is hard to store, communicate keys or handle operations involving large integers

- - * maple('p := nextprime(1897345789)')

- - * maple('p := nextprime(1897345789)')
 - * maple('q := nextprime(278478934897)')

```
    rsatest.m
    * maple('p := nextprime(1897345789)')
    * maple('q := nextprime(278478934897)')
    * maple('n := p*q');
```

```
    rsatest.m
    * maple('p := nextprime(1897345789)')
    * maple('q := nextprime(278478934897)')
    * maple('n := p*q');
    * maple('x := 101');
```

```
* rsatest.m
 * maple('p := nextprime(1897345789)')
 * maple('q := nextprime(278478934897)')
 * maple('n := p*q');
 * maple('x := 101');
 * maple('e := nextprime(12345678)')
```

```
    rsatest.m
    * maple('p := nextprime(1897345789)')
    * maple('q := nextprime(278478934897)')
    * maple('n := p*q');
    * maple('x := 101');
    * maple('e := nextprime(12345678)')
```

```
* maple('p := nextprime(1897345789)')
   * maple('q := nextprime(278478934897)')
   * maple('n := p*q');
                                          Very likely to be relatively
                                          prime with (p-1)(q-1)
   * maple('x := 101');
   * maple('e := nextprime(12345678)')
   * maple('d := e \&^{(-1)} \mod ((p-1)*(q-1))')
                                       extended Euclidean algo.
```

```
* maple('p := nextprime(1897345789)')
   * maple('q := nextprime(278478934897)')
   * maple('n := p*q');
                                           Very likely to be relatively
                                           prime with (p-1)(q-1)
   * maple('x := 101');
   * maple('e := nextprime(12345678)')
   * maple('d := e \&^{(-1)} \mod ((p-1)*(q-1))')
   * maple('y := x \&^{(e)} \mod n')
                                       extended Euclidean algo.
```

```
* maple('p := nextprime(1897345789)')
   * maple('q := nextprime(278478934897)')
   * maple('n := p*q');
                                          Very likely to be relatively
                                           prime with (p-1)(q-1)
   * maple('x := 101');
   * maple('e := nextprime(12345678)')
   * maple('d := e \&^{(-1)} \mod ((p-1)*(q-1))')
   * maple('y := x \&^{(e)} \mod n')
   * maple('xp := y&^(d) \mod n')
                                       extended Euclidean algo.
```

```
p = next\_prime(mpz(1897345789)) # 1897345817
```

```
p = next_prime(mpz(1897345789)) # 1897345817
q = next_prime(mpz(278478934897)) # 278478934961
```

```
p = next_prime(mpz(1897345789)) # 1897345817
q = next_prime(mpz(278478934897)) # 278478934961
n = p * q # 528370842370868408137
```

```
p = next_prime(mpz(1897345789)) # 1897345817

q = next_prime(mpz(278478934897)) # 278478934961

n = p * q # 528370842370868408137

phi = (p-1)*(q-1) # 528370842090492127360
```

```
p = next_prime(mpz(1897345789)) # 1897345817

q = next_prime(mpz(278478934897)) # 278478934961

n = p * q # 528370842370868408137

phi = (p-1)*(q-1) # 528370842090492127360

e = next_prime(mpz(1897345789)) # 1897345817
```

```
p = next_prime(mpz(1897345789)) # 1897345817

q = next_prime(mpz(278478934897)) # 278478934961

n = p * q # 528370842370868408137

phi = (p-1)*(q-1) # 528370842090492127360

e = next_prime(mpz(1897345789)) # 1897345817

d = invert(e, phi) # 139387972146660337833
```

```
p = next_prime(mpz(1897345789)) # 1897345817

q = next_prime(mpz(278478934897)) # 278478934961

n = p * q # 528370842370868408137

phi = (p-1)*(q-1) # 528370842090492127360

e = next_prime(mpz(1897345789)) # 1897345817

d = invert(e, phi) # 139387972146660337833

plaintext = 101
```

```
p = next prime(mpz(1897345789))
                                 # 1897345817
q = next prime(mpz(278478934897)) # 278478934961
                                   # 528370842370868408137
n = p * q
phi = (p-1)*(q-1)
                                   # 528370842090492127360
e = next prime(mpz(1897345789))
                                   # 1897345817
d = invert(e, phi)
                                   # 139387972146660337833
plaintext = 101
ciphertext = powmod(plaintext, e, n)
                                   # 479679342785929350234
```

```
p = next prime(mpz(1897345789))
                                  # 1897345817
q = next prime(mpz(278478934897)) # 278478934961
                                   # 528370842370868408137
n = p * q
phi = (p-1)*(q-1)
                                   # 528370842090492127360
e = next prime(mpz(1897345789))
                                   # 1897345817
d = invert(e, phi)
                                    # 139387972146660337833
plaintext = 101
ciphertext = powmod(plaintext, e, n)
                                   # 479679342785929350234
decrypted = powmod(ciphertext, d, n)
                                    # 101
```

♦ M.O. Rabin, "Digitalized Signatures and Public-key Functions As Intractable As Factorization", Tech. Rep. LCS/TR212, MIT, 1979

 \diamond Choose two large prime numbers: p, q (keep them secret!!)

- \diamond Choose two large prime numbers: p, q (keep them secret!!)
- \diamond Calculate the modulus $n = p \cdot q$ (make it public)

- \diamond Choose two large prime numbers: p, q (keep them secret!!)
- \diamond Calculate the modulus $n = p \cdot q$ (make it public)
- ♦ Public Key

- \diamond Choose two large prime numbers: p, q (keep them secret!!)
- \diamond Calculate the modulus $n = p \cdot q$ (make it public)
- ♦ Public Key
 n
- \Rightarrow Private Key p, q

♦ Alice want to encrypt a message m (with some fixed format) for Bob

- Alice want to encrypt a message m (with some fixed format) for Bob
- \Rightarrow Alice obtains Bob's authentic public key n

- ♦ Alice want to encrypt a message m (with some fixed format) for Bob
- ♦ Alice obtains Bob's authentic public key n
- \Rightarrow Alice represents the message as an integer m in the interval [0, n-1]

- ♦ Alice want to encrypt a message m (with some fixed format) for Bob
- ♦ Alice obtains Bob's authentic public key n
- \Rightarrow Alice represents the message as an integer m in the interval [0, n-1]
- \Rightarrow Alice computes the modular square $c \equiv m^2 \pmod{n}$

- ♦ Alice want to encrypt a message m (with some fixed format) for Bob
- ♦ Alice obtains Bob's authentic public key n
- \Rightarrow Alice represents the message as an integer m in the interval [0, n-1]
- \Rightarrow Alice computes the modular square $c \equiv m^2 \pmod{n}$
- ♦ Alice sends the ciphertext c to Bob

- ♦ Alice want to encrypt a message m (with some fixed format) for Bob
- ♦ Alice obtains Bob's authentic public key n
- \Rightarrow Alice represents the message as an integer m in the interval [0, n-1]
- \Rightarrow Alice computes the modular square $c \equiv m^2 \pmod{n}$
- ♦ Alice sends the ciphertext c to Bob
- \diamond Bob decrypts c using his private key p and q

- ♦ Alice want to encrypt a message m (with some fixed format) for Bob
- ♦ Alice obtains Bob's authentic public key n
- \diamond Alice represents the message as an integer m in the interval [0, n-1]
- \Rightarrow Alice computes the modular square $c \equiv m^2 \pmod{n}$
- \diamond Alice sends the ciphertext c to Bob
- \Rightarrow Bob decrypts c using his private key p and q
- ♦ Bob computes the four square roots ±m₁, ±m₂ using CRT, one of them satisfying the fixed message format is the recovered message

 \diamond The range of the Rabin function is not the whole set of Z_n^* (compare with RSA).

- \diamond The range of the Rabin function is not the whole set of Z_n^* (compare with RSA).
 - * The range covers all the quadratic residues. (for a prime modulus, the number of quadratic residues in Z_p^* is (p-1)/2; for a composite integer $n=p\cdot q$, the number of quadratic residues in Z_n^* is (p-1)(q-1)/4)

- \diamond The range of the Rabin function is not the whole set of Z_n^* (compare with RSA).
 - * The range covers all the quadratic residues. (for a prime modulus, the number of quadratic residues in Z_p^* is (p-1)/2; for a composite integer $n=p\cdot q$, the number of quadratic residues in Z_n^* is (p-1)(q-1)/4)
 - * In order to let the Rabin function have inverse, it is necessary to make the Rabin function a permutation, ie. 1-1 and onto. Therefore, the number of elements in the domain of the Rabin function should also be (p-1)(q-1)/4 for n=p·q. There are 4 possible numbers with their square equal to y, and we have to make 3 of them illegal.

Number of Quadratic Residues

For a prime modulus p: number of QR_p's in Z_p* is (p-1)/2 pf: find a primitive g, at least {g², g⁴, ... g^{p-1}} are QR_p's assume there are (p+1)/2 QRs, since there are exactly two square roots of a QR modulo p there are p+1 square roots for these (p+1)/2 QRs, i.e. there must be at least two pairs of square roots are the same (pigeon-hole), i.e. two out of these (p+1)/2 QRs are the same, contradiction

Number of Quadratic Residues

- ♦ For a prime modulus p: number of QR_p's in Z_p* is (p-1)/2 pf: find a primitive g, at least {g², g⁴, ... gp-1} are QR_p's assume there are (p+1)/2 QRs, since there are exactly two square roots of a QR modulo p there are p+1 square roots for these (p+1)/2 QRs, i.e. there must be at least two pairs of square roots are the same (pigeon-hole), i.e. two out of these (p+1)/2 QRs are the same, contradiction
- ♦ For a composite modulus p·q: number of QR_n's in $Z_{p\cdot q}^*$ is (p-1)(q-1)/4 pf: find a common primitive in Z_p^* and Z_q^* g, at least $\{g^2, g^4, ..., g^{p-1}, ..., g^{q-1}, ..., g^{\lambda(n)}\}$ are QR_n's, where $\lambda(n) = \text{lcm}(p-1,q-1)$ can be as large as (p-1)(q-1)/2, this set has (p-1)(q-1)/4 distinct elements assume there are (p-1)(q-1)/4+1 QR_n's in Z_n^* , since there are four square roots of a QR modulo p·q, these QR_n's have (p-1)(q-1)+4 square roots in total. There must be some repeated elements in this QR_n, therefore, there are at most (p-1)(q-1)/4 QR_n's in Z_n^*

- \Rightarrow maple('p:= nextprime(189734535789)') % 189734535811 = 4 k + 3
- maple('p mod 4')

```
    maple('p:= nextprime(189734535789)') % 189734535811 = 4 k + 3
    maple('p mod 4')
    maple('q:= nextprime(27847815934897)') % 27847815934931 = 4 k + 3
    maple('q mod 4')
```

```
    maple('p:= nextprime(189734535789)')    % 189734535811 = 4 k + 3
    maple('p mod 4')
    maple('q:= nextprime(27847815934897)')    % 27847815934931 = 4 k + 3
    maple('q mod 4')
    maple('n:=p*q');
```

 \Rightarrow maple('c1:= c mod p')

```
⇒ maple('p:= nextprime(189734535789)')
⇒ maple('p mod 4')
⇒ maple('q:= nextprime(27847815934897)')
⇒ 27847815934931 = 4 k + 3
⇒ maple('q mod 4')
⇒ maple('n:=p*q');
⇒ maple('x:=070411111422141711030000')
⇒ maple('c:= x&^2 mod n')
⇒ maple('c1:= c mod p')
⇒ maple('r1:= c1&^((p+1)/4) mod p')
> maple('r1&^2 mod p')
⇒ maple('r1&^2 mod p')
```

```
\Rightarrow maple('p:= nextprime(189734535789)') % 189734535811 = 4 k + 3

→ maple('p mod 4')

\Rightarrow maple('q:= nextprime(27847815934897)') % 27847815934931 = 4 k + 3

    maple('x:=0704111111422141711030000') % text2int('helloworld')

\Rightarrow maple('c:= x&^2 mod n')
\Rightarrow maple('c1:= c mod p')
\Rightarrow maple('r1:= c1&^((p+1)/4) mod p')
                                                % maple('r1&^2 mod p')
\Rightarrow maple('c2:= c mod q')
\Rightarrow \text{ maple}(\text{'r2}:=\text{c2}\&^{(q+1)/4}) \text{ mod q'})
                                                % maple('r2&^2 mod q')
\Rightarrow maple('m1:= chrem([r1, r2], [p, q])') % 3704440302544264662351219
```

```
    maple('p:= nextprime(189734535789)')

                                             \% 189734535811 = 4 k + 3

→ maple('p mod 4')

\Rightarrow maple('q:= nextprime(27847815934897)') % 27847815934931 = 4 k + 3

    maple('x:=0704111111422141711030000') % text2int('helloworld')

\Rightarrow maple('c:= x&^2 mod n')
\Rightarrow maple('c1:= c mod p')
\Rightarrow maple('r1:= c1&^((p+1)/4) mod p')
                                              % maple('r1&^2 mod p')
\Rightarrow maple('c2:= c mod q')
\Rightarrow maple('r2:= c2&^((q+1)/4) mod q')
                                              % maple('r2&^2 mod q')
\Rightarrow maple('m1:= chrem([r1, r2], [p, q])') % 3704440302544264662351219
\Rightarrow maple('m2:= chrem([-r1, r2], [p, q])') % 704111111422141711030000
```

```
    maple('p:= nextprime(189734535789)')

                                            \% 189734535811 = 4 k + 3

→ maple('p mod 4')

\Rightarrow maple('q:= nextprime(27847815934897)') % 27847815934931 = 4 k + 3

    maple('x:=0704111111422141711030000') % text2int('helloworld')

\Rightarrow maple('c:= x&^2 mod n')
\Rightarrow maple('c1:= c mod p')
\Rightarrow maple('r1:= c1&^((p+1)/4) mod p')
                                             % maple('r1&^2 mod p')
\Rightarrow maple('c2:= c mod q')
\Rightarrow maple('r2:= c2&^((q+1)/4) mod q')
                                             % maple('r2&^2 mod q')
\Rightarrow maple('m1:= chrem([r1, r2], [p, q])') % 3704440302544264662351219

    maple('m2:= chrem([-r1, r2], [p, q])') % 70411111422141711030000

\Rightarrow maple('m3:= chrem([r1, -r2], [p, q])') % 5213281318342160554284041
```

```
    maple('p:= nextprime(189734535789)')

                                           \% 189734535811 = 4 k + 3

→ maple('p mod 4')

\Rightarrow maple('q:= nextprime(27847815934897)') % 27847815934931 = 4 k + 3

    maple('x:=0704111111422141711030000') % text2int('helloworld')

\Rightarrow maple('c:= x&^2 mod n')
\Rightarrow maple('c1:= c mod p')
\Rightarrow maple('r1:= c1&^((p+1)/4) mod p')
                                           % maple('r1&^2 mod p')
\Rightarrow maple('c2:= c mod q')
\Rightarrow maple('r2:= c2&^((q+1)/4) mod q')
                                           % maple('r2&^2 mod q')
% 3704440302544264662351219
\Rightarrow maple('m2:= chrem([-r1, r2], [p, q])') % 70411111422141711030000
\Rightarrow maple('m3:= chrem([r1, -r2], [p, q])') % 5213281318342160554284041

    maple('m4:= chrem([-r1, -r2], [p, q])') % 1579252127220037602962822
```

♦ Break RSA means 'inverting RSA function without knowing the trapdoor'

♦ Break RSA means 'inverting RSA function without knowing the trapdoor' $y \equiv x^e \pmod{n}$

- ♦ **Break RSA** means 'inverting RSA function without knowing the trapdoor' $y \equiv x^e \pmod{n}$
- ♦ Factor the modulus ⇒ Break RSA

- ♦ Break RSA means 'inverting RSA function without knowing the trapdoor' $y \equiv x^e \pmod{n}$
- \diamond Factor the modulus \Rightarrow Break RSA
 - * If we can factor the modulus, we can break RSA

- ♦ **Break RSA** means 'inverting RSA function without knowing the trapdoor' $y \equiv x^e \pmod{n}$
- \Rightarrow Factor the modulus \Rightarrow Break RSA
 - * If we can factor the modulus, we can break RSA
 - * If we can break RSA, we don't know whether we can factor the modulus...open problem (with negative evidences)

- ♦ Break RSA means 'inverting RSA function without knowing the trapdoor' $y \equiv x^e \pmod{n}$
- \Rightarrow Factor the modulus \Rightarrow Break RSA
 - * If we can factor the modulus, we can break RSA
 - * If we can break RSA, we don't know whether we can factor the modulus...open problem (with negative evidences)
- ♦ Factor the modulus ⇔ Calculate private key d

- ♦ Break RSA means 'inverting RSA function without knowing the trapdoor' $y \equiv x^e \pmod{n}$
- ♦ Factor the modulus ⇒ Break RSA
 - * If we can factor the modulus, we can break RSA
 - * If we can break RSA, we don't know whether we can factor the modulus...open problem (with negative evidences)
- ♦ Factor the modulus ⇒ Calculate private key d
 - * If we can factor the modulus, we can calculate the private exponent d (the trapdoor information).

- ♦ Break RSA means 'inverting RSA function without knowing the trapdoor' $y \equiv x^e \pmod{n}$
- \Rightarrow Factor the modulus \Rightarrow Break RSA
 - * If we can factor the modulus, we can break RSA
 - * If we can break RSA, we don't know whether we can factor the modulus...open problem (with negative evidences)
- ♦ Factor the modulus ⇔ Calculate private key d
 - * If we can factor the modulus, we can calculate the private exponent d (the trapdoor information).
 - * If we have the private exponent d, we can factor the modulus.

- ♦ Break RSA means 'inverting RSA function without knowing the trapdoor' $y \equiv x^e \pmod{n}$
- \Rightarrow Factor the modulus \Rightarrow Break RSA
 - * If we can factor the modulus, we can break RSA
 - * If we can break RSA, we don't know whether we can factor the modulus...open problem (with negative evidences)
- ♦ Factor the modulus ⇔ Calculate private key d
 - * If we can factor the modulus, we can calculate the private exponent d (the trapdoor information).
 - * If we have the private exponent d, we can factor the modulus.

Security of Rabin Function

Security of Rabin function is equivalent to integer factoring

Security of Rabin Function

- Security of Rabin function is equivalent to integer factoring
- \Rightarrow inverting 'y \equiv f(x) \equiv x² (mod n)' without knowing p and q \Leftrightarrow factoring n

Security of Rabin Function

- Security of Rabin function is equivalent to integer factoring
- \Rightarrow inverting 'y \equiv f(x) \equiv x² (mod n)' without knowing p and q \Leftrightarrow factoring n
 - * <=
- if you can factor $n = p \cdot q$ in polynomial time
- you can solve $y \equiv x_1^2 \pmod{p}$ and $y \equiv x_2^2 \pmod{q}$ easily
- using CRT you can find x which is $f^{-1}(y)$

Security of Rabin Function

- Security of Rabin function is equivalent to integer factoring
- \Rightarrow inverting 'y \equiv f(x) \equiv x² (mod n)' without knowing p and q \Leftrightarrow factoring n

* <=

- if you can factor $n = p \cdot q$ in polynomial time
- you can solve $y \equiv x_1^2 \pmod{p}$ and $y \equiv x_2^2 \pmod{q}$ easily
- using CRT you can find x which is $f^{-1}(y)$

 $\star \Longrightarrow$

- given a quadratic residue y if you can find the four square roots $\pm x_1$ and $\pm x_2$ for y in polynomial time
- you can factor n by trying $gcd(x_1-x_2, n)$ and $gcd(x_1+x_2, n)$

Let n be an integer and suppose there exist integers x and y with x² ≡ y² (mod n), but x ≠ ±y (mod n). Then ① n is composite,
 2 both gcd(x-y, n) and gcd(x+y, n) are nontrivial factors of n.

Let n be an integer and suppose there exist integers x and y with x² ≡ y² (mod n), but x ≠ ±y (mod n). Then ① n is composite,
 2 both gcd(x-y, n) and gcd(x+y, n) are nontrivial factors of n.
 Proof:

let $d = \gcd(x-y, n)$.

Let n be an integer and suppose there exist integers x and y with x² ≡ y² (mod n), but x ≠ ±y (mod n). Then ① n is composite,
 2 both gcd(x-y, n) and gcd(x+y, n) are nontrivial factors of n.

Proof:

```
let d = gcd(x-y, n).
```

Case 1: assume $d = n \Rightarrow x \equiv y \pmod{n}$ contradiction

Let n be an integer and suppose there exist integers x and y with x² ≡ y² (mod n), but x ≠ ±y (mod n). Then ① n is composite,
 2 both gcd(x-y, n) and gcd(x+y, n) are nontrivial factors of n.

Proof:

```
let d = gcd(x-y, n).
```

Case 1: assume $d = n \Rightarrow x \equiv y \pmod{n}$ contradiction

Let n be an integer and suppose there exist integers x and y with x² ≡ y² (mod n), but x ≠ ±y (mod n). Then ① n is composite,
 2 both gcd(x-y, n) and gcd(x+y, n) are nontrivial factors of n.

Proof:

```
let d = gcd(x-y, n).
```

Case 1: assume $d = n \Rightarrow x \equiv y \pmod{n}$ contradiction

$$x^2$$
 $y^2 \pmod{n} \Rightarrow x^2 - y^2 = (x-y)(x+y) = k \cdot n$

- Let n be an integer and suppose there exist integers x and y with x² ≡ y² (mod n), but x ≠ ±y (mod n). Then ① n is composite,
 2 both gcd(x-y, n) and gcd(x+y, n) are nontrivial factors of n.
 - Proof:

```
let d = gcd(x-y, n).
```

Case 1: assume $d = n \Rightarrow x \equiv y \pmod{n}$ contradiction

$$x^2$$
 $y^2 \pmod{n} \Rightarrow x^2 - y^2 = (x-y)(x+y) = k \cdot n$
d=1 means gcd(x-y, n)=1 \Rightarrow

Let n be an integer and suppose there exist integers x and y with x² ≡ y² (mod n), but x ≠ ±y (mod n). Then ① n is composite,
② both gcd(x-y, n) and gcd(x+y, n) are nontrivial factors of n.
Proof:

```
let d = gcd(x-y, n).
Case 1: assume d = n \Rightarrow x \equiv y \pmod{n} contradiction
```

$$x^2$$
 $y^2 \pmod{n} \Rightarrow x^2 - y^2 = (x-y)(x+y) = k \cdot n$
 $d=1 \text{ means } \gcd(x-y, n)=1 \Rightarrow$
 $n \mid x+y \Rightarrow x \equiv -y \pmod{n} \text{ contradiction}$

Let n be an integer and suppose there exist integers x and y with x² ≡ y² (mod n), but x ≠ ±y (mod n). Then ① n is composite,
 ② both gcd(x-y, n) and gcd(x+y, n) are nontrivial factors of n.
 Proof:
 let d = gcd(x-y, n).

Case 1: assume $d = n \Rightarrow x \equiv y \pmod{n}$ contradiction

Case 2: assume d is 1 (the trivial factor)

$$x^2$$
 $y^2 \pmod{n} \Rightarrow x^2 - y^2 = (x-y)(x+y) = k \cdot n$

d=1 means $gcd(x-y, n)=1 \Rightarrow$

 $n \mid x+y \Rightarrow x \equiv -y \pmod{n}$ contradiction

Case 1 and 2 implies that 1 < d < n

i.e. d must be a nontrivial factor of n

```
\Rightarrow x^2 \equiv y^2 \pmod{p} \text{ implies } x \equiv \pm y \pmod{p} \text{ since } p \mid (x+y)(x-y)
implies p \mid (x+y) \text{ or } p \mid (x-y),
i.e. x \equiv -y \pmod{p} \text{ or } x \equiv y \pmod{p}
```

- $\Rightarrow x^2 \equiv y^2 \pmod{p} \text{ implies } x \equiv \pm y \pmod{p} \text{ since } p \mid (x+y)(x-y)$ implies $p \mid (x+y) \text{ or } p \mid (x-y),$ i.e. $x \equiv -y \pmod{p} \text{ or } x \equiv y \pmod{p}$
- \Rightarrow $x^2 \equiv y^2 \pmod{n}$ pq | (x+y)(x-y) implies the following 4 possibilities

- $\Rightarrow x^2 \equiv y^2 \pmod{p} \text{ implies } x \equiv \pm y \pmod{p} \text{ since } p \mid (x+y)(x-y)$ implies $p \mid (x+y) \text{ or } p \mid (x-y)$,
 i.e. $x \equiv -y \pmod{p} \text{ or } x \equiv y \pmod{p}$
- $x^2 \equiv y^2 \pmod{n}$ pq | (x+y)(x-y) implies the following 4 possibilities 1. pq | (x+y) i.e. x ≡ -y (mod n)

- $\Rightarrow x^2 \equiv y^2 \pmod{p} \text{ implies } x \equiv \pm y \pmod{p} \text{ since } p \mid (x+y)(x-y)$ implies $p \mid (x+y) \text{ or } p \mid (x-y)$,
 i.e. $x \equiv -y \pmod{p} \text{ or } x \equiv y \pmod{p}$
- \Rightarrow $x^2 \equiv y^2 \pmod{n}$ pq | (x+y)(x-y) implies the following 4 possibilities
 - 1. pq | (x+y) i.e. $x \equiv -y \pmod{n}$
 - 2. pq | (x-y) i.e. $x \equiv y \pmod{n}$

- $\Rightarrow x^2 \equiv y^2 \pmod{p} \text{ implies } x \equiv \pm y \pmod{p} \text{ since } p \mid (x+y)(x-y)$ implies $p \mid (x+y) \text{ or } p \mid (x-y)$,
 i.e. $x \equiv -y \pmod{p} \text{ or } x \equiv y \pmod{p}$
- \Rightarrow $x^2 \equiv y^2 \pmod{n}$ pq | (x+y)(x-y) implies the following 4 possibilities
 - 1. pq | (x+y) i.e. $x \equiv -y \pmod{n}$
 - 2. pq | (x-y) i.e. $x \equiv y \pmod{n}$
 - 3. $p \mid (x+y)$ and $q \mid (x-y)$ i.e. $x \equiv -y \pmod{p}$ and $x \equiv y \pmod{q}$

- $\Rightarrow x^2 \equiv y^2 \pmod{p} \text{ implies } x \equiv \pm y \pmod{p} \text{ since } p \mid (x+y)(x-y)$ implies $p \mid (x+y) \text{ or } p \mid (x-y)$,
 i.e. $x \equiv -y \pmod{p} \text{ or } x \equiv y \pmod{p}$
- \Rightarrow $x^2 \equiv y^2 \pmod{n}$ pq | (x+y)(x-y) implies the following 4 possibilities
 - 1. pq | (x+y) i.e. $x \equiv -y \pmod{n}$
 - 2. pq | (x-y) i.e. $x \equiv y \pmod{n}$
 - 3. p | (x+y) and q | (x-y) i.e. $x \equiv -y \pmod{p}$ and $x \equiv y \pmod{q}$
 - 4. $q \mid (x+y)$ and $p \mid (x-y)$ i.e. $x \equiv -y \pmod{q}$ and $x \equiv y \pmod{p}$

- $\Rightarrow x^2 \equiv y^2 \pmod{p} \text{ implies } x \equiv \pm y \pmod{p} \text{ since } p \mid (x+y)(x-y)$ implies $p \mid (x+y) \text{ or } p \mid (x-y)$,
 i.e. $x \equiv -y \pmod{p} \text{ or } x \equiv y \pmod{p}$
- \Rightarrow $x^2 \equiv y^2 \pmod{n}$ pq | (x+y)(x-y) implies the following 4 possibilities
 - 1. pq | (x+y) i.e. $x \equiv -y \pmod{n}$
 - 2. pq | (x-y) i.e. $x \equiv y \pmod{n}$
 - 3. $p \mid (x+y)$ and $q \mid (x-y)$ i.e. $x \equiv -y \pmod{p}$ and $x \equiv y \pmod{q}$
 - 4. q | (x+y) and p | (x-y) i.e. $x \equiv -y \pmod{q}$ and $x \equiv y \pmod{p}$
 - * Case 1 and case 2 are useless for factorization

- $\Rightarrow x^2 \equiv y^2 \pmod{p} \text{ implies } x \equiv \pm y \pmod{p} \text{ since } p \mid (x+y)(x-y)$ implies $p \mid (x+y) \text{ or } p \mid (x-y)$,
 i.e. $x \equiv -y \pmod{p} \text{ or } x \equiv y \pmod{p}$
- \Rightarrow $x^2 \equiv y^2 \pmod{n}$ pq | (x+y)(x-y) implies the following 4 possibilities
 - 1. pq | (x+y) i.e. $x \equiv -y \pmod{n}$
 - 2. pq | (x-y) i.e. $x \equiv y \pmod{n}$
 - 3. $p \mid (x+y)$ and $q \mid (x-y)$ i.e. $x \equiv -y \pmod{p}$ and $x \equiv y \pmod{q}$
 - 4. $q \mid (x+y)$ and $p \mid (x-y)$ i.e. $x \equiv -y \pmod{q}$ and $x \equiv y \pmod{p}$
 - * Case 1 and case 2 are useless for factorization
 - * Case 3 leads to the factorization of n, i.e. gcd(x+y, n) = p and gcd(x-y, n) = q

- $\Rightarrow x^2 \equiv y^2 \pmod{p} \text{ implies } x \equiv \pm y \pmod{p} \text{ since } p \mid (x+y)(x-y)$ $\text{implies } p \mid (x+y) \text{ or } p \mid (x-y),$
 - i.e. $x \equiv -y \pmod{p}$ or $x \equiv y \pmod{p}$
- \Rightarrow $x^2 \equiv y^2 \pmod{n}$ pq | (x+y)(x-y) implies the following 4 possibilities
 - 1. pq | (x+y) i.e. $x \equiv -y \pmod{n}$
 - 2. pq | (x-y) i.e. $x \equiv y \pmod{n}$
 - 3. $p \mid (x+y)$ and $q \mid (x-y)$ i.e. $x \equiv -y \pmod{p}$ and $x \equiv y \pmod{q}$
 - 4. $q \mid (x+y)$ and $p \mid (x-y)$ i.e. $x \equiv -y \pmod{q}$ and $x \equiv y \pmod{p}$
 - * Case 1 and case 2 are useless for factorization
 - * Case 3 leads to the factorization of n, i.e. gcd(x+y, n) = p and gcd(x-y, n) = q
 - * Case 4 leads to the factorization of n, i.e. gcd(x+y, n) = q and gcd(x-y, n) = p

♦ This principle is used in almost all factoring algorithms.

- ♦ This principle is used in almost all factoring algorithms.
- ♦ Why is it working?

- ♦ This principle is used in almost all factoring algorithms.
- ♦ Why is it working?
 - * take $n = p \cdot q$ (p and q are prime) for example

- ♦ This principle is used in almost all factoring algorithms.
- ♦ Why is it working?
 - * take $n = p \cdot q$ (p and q are prime) for example
 - * $x^2 \equiv y^2 \pmod{n}$ implies $x^2 \equiv y^2 \pmod{p}$ and $x^2 \equiv y^2 \pmod{q}$

- ♦ This principle is used in almost all factoring algorithms.
- ♦ Why is it working?
 - * take $n = p \cdot q$ (p and q are prime) for example
 - * $x^2 \equiv y^2 \pmod{n}$ implies $x^2 \equiv y^2 \pmod{p}$ and $x^2 \equiv y^2 \pmod{q}$
 - * we know ' $x \equiv \pm y \pmod{p}$ are the only solution to $x^2 \equiv y^2 \pmod{p}$ ' and ' $x \equiv \pm y \pmod{q}$ are the only solution to $x^2 \equiv y^2 \pmod{q}$ '

- ♦ This principle is used in almost all factoring algorithms.
- ♦ Why is it working?
 - * take $n = p \cdot q$ (p and q are prime) for example
 - * $x^2 \equiv y^2 \pmod{n}$ implies $x^2 \equiv y^2 \pmod{p}$ and $x^2 \equiv y^2 \pmod{q}$
 - * we know 'x $\equiv \pm y \pmod{p}$ are the only solution to $x^2 \equiv y^2 \pmod{p}$ ' and 'x $\equiv \pm y \pmod{q}$ are the only solution to $x^2 \equiv y^2 \pmod{q}$ '
 - * therefore, from CRT we know $x^2 \equiv y^2 \pmod{n}$ has four solutions,

- ♦ This principle is used in almost all factoring algorithms.
- ♦ Why is it working?
 - * take $n = p \cdot q$ (p and q are prime) for example
 - * $x^2 \equiv y^2 \pmod{n}$ implies $x^2 \equiv y^2 \pmod{p}$ and $x^2 \equiv y^2 \pmod{q}$
 - * we know 'x $\equiv \pm y \pmod{p}$ are the only solution to $x^2 \equiv y^2 \pmod{p}$ ' and 'x $\equiv \pm y \pmod{q}$ are the only solution to $x^2 \equiv y^2 \pmod{q}$ '
 - * therefore, from CRT we know $x^2 \equiv y^2 \pmod{n}$ has four solutions, $x \equiv y \pmod{p} \text{ and } x \equiv y \pmod{q} \qquad \Rightarrow \qquad x \equiv y \pmod{n}$

- ♦ This principle is used in almost all factoring algorithms.
- ♦ Why is it working?
 - * take $n = p \cdot q$ (p and q are prime) for example
 - * $x^2 \equiv y^2 \pmod{n}$ implies $x^2 \equiv y^2 \pmod{p}$ and $x^2 \equiv y^2 \pmod{q}$
 - * we know ' $x \equiv \pm y \pmod{p}$ are the only solution to $x^2 \equiv y^2 \pmod{p}$ ' and ' $x \equiv \pm y \pmod{q}$ are the only solution to $x^2 \equiv y^2 \pmod{q}$ '
 - * therefore, from CRT we know $x^2 \equiv y^2 \pmod{n}$ has four solutions,

```
\Rightarrow x \equiv y \pmod{p} \text{ and } x \equiv y \pmod{q} \qquad \Rightarrow \qquad x \equiv y \pmod{n}
```

$$\Rightarrow x \equiv -y \pmod{p} \text{ and } x \equiv -y \pmod{q} \qquad \Rightarrow \qquad x \equiv -y \pmod{n}$$

- ♦ This principle is used in almost all factoring algorithms.
- ♦ Why is it working?
 - * take $n = p \cdot q$ (p and q are prime) for example
 - * $x^2 \equiv y^2 \pmod{n}$ implies $x^2 \equiv y^2 \pmod{p}$ and $x^2 \equiv y^2 \pmod{q}$
 - * we know 'x $\equiv \pm y \pmod{p}$ are the only solution to $x^2 \equiv y^2 \pmod{p}$ ' and 'x $\equiv \pm y \pmod{q}$ are the only solution to $x^2 \equiv y^2 \pmod{q}$ '
 - * therefore, from CRT we know $x^2 \equiv y^2 \pmod{n}$ has four solutions,

```
\Rightarrow x \equiv y \pmod{p} \text{ and } x \equiv y \pmod{q} \qquad \Rightarrow \qquad x \equiv y \pmod{n}
```

$$\Rightarrow x \equiv -y \pmod{p} \text{ and } x \equiv -y \pmod{q} \qquad \Rightarrow \qquad x \equiv -y \pmod{n}$$

$$\Rightarrow x \equiv y \pmod{p} \text{ and } x \equiv -y \pmod{q} \qquad \Rightarrow \qquad x \equiv z \pmod{n}$$

- ♦ This principle is used in almost all factoring algorithms.
- ♦ Why is it working?
 - * take $n = p \cdot q$ (p and q are prime) for example
 - * $x^2 \equiv y^2 \pmod{n}$ implies $x^2 \equiv y^2 \pmod{p}$ and $x^2 \equiv y^2 \pmod{q}$
 - * we know 'x $\equiv \pm y \pmod{p}$ are the only solution to $x^2 \equiv y^2 \pmod{p}$ ' and 'x $\equiv \pm y \pmod{q}$ are the only solution to $x^2 \equiv y^2 \pmod{q}$ '
 - * therefore, from CRT we know $x^2 \equiv y^2 \pmod{n}$ has four solutions,

```
\Rightarrow x \equiv y \pmod{p} \text{ and } x \equiv y \pmod{q} \qquad \Rightarrow \qquad x \equiv y \pmod{n}
```

$$\Rightarrow x \equiv -y \pmod{p} \text{ and } x \equiv -y \pmod{q} \qquad \Rightarrow \qquad x \equiv -y \pmod{n}$$

$$\Rightarrow x \equiv y \pmod{p} \text{ and } x \equiv -y \pmod{q} \qquad \Rightarrow \qquad x \equiv z \pmod{n}$$

$$\Rightarrow x \equiv -y \pmod{p}$$
 and $x \equiv y \pmod{q}$ $\Rightarrow x \equiv -z \pmod{n}$

- ♦ This principle is used in almost all factoring algorithms.
- ♦ Why is it working?
 - * take $n = p \cdot q$ (p and q are prime) for example
 - * $x^2 \equiv y^2 \pmod{n}$ implies $x^2 \equiv y^2 \pmod{p}$ and $x^2 \equiv y^2 \pmod{q}$
 - * we know ' $x \equiv \pm y \pmod{p}$ are the only solution to $x^2 \equiv y^2 \pmod{p}$ ' and ' $x \equiv \pm y \pmod{q}$ are the only solution to $x^2 \equiv y^2 \pmod{q}$ '
 - * therefore, from CRT we know $x^2 \equiv y^2 \pmod{n}$ has four solutions,

```
\Rightarrow x \equiv y \pmod{p} \text{ and } x \equiv y \pmod{q} \qquad \Rightarrow \qquad x \equiv y \pmod{n}
```

- $\Rightarrow x \equiv -y \pmod{p}$ and $x \equiv -y \pmod{q}$ $\Rightarrow x \equiv -y \pmod{n}$
- $\Rightarrow x \equiv y \pmod{p} \text{ and } x \equiv -y \pmod{q} \qquad \Rightarrow \qquad x \equiv z \pmod{n}$
- $\Rightarrow x \equiv -y \pmod{p} \text{ and } x \equiv y \pmod{q} \qquad \Rightarrow \qquad x \equiv -z \pmod{n}$
- * as long as we have z (where $z \neq \pm y$), we can factor n into gcd(y-z, n) and gcd(y+z, n)

♦ Ex: Consider the roots of 4 (mod 35), i.e. solving x from $x^2 \equiv 4 \pmod{35}$

- ♦ Ex: Consider the roots of 4 (mod 35), i.e. solving x from $x^2 \equiv 4 \pmod{35}$
 - * try to take square root of both sides, we find $x = \pm 2$ or ± 12

- ♦ Ex: Consider the roots of 4 (mod 35), i.e. solving x from $x^2 \equiv 4 \pmod{35}$
 - * try to take square root of both sides, we find $x = \pm 2$ or ± 12
 - * i.e. $12^2 \equiv 2^2 \pmod{35}$, but $12 \neq \pm 2 \pmod{35}$

- ♦ Ex: Consider the roots of 4 (mod 35), i.e. solving x from $x^2 \equiv 4 \pmod{35}$
 - * try to take square root of both sides, we find $x = \pm 2$ or ± 12
 - * i.e. $12^2 \equiv 2^2 \pmod{35}$, but $12 \neq \pm 2 \pmod{35}$
 - * therefore 35 is composite

- ♦ Ex: Consider the roots of 4 (mod 35), i.e. solving x from $x^2 \equiv 4 \pmod{35}$
 - * try to take square root of both sides, we find $x = \pm 2$ or ± 12
 - * i.e. $12^2 \equiv 2^2 \pmod{35}$, but $12 \neq \pm 2 \pmod{35}$
 - * therefore 35 is composite
 - * gcd(12-2, 35) = 5 is a nontrivial factor of 35

- ♦ Ex: Consider the roots of 4 (mod 35), i.e. solving x from $x^2 \equiv 4 \pmod{35}$
 - * try to take square root of both sides, we find $x = \pm 2$ or ± 12
 - * i.e. $12^2 \equiv 2^2 \pmod{35}$, but $12 \neq \pm 2 \pmod{35}$
 - * therefore 35 is composite
 - * gcd(12-2, 35) = 5 is a nontrivial factor of 35
 - * gcd(12+2, 35) = 7 is a nontrivial factor of 35

Is *n* a composite number? \Rightarrow Let n > 1 be odd, write $n-1 = 2^k \cdot m$ with *m* being odd

- Is *n* a composite number? \Rightarrow Let n > 1 be odd, write $n-1 = 2^k \cdot m$ with *m* being odd
 - \diamond Choose a random integer *a* with 1 < a < n-1

- \Rightarrow Let n > 1 be odd, write $n-1 = 2^k \cdot m$ with m being odd
- \diamond Choose a random integer *a* with 1 < a < n-1
- ♦ Compute $b_0 \equiv a^m \pmod{n}$ if $b_0 \equiv \pm 1 \pmod{n}$, stop, n is probably prime

- \Rightarrow Let n > 1 be odd, write $n-1 = 2^k \cdot m$ with m being odd
- \diamond Choose a random integer *a* with 1 < a < n-1
- ♦ Compute $b_0 \equiv a^m \pmod{n}$ if $b_0 \equiv \pm 1 \pmod{n}$, stop, n is probably prime
- ♦ Compute $b_1 \equiv b_0^2 \pmod{n}$ if $b_1 \equiv 1 \pmod{n}$, stop, $gcd(b_0-1, n)$ is a factor of nif $b_1 \equiv -1 \pmod{n}$, stop, n is probably prime

- \Rightarrow Let n > 1 be odd, write $n-1 = 2^k \cdot m$ with m being odd
- \diamond Choose a random integer *a* with 1 < a < n-1
- ♦ Compute $b_0 \equiv a^m \pmod{n}$ if $b_0 \equiv \pm 1 \pmod{n}$, stop, n is probably prime
- ♦ Compute $b_1 \equiv b_0^2 \pmod{n}$ if $b_1 \equiv 1 \pmod{n}$, stop, $gcd(b_0-1, n)$ is a factor of nif $b_1 \equiv -1 \pmod{n}$, stop, n is probably prime
- \Rightarrow Compute $b_2 \equiv b_1^2 \pmod{n}$

- \Rightarrow Let n > 1 be odd, write $n-1 = 2^k \cdot m$ with m being odd
- \diamond Choose a random integer *a* with 1 < a < n-1
- ♦ Compute $b_0 \equiv a^m \pmod{n}$ if $b_0 \equiv \pm 1 \pmod{n}$, stop, n is probably prime
- ♦ Compute $b_1 \equiv b_0^2 \pmod{n}$ if $b_1 \equiv 1 \pmod{n}$, stop, $gcd(b_0-1, n)$ is a factor of nif $b_1 \equiv -1 \pmod{n}$, stop, n is probably prime
- $\Rightarrow \text{ Compute } b_2 \equiv b_1^2 \pmod{n}$

Is *n* a composite number?

- \Rightarrow Let n > 1 be odd, write $n-1 = 2^k \cdot m$ with m being odd
- \diamond Choose a random integer *a* with 1 < a < n-1
- ♦ Compute $b_0 \equiv a^m \pmod{n}$ if $b_0 \equiv \pm 1 \pmod{n}$, stop, n is probably prime
- ♦ Compute $b_1 \equiv b_0^2 \pmod{n}$ if $b_1 \equiv 1 \pmod{n}$, stop, $gcd(b_0-1, n)$ is a factor of nif $b_1 \equiv -1 \pmod{n}$, stop, n is probably prime
- $\Rightarrow \text{ Compute } b_2 \equiv b_1^2 \pmod{n}$

• • • • • • •

♦ Compute $b_{k-1} \equiv b_{k-2}^{2} \pmod{n}$ if $b_{k-1} \equiv 1 \pmod{n}$, stop, $gcd(b_{k-2}-1, n)$ is a factor of nif $b_{k-1} \equiv -1 \pmod{n}$, stop, n is probably prime

Is *n* a composite number?

- \Rightarrow Let n > 1 be odd, write $n-1 = 2^k \cdot m$ with m being odd
- \diamond Choose a random integer *a* with 1 < a < n-1
- ♦ Compute $b_0 \equiv a^m \pmod{n}$ if $b_0 \equiv \pm 1 \pmod{n}$, stop, n is probably prime
- ⇒ Compute $b_1 \equiv b_0^2 \pmod{n}$ if $b_1 \equiv 1 \pmod{n}$, stop, $gcd(b_0-1, n)$ is a factor of nif $b_1 \equiv -1 \pmod{n}$, stop, n is probably prime
- \Rightarrow Compute $b_2 \equiv b_1^2 \pmod{n}$

.

- ♦ Compute $b_{k-1} \equiv b_{k-2}^{2} \pmod{n}$ if $b_{k-1} \equiv 1 \pmod{n}$, stop, $gcd(b_{k-2}-1, n)$ is a factor of nif $b_{k-1} \equiv -1 \pmod{n}$, stop, n is probably prime
- ♦ Compute $b_k \equiv b_{k-1}^2 \pmod{n}$ if $b_k \equiv 1 \pmod{n}$, stop, $gcd(b_{k-1}^2-1, n)$ is a factor of notherwise n is composite (Fermat Little Thm, $b_k \equiv a^{n-1} \pmod{n}$)

Is *n* a composite number?

- \Rightarrow Let n > 1 be odd, write $n-1 = 2^k \cdot m$ with m being odd
- \diamond Choose a random integer *a* with 1 < a < n-1
- ♦ Compute $b_0 \equiv a^m \pmod{n}$ if $b_0 \equiv \pm 1 \pmod{n}$, stop, n is probably prime
- ♦ Compute $b_1 \equiv b_0^2 \pmod{n}$ if $b_1 \equiv 1 \pmod{n}$, stop, $\gcd(b_0-1, n)$ is a factor of nif $b_1 \equiv -1 \pmod{n}$, stop, n is probably prime
- $\Rightarrow \text{ Compute } b_2 \equiv b_1^2 \pmod{n}$
- ♦ Compute $b_{k-1} \equiv b_{k-2}^{2} \pmod{n}$ if $b_{k-1} \equiv 1 \pmod{n}$, stop, $gcd(b_{k-2}-1, n)$ is a factor of nif $b_{k-1} \equiv -1 \pmod{n}$, stop, n is probably prime
- ♦ Compute $b_k \equiv b_{k-1}^2 \pmod{n}$ if $b_k \equiv 1 \pmod{n}$, stop, $gcd(b_{k-1}^2-1, n)$ is a factor of notherwise n is composite (Fermat Little Thm, $b_k \equiv a^{n-1} \pmod{n}$)

n will pass Fermat test

with respect to base a

n is called pseudo prime

$$n-1=2^k\cdot m$$

$$n-1 = 2^k \cdot m$$

$$b_0 \equiv a^m \pmod{n}$$

$$n-1 = 2^{k} \cdot m$$

$$b_0 \equiv a^{m} \pmod{n}$$

$$b_1 \equiv a^{2 \cdot m} \pmod{n}$$

$$\begin{aligned} & \text{n-1} \equiv 2^k \cdot m \\ & b_0 \equiv a^m \pmod{n} \\ & b_1 \equiv a^{2 \cdot m} \pmod{n} \\ & \cdots \\ & b_k \equiv a^{2^k \cdot m} \equiv a^{n-1} \pmod{n} \end{aligned}$$

$$n-1 = 2^{k} \cdot m$$

$$b_{0} \equiv a^{m} \pmod{n}$$

$$b_{1} \equiv a^{2 \cdot m} \pmod{n}$$

$$\cdots$$

$$b_{k} \equiv a^{2^{k} \cdot m} \equiv a^{n-1} \pmod{n}$$

$$n-1 = 2^{k} \cdot m$$

$$b_0 \equiv a^{m} \pmod{n}$$

$$b_1 \equiv a^{2 \cdot m} \pmod{n}$$

$$\cdots$$

$$b_k \equiv a^{2^{k} \cdot m} \equiv a^{n-1} \pmod{n}$$

Consider 4 possible cases:

① $b_0 \equiv \pm 1 \pmod{n}$ all $b_i \equiv 1 \pmod{n}$, i=1,2,...kthere is no chance to use Basic Factoring Principle, **abort**

$$n-1 = 2^{k} \cdot m$$

$$b_0 \equiv a^{m} \pmod{n}$$

$$b_1 \equiv a^{2 \cdot m} \pmod{n}$$

$$\cdots$$

$$b_k \equiv a^{2k \cdot m} \equiv a^{n-1} \pmod{n}$$

- ① $b_0 \equiv \pm 1 \pmod{n}$ all $b_i \equiv 1 \pmod{n}$, i=1,2,...kthere is no chance to use Basic Factoring Principle, **abort**
- ② ① is not true, $b_{i-1} \neq \pm 1 \pmod{n}$ and $b_i \equiv 1 \pmod{n}$, i=1,2,...kBasic Factoring Principle applied, **composite**

$$n-1 \equiv 2^{k} \cdot m$$

$$b_{0} \equiv a^{m} \pmod{n}$$

$$b_{1} \equiv a^{2 \cdot m} \pmod{n}$$

$$\cdots$$

$$b_{k} \equiv a^{2k \cdot m} \equiv a^{n-1} \pmod{n}$$

3 ① and ② are not true, $b_i \equiv -1 \pmod{n}$, i=1,2,...kall subsequent $b_j \equiv 1 \pmod{n}$, there is no chance to use Basic Factoring Principle, abort

- ① $b_0 \equiv \pm 1 \pmod{n}$ all $b_i \equiv 1 \pmod{n}$, i=1,2,...kthere is no chance to use Basic Factoring Principle, **abort**
- ② ① is not true, $b_{i-1} \neq \pm 1 \pmod{n}$ and $b_i \equiv 1 \pmod{n}$, i=1,2,...kBasic Factoring Principle applied, **composite**

$$n-1 = 2^{k} \cdot m$$

$$b_0 \equiv a^{m} \pmod{n}$$

$$b_1 \equiv a^{2 \cdot m} \pmod{n}$$

$$\cdots$$

$$b_k \equiv a^{2k \cdot m} \equiv a^{n-1} \pmod{n}$$

③ ① and ② are not true, $b_i \equiv -1 \pmod{n}$, i=1,2,...kall subsequent $b_j \equiv 1 \pmod{n}$, there is no chance to use Basic Factoring Principle, abort

- ① $b_0 \equiv \pm 1 \pmod{n}$ all $b_i \equiv 1 \pmod{n}$, i=1,2,...kthere is no chance to use Basic Factoring Principle, abort
- ① ①, ②, and ③ are not true, $b_k \equiv a^{n-1} \pmod{n}$ if $b_k \neq 1 \pmod{n}$ n is **composite** since if n is prime, $b_k \equiv 1 \pmod{n}$ $b_k \equiv 1 \pmod{n}$ is covered by ②)
- ② ① is not true, $b_{i-1} \neq \pm 1 \pmod{n}$ and $b_i \equiv 1 \pmod{n}$, i=1,2,...kBasic Factoring Principle applied, **composite**

♦ Speed of light changes as it moves from one medium to another,

♦ Speed of light changes as it moves from one medium to another,
e.g., refraction caused by a prism
While Hight
glass prism

 Speed of light changes as it moves from one medium to another,

e.g., refraction caused by a prism

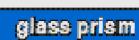
White Light

→ 趣味競賽: 兩人三腳, 同心協力, ...

Speed of light changes as it moves from one medium to another,

e.g., refraction caused by a prism

White Light



- ◆ 趣味競賽: 兩人三腳, 同心協力, ...
- Squaring a number modulo a composite number (product of different prime numbers)

♦ Speed of light changes as it moves from one medium to another,

e.g., refraction caused by a prism

White Light

- → 趣味競賽: 兩人三腳, 同心協力, ...
- Squaring a number modulo a composite number (product of different prime numbers)

	22	2^3	24	25	2^6	27	28
mod 11	4	8	5	10	9	7	3
mod 13	4	8	3	6	12	11	9

♦ When:

* explicitly: $b_{i-1} \neq \pm 1 \pmod{n}$ and $b_i \equiv b_{i-1}^2 \equiv 1 \pmod{n}$

♦ When:

* explicitly: $b_{i-1} \neq \pm 1 \pmod{n}$ and $b_i \equiv b_{i-1}^2 \equiv 1 \pmod{n}$

If n is not prime, sometimes $b_k \equiv a^{n-1} \pmod{n}$ but often $b_k \equiv a^{r\phi(n)} \pmod{n}$ as in universal exponent factoring

♦ When:

* explicitly: $b_{i-1} \neq \pm 1 \pmod{n}$ and $b_i \equiv b_{i-1}^2 \equiv 1 \pmod{n}$

If n is not prime, sometimes $b_k \equiv a^{n-1} \pmod{n}$ but often $b_k \equiv a^{r\phi(n)} \pmod{n}$ as in universal exponent factoring

♦ How:

* implicitly: let $p \mid n$ and $q \mid n$ (p, q be two factors of n) $b_{i-1}^2 \equiv 1 \pmod{p} \text{ and } b_{i-1}^2 \equiv 1 \pmod{q}$ but either $b_{i-1} \not\equiv 1 \pmod{p}$ or $b_{i-1} \not\equiv 1 \pmod{q}$

♦ When:

* explicitly: $b_{i-1} \neq \pm 1 \pmod{n}$ and $b_i \equiv b_{i-1}^2 \equiv 1 \pmod{n}$

If n is not prime, sometimes $b_k \equiv a^{n-1} \pmod{n}$ but often $b_k \equiv a^{r\phi(n)} \pmod{n}$ as in universal exponent factoring

♦ How:

- * implicitly: let $p \mid n$ and $q \mid n$ (p, q be two factors of n) $b_{i-1}^2 \equiv 1 \pmod{p}$ and $b_{i-1}^2 \equiv 1 \pmod{q}$ but either $b_{i-1} \not\equiv 1 \pmod{p}$ or $b_{i-1} \not\equiv 1 \pmod{q}$
- * catching the moment that b₀, b₁, ... behave differently while taking square in (mod p) component and (mod q) component

$$\Rightarrow$$
 e.g. $n = 561$
 $n-1 = 560 = 16 \cdot 35 = 2^4 \cdot 35$

$$\Rightarrow$$
 e.g. $n = 561$
 $n-1 = 560 = 16 \cdot 35 = 2^4 \cdot 35$
let $a = 2$

$$\Rightarrow$$
 e.g. $n = 561$
 $n-1 = 560 = 16 \cdot 35 = 2^4 \cdot 35$
let $a = 2$
 $b_0 \equiv 2^{35} \equiv 263 \pmod{561}$

⇒ e.g.
$$n = 561$$

 $n-1 = 560 = 16 \cdot 35 = 2^4 \cdot 35$
let $a = 2$
 $b_0 \equiv 2^{35} \equiv 263 \pmod{561}$
 $b_1 \equiv b_0^2 \equiv 2^{2 \cdot 35} \equiv 166 \pmod{561}$

♦ e.g.
$$n = 561$$

 $n-1 = 560 = 16 \cdot 35 = 2^4 \cdot 35$
let $a = 2$
 $b_0 \equiv 2^{35} \equiv 263 \pmod{561}$
 $b_1 \equiv b_0^2 \equiv 2^{2 \cdot 35} \equiv 166 \pmod{561}$
 $b_2 \equiv b_1^2 \equiv 2^{22 \cdot 35} \equiv 67 \pmod{561}$

```
\Rightarrow e.g. n = 561
          n-1 = 560 = 16 \cdot 35 = 2^4 \cdot 35
           let a = 2
           b_0 \equiv 2^{35} \equiv 263 \pmod{561}
           b_1 \equiv b_0^2 \equiv 2^{2.35} \equiv 166 \pmod{561}
           b_2 \equiv b_1^2 \equiv 2^{22 \cdot 35} \equiv 67 \pmod{561}
           b_3 \equiv b_2^2 \equiv 2^{23 \cdot 35} \equiv 1 \pmod{561}
         561 is composite (3·11·17),
                  gcd(b_2-1, 561) = 33 is a factor
```

♦ e.g.
$$n = 561$$

 $n-1 = 560 = 16 \cdot 35 = 2^4 \cdot 35$
let $a = 2$
 $b_0 \equiv 2^{35} \equiv 263 \pmod{561}$
 $b_1 \equiv b_0^2 \equiv 2^{2 \cdot 35} \equiv 166 \pmod{561}$
 $b_2 \equiv b_1^2 \equiv 2^{22 \cdot 35} \equiv 67 \pmod{561}$
 $b_3 \equiv b_2^2 \equiv 2^{23 \cdot 35} \equiv 1 \pmod{561}$
 $561 \text{ is composite } (3 \cdot 11 \cdot 17),$
 $\gcd(b_2-1, 561) = 33 \text{ is a factor}$

mod	3	11	17
	2	10	8
	1	1	13
	1	1	16
	1	1	1 5
		1 (

♦ e.g.
$$n = 561$$

 $n-1 = 560 = 16 \cdot 35 = 2^4 \cdot 35$
let $a = 2$
 $b_0 \equiv 2^{35} \equiv 263 \pmod{561}$
 $b_1 \equiv b_0^2 \equiv 2^{2 \cdot 35} \equiv 166 \pmod{561}$
 $b_2 \equiv b_1^2 \equiv 2^{22 \cdot 35} \equiv 67 \pmod{561}$
 $b_3 \equiv b_2^2 \equiv 2^{23 \cdot 35} \equiv 1 \pmod{561}$
 561 is composite $(3 \cdot 11 \cdot 17)$,
 $\gcd(b_2 - 1, 561) = 33$ is a factor
Note: $3-1=2$, $11-1=2 \cdot 5$, $17-1=2^4$

mod	3	11	17
	2	10	8
	1	1	13
	1	1	16
	1	1	1 5
		ord (2

Miller-Rabin Test Example

Miller-Rabin Test Example

♦ e.g.
$$n = 561$$

 $n-1 = 560 = 16 \cdot 35 = 2^4 \cdot 35$
let $a = 2$
 $b_0 \equiv 2^{35} \equiv 263 \pmod{561}$
 $b_1 \equiv b_0^2 \equiv 2^{2 \cdot 35} \equiv 166 \pmod{561}$
 $b_2 \equiv b_1^2 \equiv 2^{22 \cdot 35} \equiv 67 \pmod{561}$
 $b_3 \equiv b_2^2 \equiv 2^{23 \cdot 35} \equiv 1 \pmod{561}$
 561 is composite $(3 \cdot 11 \cdot 17)$, $\gcd(b_2-1, 561) = 33$ is a factor

mod	3	11	17
	2	10	8
	1	1	13
	1	1	16
	1	1	1

 $ord_{17}(2)=2^3$

Note: 3-1=2, 11-1=2·5, 17-1=2⁴ $\phi(561) = 561(1-1/3)(1-1/11)(1-1/17)=2\cdot10\cdot16$ $\gcd(\phi(561), n-1)=80, \text{ ord}_{561}(2) \mid 80 \text{ in this case}$

Miller-Rabin Test Example

 \Rightarrow e.g. n = 561

A Carmichael number: pass the Fermat test for all bases

$$n-1 = 560 = 16 \cdot 35 = 2^4 \cdot 35$$

let
$$a = 2$$

$$b_0 \equiv 2^{35} \equiv 263 \pmod{561}$$

$$b_1 \equiv b_0^2 \equiv 2^{2.35} \equiv 166 \pmod{561}$$

$$b_2 \equiv b_1^2 \equiv 2^{22 \cdot 35} \equiv 67 \pmod{561}$$

$$b_3 \equiv b_2^2 \equiv 2^{23 \cdot 35} \equiv 1 \pmod{561}$$

561 is composite (3·11·17),

 $gcd(b_2-1, 561) = 33$ is a factor

mod	3	11	17
	2	10	8
	1	1	13
	1	1	16
	1	1	1
	1	1	1

 $ord_{17}(2)=2^3$

Note:
$$3-1=2$$
, $11-1=2\cdot 5$, $17-1=2^4$

$$\phi(561) = 561(1-1/3)(1-1/11)(1-1/17) = 2 \cdot 10 \cdot 16$$

 $gcd(\phi(561), n-1)=80$, $ord_{561}(2) \mid 80$ in this case

♦ If n is not a prime but satisfies $a^{n-1} \equiv 1 \pmod{n}$ we say that n is a pseudo prime number for base a.

♦ If n is not a prime but satisfies $a^{n-1} \equiv 1 \pmod{n}$ we say that n is a pseudo prime number for base a.

* e.g. $2^{560} \equiv 1 \pmod{561}$

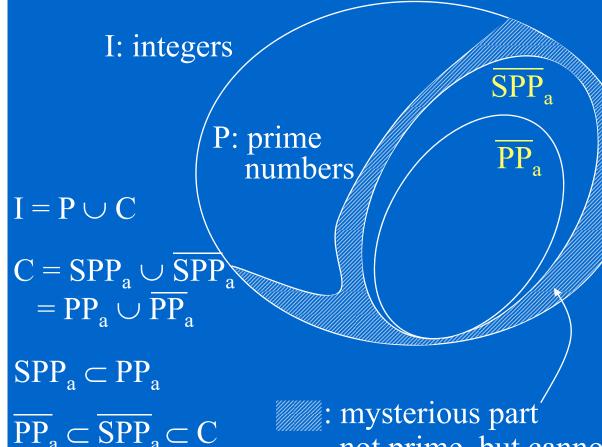
- ♦ If n is not a prime but satisfies $a^{n-1} \equiv 1 \pmod{n}$ we say that n is a pseudo prime number for base a.
 - * e.g. $2^{560} \equiv 1 \pmod{561}$
- \Rightarrow If n is not a prime but passes the Miller-Rabin test with base a (without being identified as a composite), we say that n is a strong pseudo prime number for base a.

- ♦ If n is not a prime but satisfies $a^{n-1} \equiv 1 \pmod{n}$ we say that n is a pseudo prime number for base a.
 - * e.g. $2^{560} \equiv 1 \pmod{561}$
- \diamond If n is not a prime but passes the Miller-Rabin test with base a (without being identified as a composite), we say that n is a strong pseudo prime number for base a.
- ♦ Up to 10¹⁰, there are 455052511 primes, there are 14884 pseudo prime numbers for the base 2, and 3291 strong pseudo prime numbers for the base 2

Fermat and Miller-Rabin Test

♦ Both of these two tests are for identifying subsets of

composite numbers



SPP_a: strong pseudo prime numbers for base a, the set of composite n where M-T test says 'probably prime'

C: composite numbers

PP_a: pseudo prime numbers for base a, the set of composite n where $a^{n-1} \equiv 1 \pmod{n}$

not prime, but cannot be identified as composite

♦ Note that the M-R test and probably together with the Lucas test leave the strong pseudo prime number an extremely small set.

- ♦ Note that the M-R test and probably together with the Lucas test leave the strong pseudo prime number *an extremely small set*.
- In other words, these tests are very close to a real 'primality test' separating prime numbers and composite numbers.

- ♦ Note that the M-R test and probably together with the Lucas test leave the strong pseudo prime number *an extremely small set*.
- In other words, these tests are very close to a real 'primality test' separating prime numbers and composite numbers.
- ♦ If you have an RSA modulus n=p·q, you certainly can test it and find out that it is actually a composite number.

- ♦ Note that the M-R test and probably together with the Lucas test leave the strong pseudo prime number *an extremely small set*.
- ♦ In other words, these tests are very close to a *real 'primality test'* separating prime numbers and composite numbers.
- ♦ If you have an RSA modulus n=p·q, you certainly can test it and find out that it is actually a composite number.
- ♦ However, these tests do not necessarily give you the factors of n in order to tell you that n is a composite number. The factors of n, i.e. p or q, are certainly a kind of witness about the fact that n is composite.

- ♦ Note that the M-R test and probably together with the Lucas test leave the strong pseudo prime number *an extremely small set*.
- ♦ In other words, these tests are very close to a *real 'primality test'* separating prime numbers and composite numbers.
- ♦ If you have an RSA modulus n=p·q, you certainly can test it and find out that it is actually a composite number.
- ♦ However, these tests do not necessarily give you the factors of n in order to tell you that n is a composite number. The factors of n, i.e. p or q, are certainly a kind of witness about the fact that n is composite.
- → However, there are other kind of witness that n is composite, e.g.,
 "2ⁿ⁻¹ (mod n) does not equal to 1" is also a witness that n is composite.

- ♦ Note that the M-R test and probably together with the Lucas test leave the strong pseudo prime number *an extremely small set*.
- ♦ In other words, these tests are very close to a *real 'primality test'* separating prime numbers and composite numbers.
- ♦ If you have an RSA modulus n=p·q, you certainly can test it and find out that it is actually a composite number.
- ♦ However, these tests do not necessarily give you the factors of n in order to tell you that n is a composite number. The factors of n, i.e. p or q, are certainly a kind of witness about the fact that n is composite.
- → However, there are other kind of witness that n is composite, e.g.,
 "2ⁿ⁻¹ (mod n) does not equal to 1" is also a witness that n is composite.
- ♦ A composite number will be factored out by the M-R test only if it is a pseudo prime but it is not a strong pseudo prime number.

- ⇒ primetest(n)
 - * Miller-Rabin test for 30 randomly chosen base a

- ⇒ primetest(n)
 - * Miller-Rabin test for 30 randomly chosen base *a*
 - * output 0 if n is composite

- ⇒ primetest(n)
 - * Miller-Rabin test for 30 randomly chosen base a
 - * output 0 if n is composite
 - * output 1 if n is prime

- ⇒ primetest(n)
 - * Miller-Rabin test for 30 randomly chosen base a
 - * output 0 if n is composite
 - * output 1 if n is prime
 - * Matlab program can not be used for large n

- ⇒ primetest(n)
 - * Miller-Rabin test for 30 randomly chosen base a
 - * output 0 if n is composite
 - * output 1 if n is prime
 - * Matlab program can not be used for large n
 - * use Maple isprime(n), one strong pseudo-primality test and one Lucas test

- ⇒ primetest(n)
 - * Miller-Rabin test for 30 randomly chosen base a
 - * output 0 if n is composite
 - * output 1 if n is prime
 - * Matlab program can not be used for large n
 - * use Maple isprime(n), one strong pseudo-primality test and one Lucas test
- primetest(2563)
 ans= 0

- ⇒ primetest(n)
 - * Miller-Rabin test for 30 randomly chosen base a
 - * output 0 if n is composite
 - * output 1 if n is prime
 - * Matlab program can not be used for large n
 - * use Maple isprime(n), one strong pseudo-primality test and one Lucas test
- $\Rightarrow factor(2563)$ ans = 11 233

♦ What is the probability that Miller-Rabin test fails???

- ♦ What is the probability that Miller-Rabin test fails???
 - * If n is a prime number, it will not be recognized as a composite number

- ♦ What is the probability that Miller-Rabin test fails???
 - * If n is a prime number, it will not be recognized as a composite number
 - * If $n = p \cdot q$, but

- ♦ What is the probability that Miller-Rabin test fails???
 - * If n is a prime number, it will not be recognized as a composite number
 - * If $n = p \cdot q$, but $b_k \quad a^{n-1} \equiv 1 \pmod{n}$ meets Fermat test (pseudo prime number)

- ♦ What is the probability that Miller-Rabin test fails???
 - * If n is a prime number, it will not be recognized as a composite number
 - * If $n = p \cdot q$, but $b_k \quad a^{n-1} \equiv 1 \pmod n$ meets Fermat test (pseudo prime number) $0 < i \le k \ b_i \equiv 1 \pmod n$ and $b_{i-1} \equiv -1 \pmod n$

- ♦ What is the probability that Miller-Rabin test fails???
 - * If n is a prime number, it will not be recognized as a composite number
 - * If $n = p \cdot q$, but $b_k = a^{n-1} \equiv 1 \pmod{n}$ meets Fermat test (pseudo prime number) $0 < i \le k \ b_i \equiv 1 \pmod{n}$ and $b_{i-1} \equiv -1 \pmod{n}$ meets Miller-Rabin test (strong pseudo prime number)

- ♦ What is the probability that Miller-Rabin test fails???
 - * If n is a prime number, it will not be recognized as a composite number
 - * If $n = p \cdot q$, but $b_k = a^{n-1} \equiv 1 \pmod{n}$ meets Fermat test (pseudo prime number) $0 < i \le k \ b_i \equiv 1 \pmod{n}$ and $b_{i-1} \equiv -1 \pmod{n}$ meets Miller-Rabin test (strong pseudo prime number) of $b_i \equiv 1 \pmod{n} \equiv 1 \pmod{p} \equiv 1 \pmod{q}$

- ♦ What is the probability that Miller-Rabin test fails???
 - * If n is a prime number, it will not be recognized as a composite number

```
* If n = p \cdot q, but b_k \quad a^{n-1} \equiv 1 \pmod n meets Fermat test (pseudo prime number) 0 \le i \le k \ b_i \equiv 1 \pmod n and b_{i-1} \equiv -1 \pmod n meets Miller-Rabin test (strong pseudo prime number) or b_i \equiv 1 \pmod n \equiv 1 \pmod p \equiv 1 \pmod q b_{i-1} \equiv -1 \pmod n \equiv -1 \pmod p \equiv -1 \pmod q
```

- ♦ What is the probability that Miller-Rabin test fails???
 - * If n is a prime number, it will not be recognized as a composite number
 - * If $n = p \cdot q$, but $b_k = a^{n-1} \equiv 1 \pmod{n}$ meets Fermat test (pseudo prime number) $0 < i \le k \ b_i \equiv 1 \pmod{n}$ and $b_{i-1} \equiv -1 \pmod{n}$ meets Miller-Rabin test (strong pseudo prime number) of $b_i \equiv 1 \pmod{n} \equiv 1 \pmod{p} \equiv 1 \pmod{q}$ $b_{i-1} \equiv -1 \pmod{n} \equiv -1 \pmod{p} \equiv -1 \pmod{q}$
 - * Note: $a^{pq-1} \equiv 1 \pmod{n}$

- ♦ What is the probability that Miller-Rabin test fails???
 - * If n is a prime number, it will not be recognized as a composite number
 - * If $n = p \cdot q$, but $b_k = a^{n-1} \equiv 1 \pmod{n}$ meets Fermat test (pseudo prime number) $0 < i \le k \ b_i \equiv 1 \pmod{n}$ and $b_{i-1} \equiv -1 \pmod{n}$ meets Miller-Rabin test (strong pseudo prime number) of $b_i \equiv 1 \pmod{n} \equiv 1 \pmod{p} \equiv 1 \pmod{q}$ $b_{i-1} \equiv -1 \pmod{n} \equiv -1 \pmod{p} \equiv -1 \pmod{q}$
 - * Note: $a^{pq-1} \equiv 1 \pmod{n}$ $a^{(p-1)(q-1)} \equiv 1 \pmod{n}$

- ♦ What is the probability that Miller-Rabin test fails???
 - * If n is a prime number, it will not be recognized as a composite number
 - * If $n = p \cdot q$, but $b_k = a^{n-1} \equiv 1 \pmod{n}$ meets Fermat test (pseudo prime number) $0 < i \le k \ b_i \equiv 1 \pmod{n}$ and $b_{i-1} \equiv -1 \pmod{n}$ meets Miller-Rabin test (strong pseudo prime number) of $b_i \equiv 1 \pmod{n} \equiv 1 \pmod{p} \equiv 1 \pmod{q}$ $b_{i-1} \equiv -1 \pmod{n} \equiv -1 \pmod{p} \equiv -1 \pmod{q}$
 - * Note: $a^{pq-1} \equiv 1 \pmod{n}$ $a^{(p-1)(q-1)} \equiv 1 \pmod{n}$ $a^{lcm(p-1, q-1)} \equiv 1 \pmod{n}$

Note on Primality Testing

♦ Primality testing is *different* from factoring

Note on Primality Testing

- ♦ Primality testing is different from factoring
 - * Kind of interesting that we can tell something is composite without being able to actually factor it

Note on Primality Testing

- ♦ Primality testing is different from factoring
 - * Kind of interesting that we can tell something is composite without being able to actually factor it
- Recent result (2002) from IIT trio (Agrawal, Kayal, and Saxena)

- ♦ Primality testing is different from factoring
 - * Kind of interesting that we can tell something is composite without being able to actually factor it
- ♦ Recent result (2002) from IIT trio (Agrawal, Kayal, and Saxena)
 - * Recently it was shown that deterministic primality testing could be done in polynomial time

- ♦ Primality testing is different from factoring
 - * Kind of interesting that we can tell something is composite without being able to actually factor it
- ♦ Recent result (2002) from IIT trio (Agrawal, Kayal, and Saxena)
 - * Recently it was shown that deterministic primality testing could be done in polynomial time
 - \Rightarrow Complexity was like $O(n^{12})$, though it's been slightly reduced since then

- ♦ Primality testing is different from factoring
 - * Kind of interesting that we can tell something is composite without being able to actually factor it
- ♦ Recent result (2002) from IIT trio (Agrawal, Kayal, and Saxena)
 - * Recently it was shown that deterministic primality testing could be done in polynomial time
 - \Rightarrow Complexity was like $O(n^{12})$, though it's been slightly reduced since then
 - * Does this meant that RSA was broken?

- ♦ Primality testing is different from factoring
 - * Kind of interesting that we can tell something is composite without being able to actually factor it
- Recent result (2002) from IIT trio (Agrawal, Kayal, and Saxena)
 - * Recently it was shown that deterministic primality testing could be done in polynomial time
 - \Rightarrow Complexity was like $O(n^{12})$, though it's been slightly reduced since then
 - * Does this meant that RSA was broken?
- ♦ Randomized algorithms like Rabin-Miller are far more efficient than the IIT algorithm, so we'll keep using those

♦ Find a prime of around 100 digits for cryptographic usage

- ♦ Find a prime of around 100 digits for cryptographic usage
- \Rightarrow Prime number theorem $(\pi(x) \approx x/\ln(x))$ asserts that the density of primes around x is approximately $1/\ln(x)$

- ♦ Find a prime of around 100 digits for cryptographic usage
- ♦ Prime number theorem $(\pi(x) \approx x/\ln(x))$ asserts that the density of primes around x is approximately $1/\ln(x)$
- \Rightarrow x = 10¹⁰⁰, 1/ln(10¹⁰⁰) = 1/230 if we skip even numbers, the density is about 1/115

- ♦ Find a prime of around 100 digits for cryptographic usage
- ♦ Prime number theorem $(\pi(x) \approx x/\ln(x))$ asserts that the density of primes around x is approximately $1/\ln(x)$
- \Rightarrow x = 10^{100} , $1/\ln(10^{100}) = 1/230$ if we skip even numbers, the density is about 1/115
- ⇒ pick a random starting point, throw out multiples of 2,
 3, 5, 7, and use Miller-Rabin test to eliminate most of the composites.

- ♦ Find a prime of around 100 digits for cryptographic usage
- ♦ Prime number theorem $(\pi(x) \approx x/\ln(x))$ asserts that the density of primes around x is approximately $1/\ln(x)$
- \Rightarrow x = 10¹⁰⁰, 1/ln(10¹⁰⁰) = 1/230 if we skip even numbers, the density is about 1/115
- ⇒ pick a random starting point, throw out multiples of 2,
 3, 5, 7, and use Miller-Rabin test to eliminate most of the composites.
- maple('a:=nextprime(189734535789)')

- ♦ Quadratic sieve (QS)

- ♦ Quadratic sieve (QS)
- ⇒ Elliptic curve method (ECM), Lenstra (1985)

- ♦ Quadratic sieve (QS)
- ♦ Elliptic curve method (ECM), Lenstra (1985)
- Pollard's Monte Carlo algorithm

- ♦ Quadratic sieve (QS)
- ♦ Elliptic curve method (ECM), Lenstra (1985)
- ♦ Pollard's Monte Carlo algorithm
- Continued fraction algorithm

- ♦ Quadratic sieve (QS)
- ♦ Elliptic curve method (ECM), Lenstra (1985)
- Pollard's Monte Carlo algorithm
- Continued fraction algorithm
- ♦ Trial division, Fermat factorization

- ♦ Quadratic sieve (QS)
- → Elliptic curve method (ECM), Lenstra (1985)
- Pollard's Monte Carlo algorithm
- Continued fraction algorithm
- ♦ Trial division, Fermat factorization
- ♦ Pollard's p-1 factoring (1974), Williams's p+1 factoring (1982)

- ♦ Quadratic sieve (QS)
- ♦ Elliptic curve method (ECM), Lenstra (1985)
- ♦ Pollard's Monte Carlo algorithm
- Continued fraction algorithm
- ♦ Trial division, Fermat factorization
- ♦ Pollard's p-1 factoring (1974), Williams's p+1 factoring (1982)
- Universal exponent factorization, exponent factorization

♦ Trial division:

- ♦ Trial division:
 - * dividing an integer n by all primes $p \le \sqrt{n}$... too slow

- ♦ Trial division:
 - * dividing an integer n by all primes $p \le \sqrt{n}$... too slow
- ♦ Fermat factorization:

- ♦ Trial division:
 - * dividing an integer n by all primes $p \le \sqrt{n}$... too slow
- ♦ Fermat factorization:
 - * e.g. n = 295927 calculate $n+1^2$, $n+2^2$, $n+3^2$... until finding a square, i.e. $x^2 = n + y^2$, therefore, n = (x+y)(x-y) ... if $n = p \cdot q$, it takes on average |p-q|/2 steps ... too slow

- ♦ Trial division:
 - * dividing an integer n by all primes $p \le \sqrt{n}$... too slow
- ♦ Fermat factorization:
 - * e.g. n = 295927 calculate $n+1^2$, $n+2^2$, $n+3^2$... until finding a square, i.e. $x^2 = n + y^2$, therefore, n = (x+y)(x-y) ... if $n = p \cdot q$, it takes on average |p-q|/2 steps ... too slow

assume p>q, $n+y^2 = p \cdot q + ((p-q)/2)^2 = (p^2 + 2pq+q^2)/4 = ((p+q)/2)^2$

* in RSA or Rabin, avoid p, q with the same bit length

- ♦ Trial division:
 - * dividing an integer n by all primes $p \le \sqrt{n}$... too slow
- ♦ Fermat factorization:
 - * e.g. n = 295927 calculate $n+1^2$, $n+2^2$, $n+3^2$... until finding a square, i.e. $x^2 = n + y^2$, therefore, n = (x+y)(x-y) ... if $n = p \cdot q$, it takes on average |p-q|/2 steps ... too slow
 - assume p>q, $n+y^2=p\cdot q+((p-q)/2)^2=(p^2+2pq+q^2)/4=((p+q)/2)^2$
 - * in RSA or Rabin, avoid p, q with the same bit length
- ♦ By-product of Miller-Rabin primality test:

- ♦ Trial division:
 - * dividing an integer n by all primes $p \le \sqrt{n}$... too slow
- ♦ Fermat factorization:
 - * e.g. n = 295927 calculate $n+1^2$, $n+2^2$, $n+3^2$... until finding a square, i.e. $x^2 = n + y^2$, therefore, n = (x+y)(x-y) ... if $n = p \cdot q$, it takes on average |p-q|/2 steps ... too slow

assume p>q, $n+y^2 = p \cdot q + ((p-q)/2)^2 = (p^2 + 2pq+q^2)/4 = ((p+q)/2)^2$

- * in RSA or Rabin, avoid p, q with the same bit length
- ♦ By-product of Miller-Rabin primality test:
 - * if n is a pseudoprime and not a strong pseudoprime, Miller-Rabin test can factor it. about 10⁻⁶ chance

* if we have an exponent r, s.t. $a^r \equiv 1 \pmod{n}$ for all $a \gcd(a,n)=1$

- * if we have an exponent r, s.t. $a^r \equiv 1 \pmod{n}$ for all $a \gcd(a, n) = 1$
- * write $r = 2^k \cdot m$ with m odd

- * if we have an exponent r, s.t. $a^r \equiv 1 \pmod{n}$ for all $a \gcd(a,n)=1$
- * write $r = 2^k \cdot m$ with m odd \leftarrow

r must be even since we can take $a=-1 \ (-1)^r \equiv 1 \ (\text{mod } n)$ requires r being even

- * if we have an exponent r, s.t. $a^r \equiv 1 \pmod{n}$ for all $a \gcd(a,n)=1$
- * write $r = 2^k \cdot m$ with m odd \leftarrow
- * choose a random a, 1 < a < n-1

r must be even since we can take $a=-1 \ (-1)^r \equiv 1 \ (\text{mod } n)$ requires r being even

- * if we have an exponent r, s.t. $a^r \equiv 1 \pmod{n}$ for all $a \gcd(a,n)=1$
- * write $r = 2^k \cdot m$ with m odd \leftarrow
- * choose a random a, $1 \le a \le n-1 \le a$

r must be even since we can take $a=-1 \ (-1)^r \equiv 1 \ (\text{mod } n)$ requires r being even

- * if we have an exponent r, s.t. $a^r \equiv 1 \pmod{n}$ for all $a \gcd(a,n)=1$
- * write $r = 2^k \cdot m$ with m odd \leftarrow
- * choose a random a, 1 < a < n-1 <
- * if $gcd(a, n) \neq 1$, we have a factor

r must be even since we can take $a=-1 \ (-1)^r \equiv 1 \ (\text{mod } n)$ requires r being even

- * if we have an exponent r, s.t. $a^r \equiv 1 \pmod{n}$ for all $a \gcd(a,n)=1$
- * write $r = 2^k \cdot m$ with m odd \leftarrow
- * choose a random a, $1 \le a \le n-1 \le a$
- * if $gcd(a, n) \neq 1$, we have a factor
- * else

r must be even since we can take $a=-1 \ (-1)^r \equiv 1 \ (\text{mod } n)$ requires r being even

- * if we have an exponent r, s.t. $a^r \equiv 1 \pmod{n}$ for all $a \gcd(a,n)=1$
- * write $r = 2^k \cdot m$ with m odd \leftarrow
- * choose a random a, $1 \le a \le n-1 \le a$
- * if $gcd(a, n) \neq 1$, we have a factor
- * else
 - \Rightarrow let $b_0 \equiv a^m \pmod{n}$, if $b_0 \equiv \pm 1$ stop, choose another a

r must be even since we can take $a=-1 \ (-1)^r \equiv 1 \ (\text{mod } n)$ requires r being even

- * if we have an exponent r, s.t. $a^r \equiv 1 \pmod{n}$ for all $a \gcd(a,n)=1$
- * write $r = 2^k \cdot m$ with m odd \leftarrow
- * choose a random a, $1 \le a \le n-1 \le a$
- * if $gcd(a, n) \neq 1$, we have a factor
- * else
 - \neq let $b_0 \equiv a^m \pmod{n}$, if $b_0 \equiv \pm 1$ stop, choose another a
 - \Rightarrow compute $b_{u+1} \equiv b_u^2 \pmod{n}$ for $0 \le u \le k-1$,

r must be even since we can take $a=-1 \ (-1)^r \equiv 1 \ (\text{mod } n)$ requires r being even

- * if we have an exponent r, s.t. $a^r \equiv 1 \pmod{n}$ for all $a \gcd(a,n)=1$
- * write $r = 2^k \cdot m$ with m odd \leftarrow
- * choose a random a, 1 < a < n-1 <
- * if $gcd(a, n) \neq 1$, we have a factor
- * else

requires *r* being even

a≡±1 do not work

take $a=-1 (-1)^r \equiv 1 \pmod{n}$

r must be even since we can

- \neq let $b_0 \equiv a^m \pmod{n}$, if $b_0 \equiv \pm 1$ stop, choose another a
- \Rightarrow compute $b_{u+1} \equiv b_u^2 \pmod{n}$ for $0 \le u \le k-1$,
- \Rightarrow if $b_{u+1} \equiv -1$, stop, choose another a

- * if we have an exponent r, s.t. $a^r \equiv 1 \pmod{n}$ for all $a \gcd(a,n)=1$
- * write $r = 2^k \cdot m$ with m odd \leftarrow
- * choose a random a, $1 \le a \le n-1 \le a$
- * if $gcd(a, n) \neq 1$, we have a factor
- * else

r must be even since we can take $a=-1 \ (-1)^r \equiv 1 \ (\text{mod } n)$ requires r being even

- \Rightarrow let $b_0 \equiv a^m \pmod{n}$, if $b_0 \equiv \pm 1$ stop, choose another a
- \Rightarrow compute $b_{u+1} \equiv b_u^2 \pmod{n}$ for $0 \le u \le k-1$,
- \Rightarrow if $b_{u+1} \equiv -1$, stop, choose another a
- \Rightarrow if $b_{u+1} \equiv 1$ then $gcd(b_u-1, n)$ is a factor (basic factoring principle)

- * if we have an exponent r, s.t. $a^r \equiv 1 \pmod{n}$ for all $a \gcd(a,n)=1$
- * write $r = 2^k \cdot m$ with m odd \leftarrow
- * choose a random a, $1 \le a \le n-1 \le a$
- * if $gcd(a, n) \neq 1$, we have a factor
- * else

a≡±1 do not work

r must be even since we can

take $a=-1 (-1)^r \equiv 1 \pmod{n}$

requires r being even

- \Rightarrow let $b_0 \equiv a^m \pmod{n}$, if $b_0 \equiv \pm 1$ stop, choose another a
- \Rightarrow compute $b_{u+1} \equiv b_u^2 \pmod{n}$ for $0 \le u \le k-1$,
- \Rightarrow if $b_{u+1} \equiv -1$, stop, choose another a
- \Rightarrow if $b_{u+1} \equiv 1$ then $gcd(b_u-1, n)$ is a factor (basic factoring principle)
- * Question: How do we find a universal exponent r??? Hard

- * if we have an exponent r, s.t. $a^r \equiv 1 \pmod{n}$ for all $a \gcd(a,n)=1$
- * write $r = 2^k \cdot m$ with m odd \leftarrow
- * choose a random a, $1 < a < n-1 \leftarrow$
- * if $gcd(a, n) \neq 1$, we have a factor
- * else

r must be even since we can take $a=-1 \ (-1)^r \equiv 1 \ (\text{mod } n)$ requires r being even

a≡±1 do not work

 \Rightarrow let $b_0 \equiv a^m \pmod{n}$, if $b_0 \equiv \pm 1$ stop, choose another a

- \neq compute $b_{u+1} \equiv b_u^2 \pmod{n}$ for $0 \le u \le k-1$,
- \Rightarrow if $b_{u+1} \equiv -1$, stop, choose another a
- \Rightarrow if $b_{u+1} \equiv 1$ then $gcd(b_u-1, n)$ is a factor (basic factoring principle)
- * Question: How do we find a universal exponent r??? Hard
- * Note: if know $\phi(n)$, then any $r = k \phi(n)$ will do, however, knowing factors of n is a prerequisite of know $\phi(n)$

- * if we have an exponent r, s.t. $a^r \equiv 1 \pmod{n}$ for all $a \gcd(a,n)=1$
- * write $r = 2^k \cdot m$ with m odd \leftarrow
- * choose a random a, $1 \le a \le n-1 \le a \le n-1$
- * if $gcd(a, n) \neq 1$, we have a factor
- * else

- r must be even since we can take $a=-1 \ (-1)^r \equiv 1 \ (\text{mod } n)$ requires r being even
 - a≡±1 do not work
- \Rightarrow let $b_0 \equiv a^m \pmod{n}$, if $b_0 \equiv \pm 1$ stop, choose another a
- $\not\equiv$ compute $b_{u+1} \equiv b_u^2 \pmod{n}$ for $0 \le u \le k-1$,
- \Rightarrow if $b_{u+1} \equiv -1$, stop, choose another a
- \Rightarrow if $b_{u+1} \equiv 1$ then $gcd(b_u-1, n)$ is a factor (basic factoring principle)
- * Question: How do we find a universal exponent r??? Hard
- * Note: if know $\phi(n)$, then any $r = k \phi(n)$ will do, however, knowing factors of n is a prerequisite of know $\phi(n)$
- * Note: For RSA, if the private exponent d is recovered, then

- * if we have an exponent r, s.t. $a^r \equiv 1 \pmod{n}$ for all $a \gcd(a,n)=1$
- * write $r = 2^k \cdot m$ with m odd \leftarrow
- * choose a random a, $1 \le a \le n-1 \le a \le n-1$
- * if $gcd(a, n) \neq 1$, we have a factor
- * else

- r must be even since we can take $a=-1 \ (-1)^r \equiv 1 \ (\text{mod } n)$ requires r being even
 - a≡±1 do not work
- \Rightarrow let $b_0 \equiv a^m \pmod{n}$, if $b_0 \equiv \pm 1$ stop, choose another a
- \Rightarrow compute $b_{u+1} \equiv b_u^2 \pmod{n}$ for $0 \le u \le k-1$,
- \Rightarrow if $b_{n+1} \equiv -1$, stop, choose another a
- \Rightarrow if $b_{u+1} \equiv 1$ then $gcd(b_u-1, n)$ is a factor (basic factoring principle)
- * Question: How do we find a universal exponent r??? Hard
- * Note: if know $\phi(n)$, then any $r = k \phi(n)$ will do, however, knowing factors of n is a prerequisite of know $\phi(n)$
- * Note: For RSA, if the private exponent d is recovered, then $\phi(n) \mid d \cdot e 1, d \cdot e 1$ is a universal exponent

★ E.g.
 n=211463707796206571; e=9007; d=116402471153538991
 r=e*d-1=1048437057679925691936; powermod(2,r,n)=1
 let r=2⁵*r1; r1=32763658052497677873

```
    ★ E.g.
    n=211463707796206571; e=9007; d=116402471153538991
    r=e*d-1=1048437057679925691936; powermod(2,r,n)=1
    let r=2<sup>5</sup>*r1; r1=32763658052497677873
    powermod(2,r1,n)=187568564780117371
```

```
♦ E.g.
    n=211463707796206571; e=9007; d=116402471153538991
    r=e*d-1=1048437057679925691936; powermod(2,r,n)=1
    let r=2^{5}*r1; r1=32763658052497677873
    powermod(2,r1,n)=187568564780117371
    powermod(2,2*r1,n)=113493629663725812
    powermod(2,4*r1,n)=1 => gcd(2*r1-1,n)=885320963 is a factor
\Rightarrow Note: n = 211463707796206571 = 238855417 \cdot 885320963
        238855417 - 1 = 2^3   3   73   136333 = 2^{k_1} \cdot p_1
        885320963 - 1 = 2  2069  213949 = 2^{k_2} \cdot q_1
```

```
♦ E.g.
    n=211463707796206571; e=9007; d=116402471153538991
    r=e*d-1=1048437057679925691936; powermod(2,r,n)=1
    let r=2^{5}*r1; r1=32763658052497677873
    powermod(2,r1,n)=187568564780117371 1
    powermod(2,2*r1,n)=113493629663725812
    powermod(2,4*r1,n)=1 => gcd(2*r1-1,n)=885320963 is a factor
\Rightarrow Note: n = 211463707796206571 = 238855417 \cdot 885320963
        238855417 - 1 = 2^3   3   73   136333 = 2^{k_1} \cdot p_1
        885320963 - 1 = 2 2069 213949 = 2^{k_2} \cdot q_1
        This method works only when k_1 does not equal k_2.
```

```
♦ E.g.
    n=211463707796206571; e=9007; d=116402471153538991
    r=e*d-1=1048437057679925691936; powermod(2,r,n)=1
    let r=2<sup>5</sup>*r1; r1=32763658052497677873
    powermod(2,r1,n)=187568564780117371 1
    powermod(2,2*r1,n)=113493629663725812
    powermod(2,4*r1,n)=1 => gcd(2*r1-1,n)=885320963 is a factor
\Rightarrow Note: n = 211463707796206571 = 238855417 \cdot 885320963
        238855417 - 1 = 2^3   3   73   136333 = 2^{k_1} \cdot p_1
        885320963 - 1 = 2 2069 213949 = 2^{k_2} \cdot q_1
        This method works only when k_1 does not equal k_2.
```

 \Rightarrow Exponent factorization even if r is valid for one a, you can still try the above procedure

 \diamond If one of the prime factors of n has a special property, it is sometimes easier to factor n.

- \diamond If one of the prime factors of n has a special property, it is sometimes easier to factor n.
 - * e.g. if p-1 has only small prime factors

- \diamond If one of the prime factors of n has a special property, it is sometimes easier to factor n.
 - * e.g. if p-1 has only small prime factors
 - * Pollard 1974

- \diamond If one of the prime factors of n has a special property, it is sometimes easier to factor n.
 - * e.g. if p-1 has only small prime factors
 - * Pollard 1974
- ♦ Algorithm
 - * Choose an integer a > 1 (often a = 2 is used)

- \diamond If one of the prime factors of n has a special property, it is sometimes easier to factor n.
 - * e.g. if p-1 has only small prime factors
 - * Pollard 1974
- ♦ Algorithm
 - * Choose an integer a > 1 (often a = 2 is used)
 - * Choose a bound B

- \diamond If one of the prime factors of n has a special property, it is sometimes easier to factor n.
 - * e.g. if p-1 has only small prime factors
 - * Pollard 1974
- ♦ Algorithm
 - * Choose an integer a > 1 (often a = 2 is used)
 - * Choose a bound $B \leftarrow$

- \diamond If one of the prime factors of n has a special property, it is sometimes easier to factor n.
 - * e.g. if p-1 has only small prime factors
 - * Pollard 1974
- ♦ Algorithm
 - * Choose an integer a > 1 (often a = 2 is used)
 - * Choose a bound B

* Compute $b \equiv a^{B!}$ as follows:

- \diamond If one of the prime factors of n has a special property, it is sometimes easier to factor n.
 - * e.g. if p-1 has only small prime factors
 - * Pollard 1974
- ♦ Algorithm
 - * Choose an integer a > 1 (often a = 2 is used)
 - * Choose a bound $B \leftarrow$

have a chance of being larger than all the prime factors of p-1

* Compute $b \equiv a^{B!}$ as follows:

 $\not\equiv b_I \equiv a \pmod{n}$ and $b_j \equiv b_{j-1}{}^j \pmod{n}$ then $b \equiv b_B \pmod{n}$

- \diamond If one of the prime factors of n has a special property, it is sometimes easier to factor n.
 - * e.g. if p-1 has only small prime factors
 - * Pollard 1974
- ♦ Algorithm
 - * Choose an integer a > 1 (often a = 2 is used)
 - * Choose a bound $B \leftarrow$

- * Compute $b \equiv a^{B!}$ as follows:
 - $\not\equiv b_I \equiv a \pmod{n}$ and $b_j \equiv b_{j-1}{}^j \pmod{n}$ then $b \equiv b_B \pmod{n}$
- * Let $d = \gcd(b-1, n)$, if 1 < d < n, we have found a factor of n

- \diamond If one of the prime factors of n has a special property, it is sometimes easier to factor n.
 - * e.g. if p-1 has only small prime factors
 - * Pollard 1974
- ♦ Algorithm
 - * Choose an integer a > 1 (often a = 2 is used)
 - * Choose a bound $B \leftarrow$

- * Compute $b \equiv a^{B!}$ as follows:
 - $\not\equiv b_I \equiv a \pmod{n}$ and $b_j \equiv b_{j-1}{}^j \pmod{n}$ then $b \equiv b_B \pmod{n}$
- * Let $d = \gcd(\overline{b-1}, n)$, if $1 \le d \le n$, we have found a factor of nIf B is larger than all the prime factors of $p-1 \implies p-1|B!$ therefore $b \equiv a^{B!} \equiv (a^{p-1})^k \equiv I \pmod{p}$, i.e. p|b-1

- \diamond If one of the prime factors of n has a special property, it is sometimes easier to factor n.
 - * e.g. if p-1 has only small prime factors
 - * Pollard 1974
- ♦ Algorithm
 - * Choose an integer a > 1 (often a = 2 is used)
 - * Choose a bound $B \leftarrow$

- * Compute $b \equiv a^{B!}$ as follows:
 - $\not\equiv b_I \equiv a \pmod{n}$ and $b_j \equiv b_{j-1}{}^j \pmod{n}$ then $b \equiv b_B \pmod{n}$
- * Let $d = \gcd(b-1, n)$, if 1 < d < n, we have found a factor of n

```
If B is larger than all the prime factors of p-1 \implies p-1|B!
therefore b \equiv a^{B!} \equiv (a^{p-1})^k \equiv 1 \pmod{p}, i.e. p|b-1 Fermat Little's Thm
```

- \Rightarrow If one of the prime factors of n has a special property, it is sometimes easier to factor n.
 - * e.g. if p-1 has only small prime factors
 - * Pollard 1974
- ♦ Algorithm
 - * Choose an integer a > 1 (often a = 2 is used)
 - * Choose a bound $B \leftarrow$

- * Compute $b \equiv a^{B!}$ as follows:
 - $\not\equiv b_I \equiv a \pmod{n}$ and $b_j \equiv b_{j-1}{}^j \pmod{n}$ then $b \equiv b_B \pmod{n}$
- * Let $d = \gcd(b-1, n)$, if $1 \le d \le n$, we have found a factor of nIf B is larger than all the prime factors of $p-1 \stackrel{\text{(very likely)}}{\Rightarrow} p-1|B!$ therefore $b \equiv a^{B!} \equiv (a^{p-1})^k \equiv I \pmod{p}$, i.e. p|b-1 Fermat Little's Thm

- \Rightarrow If one of the prime factors of n has a special property, it is sometimes easier to factor n.
 - * e.g. if p-1 has only small prime factors
 - * Pollard 1974
- ♦ Algorithm
 - * Choose an integer a > 1 (often a = 2 is used)
 - * Choose a bound B

have a chance of being larger than all the prime factors of p-1

- * Compute $b \equiv a^{B!}$ as follows:
 - $\not\equiv b_I \equiv a \pmod{n}$ and $b_j \equiv b_{j-1}{}^j \pmod{n}$ then $b \equiv b_B \pmod{n}$
- * Let $d = \gcd(b-1, n)$, if $1 \le d \le n$, we have found a factor of nIf B is larger than all the prime factors of $p-1 \stackrel{\text{(very likely)}}{\Rightarrow} p-1|B!$ therefore $b = a^{B!} = (a^{p-1})^k = 1 \pmod{p}$, i.e. p|b-1 Fermat Little's Thm

If $n=p \cdot q$, p-1 and q-1 both have small factors that are less than B, then gcd(b-1,n)=n, (useless) however, $b \equiv a^{B!} \equiv 1 \pmod{n}$ and we can use the Universal exponent method 43

♦ How do we choose B?

- ♦ How do we choose B?
 - * small B will be faster but fails often

- ♦ How do we choose B?
 - * small B will be faster but fails often
 - * large B will be very slow

- ♦ How do we choose B?
 - * small B will be faster but fails often
 - * large B will be very slow
- ♦ In RSA, Rabin, Paillier, or other systems based on integer factoring, usually n=p·q, we should ensure that p-1 has at least one large prime factor.

- ♦ How do we choose B?
 - * small B will be faster but fails often
 - * large B will be very slow
- ♦ In RSA, Rabin, Paillier, or other systems based on integer factoring, usually n=p·q, we should ensure that p-1 has at least one large prime factor.
 - * How do we do this?

- ♦ How do we choose B?
 - * small B will be faster but fails often
 - * large B will be very slow
- ♦ In RSA, Rabin, Paillier, or other systems based on integer factoring, usually n=p·q, we should ensure that p-1 has at least one large prime factor.
 - * How do we do this?
 - e.g. we want to choose p around 100 digits

- ♦ How do we choose B?
 - * small B will be faster but fails often
 - * large B will be very slow
- ♦ In RSA, Rabin, Paillier, or other systems based on integer factoring, usually n=p·q, we should ensure that p-1 has at least one large prime factor.
 - * How do we do this?
 - e.g. we want to choose p around 100 digits
 - > choose a prime number p₀ around 40 digits

- ♦ How do we choose B?
 - * small B will be faster but fails often
 - * large B will be very slow
- ♦ In RSA, Rabin, Paillier, or other systems based on integer factoring, usually n=p·q, we should ensure that p-1 has at least one large prime factor.
 - * How do we do this?
 - e.g. we want to choose p around 100 digits
 - \triangleright choose a prime number p_0 around 40 digits
 - > look at integer $k \cdot p_0 + 1$ with k around 60 digits and do primality test

- ♦ How do we choose B?
 - * small B will be faster but fails often
 - * large B will be very slow
- ♦ In RSA, Rabin, Paillier, or other systems based on integer factoring, usually n=p·q, we should ensure that p-1 has at least one large prime factor.
 - * How do we do this?
 - e.g. we want to choose p around 100 digits
 - \triangleright choose a prime number p_0 around 40 digits
 - > look at integer $k \cdot p_0 + 1$ with k around 60 digits and do primality test
- ♦ Generalization:

Elliptic curve factorization method, Lenstra, 1985

p-1 factoring (2/2)

- ♦ How do we choose B?
 - * small B will be faster but fails often
 - * large B will be very slow
- ♦ In RSA, Rabin, Paillier, or other systems based on integer factoring, usually n=p·q, we should ensure that p-1 has at least one large prime factor.
 - * How do we do this?
 - e.g. we want to choose p around 100 digits
 - \triangleright choose a prime number p_0 around 40 digits
 - > look at integer $k \cdot p_0 + 1$ with k around 60 digits and do primality test
- ♦ Generalization:
 - Elliptic curve factorization method, Lenstra, 1985
- ♦ Best records: p-1: 34 digits (113 bits), ECM: 47 digits (143 bits)

 \Rightarrow Example: factor n = 3837523

- $\Rightarrow \overline{\text{Example: factor } n} = 3837523$
 - * form the following relations

- $\Rightarrow \overline{\text{Example: factor } n} = 3837523$
 - * form the following relations $9398^2 \equiv 5^5 \cdot 19 \pmod{3837523}$

- \Rightarrow Example: factor n = 3837523
 - * form the following relations $9398^2 \equiv 5^5 \cdot 19 \pmod{3837523}$

individual factors are small

- \Rightarrow Example: factor n = 3837523
 - * form the following relations individual factors are small $9398^2 \equiv 5^5 \cdot 19 \pmod{3837523}$ $19095^2 \equiv 2^2 \cdot 5 \cdot 11 \cdot 13 \cdot 19 \pmod{3837523}$

- \Rightarrow Example: factor n = 3837523
 - * form the following relations

individual factors are small

$$9398^2 \equiv 5^5 \cdot 19 \pmod{3837523}$$

$$19095^2 \equiv 2^2 \cdot 5 \cdot 11 \cdot 13 \cdot 19 \pmod{3837523}$$

- \Rightarrow Example: factor n = 3837523
 - * form the following relations

individual factors are small

$$9398^2 \equiv 5^5 \cdot 19 \pmod{3837523}$$

$$19095^2 \equiv 2^2 \cdot 5 \cdot 11 \cdot 13 \cdot 19 \pmod{3837523}$$

$$1964^2 \equiv 3^2 \cdot 13^3 \pmod{3837523}$$

- \Rightarrow Example: factor n = 3837523
 - * form the following relations

individual factors are small

$$9398^2 \equiv 5^5 \cdot 19 \pmod{3837523}$$

$$19095^2 \equiv 2^2 \cdot 5 \cdot 11 \cdot 13 \cdot 19 \pmod{3837523}$$

$$1964^2 \equiv 3^2 \cdot 13^3 \pmod{3837523}$$

$$17078^2 \equiv 2^6 \cdot 3^2 \cdot 11 \pmod{3837523}$$

- \Rightarrow Example: factor n = 3837523
 - * form the following relations

individual factors are small

$$9398^2 \equiv 5^5 \cdot 19 \pmod{3837523}$$

$$19095^2 \equiv 2^2 \cdot 5 \cdot 11 \cdot 13 \cdot 19 \pmod{3837523}$$

$$1964^2 \equiv 3^2 \cdot 13^3 \pmod{3837523}$$

$$17078^2 \equiv 2^6 \cdot 3^2 \cdot 11 \pmod{3837523}$$

- \Rightarrow Example: factor n = 3837523
 - * form the following relations

individual factors are small

$$9398^2 \equiv 5^5 \cdot 19 \pmod{3837523}$$

$$19095^2 \equiv 2^2 \cdot 5 \cdot 11 \cdot 13 \cdot 19 \pmod{3837523}$$

$$1964^2 \equiv 3^2 \cdot 13^3 \pmod{3837523}$$

$$17078^2 \equiv 2^6 \cdot 3^2 \cdot 11 \pmod{3837523}$$

make the number of each factors even

- \Rightarrow Example: factor n = 3837523
 - * form the following relations

individual factors are small

$$9398^2 \equiv 5^5 \cdot 19 \pmod{3837523}$$

$$19095^2 \equiv 2^2 \cdot 5 \cdot 11 \cdot 13 \cdot 19 \pmod{3837523}$$

$$1964^2 \equiv 3^2 \cdot 13^3 \pmod{3837523}$$

$$17078^2 \equiv 2^6 \cdot 3^2 \cdot 11 \pmod{3837523}$$

make the number of each factors even

$$(9398 \cdot 19095 \cdot 1964 \cdot 17078)^2 \equiv (2^4 \cdot 3^2 \cdot 5^3 \cdot 11 \cdot 13^2 \cdot 19)^2$$

- \Rightarrow Example: factor n = 3837523
 - * form the following relations

individual factors are small

$$9398^2 \equiv 5^5 \cdot 19 \pmod{3837523}$$

$$19095^2 \equiv 2^2 \cdot 5 \cdot 11 \cdot 13 \cdot 19 \pmod{3837523}$$

$$1964^2 \equiv 3^2 \cdot 13^3 \pmod{3837523}$$

$$17078^2 \equiv 2^6 \cdot 3^2 \cdot 11 \pmod{3837523}$$

make the number of each factors even

$$(9398 \cdot 19095 \cdot 1964 \cdot 17078)^2 \equiv (2^4 \cdot 3^2 \cdot 5^3 \cdot 11 \cdot 13^2 \cdot 19)^2$$
$$2230387^2 \equiv 2586705^2$$

- \Rightarrow Example: factor n = 3837523
 - * form the following relations

individual factors are small

$$9398^2 \equiv 5^5 \cdot 19 \pmod{3837523}$$

$$19095^2 \equiv 2^2 \cdot 5 \cdot 11 \cdot 13 \cdot 19 \pmod{3837523}$$

$$1964^2 \equiv 3^2 \cdot 13^3 \pmod{3837523}$$

$$17078^2 \equiv 2^6 \cdot 3^2 \cdot 11 \pmod{3837523}$$

make the number of each factors even

* multiply the above relations

$$(9398 \cdot 19095 \cdot 1964 \cdot 17078)^2 \equiv (2^4 \cdot 3^2 \cdot 5^3 \cdot 11 \cdot 13^2 \cdot 19)^2$$

 $2230387^2 \equiv 2586705^2$

* since $2230387 \neq \pm 2586705 \pmod{3837523}$

- \Rightarrow Example: factor n = 3837523
 - * form the following relations individual factors are small

$$9398^2 \equiv 5^5 \cdot 19 \pmod{3837523}$$

$$19095^2 \equiv 2^2 \cdot 5 \cdot 11 \cdot 13 \cdot 19 \pmod{3837523}$$

$$1964^2 \equiv 3^2 \cdot 13^3 \pmod{3837523}$$

$$17078^2 \equiv 2^6 \cdot 3^2 \cdot 11 \pmod{3837523}$$

make the number of each factors even

* multiply the above relations

$$(9398 \cdot 19095 \cdot 1964 \cdot 17078)^2 \equiv (2^4 \cdot 3^2 \cdot 5^3 \cdot 11 \cdot 13^2 \cdot 19)^2$$

$$2230387^2 \equiv 2586705^2$$

hope they are not equal

* since $2230387 \neq \pm 2586705 \pmod{3837523}$

- \Rightarrow Example: factor n = 3837523
 - * form the following relations individual factors are small

$$9398^2 \equiv 5^5 \cdot 19 \pmod{3837523}$$

$$19095^2 \equiv 2^2 \cdot 5 \cdot 11 \cdot 13 \cdot 19 \pmod{3837523}$$

$$1964^2 \equiv 3^2 \cdot 13^3 \pmod{3837523}$$

$$17078^2 \equiv 2^6 \cdot 3^2 \cdot 11 \pmod{3837523}$$

make the number of each factors even

$$(9398 \cdot 19095 \cdot 1964 \cdot 17078)^2 \equiv (2^4 \cdot 3^2 \cdot 5^3 \cdot 11 \cdot 13^2 \cdot 19)^2$$

$$2230387^2 \equiv 2586705^2$$
 hope they are not equal

- * since $2230387 \neq \pm 2586705 \pmod{3837523}$
- * gcd(2230387-2586705, 3837523) = 1093 is one factor of n

- \Rightarrow Example: factor n = 3837523
 - * form the following relations individual factors are small

$$9398^2 \equiv 5^5 \cdot 19 \pmod{3837523}$$

$$19095^2 \equiv 2^2 \cdot 5 \cdot 11 \cdot 13 \cdot 19 \pmod{3837523}$$

$$1964^2 \equiv 3^2 \cdot 13^3 \pmod{3837523}$$

$$17078^2 \equiv 2^6 \cdot 3^2 \cdot 11 \pmod{3837523}$$

make the number of each factors even

$$(9398 \cdot 19095 \cdot 1964 \cdot 17078)^2 \equiv (2^4 \cdot 3^2 \cdot 5^3 \cdot 11 \cdot 13^2 \cdot 19)^2$$

$$2230387^2 \equiv 2586705^2$$
 hope they are not equal

- * since $2230387 \neq \pm 2586705 \pmod{3837523}$
- * gcd(2230387-2586705, 3837523) = 1093 is one factor of n
- * the other factor is 3837523/1093 = 3511

 \Rightarrow Quadratic? $x^2 \equiv$ product of small primes

- \Rightarrow Quadratic? $x^2 \equiv$ product of small primes
- ♦ How do we construct these useful relations systematically?

- \Rightarrow Quadratic? $x^2 \equiv$ product of small primes
- ♦ How do we construct these useful relations systematically?
- Properties of these relations:
 - * product of small primes called factor base

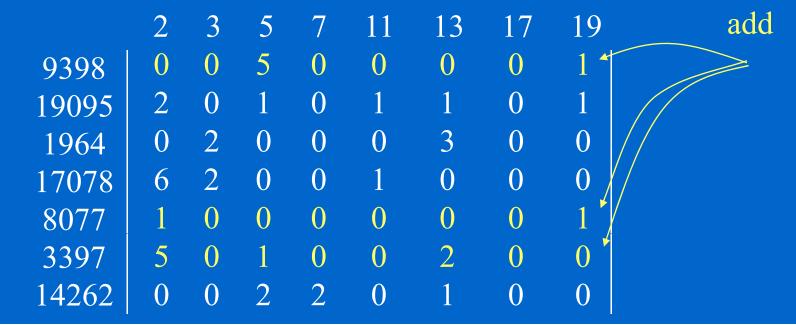
- \Rightarrow Quadratic? $x^2 \equiv$ product of small primes
- ♦ How do we construct these useful relations systematically?
- Properties of these relations:
 - * product of small primes called factor base
 - * make all prime factors appear even times

- \Rightarrow Quadratic? $x^2 \equiv$ product of small primes
- ♦ How do we construct these useful relations systematically?
- Properties of these relations:
 - * product of small primes called factor base
 - * make all prime factors appear even times
- ♦ Put these relations in a matrix

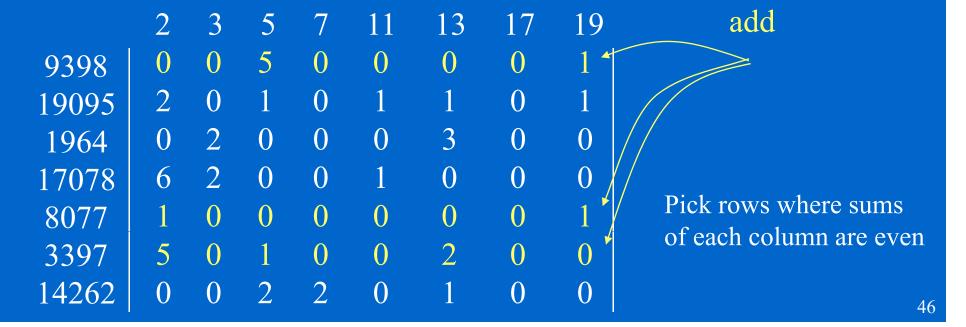
- \Rightarrow Quadratic? $x^2 \equiv$ product of small primes
- ♦ How do we construct these useful relations systematically?
- Properties of these relations:
 - * product of small primes called factor base
 - * make all prime factors appear even times
- ♦ Put these relations in a matrix

	2	3	5	7	11	13	17	19
9398	0	0	5	0	0	0	0	1
19095	2	0	1	0	1	1	0	1
1964	0	2	0	0	0	3	0	0
17078	6	2	0	0	1	0	0	0
8077	1	0	0	0	0	0	0	1
3397	5	0	1	0	0	2	0	0
14262	0	0	2	2	0	1	0	0

- \Rightarrow Quadratic? $x^2 \equiv$ product of small primes
- ♦ How do we construct these useful relations systematically?
- Properties of these relations:
 - * product of small primes called factor base
 - * make all prime factors appear even times
- ♦ Put these relations in a matrix



- \Rightarrow Quadratic? $x^2 \equiv$ product of small primes
- ♦ How do we construct these useful relations systematically?
- Properties of these relations:
 - * product of small primes called factor base
 - * make all prime factors appear even times
- ♦ Put these relations in a matrix



♦ Look for linear dependencies mod 2 among the rows

♦ Look for linear dependencies mod 2 among the rows

*
$$1\text{st} + 5\text{th} + 6\text{th} = (6, 0, 6, 0, 0, 2, 0, 2) \equiv \mathbf{0} \pmod{2}$$

- ♦ Look for linear dependencies mod 2 among the rows
 - * $1\text{st} + 5\text{th} + 6\text{th} = (6, 0, 6, 0, 0, 2, 0, 2) \equiv \mathbf{0} \pmod{2}$
 - * $1st + 2nd + 3rd + 4th = (8, 4, 6, 0, 2, 4, 0, 2) \equiv 0 \pmod{2}$

- ♦ Look for linear dependencies mod 2 among the rows
 - * $1\text{st} + 5\text{th} + 6\text{th} = (6, 0, 6, 0, 0, 2, 0, 2) \equiv \mathbf{0} \pmod{2}$
 - * $1st + 2nd + 3rd + 4th = (8, 4, 6, 0, 2, 4, 0, 2) \equiv 0 \pmod{2}$
 - * $3\text{rd} + 7\text{th} = (0, 2, 2, 2, 0, 4, 0, 0) \equiv 0 \pmod{2}$

- ♦ Look for linear dependencies mod 2 among the rows
 - * $1\text{st} + 5\text{th} + 6\text{th} = (6, 0, 6, 0, 0, 2, 0, 2) \equiv \mathbf{0} \pmod{2}$
 - * $1st + 2nd + 3rd + 4th = (8, 4, 6, 0, 2, 4, 0, 2) \equiv 0 \pmod{2}$
 - * $3\text{rd} + 7\text{th} = (0, 2, 2, 2, 0, 4, 0, 0) \equiv \mathbf{0} \pmod{2}$
- ♦ When we have such a dependency, the product of the numbers yields a square.

- ♦ Look for linear dependencies mod 2 among the rows
 - * $1\text{st} + 5\text{th} + 6\text{th} = (6, 0, 6, 0, 0, 2, 0, 2) \equiv \mathbf{0} \pmod{2}$
 - * $1st + 2nd + 3rd + 4th = (8, 4, 6, 0, 2, 4, 0, 2) \equiv 0 \pmod{2}$
 - * $3\text{rd} + 7\text{th} = (0, 2, 2, 2, 0, 4, 0, 0) \equiv \mathbf{0} \pmod{2}$
- ♦ When we have such a dependency, the product of the numbers yields a square.
 - * $(9398 \cdot 8077 \cdot 3397)^2 \equiv 2^6 \cdot 5^6 \cdot 13^2 \cdot 19^2 \equiv (2^3 \cdot 5^3 \cdot 13 \cdot 19)^2$

- ♦ Look for linear dependencies mod 2 among the rows
 - * $1\text{st} + 5\text{th} + 6\text{th} = (6, 0, 6, 0, 0, 2, 0, 2) \equiv \mathbf{0} \pmod{2}$
 - * $1st + 2nd + 3rd + 4th = (8, 4, 6, 0, 2, 4, 0, 2) \equiv 0 \pmod{2}$
 - * $3\text{rd} + 7\text{th} = (0, 2, 2, 2, 0, 4, 0, 0) \equiv \mathbf{0} \pmod{2}$
- ♦ When we have such a dependency, the product of the numbers yields a square.
 - * $(9398 \cdot 8077 \cdot 3397)^2 \equiv 2^6 \cdot 5^6 \cdot 13^2 \cdot 19^2 \equiv (2^3 \cdot 5^3 \cdot 13 \cdot 19)^2$
 - * $(9398 \cdot 19095 \cdot 1964 \cdot 17078)^2 \equiv (2^3 \cdot 3^2 \cdot 5^3 \cdot 11 \cdot 13^2 \cdot 19)^2$

- ♦ Look for linear dependencies mod 2 among the rows
 - * $1\text{st} + 5\text{th} + 6\text{th} = (6, 0, 6, 0, 0, 2, 0, 2) \equiv \mathbf{0} \pmod{2}$
 - * $1st + 2nd + 3rd + 4th = (8, 4, 6, 0, 2, 4, 0, 2) \equiv 0 \pmod{2}$
 - * $3\text{rd} + 7\text{th} = (0, 2, 2, 2, 0, 4, 0, 0) \equiv \mathbf{0} \pmod{2}$
- When we have such a dependency, the product of the numbers yields a square.
 - * $(9398 \cdot 8077 \cdot 3397)^2 \equiv 2^6 \cdot 5^6 \cdot 13^2 \cdot 19^2 \equiv (2^3 \cdot 5^3 \cdot 13 \cdot 19)^2$
 - * $(9398 \cdot 19095 \cdot 1964 \cdot 17078)^2 \equiv (2^3 \cdot 3^2 \cdot 5^3 \cdot 11 \cdot 13^2 \cdot 19)^2$
 - $\star (1964 \cdot 14262)^2 \equiv (3 \cdot 5 \cdot 7 \cdot 13^2)^2$

- ♦ Look for linear dependencies mod 2 among the rows
 - * $1\text{st} + 5\text{th} + 6\text{th} = (6, 0, 6, 0, 0, 2, 0, 2) \equiv \mathbf{0} \pmod{2}$
 - * $1st + 2nd + 3rd + 4th = (8, 4, 6, 0, 2, 4, 0, 2) \equiv 0 \pmod{2}$
 - * $3\text{rd} + 7\text{th} = (0, 2, 2, 2, 0, 4, 0, 0) \equiv 0 \pmod{2}$
- ♦ When we have such a dependency, the product of the numbers yields a square.
 - * $(9398 \cdot 8077 \cdot 3397)^2 \equiv 2^6 \cdot 5^6 \cdot 13^2 \cdot 19^2 \equiv (2^3 \cdot 5^3 \cdot 13 \cdot 19)^2$
 - * $(9398 \cdot 19095 \cdot 1964 \cdot 17078)^2 \equiv (2^3 \cdot 3^2 \cdot 5^3 \cdot 11 \cdot 13^2 \cdot 19)^2$
 - * $(1964 \cdot 14262)^2 \equiv (3 \cdot 5 \cdot 7 \cdot 13^2)^2$
- \Rightarrow Looking for those $x^2 \equiv y^2$ but $x \neq \pm y$

♦ How do we find numbers x s.t.

 $x^2 \equiv \text{product of small primes?}$

♦ How do we find numbers x s.t.

 $x^2 \equiv \text{product of small primes?}$

* produce squares that are slightly larger than a multiple of n

♦ How do we find numbers x s.t.

 $x^2 \equiv \text{product of small primes?}$

* produce squares that are slightly larger than a multiple of n

e.g.
$$\left| \sqrt{i \cdot n} + j \right|$$
 for small j

♦ How do we find numbers x s.t.

$$x^2 \equiv \text{product of small primes?}$$

* produce squares that are slightly larger than a multiple of n

e.g.
$$\left[\sqrt{i \cdot n} + j\right]$$
 for small j the square is approximately $i \cdot n + 2 j \sqrt{i \cdot n} + j^2$

♦ How do we find numbers x s.t.

 $x^2 \equiv \text{product of small primes?}$

* produce squares that are slightly larger than a multiple of n

e.g.
$$\left[\sqrt{i \cdot n} + j\right]$$
 for small j the square is approximately $i \cdot n + 2 j \sqrt{i \cdot n} + j^2$ which is approximately $2 j \sqrt{i \cdot n} + j^2 \pmod{n}$

♦ How do we find numbers x s.t.

 $x^2 \equiv \text{product of small primes?}$

* produce squares that are slightly larger than a multiple of n

e.g.
$$\left[\sqrt{i \cdot n} + j\right]$$
 for small j
the square is approximately $i \cdot n + 2 j \sqrt{i \cdot n} + j^2$

which is approximately $2 j \sqrt{i \cdot n} + j^2 \pmod{n}$

Probably because this number is small, the factors of it should not be too large. However, there are a lot of exceptions. So it takes time. Also, there are a lot of other methods to generate qualified x values.

♦ How do we find numbers x s.t.

 $x^2 \equiv \text{product of small primes?}$

* produce squares that are slightly larger than a multiple of n

e.g.
$$\left[\sqrt{i \cdot n} + j\right]$$
 for small j
the square is approximately $i \cdot n + 2 j\sqrt{i \cdot n} + j^2$
which is approximately $2 j\sqrt{i \cdot n} + j^2 \pmod{n}$

$$8077 = \left\lfloor \sqrt{17n} + 1 \right\rfloor$$

Probably because this number is small, the factors of it should not be too large. However, there are a lot of exceptions. So it takes time. Also, there are a lot of other methods to generate qualified x values.

♦ How do we find numbers x s.t.

 $x^2 \equiv \text{product of small primes?}$

* produce squares that are slightly larger than a multiple of n

e.g.
$$\left[\sqrt{i \cdot n} + j\right]$$
 for small j
the square is approximately $i \cdot n + 2 j\sqrt{i \cdot n} + j^2$
which is approximately $2 j\sqrt{i \cdot n} + j^2 \pmod{n}$

$$8077 = \left\lfloor \sqrt{17n} + 1 \right\rfloor$$

$$9398 = \left\lfloor \sqrt{23n} + 4 \right\rfloor$$

Probably because this number is small, the factors of it should not be too large. However, there are a lot of exceptions. So it takes time. Also, there are a lot of other methods to generate qualified x values.

- ♦ 1977 Rivest, Shamir, Adleman US\$100
 - * given RSA modulus n, public exponent e, ciphertext c
 - $n = 1143816257578888867669235779976146612010218296721242362 \\ 562561842935706935245733897830597123563958705058989075 \\ 147599290026879543541$
 - e = 9007
 - c = 968696137546220614771409222543558829057599911245743198 746951209308162982251457083569314766228839896280133919 90551829945157815154

- ♦ 1977 Rivest, Shamir, Adleman US\$100
 - * given RSA modulus n, public exponent e, ciphertext c
 - $n = 1143816257578888867669235779976146612010218296721242362 \\ 562561842935706935245733897830597123563958705058989075 \\ 147599290026879543541$
 - e = 9007
 - c = 968696137546220614771409222543558829057599911245743198 746951209308162982251457083569314766228839896280133919 90551829945157815154
 - * Find the plaintext message

- ♦ 1977 Rivest, Shamir, Adleman US\$100
 - * given RSA modulus n, public exponent e, ciphertext c
 - $n = 1143816257578888867669235779976146612010218296721242362 \\ 562561842935706935245733897830597123563958705058989075 \\ 147599290026879543541$
 - e = 9007
 - c = 968696137546220614771409222543558829057599911245743198 746951209308162982251457083569314766228839896280133919 90551829945157815154
 - * Find the plaintext message
- ♦ 1994 Atkins, Lenstra, and Leyland
 - * use 524339 small primes (less than 16333610)

- ♦ 1977 Rivest, Shamir, Adleman US\$100
 - * given RSA modulus n, public exponent e, ciphertext c
 - $n = 1143816257578888867669235779976146612010218296721242362 \\ 562561842935706935245733897830597123563958705058989075 \\ 147599290026879543541$
 - e = 9007
 - c = 968696137546220614771409222543558829057599911245743198 746951209308162982251457083569314766228839896280133919 90551829945157815154
 - * Find the plaintext message
- ♦ 1994 Atkins, Lenstra, and Leyland
 - * use 524339 small primes (less than 16333610)
 - * plus up to two large primes $(16333610 \sim 2^{30})$

- ♦ 1977 Rivest, Shamir, Adleman US\$100
 - * given RSA modulus n, public exponent e, ciphertext c
 - $n = 1143816257578888867669235779976146612010218296721242362 \\ 562561842935706935245733897830597123563958705058989075 \\ 147599290026879543541$
 - e = 9007
 - c = 968696137546220614771409222543558829057599911245743198 746951209308162982251457083569314766228839896280133919 90551829945157815154
 - * Find the plaintext message
- ♦ 1994 Atkins, Lenstra, and Leyland
 - * use 524339 small primes (less than 16333610)
 - * plus up to two large primes $(16333610 \sim 2^{30})$
 - * 1600 computers, 600 people, 7 months

- ♦ 1977 Rivest, Shamir, Adleman US\$100
 - * given RSA modulus n, public exponent e, ciphertext c
 - $n = 1143816257578888867669235779976146612010218296721242362 \\ 562561842935706935245733897830597123563958705058989075 \\ 147599290026879543541$
 - e = 9007
 - c = 968696137546220614771409222543558829057599911245743198 746951209308162982251457083569314766228839896280133919 90551829945157815154
 - * Find the plaintext message
- ♦ 1994 Atkins, Lenstra, and Leyland
 - * use 524339 small primes (less than 16333610)
 - * plus up to two large primes $(16333610 \sim 2^{30})$
 - * 1600 computers, 600 people, 7 months
 - * found 569466 'x²=small products' equations, out of which only 205 linear dependencies were found

Factorization Records

Year	Number of digits	
1964	20	
1974	45	
1984	71	
1994	129	(429 bits)
1999	155	(515 bits)
2003	174	(576 bits)

Factorization Records

Year	Number of digits	
1964	20	
1974	45	
1984	71	
1994	129	(429 bits)
1999	155	(515 bits)
2003	174	(576 bits)

Next challenge RSA-640

♦ Break RSA means 'inverting RSA function without knowing the trapdoor'

♦ **Break RSA** means 'inverting RSA function without knowing the trapdoor' $y \equiv x^e \pmod{n}$

- ♦ **Break RSA** means 'inverting RSA function without knowing the trapdoor' $\sqrt{y \equiv x^e \pmod{n}}$
- \Rightarrow Factor the modulus \Rightarrow Break RSA

- ♦ Break RSA means 'inverting RSA function without knowing the trapdoor' $\sqrt{y \equiv x^e \pmod{n}}$
- \diamond Factor the modulus \Rightarrow Break RSA
 - * If we can factor the modulus, we can break RSA

- ♦ **Break RSA** means 'inverting RSA function without knowing the trapdoor' $y \equiv x^e \pmod{n}$
- \Rightarrow Factor the modulus \Rightarrow Break RSA
 - * If we can factor the modulus, we can break RSA
 - * If we can break RSA, we don't know whether we can factor the modulus...open problem (with negative evidences)

- ♦ **Break RSA** means 'inverting RSA function without knowing the trapdoor' $y \equiv x^e \pmod{n}$
- \Rightarrow Factor the modulus \Rightarrow Break RSA
 - * If we can factor the modulus, we can break RSA
 - * If we can break RSA, we don't know whether we can factor the modulus...open problem (with negative evidences)
- ♦ Factor the modulus ⇔ Calculate private key d

- ♦ **Break RSA** means 'inverting RSA function without knowing the trapdoor' $y \equiv x^e \pmod{n}$
- \diamond Factor the modulus \Rightarrow Break RSA
 - * If we can factor the modulus, we can break RSA
 - * If we can break RSA, we don't know whether we can factor the modulus...open problem (with negative evidences)
- ♦ Factor the modulus ⇒ Calculate private key d
 - * If we can factor the modulus, we can calculate the private exponent d (the trapdoor information).

- ♦ Break RSA means 'inverting RSA function without knowing the trapdoor' $y \equiv x^e \pmod{n}$
- \diamond Factor the modulus \Rightarrow Break RSA
 - * If we can factor the modulus, we can break RSA
 - * If we can break RSA, we don't know whether we can factor the modulus...open problem (with negative evidences)
- ♦ Factor the modulus ⇒ Calculate private key d
 - * If we can factor the modulus, we can calculate the private exponent d (the trapdoor information).
 - * If we have the private exponent d, we can factor the modulus.

♦ DeLaurentis, "A Further Weakness in the Common Modulus Protocol for the RSA Cryptosystem," Cryptologia, Vol. 8, pp. 253-259, 1984

- DeLaurentis, "A Further Weakness in the Common Modulus Protocol for the RSA Cryptosystem,"
 Cryptologia, Vol. 8, pp. 253-259, 1984
 - * If you have a pair of RSA public-key/private-key, you can factoring n=p·q with a probabilistic algorithm.

- DeLaurentis, "A Further Weakness in the Common Modulus Protocol for the RSA Cryptosystem,"
 Cryptologia, Vol. 8, pp. 253-259, 1984
 - * If you have a pair of RSA public-key/private-key, you can factoring n=p·q with a probabilistic algorithm.
 - * An example of the Universal Exponent Factorization method

- DeLaurentis, "A Further Weakness in the Common Modulus Protocol for the RSA Cryptosystem,"
 Cryptologia, Vol. 8, pp. 253-259, 1984
 - * If you have a pair of RSA public-key/private-key, you can factoring n=p·q with a probabilistic algorithm.
 - * An example of the Universal Exponent Factorization method
- ♦ Basic idea: find a number b, 0<b<n s.t.

- DeLaurentis, "A Further Weakness in the Common Modulus Protocol for the RSA Cryptosystem,"
 Cryptologia, Vol. 8, pp. 253-259, 1984
 - * If you have a pair of RSA public-key/private-key, you can factoring n=p·q with a probabilistic algorithm.
 - * An example of the Universal Exponent Factorization method
- ♦ Basic idea: find a number b, 0<b<n s.t.</p>

$$b^2 \equiv 1 \pmod{n}$$
 and $b \neq \pm 1 \pmod{n}$ i.e. $1 < b < n-1$

- ♦ DeLaurentis, "A Further Weakness in the Common Modulus Protocol for the RSA Cryptosystem," Cryptologia, Vol. 8, pp. 253-259, 1984
 - * If you have a pair of RSA public-key/private-key, you can factoring n=p·q with a probabilistic algorithm.
 - * An example of the Universal Exponent Factorization method
- ♦ Basic idea: find a number b, 0<b<n s.t.</p>
 - $b^2 \equiv 1 \pmod{n}$ and $b \neq \pm 1 \pmod{n}$ i.e. 1 < b < n-1
 - * Note: There are four roots to the equation $b^2 \equiv 1 \pmod{n}$, ± 1 are two of them, all satisfy $(b+1)(b-1) = k \cdot n = k \cdot p \cdot q$, since 0 < b-1 < b+1 < n, we have either $(p \mid b-1 \text{ and } q \mid b+1)$ or $(q \mid b-1 \text{ and } p \mid b+1)$, therefore, one of the factor can be found by $\gcd(b-1,n)$ and the other by $n/\gcd(b-1,n)$ or $\gcd(b+1,n)$

 \Rightarrow Algorithm to find b: Pr{success per repetition} = $\frac{1}{2}$

- \Rightarrow Algorithm to find b: $Pr\{success per repetition\} = \frac{1}{2}$
 - 1. Randomly choose a, $1 \le a \le n-1$, such that gcd(a, n) = 1

- \Rightarrow Algorithm to find b: Pr{success per repetition} = $\frac{1}{2}$
 - 1. Randomly choose a, $1 \le a \le n-1$, such that gcd(a, n) = 1
 - 2. Find minimal j, $a^{2jh} \equiv 1 \pmod{n}$ (where h satisfies $e \cdot d 1 = 2^t h$)

- \Rightarrow Algorithm to find b: $Pr\{success per repetition\} = \frac{1}{2}$
 - 1. Randomly choose a, $1 \le a \le n-1$, such that gcd(a, n) = 1
 - 2. Find minimal j, $a^{2jh} \equiv 1 \pmod{n}$ (where h satisfies e · d 1 = 2^th)
 - 3. $b = {2j-1h \atop a}$, if $b \ne -1 \pmod n$, then gcd(b-1, n) is the result, else repeat 1-3

- \Rightarrow Algorithm to find b: Pr{success per repetition} = $\frac{1}{2}$
 - 1. Randomly choose a, $1 \le a \le n-1$, such that gcd(a, n) = 1
 - 2. Find minimal j, $a^{2jh} \equiv 1 \pmod{n}$ (where h satisfies $e \cdot d 1 = 2^t h$)
 - 3. $b = {2j-1h \over a}$, if $b \ne -1 \pmod n$, then gcd(b-1, n) is the result, else repeat 1-3
- ♦ Note: If we randomly choose $b \in \mathbb{Z}_n^*$ and find out that $b^2 \equiv 1 \pmod{n}$, the probability that b=1, b=-1, $b=c(\neq\pm 1)$, or $b=-c(\neq\pm 1)$ would be equal; $\Pr\{success\}=\Pr\{a^{2j-1h}\neq\pm 1\}=1/2$

- \Rightarrow Algorithm to find b: Pr{success per repetition} = $\frac{1}{2}$
 - 1. Randomly choose a, $1 \le a \le n-1$, such that gcd(a, n) = 1
 - 2. Find minimal j, $a^{2jh} \equiv 1 \pmod{n}$ (where h satisfies $e \cdot d 1 = 2^t h$)
 - 3. $b = {2j-1h \atop a}$, if $b \ne -1 \pmod n$, then gcd(b-1, n) is the result, else repeat 1-3
- ♦ Note: If we randomly choose $b \in \mathbb{Z}_n^*$ and find out that $b^2 \equiv 1 \pmod{n}$, the probability that b=1, b=-1, $b=c(\neq\pm 1)$, or $b=-c(\neq\pm 1)$ would be equal; $\Pr\{success\}=\Pr\{a^{2j-1h}\neq\pm 1\}=1/2$
- \Rightarrow Ex: p=131, q=199, n=p q=26069, e=7, d=22063

- \Rightarrow Algorithm to find b: Pr{success per repetition} = $\frac{1}{2}$
 - 1. Randomly choose a, $1 \le a \le n-1$, such that gcd(a, n) = 1
 - 2. Find minimal j, $a^{2jh} \equiv 1 \pmod{n}$ (where h satisfies $e \cdot d 1 = 2^t h$)
 - 3. $b = {2j-1h \over a}$, if $b \ne -1 \pmod n$, then gcd(b-1, n) is the result, else repeat 1-3
- ♦ Note: If we randomly choose $b \in \mathbb{Z}_n^*$ and find out that $b^2 \equiv 1 \pmod{n}$, the probability that b=1, b=-1, $b=c(\neq\pm 1)$, or $b=-c(\neq\pm 1)$ would be equal; $\Pr\{success\}=\Pr\{a^{2j-1h}\neq\pm 1\}=1/2$
- \Rightarrow Ex: p=131, q=199, n=p·q=26069, e=7, d=22063 $\phi(n)=(p-1)(q-1)=25740=2^{2*}6435 \mid ed-1=154440=2^{3*}19305$,

- \Rightarrow Algorithm to find b: Pr{success per repetition} = $\frac{1}{2}$
 - 1. Randomly choose a, $1 \le a \le n-1$, such that gcd(a, n) = 1
 - 2. Find minimal j, $a^{2jh} \equiv 1 \pmod{n}$ (where h satisfies $e \cdot d 1 = 2^t h$)
 - 3. $b = {2j-1h \over a}$, if $b \ne -1 \pmod n$, then gcd(b-1, n) is the result, else repeat 1-3
- ♦ Note: If we randomly choose $b \in \mathbb{Z}_n^*$ and find out that $b^2 \equiv 1 \pmod{n}$, the probability that b=1, b=-1, $b=c(\neq\pm 1)$, or $b=-c(\neq\pm 1)$ would be equal; $\Pr\{success\}=\Pr\{a^{2j-1h}\neq\pm 1\}=1/2$
- \Rightarrow Ex: p=131, q=199, n=p+q=26069, e=7, d=22063 $\phi(n)=(p-1)(q-1)=25740=2^{2*}6435 \mid ed-1=154440=2^{3*}19305$, choose a=3, try j=1 ($_{3}^{2119305}=1$), b= $_{a}^{2j-1h}=3^{19305}=5372$ ($\neq \pm 1$)

- \Rightarrow Algorithm to find b: Pr{success per repetition} = $\frac{1}{2}$
 - 1. Randomly choose a, $1 \le a \le n-1$, such that gcd(a, n) = 1
 - 2. Find minimal j, $a^{2jh} \equiv 1 \pmod{n}$ (where h satisfies $e \cdot d 1 = 2^t h$)
 - 3. $b = {2j-1h \atop a}$, if $b \ne -1 \pmod n$, then gcd(b-1, n) is the result, else repeat 1-3
- ♦ Note: If we randomly choose $b \in \mathbb{Z}_n^*$ and find out that $b^2 \equiv 1 \pmod{n}$, the probability that b=1, b=-1, $b=c(\neq\pm 1)$, or $b=-c(\neq\pm 1)$ would be equal; $\Pr\{success\}=\Pr\{a^{2j-1h}\neq\pm 1\}=1/2$

♦ The above result says that "if you can recover a pair of RSA keys, you can factoring the corresponding n=p · q" i.e. "once a private key d is compromised, you need to choose a new pair of (n, e) instead of changing e only"

♦ The above result says that "if you can recover a pair of RSA keys, you can factoring the corresponding n=p · q" i.e. "once a private key d is compromised, you need to choose a new pair of (n, e) instead of changing e only"

♦ The above result suggests that a scheme using (n, e₁), (n, e₂), ... (n, ek) with a common n for each k participants without giving each one the value of p, q is insecure.
You should not use the same n as some others even though you are not explicitly told the value of p and q.

♦ The above result also suggests that if you can recover arbitrary RSA key pair, you can solve the problem of factoring n. Whenever you get an \mathbf{n} , you can form an RSA system with some \mathbf{e} (assuming $\gcd(\mathbf{e}, \phi(\mathbf{n}))=1$), then use your method to solve the private exponent \mathbf{d} without knowing p and q, after that you can factor n.

- ♦ The above result also suggests that if you can recover arbitrary RSA key pair, you can solve the problem of factoring n. Whenever you get an \mathbf{n} , you can form an RSA system with some \mathbf{e} (assuming $\gcd(\mathbf{e}, \phi(\mathbf{n}))=1$), then use your method to solve the private exponent \mathbf{d} without knowing p and q, after that you can factor n.
- ♦ Although factoring is believed to be hard, and factoring breaks RSA, <u>breaking RSA</u> does not simplify factoring. Trivial non-factoring methods of breaking RSA could therefore exist. (What does it mean by breaking RSA? plaintext recovery? key recovery?...)

- ♦ The above result also suggests that if you can recover arbitrary RSA key pair, you can solve the problem of factoring n. Whenever you get an \mathbf{n} , you can form an RSA system with some e (assuming $gcd(e, \phi(n))=1$), then use your method to solve the private exponent d without knowing p and q, after that you can factor n.
- ♦ Although factoring is believed to be hard, and factoring breaks RSA, breaking RSA does not simplify factoring. Trivial non-factoring methods of breaking RSA could therefore exist. (What does it mean by breaking RSA? plaintext recovery? key recovery?...)

RSA Cryptosystem is a deterministic encryption scheme,
 i.e. a plaintext message is encrypted to a fixed ciphertext message

- RSA Cryptosystem is a deterministic encryption scheme,
 i.e. a plaintext message is encrypted to a fixed ciphertext message
- ♦ Suffers from chosen plaintext attack

- RSA Cryptosystem is a deterministic encryption scheme,
 i.e. a plaintext message is encrypted to a fixed ciphertext message
- ♦ Suffers from chosen plaintext attack
 - * an attacker compiles a large codebook which contains the ciphertexts corresponding to all possible plaintext messages

- RSA Cryptosystem is a deterministic encryption scheme,
 i.e. a plaintext message is encrypted to a fixed ciphertext message
- ♦ Suffers from chosen plaintext attack
 - * an attacker compiles a large codebook which contains the ciphertexts corresponding to all possible plaintext messages
 - * in a two-message scheme, the attacker can always distinguish which plaintext was transmitted by observing the ciphertext (does not satisfy the Semantic Security Notation)

- RSA Cryptosystem is a deterministic encryption scheme,
 i.e. a plaintext message is encrypted to a fixed ciphertext message
- ♦ Suffers from chosen plaintext attack
 - * an attacker compiles a large codebook which contains the ciphertexts corresponding to all possible plaintext messages
 - * in a two-message scheme, the attacker can always distinguish which plaintext was transmitted by observing the ciphertext (does not satisfy the Semantic Security Notation)
- Add randomness through padding

♦ E.g. k=128 bytes (1024 bits) PKCS#1 v1.5 RSA

- ♦ E.g. k=128 bytes (1024 bits) PKCS#1 v1.5 RSA
 - * plaintext message M (at most 128-3-8=117 bytes)

- ♦ E.g. k=128 bytes (1024 bits) PKCS#1 v1.5 RSA
 - * plaintext message M (at most 128-3-8=117 bytes)
 - * pseudorandom nonzero string PS (at least 8 bytes)

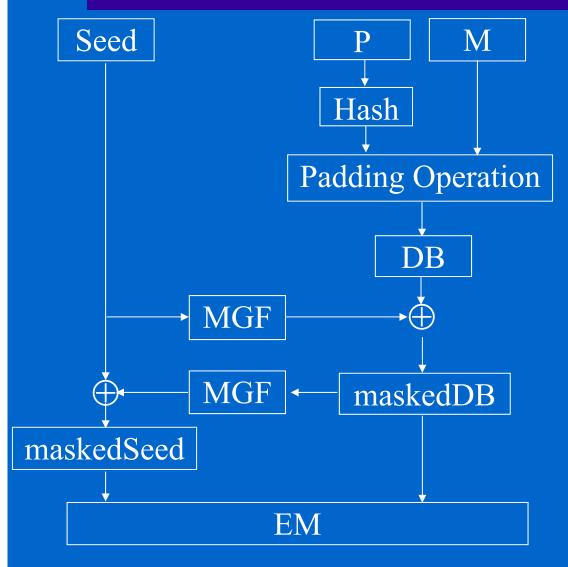
- ♦ E.g. k=128 bytes (1024 bits) PKCS#1 v1.5 RSA
 - * plaintext message M (at most 128-3-8=117 bytes)
 - * pseudorandom nonzero string PS (at least 8 bytes)
 - * message to be encrypted m = 00||02||PS||00||M

- ♦ E.g. k=128 bytes (1024 bits) PKCS#1 v1.5 RSA
 - * plaintext message M (at most 128-3-8=117 bytes)
 - * pseudorandom nonzero string PS (at least 8 bytes)
 - * message to be encrypted m = 00||02||PS||00||M
 - * encryption: $c \equiv m^e \pmod{n}$

- ♦ E.g. k=128 bytes (1024 bits) PKCS#1 v1.5 RSA
 - * plaintext message M (at most 128-3-8=117 bytes)
 - * pseudorandom nonzero string PS (at least 8 bytes)
 - * message to be encrypted m = 00||02||PS||00||M
 - * encryption: $c \equiv m^e \pmod{n}$
 - * decryption: $m \equiv c^d \pmod{n}$

- ♦ E.g. k=128 bytes (1024 bits) PKCS#1 v1.5 RSA
 - * plaintext message M (at most 128-3-8=117 bytes)
 - * pseudorandom nonzero string PS (at least 8 bytes)
 - * message to be encrypted m = 00||02||PS||00||M
 - * encryption: $c \equiv m^e \pmod{n}$
 - * decryption: $m \equiv c^d \pmod{n}$
- ♦ c is now random corresponding to a fixed m, however, this only adds difficulties to the compilation of ciphertexts (a factor of 2⁶⁴ times if PS is 8 bytes)

PKCS #1 v2 padding - OAEP



M: message (emLen-1-2hLen bytes)

P: encoding parameters,

an octet string

MGF: mask generation function

Hash: selected hash function

(hLen is the output bytes)

DB=Hash(P)||PS||01||M

PS is length emLen-

||M||-2hLen-1 null bytes

Seed: hLen random bytes

dbMask: MGF(seed, emLen-hLen)

 $maskedDB = DB \oplus dbMask$

seedMask:

MFG(maskedDB, hLen)

 $maskedSeed = seed \oplus seedMask$

EM: encoded message (emLen bytes)

EM = maskedSeed||makedDB||

PKCS #1 v2 padding - OAEP

- ♦ Optimal Asymmetric Encryption (OAE)
 - * M. Bellare, "Optimal Asymmetric Encryption How to Encrypt with RSA," Eurocrypt'94
- Optimal Padding in the sense that
 - * RSA-OAEP is semantically secure against adaptive chosen ciphertext attackers in the random oracle model
 - * the message size in a k-bit RSA block is as large as possible (make the most advantage of the bandwidth)
- ♦ Following by more efficient padding schemes:
 - * OAEP⁺, SAEP⁺, REACT

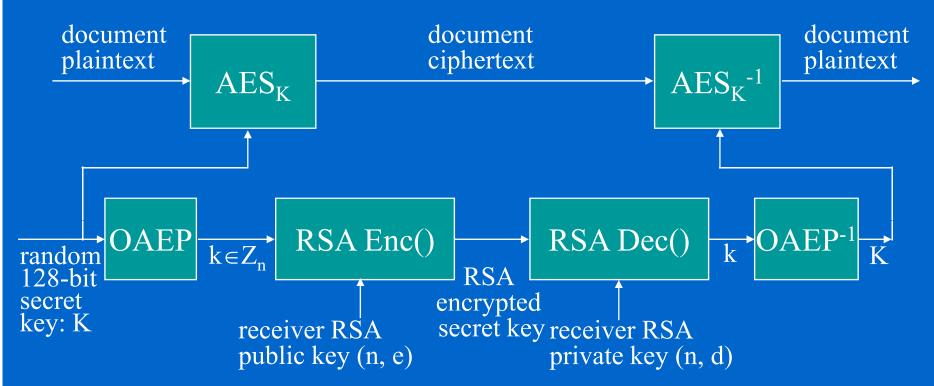
Hybrid system (public key and secret key)

- Hybrid system (public key and secret key)
 - * RSA is about 1000 times slower than AES

- Hybrid system (public key and secret key)
 - * RSA is about 1000 times slower than AES
 - * smaller exponent is faster (but more dangerous)

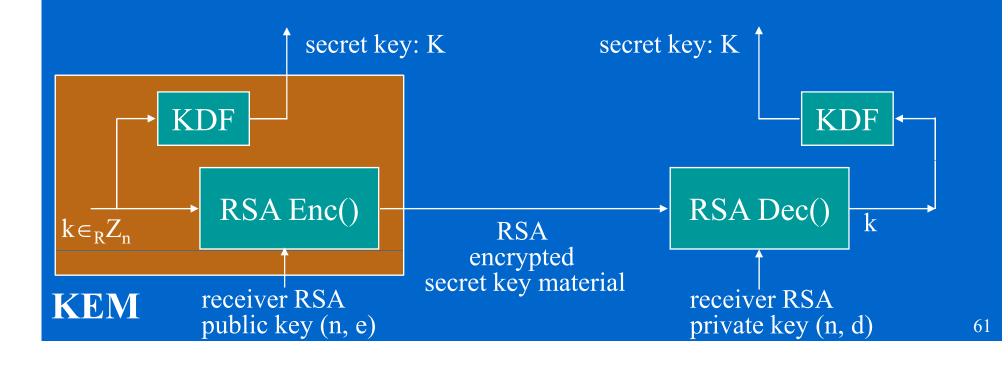
- Hybrid system (public key and secret key)
 - * RSA is about 1000 times slower than AES
 - * smaller exponent is faster (but more dangerous)

- Hybrid system (public key and secret key)
 - * RSA is about 1000 times slower than AES
 - * smaller exponent is faster (but more dangerous)



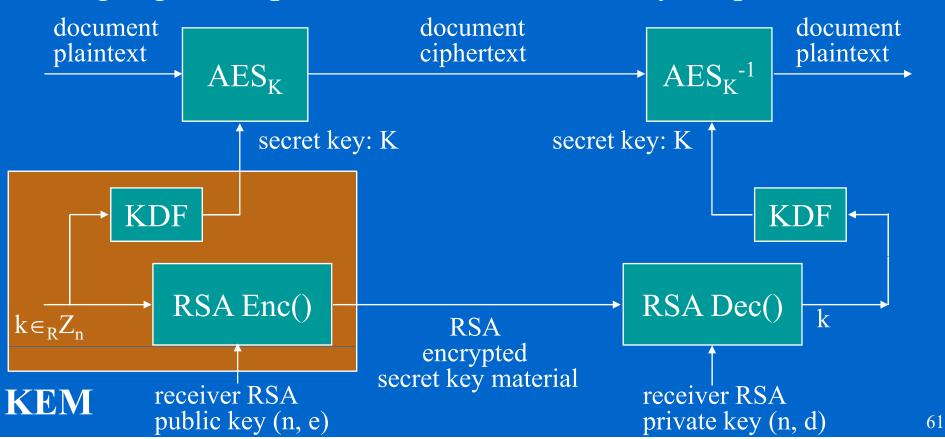
KEM/DEM

- ♦ Key/Data Encapsulation Mechnism, hybrid scheme
- $\Leftrightarrow k \stackrel{\text{OAEP}}{\Leftrightarrow} K$, in a digital envelope scheme, K is a session key, might get compromized, forward security, requires OAEP



KEM/DEM

- ♦ Key/Data Encapsulation Mechnism, hybrid scheme
- $\Leftrightarrow k \stackrel{OAEP}{\Leftrightarrow} K$, in a digital envelope scheme, K is a session key, might get compromized, forward security, requires OAEP



Public key (n, e)

n=p·q, p and q are large prime integers $gcd(e, \phi(n)) = 1$ s.t. $\exists d, e \cdot d \equiv 1 \pmod{\phi(n)}$ $\phi(n) = (p-1)(q-1)$ $3 \le e \le n-1$

→ Public key (n, e)

n=p·q, p and q are large prime integers $gcd(e, \phi(n)) = 1$ s.t. $\exists d, e \cdot d \equiv 1 \pmod{\phi(n)}$ $\phi(n) = (p-1)(q-1)$ $3 \le e \le n-1$

→ Private Key (n, d) or

(n, p, q, dp, dq, qInv)

→ Public key (n, e)

```
n=p·q, p and q are large prime integers gcd(e, \phi(n)) = 1 s.t. \exists d, e \cdot d \equiv 1 \pmod{\phi(n)} \phi(n) = (p-1)(q-1) 3 \le e \le n-1
```

→ Private Key (n, d) or

(n, p, q, dp, dq, qInv)

$$e \cdot dp \equiv 1 \pmod{p-1}$$

 $e \cdot dq \equiv 1 \pmod{q-1}$
 $q \cdot qInv \equiv 1 \pmod{p}$

→ Public key (n, e)

- n=p·q, p and q are large prime integers $gcd(e, \phi(n)) = 1$ s.t. $\exists d, e \cdot d \equiv 1 \pmod{\phi(n)}$ $\phi(n) = (p-1)(q-1)$ $3 \le e \le n-1$
- ♦ Private Key (n, d) or
 - (n, p, q, dp, dq, qInv)
- \Rightarrow Encryption $c \equiv m^e \pmod{n}$

 $e \cdot dp \equiv 1 \pmod{p-1}$ $e \cdot dq \equiv 1 \pmod{q-1}$ $q \cdot qInv \equiv 1 \pmod{p}$

→ Public key (n, e)

- n=p·q, p and q are large prime integers $gcd(e, \phi(n)) = 1$ s.t. $\exists d, e \cdot d \equiv 1 \pmod{\phi(n)}$ $\phi(n) = (p-1)(q-1)$ $3 \le e \le n-1$
- ♦ Private Key (n, d) or
 - (n, p, q, dp, dq, qInv)
- \Rightarrow Encryption $c \equiv m^e \pmod{n}$
- \Rightarrow Decryption $m \equiv c^d \pmod{n}$ or

 $e \cdot dp \equiv 1 \pmod{p-1}$ $e \cdot dq \equiv 1 \pmod{q-1}$ $q \cdot qInv \equiv 1 \pmod{p}$

→ Public key (n, e)

- n=p·q, p and q are large prime integers $gcd(e, \phi(n)) = 1$ s.t. $\exists d, e \cdot d \equiv 1 \pmod{\phi(n)}$ $\phi(n) = (p-1)(q-1)$ $3 \le e \le n-1$

```
(n, p, q, dp, dq, qInv)
```

- \Rightarrow Encryption $c \equiv m^e \pmod{n}$
- ♦ Decryption $m \equiv c^d \pmod{p}$ $m_1 \equiv c^{dp} \pmod{p}$

```
e \cdot dp \equiv 1 \pmod{p-1}

e \cdot dq \equiv 1 \pmod{q-1}

q \cdot qInv \equiv 1 \pmod{p}
```

→ Public key (n, e)

- n=p·q, p and q are large prime integers $gcd(e, \phi(n)) = 1$ s.t. $\exists d, e \cdot d \equiv 1 \pmod{\phi(n)}$ $\phi(n) = (p-1)(q-1)$ $3 \le e \le n-1$

```
(n, p, q, dp, dq, qInv)
```

- \Rightarrow Encryption $c \equiv m^e \pmod{n}$
- \Rightarrow Decryption $m \equiv c^d \pmod{n}$ or

$$m_1 \equiv c^{dp} \pmod{p}$$

$$m_2 \equiv c^{dq} \pmod{q}$$

```
e \cdot dp \equiv 1 \pmod{p-1}

e \cdot dq \equiv 1 \pmod{q-1}

q \cdot qInv \equiv 1 \pmod{p}
```

→ Public key (n, e)

- n=p·q, p and q are large prime integers $gcd(e, \phi(n)) = 1$ s.t. $\exists d, e \cdot d \equiv 1 \pmod{\phi(n)}$ $\phi(n) = (p-1)(q-1)$ $3 \le e \le n-1$
- - (n, p, q, dp, dq, qInv)
- \Rightarrow Encryption $c \equiv m^e \pmod{n}$
- \Rightarrow Decryption $m \equiv c^d \pmod{n}$ or

$$m_1 \equiv c^{dp} \pmod{p}$$

$$m_2 \equiv c^{dq} \pmod{q}$$

$$h \equiv qInv \cdot (m_1 - m_2) \pmod{p}$$

 $e \cdot dp \equiv 1 \pmod{p-1}$ $e \cdot dq \equiv 1 \pmod{q-1}$ $q \cdot qInv \equiv 1 \pmod{p}$

→ Public key (n, e)

- n=p·q, p and q are large prime integers $gcd(e, \phi(n)) = 1$ s.t. $\exists d, e \cdot d \equiv 1 \pmod{\phi(n)}$ $\phi(n) = (p-1)(q-1)$ $3 \le e \le n-1$
- ♦ Private Key (n, d) or

```
(n, p, q, dp, dq, qInv)
```

- \Rightarrow Encryption $c \equiv m^e \pmod{n}$
- \Rightarrow Decryption $m \equiv c^d \pmod{n}$ or

$$m_1 \equiv c^{dp} \pmod{p}$$

$$m_2 \equiv c^{dq} \pmod{q}$$

$$h \equiv q Inv \cdot (m_1 - m_2) \pmod{p}$$

$$m \equiv m_2 + h \cdot q \pmod{n}$$

```
e \cdot dp \equiv 1 \pmod{p-1}

e \cdot dq \equiv 1 \pmod{q-1}

q \cdot qInv \equiv 1 \pmod{p}
```

→ Public key (n, e)

- n=p·q, p and q are large prime integers $gcd(e, \phi(n)) = 1$ s.t. $\exists d, e \cdot d \equiv 1 \pmod{\phi(n)}$ $\phi(n) = (p-1)(q-1)$ $3 \le e \le n-1$
- ♦ Private Key (n, d) or

(n, p, q, dp, dq, qInv)

- \Rightarrow Encryption $c \equiv m^e \pmod{n}$
- \Rightarrow Decryption $m \equiv c^d \pmod{n}$ or

```
m_1 \equiv c^{dp} \pmod{p}
m_2 \equiv c^{dq} \pmod{q}
h \equiv q \text{Inv} \cdot (m_1 - m_2) \pmod{p}
m \equiv m_2 + h \cdot q \pmod{n}
```

 $e \cdot dp \equiv 1 \pmod{p-1}$ $e \cdot dq \equiv 1 \pmod{q-1}$ $q \cdot qInv \equiv 1 \pmod{p}$

→ Public key (n, e)

- n=p·q, p and q are large prime integers $gcd(e, \phi(n)) = 1$ s.t. $\exists d, e \cdot d \equiv 1 \pmod{\phi(n)}$ $\phi(n) = (p-1)(q-1)$ $3 \le e \le n-1$
- ♦ Private Key (n, d) or

```
(n, p, q, dp, dq, qInv)
```

- \Rightarrow Encryption $c \equiv m^e \pmod{n}$
- \Rightarrow Decryption $m \equiv c^d \pmod{n}$ or

```
m_1 \equiv c^{dp} \pmod{p}
m_2 \equiv c^{dq} \pmod{q}
h \equiv q \ln v \cdot (m_1 - m_2) \pmod{p}
m_1 \equiv (m^e)^{dp} \equiv m^{e \cdot dp} \equiv m \pmod{p}
m_2 \equiv m^{e \cdot dp} \pmod{p}
m_1 \equiv m^{e \cdot dp} \equiv m \pmod{p}
```

 $e \cdot dp \equiv 1 \pmod{p-1}$ $e \cdot dq \equiv 1 \pmod{q-1}$ $q \cdot qInv \equiv 1 \pmod{p}$

→ Public key (n, e)

- n=p·q, p and q are large prime integers $gcd(e, \phi(n)) = 1$ s.t. $\exists d, e \cdot d \equiv 1 \pmod{\phi(n)}$ $\phi(n) = (p-1)(q-1)$ $3 \le e \le n-1$
- ♦ Private Key (n, d) or

```
(n, p, q, dp, dq, qInv)
```

- \Rightarrow Encryption $c \equiv m^e \pmod{n}$
- \Rightarrow Decryption $m \equiv c^d \pmod{n}$ or

$$m_1 \equiv c^{dp} \pmod{p}$$

$$m_2 \equiv c^{dq} \pmod{q}$$

$$m_1 \equiv (m^e)^{dp} \equiv m^{e \cdot dp} \equiv m \pmod{p}$$

 $e \cdot dp \equiv 1 \pmod{p-1}$

 $e \cdot dq \equiv 1 \pmod{q-1}$

 $q \cdot qInv \equiv 1 \pmod{p}$

$$m_2 \equiv (m^e)^{dq} \equiv m^{e \cdot dq} \equiv m \pmod{q}$$

$$h \equiv qInv \cdot (m_1 - m_2) \pmod{p}$$

$$T = m_2 + h \cdot q \pmod{n}$$

→ Public key (n, e)

- n=p·q, p and q are large prime integers $gcd(e, \phi(n)) = 1$ s.t. $\exists d, e \cdot d \equiv 1 \pmod{\phi(n)}$ $\phi(n) = (p-1)(q-1)$ $3 \le e \le n-1$
- ♦ Private Key (n, d) or

(n, p, q, dp, dq, qInv)

- \Rightarrow Encryption $c \equiv m^e \pmod{n}$
- \Rightarrow Decryption $m \equiv c^d \pmod{n}$ or

$$m_1 \equiv c^{dp} \pmod{p}$$

$$m_2 \equiv c^{dq} \pmod{q}$$

$$m_1 \equiv (m^e)^{dp} \equiv m^{e \cdot dp} \equiv m \pmod{p}$$

 $e \cdot dp \equiv 1 \pmod{p-1}$

 $e \cdot dq \equiv 1 \pmod{q-1}$

 $q \cdot qInv \equiv 1 \pmod{p}$

$$m_2 \equiv (m^e)^{dq} \equiv m^{e \cdot dq} \equiv m \pmod{q}$$

 $h \equiv q Inv \cdot (m_1 - m_2) \pmod{p}$

$$\operatorname{CRT} = m_2 + h \cdot q \pmod{n}$$

$$m \equiv m_2 \pmod{q}$$
 and
 $m \equiv m_2 + q \operatorname{Inv} \cdot (m_1 - m_2) \cdot q \equiv m_1 \pmod{p}$

⇒ RSA PKCS#1 v2.0 Amendment 1

- ⇒ RSA PKCS#1 v2.0 Amendment 1
- the modulus n may have more than two prime factors

- ♦ RSA PKCS#1 v2.0 Amendment 1
- the modulus n may have more than two prime factors
- → only private key operations and representations are
 affected (p, q, dp, dq, qInv) (r_i, d_i, t_i)

- ♦ RSA PKCS#1 v2.0 Amendment 1
- the modulus n may have more than two prime factors
- ♦ only private key operations and representations are affected (p, q, dp, dq, qInv) (r_i, d_i, t_i)
 - * $n = r_1 \cdot r_2 \cdot ... \cdot r_k$, $k \ge 2$, where $r_1 = p$, $r_2 = q$

- ♦ RSA PKCS#1 v2.0 Amendment 1
- the modulus n may have more than two prime factors
- ♦ only private key operations and representations are affected (p, q, dp, dq, qInv) (r_i, d_i, t_i)
 - * $n = r_1 \cdot r_2 \cdot ... \cdot r_k$, $k \ge 2$, where $r_1 = p$, $r_2 = q$
 - * $e \cdot d_i \equiv 1 \pmod{r_i-1}, i=3,...k$

- ♦ RSA PKCS#1 v2.0 Amendment 1
- the modulus n may have more than two prime factors
- ♦ only private key operations and representations are affected (p, q, dp, dq, qInv) (r_i, d_i, t_i)
 - * $n = r_1 \cdot r_2 \cdot ... \cdot r_k$, $k \ge 2$, where $r_1 = p$, $r_2 = q$
 - * $e \cdot d_i \equiv 1 \pmod{r_i-1}, i=3,...k$
 - * $r_1 \cdot r_2 \cdot \ldots \cdot r_{i-1} \cdot t_i \equiv 1 \pmod{r_i} i=3,\ldots k$

- ♦ RSA PKCS#1 v2.0 Amendment 1
- the modulus n may have more than two prime factors
- ♦ only private key operations and representations are affected (p, q, dp, dq, qInv) (r_i, d_i, t_i)
 - * $n = r_1 \cdot r_2 \cdot ... \cdot r_k$, $k \ge 2$, where $r_1 = p$, $r_2 = q$
 - * $e \cdot d_i \equiv 1 \pmod{r_i-1}, i=3,...k$
 - * $r_1 \cdot r_2 \cdot \ldots \cdot r_{i-1} \cdot t_i \equiv 1 \pmod{r_i} i = 3, \ldots k$
- ♦ Decryption:

- → RSA PKCS#1 v2.0 Amendment 1
- the modulus n may have more than two prime factors
- ♦ only private key operations and representations are affected (p, q, dp, dq, qInv) (r_i, d_i, t_i)
 - * $n = r_1 \cdot r_2 \cdot ... \cdot r_k$, $k \ge 2$, where $r_1 = p$, $r_2 = q$
 - * $e \cdot d_i \equiv 1 \pmod{r_i-1}, i=3,...k$
 - * $r_1 \cdot r_2 \cdot \ldots \cdot r_{i-1} \cdot t_i \equiv 1 \pmod{r_i} i=3,\ldots k$

♦ Decryption:

- $1. m_1 \equiv c^{dp} \pmod{p}$
- 2. $m_2 \equiv c^{dq} \pmod{q}$
- 3. if $k \ge 2$ $m_i \equiv c^{d_i} \pmod{r_i}$, i = 3, ..., k
- 4. $h \equiv (m_1 m_2) \text{ qInv } (\text{mod } p)$

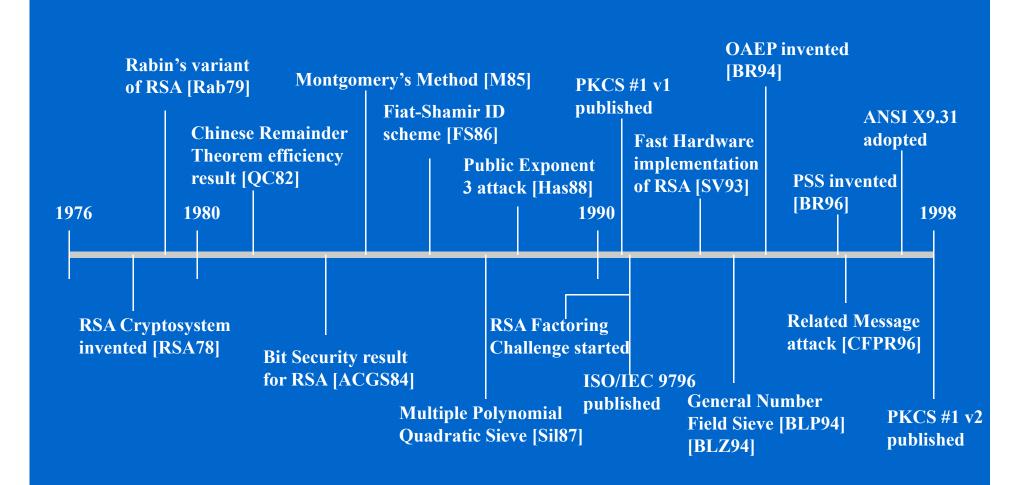
- → RSA PKCS#1 v2.0 Amendment 1
- the modulus n may have more than two prime factors
- ♦ only private key operations and representations are affected (p, q, dp, dq, qInv) (r_i, d_i, t_i)
 - * $n = r_1 \cdot r_2 \cdot ... \cdot r_k$, $k \ge 2$, where $r_1 = p$, $r_2 = q$
 - * $e \cdot d_i \equiv 1 \pmod{r_i-1}, i=3,...k$
 - * $r_1 \cdot r_2 \cdot \ldots \cdot r_{i-1} \cdot t_i \equiv 1 \pmod{r_i} i=3,\ldots k$
- ♦ Decryption:
 - 1. $m_1 \equiv c^{dp} \pmod{p}$
 - 2. $m_2 \equiv c^{dq} \pmod{q}$
 - 3. if $k \ge 2$ $m_i \equiv c^{d_i} \pmod{r_i}$, i = 3, ..., k
 - 4. $h \equiv (m_1 m_2) \text{ qInv } (\text{mod p})$

- 5. $m = m_2 + q \cdot h$
- 6. if k > 2, $R = r_1$, for k = 3 to k do
 - a. $R = R \cdot r_{i-1}$
 - b. $h \equiv (m_i m) \cdot t_i \pmod{r_i}$
 - c. $m = m + R \cdot h$

- ⇒ RSA PKCS#1 v2.0 Amendment 1
- the modulus n may have more than two prime factors
- ♦ only private key operations and representations are affected (p, q, dp, dq, qInv) (r_i, d_i, t_i)
 - * $n = r_1 \cdot r_2 \cdot ... \cdot r_k$, $k \ge 2$, where $r_1 = p$, $r_2 = q$
 - * $e \cdot d_i \equiv 1 \pmod{r_i-1}, i=3,...k$
 - * $r_1 \cdot r_2 \cdot \ldots \cdot r_{i-1} \cdot t_i \equiv 1 \pmod{r_i} i=3,\ldots k$
- ♦ Decryption:
 - 1. $m_1 \equiv c^{dp} \pmod{p}$
 - 2. $m_2 \equiv c^{dq} \pmod{q}$
 - 3. if $k \ge 2$ $m_i \equiv c^{d_i} \pmod{r_i}$, i = 3, ..., k
 - 4. $h \equiv (m_1 m_2) \text{ qInv } (\text{mod } p)$

- 5. $m = m_2 + q \cdot h$
- 6. if k>2, $R=r_1$, for k=3 to k do
 - a. $R = R \cdot r_{i-1}$
 - b. $h \equiv (m_i m) \cdot t_i \pmod{r_i}$
 - c. $m = m + R \cdot h$
- ♦ advantages: lower computational cost for the decryption (and signature) primitives if CRT is used (also see 6.8.14) 631

Factoring & RSA Timeline



⇒ ElGamal Cryptosystem (Discrete-log based)

- ⇒ ElGamal Cryptosystem (Discrete-log based)
 - * Also suffers from long keys

- ♦ ElGamal Cryptosystem (Discrete-log based)
 - * Also suffers from long keys
- ♦ NTRU (Lattice based)

- ⇒ ElGamal Cryptosystem (Discrete-log based)
 - * Also suffers from long keys
- ♦ NTRU (Lattice based)
 - * Utilizes short keys

- ♦ ElGamal Cryptosystem (Discrete-log based)
 - * Also suffers from long keys
- ♦ NTRU (Lattice based)
 - * Utilizes short keys
 - * Proprietary (License issues prevent from wide implementation)

- → ElGamal Cryptosystem (Discrete-log based)
 - * Also suffers from long keys
- ♦ NTRU (Lattice based)
 - * Utilizes short keys
 - * Proprietary (License issues prevent from wide implementation)
 - * Recently, a weakness found in the signature scheme

- → ElGamal Cryptosystem (Discrete-log based)
 - * Also suffers from long keys
- ♦ NTRU (Lattice based)
 - * Utilizes short keys
 - * Proprietary (License issues prevent from wide implementation)
 - * Recently, a weakness found in the signature scheme
- ♦ Elliptic Curve Cryptosystems

- - * Also suffers from long keys
- ♦ NTRU (Lattice based)
 - * Utilizes short keys
 - * Proprietary (License issues prevent from wide implementation)
 - * Recently, a weakness found in the signature scheme
- ♦ Elliptic Curve Cryptosystems
 - * Emerging public key cryptography standard for constrained devices.

- ♦ ElGamal Cryptosystem (Discrete-log based)
 - * Also suffers from long keys
- ♦ NTRU (Lattice based)
 - * Utilizes short keys
 - * Proprietary (License issues prevent from wide implementation)
 - * Recently, a weakness found in the signature scheme
- ♦ Elliptic Curve Cryptosystems
 - * Emerging public key cryptography standard for constrained devices.
- ♦ Paillier Cryptosystem (High order composite residue based)

- ♦ ElGamal Cryptosystem (Discrete-log based)
 - * Also suffers from long keys
- ♦ NTRU (Lattice based)
 - * Utilizes short keys
 - * Proprietary (License issues prevent from wide implementation)
 - * Recently, a weakness found in the signature scheme
- ♦ Elliptic Curve Cryptosystems
 - * Emerging public key cryptography standard for constrained devices.
- ♦ Paillier Cryptosystem (High order composite residue based)
- ♦ Goldwasser-Micali Cryptosystem (QR based)

- → ElGamal Cryptosystem (Discrete-log based)
 - * Also suffers from long keys
- ♦ NTRU (Lattice based)
 - * Utilizes short keys
 - * Proprietary (License issues prevent from wide implementation)
 - * Recently, a weakness found in the signature scheme
- ♦ Elliptic Curve Cryptosystems
 - * Emerging public key cryptography standard for constrained devices.
- ♦ Paillier Cryptosystem (High order composite residue based)
- ♦ Goldwasser-Micali Cryptosystem (QR based)
 - * very low efficiency

Miller-Rabin Primality Test

♦ Why does it work?

bottom line of Miller-Rabin test

- * if n is prime, $a^{n-1} \equiv 1 \pmod{n}$ (Fermat Little theorem)
- * therefore, if $b_k \equiv a^{2^k m} \equiv a^{n-1}$ 1 (mod n), n must be composite
- * however, there are many composite numbers that satisfy $a^{n-1} \equiv 1 \pmod{n}$, Miller-Rabin test can detect many of them
- * $b_0, b_1, ..., b_{k-1} (\equiv a^{(n-1)/2} \pmod{n})$ is a sequence s.t. $b_{i-1}^2 \equiv b_i \pmod{n}$
- * we consider only $b_{k-1}^2 \equiv a^{n-1} \equiv 1 \pmod{n}$

n is pseudo prime

- * if $b_i \equiv 1$ and $b_{i-1} \pm 1$, then *n* is composite.
- * if $b_i \equiv 1$ and $b_{i-1} \equiv 1$, consider b_{i-1} and then b_{i-2} ...

basic factoring principle

- \rightarrow if $b_0 \equiv 1$, could be prime, no guarantee
- * if $b_i \equiv 1$ and $b_{i-1} \equiv -1$ ($b_{i-2} \equiv \pm 1$), could be prime, no guarantee

there is no chance to apply basic factoring principle

Miller-Rabin Primality Test

♦ In summary:

```
b_0, b_1, b_2, \dots b_{i-1}, b_i, \dots b_k
there are four cases:

\Rightarrow Case 1: b_k \ne 1  n is a composite number

\Rightarrow Case 2: b_k = 1, let i be the minimal i, k \ge i > 0 such that b_i = 1 and b_{i-1} \ne \pm 1  n is a composite number (with nontrivial factors calculated)

\Rightarrow Case 3: b_k = 1, let i be the minimal i, k \ge i > 0 such that b_i = 1 and b_{i-1} = -1 a pseudo prime number

\Rightarrow Case 4: b_k = 1, b_0 = 1 a pseudo prime number
```

```
4 possible sequences for b_0, b_1, b_2, ... b_{i-1}, b_i, ... b_k:

342, 22, 5, 1, 1, 1, 1, ..., 1 composite, factored

45, 5634, 325, 213, -1, 1, ..., 1 possibly prime

1, 1, 1, ..., 1 possibly prime

214, 987, ..., 8931, 321, 134 composite
```

M-R Test: Prime Modulus

- \Rightarrow p-1 is an even number, therefore, let p-1=2^k·m, m is odd
- \Rightarrow choose one $a \in_R \mathbb{Z}_p^*$, let r be the smallest integer s.t. $a^r \equiv 1 \pmod{p}$, i.e. r is the order of a modulo p, $\operatorname{ord}_p(a)$
- \Rightarrow (exercise 3.9) $a^{p-1} \equiv 1 \pmod{p} \Rightarrow r \mid p-1$
- \Rightarrow because r | p-1 (= 2^k ·m), one of {m, 2·m, 2^2 ·m, ... 2^k ·m} might be r (probability reduces if m has many factors)
- \Rightarrow Case 1: if "2ⁱ·m (for some i>0) is r", $a^{2^{i-1}\cdot m}$ must be -1
 - * r is the smallest integer s.t. $a^r \equiv 1 \Rightarrow \text{square root of } a^r \text{ must be } -1$
 - * $\{a^{\text{m}}, a^{2 \cdot \text{m}}, \dots a^{2^{i} \cdot \text{m}}\}$ is $\{?, ?, -1, 1, \dots 1\}$
- \diamond Case 2: if "none of 2"·m is r" or "m is r", $a^{2^{1}\cdot m}$ must all be 1,
 - * $\{a^{\rm m}, a^{\rm 2 \cdot m}, \dots a^{\rm 2^{\rm i} \cdot m}\}$ is $\{1, 1, 1, 1, \dots 1\}$
 - * try some other $a \in \mathbb{Z}_p^*$

Miller-Rabin Primality Test

Why does it work??? an inside view

 $b_i \equiv 1 \pmod{n}$ and $b_{i-1} \equiv 1 \pmod{n}$ happens when $b_i \equiv 1 \pmod{p_i}$ for all prime factors p_i of n and

```
b_{i-1} \equiv 1 \pmod{p_i} for some prime factors p_i but b_{i-1} \equiv -1 \pmod{q_i} for other prime factors q_i
```

Note: for a prime modulus p, $a^{\text{ord}_p(a)} \equiv 1 \pmod{p}$ if $\text{ord}_p(a)$ is even then $a^{\text{ord}_p(a)/2} \equiv -1 \pmod{p}$

i.e. inconsistent progress w.r.t each prime factor

Subset Sum Problem is NP-Complete

Given a set B of positive numbers and a number d

- * Search SSP: find a subset $\{b_i\}\subseteq B$ s.t. $d = \sum b_i$
- * Decision SSP: decide if there exists a subset $\{b_i\}\subseteq B$ s.t. $d = \sum b_i$
- * Decision SSP is equivalent to Search SSP: (by elimination)
- Subset Sum Problem is NP-complete
 - * Cook-Levin Thm: Satisfiability Problem (SAT) is NP-Complete
 - * SAT \leq_M SSP: there exists a poly-time reduction to convert a formula ϕ to an instance \leq B,d \geq of SSP problem
 - ⇒ If the formula φ is satisfiable, <B,d> ∈ SSP
 - ≠ If <B,d> ∈ SSP, formula φ is satisfiable

Therefore, SSP is also NP-complete

$SAT \leq_M D-Subset Sum$

- \diamond Given a formula ϕ with k clauses $C_1, C_2, ..., C_k$ and n variables
 - * For each variable x, create 2 integers n_{xt} and n_{xf}
 - * For each clause C_j of lengh ℓ_j , create ℓ_j -1 integers m_{j1} , m_{j2} , ...
 - * Choose t so that T must contain exactly one of each $(n_{xt}$ or $n_{xf})$ pairs and at least one from each clause
- ♦ This construction can be carried out in poly-time
- $\diamond \phi$ is satisfiable iff there exists solution to this SSP

$SAT \leq_M D$ -Subset Sum (cont'd)

Example: $(x \lor y \lor z) \land (\neg x \lor \neg a) \land (a \lor b \lor \neg y \lor \neg z)$

	X	У	Z	a	b	\mathbf{C}_1	C_2	\mathbf{C}_3	
$\overline{n_{xt}}$	1	0	0	0	0	1	0	0	
n_{xf}	1	0	0	0	0	0	1	0	
n_{yt}		1	0	0	0	1	0	0	
n_{yf}		1	0	0	0	0	0	1	
n_{zt}			1	0	0	1	0	0	
n_{zf}			1	0	0	0	0	1	
n _{at}				1	0	0	0	1	
n_{af}				1	0	0	1	0	
n_{bt}					1	0	0	1	
n_{bf}					1	0	0	0	
m ₁₁						1	0	0	Encode all
m_{12}						1	0	0	numbers with
m_{21}						0	1	0	
m_{31}						0	0	1	a base larger
m_{32}						0	0	1	than all entries
m_{33}						0	0	1	of t e.g. 10
t	1	1	1	1_	1	3	2	4	
									75