RSA Cryptosystem

密碼學與應用 海洋大學資訊工程系 丁培毅

Knapsack (Subset Sum) PKC

- Merkel and Hellman, "Hiding Information and Signatures in Trapdoor Knapsacks," IT-24, 1978
 - * a good application of an **NP problem** on designing public key cryptosystem **no longer secure**
- **Super-increasing sequence:**

$$\{a_1, a_2, \dots a_n\}$$
 such that $a_i > \sum_{j=0}^{i-1} a_j$ e.g. 1, 3, 5, 10, 20, 40

- ♦ **Note:** 1. Given a number c, finding a subset $\{a_j\}$ s.t. $c = \sum_j a_j$ is an easy problem, e.g. 48 = 40 + 5 + 3
 - 2. Sum of every subset S, $\sum_{i \in S} a_i < 2 \cdot a_M$ where $a_M = \max_{i \in S} \{a_i\}$
 - 3. Every possible subset sum is unique pf: given x, assume $x = \sum_{j \in S} a_j = \sum_{j \in T} a_j$, where $S \neq T$, assume $\max_{j \in S} \{a_j\} \neq \max_{j \in T} \{a_j\} \dots$

Naïve Public Key System

- ♦ Encryption and decryption algorithm are not the same
- ♦ Public/private key pair: private key is related to public key but can not be easily derived from public key
- ♦ Illustrating example:

decryption

$$m \in Z_{11}^*$$
 $m * 1 = m \pmod{11}$
 $m * 8 * 8^{-1} = m \pmod{11}$
encryption

8 is the public key
m * 8 is the ciphertext
8⁻¹ is the private key (if nobody
can derive this from the public
key, then this system is secure)

2

Knapsack (Subset Sum) PKC

♦ choose a number b in Z_p^* , e.g. p = 101, b = 23, and convert the super-increasing sequence to a normal knapsack sequence

B=
$$\{b_1, b_2, ..., b_n\}$$
 where $b_i \equiv a_i \cdot b \pmod{p}$

e.g.
$$A=\{1, 3, 5, 10, 20, 40\} \Rightarrow B=\{23, 69, 14, 28, 56, 11\}$$

 \diamond Since gcd(b, p)=1, this conversion is **invertible**, i.e.

$$a_i \equiv b_i \cdot b^{-1} \pmod{p}$$

e.g.
$$b^{-1} \equiv 22 \pmod{101}$$
 such that $b \cdot b^{-1} \equiv 1 \pmod{p}$

♦ Given a number d, finding a subset $\{b_i\}\subseteq B$ s.t.

$$d = \sum_{i} b_{j} \pmod{p}$$

is an NP-complete problem, e.g. 94 = 11 + 14 + 69

Knapsack (Subset Sum) PKC

- ♦ Encryption:
 - * **public key**: normal knapsack seq. B={23, 69, 14, 28, 56, 11}
 - * message m, $0 \le m < 2^6$, e.g. $(60)_{10} = (111100)_2$
 - * sum up the corresponding elements of '1' bits, e.g. 23 + 69 + 14 + 28 = 134 is the ciphertext
- ♦ Decryption:
 - * private key: b⁻¹=22, p=101, A={1, 3, 5, 10, 20, 40}
 - * calculate 134 * 22 mod 101 = 19
 - * use the corresponding super-increasing knapsack seq. A={1, 3, 5, 10, 20, 40} to decrypt as follows:

 - \Rightarrow 19 \geq 10, mark a '1' and subtract 10 from 19
 - \neq 9 \geq 5, mark a '1' and subtract 5 from 9
 - \neq 4 \geq 3, mark a '1' and subtract 3 from 4
 - * recovered message is $(111100)_2 = (60)_{10}$

Knapsack (Subset Sum) PKC

♦ Why does it work?

```
let the plaintext be (111100)_2
ciphertext c = b_1 + b_2 + b_3 + b_4
\equiv a_1 b + a_2 b + a_3 b + a_4 b \pmod{p}
decryption: c b^{-1} \pmod{p} \equiv a_1 + a_2 + a_3 + a_4 \pmod{p}
is a subset sum problem of a
```

6

RSA and Rabin

- two important cryptosystems based on the difficulty of integer factoring (an NP problem) are introduced as follows:
- ♦ RSA's underlying problem

Solving e-th root modulo n is difficult

RSA function $y \equiv x^e \pmod{n}$

♦ Rabin's underlying problem

Solving square root modulo n is difficult

$$y \equiv x^2 \pmod{n}$$
Rabin function

both functions are candidates for trapdoor one way function

RSA and Rabin Function

♦ Solving e-th root of y modulo n is difficult!!!

$$y \equiv x^e \pmod{n}$$
, where $gcd(e, \phi(n)) = 1$

Why don't we take (e⁻¹)-th power of y?

where
$$e^{-1} \cdot e \equiv 1 \pmod{\phi(n)}$$

e.g.
$$n = 11 \cdot 13 = 143$$
, $e = 7$
 $\phi(n) = 10 \cdot 12 = 120$, $e^{-1} = 103$

 $(\text{mod } \phi(n))$ Trouble: How do we know $\phi(n)$?

super-increasing sequence

♦ Solving square root of y modulo n is difficult!!! $y = x^2 \pmod{n}$

Why don't we take
$$(2^{-1})$$
-th power of y?

where $2^{-1} \cdot 2 \equiv 1 \pmod{\phi(n)}$

e.g.
$$n = 11 \cdot 13 = 143$$

 $\phi(n) = 10 \cdot 12 = 120$, $gcd(2, \phi(n)) = 2$

Remember solving square root of y modulo a prime number p is very easy

Trouble: $d \cdot 2 \equiv 1 \pmod{\phi(n)}$ has no solution

RSA Public Key Cryptosystem

- R. Rivest, A. Shamir and L. Adleman, "A Method for Obtaining Digital Signatures and Public-Key Cryptosystems," Comm. ACM, pp.120-126, 1978
- ♦ Based on the *Integer Factorization* problem
- \sim Choose two large prime numbers: p, q (keep them secret!!)
- ♦ Calculate the modulus $n = p \cdot q$ (make it public)
- ♦ Calculate $Φ(n) = (p-1) \cdot (q-1)$ (keep it secret)
- \diamond Select a random integer such that $e < \Phi$ and $gcd(e, \Phi) = 1$
- φ Calculate the unique integer d such that $e \cdot d \equiv 1 \pmod{\Phi}$
- \Leftrightarrow Public key: (n, e) Private key: d

RSA Encryption & Decryption

- ♦ Alice wants to encrypt a message *m* for Bob
- \diamond Alice obtains Bob's authentic public key (n, e)
- \diamond Alice represents the message as an integer m in the interval [0, n-1]
- \diamond Alice computes the modular exponentiation $c \equiv m^e \pmod{n}$
- \diamond Alice sends the ciphertext c to Bob
- ♦ Bob decrypts c with his private key (n, d)by computing the modular exponentiation $\hat{m} \equiv c^d \pmod{n}$

10

RSA Encryption & Decryption

- ♦ Why does RSA work? Is this really a problem???
 - * Fact 1: $e \cdot d \equiv 1 \pmod{\Phi} \Rightarrow e \cdot d = 1 + k \Phi$
 - * Fact 2: $\forall m, \gcd(m,n)=1, m^{\Phi} \equiv 1 \pmod{n}$ (by Euler's theorem)
 - * From Fact 2: $\forall m$, gcd(m,n)=1,

$$c^d \equiv m^{ed} \equiv m^{1+k \Phi} \equiv m^{1+k (p-1)(q-1)} \equiv m \pmod{n}$$

- note: 1. This only proves that for all m that are not multiples of p or q can be recovered after RSA encryption and decryption.
 - 2. For those m that are multiples of p or q, the Euler's theorem simply does not hold, e.g. $p^{\Phi} \equiv 0 \pmod{p}$ and $p^{\Phi} \equiv 1 \pmod{q}$ which means that $p^{\Phi} \not\equiv 1 \pmod{q}$ from CRT.

RSA Encryption & Decryption

- ♦ Why does RSA work?
 - * Fact 1: $e \cdot d \equiv 1 \pmod{\Phi} \Rightarrow e \cdot d = 1 + k \Phi$
 - * Fact 2: $\forall m, \gcd(m,p)=1, m^{p-1} \equiv 1 \pmod{p}$ (by Fermat's Little theorem)
 - * From Fact 2: $\forall m$, gcd(m,p)=1

note: this equation is trivially true when m = kp $m + k (p-1)(q-1) \equiv m \pmod{p}$

* From Fact 2: $\forall m$, gcd(m,q)=1

note: this equation is trivially true when m = kq m = kq

* From CRT: $\forall m$,

 $c^d \equiv m^{ed} \equiv m^{1+k \Phi} \equiv m^{1+k (p-1)(q-1)} \stackrel{*}{\equiv} m \pmod{n}$

RSA Function is a Permutation

♦ RSA function is a permutation: (1-1 and onto, bijective)

RSA Cryptosystem

- ♦ Most popular PKC in practice
- → Tens of dedicated crypto-processors are specifically designed to perform modular multiplication in a very efficient way.
- Disadvantage: long key length, complex key generation scheme, deterministic encryption
- ♦ For acceptable level of security in commercial applications, 1024-bit (300 digits) keys are used. For a symmetric key system with comparable security, about 100 bits keys are used.
- In constrained devices such as smart cards, cellular phones and PDAs, it is hard to store, communicate keys or handle operations involving large integers

14

Matlab examples


```
* maple('p := nextprime(1897345789)')
```

* maple('q := nextprime(278478934897)')

* maple('n := p*q');

Very likely to be relatively prime with (p-1)(q-1)

* maple('x := 101');

F----- (F -)

- * maple('e := nextprime(12345678)')
- * maple('d := $e&^(-1) \mod ((p-1)*(q-1))'$)
- * maple('y := $x \&^{(e)} \overline{\text{mod n'}}$)
- * maple('xp := y&^(d) mod n') extended Euclidean algo.

Python gmpy2

from gmpy2 import mpz, next_prime, invert, powmod

```
p = next prime(mpz(1897345789))
                                   # 1897345817
q = next prime(mpz(278478934897)) # 278478934961
n = p * q
                                    # 528370842370868408137
phi = (p-1)*(q-1)
                                    # 528370842090492127360
e = next prime(mpz(1897345789))
                                    # 1897345817
d = invert(e, phi)
                                    # 139387972146660337833
plaintext = 101
ciphertext = powmod(plaintext, e, n)
                                    # 479679342785929350234
decrypted = powmod(ciphertext, d, n)
                                    # 101
```

Rabin Cryptosystem (1/3)

- ♦ M.O. Rabin, "Digitalized Signatures and Public-key Functions As Intractable As Factorization", Tech. Rep. LCS/TR212, MIT, 1979
- \diamond Choose two large prime numbers: p, q (keep them secret!!)
- \diamond Calculate the modulus $n = p \cdot q$ (make it public)
- ♦ Public Key
- \diamond Private Key p, q

17

Rabin Cryptosystem (3/3)

- ♦ The range of the Rabin function is not the whole set of Z_n^* (compare with RSA).
 - * The range covers all the quadratic residues. (for a prime modulus, the number of quadratic residues in Z_p* is (p-1)/2; for a composite integer n=p·q, the number of quadratic residues in Z_p* is (p-1)(q-1)/4)
 - * In order to let the Rabin function have inverse, it is necessary to make the Rabin function a permutation, ie. 1-1 and onto. Therefore, the number of elements in the domain of the Rabin function should also be (p-1)(q-1)/4 for n=p·q. There are 4 possible numbers with their square equal to y, and we have to make 3 of them illegal.

Rabin Cryptosystem (2/3)

- ♦ Alice want to encrypt a message *m* (with some fixed format) for Bob
- \diamond Alice obtains Bob's authentic public key n
- \diamond Alice represents the message as an integer m in the interval [0, n-1]
- ♦ Alice computes the modular square $c \equiv m^2 \pmod{n}$
- \diamond Alice sends the ciphertext c to Bob
- \diamond Bob decrypts c using his private key p and q
- ♦ Bob computes the four square roots ±m₁, ±m₂ using CRT, one of them satisfying the fixed message format is the recovered message

18

Number of Quadratic Residues

- ♦ For a prime modulus p: number of QR_p's in Z_p* is (p-1)/2 pf: find a primitive g, at least {g², g⁴, ... g^{p-1}} are QR_p's assume there are (p+1)/2 QRs, since there are exactly two square roots of a QR modulo p there are p+1 square roots for these (p+1)/2 QRs, i.e. there must be at least two pairs of square roots are the same (pigeon-hole), i.e. two out of these (p+1)/2 QRs are the same, contradiction
- $\label{eq:power_problem} \begin{array}{l} \Leftrightarrow \mbox{ For a composite modulus $p\cdot q$: number of QR_n's in $Z_{p\cdot q}^*$ is $(p-1)(q-1)/4$ pf: find a common primitive in Z_p^* and Z_q^* g, at least $\{g^2,g^4,\ldots,g^{p-1}\ldots,g^{q-1}\ldots,g^{\lambda(n)}\}$ are QR_n's, where $\lambda(n)=lcm(p-1,q-1)$ can be as large as $(p-1)(q-1)/2$, this set has $(p-1)(q-1)/4$ distinct elements assume there are $(p-1)(q-1)/4+1$ QR_n's in Z_n^*, since there are four square roots of a QR modulo $p\cdot q$, these QR_n's have $(p-1)(q-1)+4$ square roots in total. There must be some repeated elements in this QR_n, therefore, there are at most $(p-1)(q-1)/4$ QR_n's in Z_n^* } \end{array}$

Matlab examples

```
    maple('p:= nextprime(189734535789)')

                                                 \% 189734535811 = 4 k + 3
 maple('p mod 4')
\Rightarrow maple('q:= nextprime(27847815934897)') % 27847815934931 = 4 k + 3
\Rightarrow maple('q mod 4')
\Rightarrow maple('n:=p*q');

    maple('x:=070411111422141711030000') % text2int('helloworld')

\Rightarrow maple('c:= x&^2 mod n')
\Leftrightarrow maple('c1:= c mod p')
\Rightarrow maple('r1:= c1&^((p+1)/4) mod p')
                                                 % maple('r1&^2 mod p')
\Rightarrow maple('c2:= c mod q')
\Rightarrow maple('r2:= c2&^((q+1)/4) mod q')
                                                 \% maple('r2&^22 mod g')
 maple('m1:= chrem([r1, r2], [p, q])') % 3704440302544264662351219
\Rightarrow maple('m2:= chrem([-r1, r2], [p, q])') % 70411111422141711030000
\Rightarrow maple('m3:= chrem([r1, -r2], [p, q])') % 5213281318342160554284041
\Rightarrow maple('m4:= chrem([-r1, -r2], [p, q])') % 1579252127220037602962822
```

Security of the RSA Function

- ♦ **Break RSA** means 'inverting RSA function without knowing the trapdoor' $y \equiv x^e \pmod{n}$
- ♦ Factor the modulus ⇒ Break RSA
 - * If we can factor the modulus, we can break RSA
 - * If we can break RSA, we don't know whether we can factor the modulus...open problem (with negative evidences)
- ♦ Factor the modulus ⇔ Calculate private key d
 - * If we can factor the modulus, we can calculate the private exponent d (the trapdoor information).
 - * If we have the private exponent d, we can factor the modulus.

will be illustrated later after factorization

Security of Rabin Function

- Security of Rabin function is equivalent to integer factoring
- \Rightarrow inverting 'y \equiv f(x) \equiv x² (mod n)' without knowing p and q \Leftrightarrow factoring n
 - if you can factor n = p · q in polynomial time
 you can solve y = x₁² (mod p) and y = x₂² (mod q) easily
 using CRT you can find x which is f ⁻¹(y)
 - given a quadratic residue y if you can find the four square roots ±x₁ and ±x₂ for y in polynomial time
 you can factor n by trying gcd(x₁-x₂, n) and gcd(x₁+x₂, n)

Basic Factoring Principle (1/4)

- ♦ Let n be an integer and suppose there exist integers x and y with $x^2 \equiv y^2 \pmod{n}$, but $x \neq \pm y \pmod{n}$. Then **①** n is composite,
 - **2** both gcd(x-y, n) and gcd(x+y, n) are nontrivial factors of n. Proof:

```
let d = \gcd(x-y, n).

Case 1: assume d = n \Rightarrow x \equiv y \pmod{n} contradiction

Case 2: assume d is 1 (the trivial factor)

x^2 \equiv y^2 \pmod{n} \Rightarrow x^2 - y^2 = (x-y)(x+y) = k \cdot n

d=1 \text{ means } \gcd(x-y, n)=1 \Rightarrow

n \mid x+y \Rightarrow x \equiv -y \pmod{n} contradiction

Case 1 and 2 implies that 1 < d < n

i.e. d must be a nontrivial factor of n
```

Basic Factoring Principle (2/4)

- $\Rightarrow x^2 \equiv y^2 \pmod{p}$ implies $x \equiv \pm y \pmod{p}$ since $p \mid (x+y)(x-y)$ implies $p \mid (x+y)$ or $p \mid (x-y)$,
 - i.e. $x \equiv -y \pmod{p}$ or $x \equiv y \pmod{p}$
- $\Rightarrow x^2 \equiv v^2 \pmod{n}$
 - pq |(x+y)(x-y)| implies the following 4 possibilities
 - 1. pq | (x+y) i.e. $x \equiv -y \pmod{n}$
 - 2. pq | (x-y) i.e. $x \equiv y \pmod{n}$
 - 3. $p \mid (x+y)$ and $q \mid (x-y)$ i.e. $x \equiv -y \pmod{p}$ and $x \equiv y \pmod{q}$
 - 4. $q \mid (x+y)$ and $p \mid (x-y)$ i.e. $x \equiv -y \pmod{q}$ and $x \equiv y \pmod{p}$
 - * Case 1 and case 2 are useless for factorization
 - * Case 3 leads to the factorization of n, i.e. gcd(x+y, n) = p and gcd(x-y, n) = q
 - * Case 4 leads to the factorization of n, i.e. gcd(x+y, n) = q and gcd(x-y, n) = p

Basic Factoring Principle (3/4)

- ♦ This principle is used in *almost all factoring algorithms*.
- ♦ Why is it working?
 - * take $n = p \cdot q$ (p and q are prime) for example
 - * $x^2 \equiv y^2 \pmod{p}$ and $x^2 \equiv y^2 \pmod{p}$ and $x^2 \equiv y^2 \pmod{q}$
 - * we know 'x $\equiv \pm y \pmod{p}$ are the only solution to $x^2 \equiv y^2 \pmod{p}$ ' and 'x $\equiv \pm y \pmod{q}$ are the only solution to $x^2 \equiv y^2 \pmod{q}$ '
 - * therefore, from CRT we know $x^2 \equiv y^2 \pmod{n}$ has four solutions,
 - $x \equiv y \pmod{p}$ and $x \equiv y \pmod{q}$ $x \equiv y \pmod{n}$
 - $x \equiv -y \pmod{p}$ and $x \equiv -y \pmod{q}$ $x \equiv -y \pmod{n}$
 - $x \equiv y \pmod{p}$ and $x \equiv -y \pmod{q}$ $x \equiv z \pmod{n}$
 - $x \equiv -y \pmod{p}$ and $x \equiv y \pmod{q}$ $x \equiv -z \pmod{n}$
 - * as long as we have z (where $z \neq \pm y$), we can factor n into gcd(y-z, n) and gcd(y+z, n)

26

n will pass Fermat test

n is called pseudo prime

٠.,

Basic Factoring Principle (4/4)

- ♦ Ex: Consider the roots of 4 (mod 35), i.e. solving x from $x^2 \equiv 4 \pmod{35}$
 - * try to take square root of both sides,

we find
$$x = \pm 2$$
 or ± 12

- * i.e. $12^2 \equiv 2^2 \pmod{35}$, but $12 \neq \pm 2 \pmod{35}$
- * therefore 35 is composite
- * gcd(12-2, 35) = 5 is a nontrivial factor of 35
- * gcd(12+2, 35) = 7 is a nontrivial factor of 35

Miller-Rabin Test

Is *n* a composite number?

- \Rightarrow Let n > 1 be odd, write $n-1 = 2^k \cdot m$ with m being odd
- \diamond Choose a random integer *a* with 1 < a < n-1

 \diamond Compute $b_0 \equiv a^m \pmod{n}$

if $\vec{b_0} \equiv \pm 1 \pmod{n}$, stop, *n* is probably prime with respect to base a

 \Leftrightarrow Compute $b_1 \equiv b_0^2 \pmod{n}$ if $b_1 \equiv 1 \pmod{n}$, stop, $gcd(b_0-1, n)$ is a factor of n if $b_1 \equiv -1 \pmod{n}$, stop, n is probably prime \leq

 \Rightarrow Compute $b_2 \equiv b_1^2 \pmod{n}$

 \diamond Compute $b_{k-1} \equiv b_{k-2}^{2} \pmod{n}$ if $b_{k-1} \equiv 1 \pmod{n}$, stop, $gcd(b_{k-2}-1, n)$ is a factor of n if $b_{k-1} \equiv -1 \pmod{n}$, stop, n is probably prime \leftarrow

 \Leftrightarrow Compute $b_k \equiv b_{k-1}^2 \pmod{n}$ if $b_k \equiv 1 \pmod{n}$, stop, $gcd(b_{k-1}-1, n)$ is a factor of n otherwise *n* is composite (Fermat Little Thm, $b_k \equiv a^{n-1} \pmod{n}$)

Miller-Rabin Test Illustrated

$$b_0 \equiv a^m \pmod{n}$$

$$b_1 \equiv a^{2 \cdot m} \pmod{n}$$
...
$$b_k \equiv a^{2k \cdot m} \equiv a^{n-1} \pmod{n}$$

 $n-1=2^k\cdot m$

3 1 and 2 are not true, $b_i \equiv -1 \pmod{n}, i=1,2,...k$ all subsequent $b_i \equiv 1 \pmod{n}$, there is no chance to use Basic Factoring Principle, abort

Consider 4 possible cases:

- \bigcirc $b_0 \equiv \pm 1 \pmod{n}$ all $b_i \equiv 1 \pmod{n}$, i=1,2,...kthere is no chance to use Basic Factoring Principle, abort
- (4) (1), (2), and (3) are not true, $b_{\nu} \equiv a^{n-1} \pmod{n}$ if $b_k \neq 1 \pmod{n}$ n is **composite** since if n is prime, $b_k \equiv 1 \pmod{n}$ $(b_k \equiv 1 \pmod{n})$ is covered by ②)
- ② ① is not true. $b_{i-1} \neq \pm 1 \pmod{n}$ and $b_i \equiv 1 \pmod{n}, i=1,2,...k$

Basic Factoring Principle applied, composite

29

When/How does Basic Factoring Principle work in M-R test?

- ♦ When:
 - * explicitly: $b_{i-1} \neq \pm 1 \pmod{n}$ and $b_i \equiv b_{i-1}^2 \equiv 1 \pmod{n}$

If n is not prime, sometimes $b_k \equiv a^{n-1} \pmod{n}$ but often $b_k \equiv a^{r\phi(n)} \pmod{n}$ as in universal exponent factoring

- ♦ How:
 - * implicitly: let $p \mid n$ and $q \mid n$ (p, q be two factors of n) $b_{i-1}^2 \equiv 1 \pmod{p}$ and $b_{i-1}^2 \equiv 1 \pmod{q}$ but either $b_{i-1} \not\equiv 1 \pmod{p}$ or $b_{i-1} \not\equiv 1 \pmod{q}$
 - * catching the moment that b_0, b_1, \dots behave differently while taking square in (mod p) component and (mod q) component

Uncoordinated Behaviors

♦ Speed of light changes as it moves from one medium to another.

e.g., refraction caused by a prism



- ◆ 趣味競賽: 兩人三腳, 同心協力, ...
- ♦ Squaring a number modulo a composite number (product of different prime numbers)

	22	23	24	25	26	27	28
mod 11	4	8	5	10	9	7	3
mod 13	4	8	3	6	12	11	9

Miller-Rabin Test Example

mod 3

$$\Rightarrow$$
 e.g. $n = 561$ the Fer $n-1 = 560 = 16 \cdot 35 = 2^4 \cdot 35$

let
$$a = 2$$

 $b_0 \equiv 2^{35} \equiv 263 \pmod{561}$

$$b_1 \equiv b_0^2 \equiv 2^{2.35} \equiv 166 \pmod{561}$$

$$b_2 \equiv b_1^2 \equiv 2^{2^2 \cdot 35} \equiv 67 \pmod{561}$$

$$b_3 \equiv b_2^2 \equiv 2^{2^3 \cdot 35} \equiv 1 \pmod{561}$$

$$gcd(b_2-1, 561) = 33$$
 is a factor

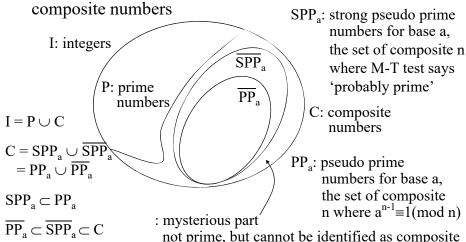
Note:
$$3-1=2$$
, $11-1=2\cdot5$, $17-1=2^4$
 $\phi(561) = 561(1-1/3)(1-1/11)(1-1/17)=2\cdot10\cdot16$
 $\gcd(\phi(561), n-1)=80$, $\operatorname{ord}_{561}(2) \mid 80$ in this case ₃₂

Pseudo Prime and Strong Pseudo Prime

- ♦ If n is not a prime but satisfies $a^{n-1} \equiv 1 \pmod{n}$ we say that n is a pseudo prime number for base a.
 - * e.g. $2^{560} \equiv 1 \pmod{561}$
- \diamond If n is not a prime but passes the Miller-Rabin test with base a (without being identified as a composite), we say that n is a strong pseudo prime number for base a.
- ♦ Up to 10¹¹, there are 455052511 primes, there are 14884 pseudo prime numbers for the base 2, and 3291 strong pseudo prime numbers for the base 2

Fermat and Miller-Rabin Test

♦ Both of these two tests are for identifying subsets of



34

Composite Witness

- ♦ Note that the **M-R test** and probably together with the **Lucas test** leave the strong pseudo prime number *an extremely small set*.
- ♦ In other words, these tests are very close to a real 'primality test' separating prime numbers and composite numbers.
- ♦ If you have an RSA modulus n=p·q, you certainly can test it and find out that it is actually a composite number.
- However, these tests do not necessarily give you the factors of n in order to tell you that n is a composite number. The factors of n, i.e. p or q, are certainly a kind of witness about the fact that n is composite.
- → However, there are other kind of witness that n is composite, e.g., "2ⁿ⁻¹ (mod n) does not equal to 1" is also a witness that n is composite.
- ♦ A composite number will be factored out by the M-R test only if it is a pseudo prime but it is not a strong pseudo prime number.

Matlab Example

⇒ primetest(n)

33

- * Miller-Rabin test for 30 randomly chosen base a
- * output 0 if n is composite
- * output 1 if n is prime
- * Matlab program can not be used for large n
- * use Maple isprime(n), one strong pseudo-primality test and one Lucas test
- \Rightarrow primetest(2563) ans= 0

Questions

- ♦ What is the probability that Miller-Rabin test fails???
 - * If n is a prime number, it will not be recognized as a composite number
 - * If $n = p \cdot q$, but $b_k \equiv a^{n-1} \equiv 1 \pmod{n}$ meets Fermat test (pseudo prime number) $0 \le i \le k \ b_i \equiv 1 \pmod{n}$ and $b_{i-1} \equiv -1 \pmod{n}$ meets Miller-Rabin test (strong pseudo prime number)

or
$$b_i \equiv 1 \pmod{n} \equiv 1 \pmod{p} \equiv 1 \pmod{q}$$

 $b_{i-1} \equiv -1 \pmod{n} \equiv -1 \pmod{p} \equiv -1 \pmod{q}$

* Note: $a^{pq-1} \equiv 1 \pmod{n}$ $a^{(p-1)(q-1)} \equiv 1 \pmod{n}$ $a^{lcm(p-1, q-1)} \equiv 1 \pmod{n}$ Note on Primality Testing

- ♦ Primality testing is *different* from factoring
 - * Kind of interesting that we can tell something is composite without being able to actually factor it
- ♦ Recent result (2002) from IIT trio (Agrawal, Kayal, and Saxena)
 - * Recently it was shown that deterministic primality testing could be done in polynomial time
 - \Rightarrow Complexity was like $O(n^{12})$, though it's been slightly reduced since then
 - * Does this meant that RSA was broken?
- ♦ Randomized algorithms like Rabin-Miller are far more efficient than the IIT algorithm, so we'll keep using those

Finding a Random Prime

- ♦ Find a prime of around 100 digits for cryptographic usage
- ♦ Prime number theorem (π(x) ≈ x/ln(x)) asserts that the density of primes around x is approximately 1/ln(x)
- $x = 10^{100}, 1/\ln(10^{100}) = 1/230$ if we skip even numbers, the density is about 1/115
- pick a random starting point, throw out multiples of 2,
 3, 5, 7, and use Miller-Rabin test to eliminate most of the composites.

Factoring

- \Rightarrow General number field sieve (GNFS): fastest $e^{(1.923+O(1))(\ln(n))^{1/3}(\ln(\ln(n)))^{2/3}}$
- → Quadratic sieve (QS)
- ♦ Elliptic curve method (ECM), Lenstra (1985)
- ♦ Pollard's Monte Carlo algorithm
- ♦ Continued fraction algorithm
- ♦ Trial division, Fermat factorization
- ♦ Pollard's p-1 factoring (1974), Williams's p+1 factoring (1982)
- Universal exponent factorization, exponent factorization

38

Simple Factoring Methods

- ♦ Trial division:
 - * dividing an integer n by all primes $p \le \sqrt{n}$... too slow
- ♦ Fermat factorization:
 - * e.g. n = 295927 calculate $n+1^2$, $n+2^2$, $n+3^2$... until finding a square, i.e. $x^2 = n + y^2$, therefore, $n = (x+y)(x-y) \dots$ if $n = p \cdot q$, it takes on average |p-q|/2 steps ... too slow assume p>q, $n+y^2=p\cdot q+((p-q)/2)^2=(p^2+2pq+q^2)/4=((p+q)/2)^2$
 - * in RSA or Rabin, avoid p, q with the same bit length
- ♦ By-product of Miller-Rabin primality test:
 - * if n is a pseudoprime and not a strong pseudoprime, Miller-Rabin test can factor it. about 10⁻⁶ chance

Universal Exponent Factorization

- * if we have an exponent r, s.t. $a^r \equiv 1 \pmod{n}$ for all $a \gcd(a,n)=1$
- * write $r = 2^k \cdot m$ with m odd \leftarrow

r must be even since we can take $a=-1 (-1)^r \equiv 1 \pmod{n}$

a≡±1 do not work

* choose a random a, $1 < a < n-1 \leftarrow$ * if $gcd(a, n) \neq 1$, we have a factor

requires *r* being even

* else \Rightarrow let $b_0 \equiv a^m \pmod{n}$, if $b_0 \equiv \pm 1$ stop, choose another a

 \Rightarrow compute $b_{u+1} \equiv b_u^2 \pmod{n}$ for $0 \le u \le k-1$,

 \Rightarrow if b_{u+1} ≡ -1, stop, choose another a

- \Rightarrow if $b_{u+1} \equiv 1$ then $gcd(b_u-1, n)$ is a factor (basic factoring principle)
- * Question: How do we find a universal exponent r??? Hard
- * Note: if know $\phi(n)$, then any $r = k \phi(n)$ will do, however, knowing factors of n is a prerequisite of know $\phi(n)$
- * Note: For RSA, if the private exponent d is recovered, then $\phi(n) \mid d \cdot e - l, d \cdot e - l$ is a universal exponent

42

Universal Exponent Factorization

♦ E.g.

n=211463707796206571; e=9007; d=116402471153538991 r=e*d-1=1048437057679925691936; powermod(2,r,n)=1 let r=25*r1; r1=32763658052497677873 powermod(2,r1,n)= $187568564780117371 \neq \pm 1$ powermod(2,2*r1,n)=113493629663725812 $\neq \pm 1$ powermod $(2,4*r1,n)=1 \implies \gcd(2*r1-1,n)=885320963$ is a factor

 \Rightarrow Note: $n = 211463707796206571 = 238855417 \cdot 885320963$ $238855417 - 1 = 2^3 \cdot 3 \cdot 73 \cdot 136333 = 2^{k_1} \cdot p_1$ $885320963 - 1 = 2 \cdot 2069 \cdot 213949 = 2^{k_2} \cdot q_1$ This method works only when k_1 does not equal k_2 .

 \Rightarrow Exponent factorization even if r is valid for one a, you can still try the above procedure

p-1 factoring (1/2)

- \diamond If one of the prime factors of *n* has a special property, it is sometimes easier to factor n.
 - * e.g. if p-1 has only small prime factors
 - * Pollard 1974
- ♦ Algorithm

41

43

- * Choose an integer a > 1 (often a = 2 is used)
- * Choose a bound $B \leftarrow$

have a chance of being larger than all the prime factors of p-1

* Compute $b \equiv a^{B!}$ as follows:

 $\Rightarrow b_1 \equiv a \pmod{n}$ and $b_i \equiv b_{i-1}^j \pmod{n}$ then $b \equiv b_B \pmod{n}$

* Let $d = \gcd(b-1, n)$, if 1 < d < n, we have found a factor of nIf B is larger than all the prime factors of $p-1 \stackrel{\text{(very likely)}}{\Rightarrow} p-1|B!$ therefore $b \equiv a^{B!} \equiv (a^{p-1})^k \equiv I \pmod{p}$, i.e. p|b-1 Fermat Little

If $n=p \cdot q$, p-1 and q-1 both have small factors that are less than B, then gcd(b-1,n)=n, (useless) however, $b \equiv a^{B!} \equiv 1 \pmod{n}$ and we can use the Universal exponent method 14

p-1 factoring (2/2)

- ♦ How do we choose B?
 - * small B will be faster but fails often
 - * large B will be very slow
- ♦ In RSA, Rabin, Paillier, or other systems based on integer factoring, usually n=p·q, we should ensure that p-1 has at least one large prime factor.
 - * How do we do this?
 - e.g. we want to choose p around 100 digits
 - > choose a prime number p₀ around 40 digits
 - > look at integer $k \cdot p_0 + 1$ with k around 60 digits and do primality test
- ♦ Generalization:

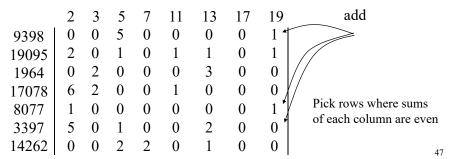
Elliptic curve factorization method, Lenstra, 1985

♦ Best records: p-1: 34 digits (113 bits), ECM: 47 digits (143 bits)

45

Quadratic Sieve (2/4)

- ♦ Quadratic? $x^2 \equiv \text{product of small primes}$
- ♦ How do we construct these useful relations systematically?
- Properties of these relations:
 - * product of small primes called factor base
 - * make all prime factors appear even times
- ♦ Put these relations in a matrix



Quadratic Sieve (1/4)

- \Rightarrow Example: factor n = 3837523
 - * form the following relations individual factors are small $9398^2 \equiv 5^5 \cdot 19 \pmod{3837523}$ $19095^2 \equiv 2^2 \cdot 5 \cdot 11 \cdot 13 \cdot 19 \pmod{3837523}$ $1964^2 \equiv 3^2 \cdot 13^3 \pmod{3837523}$ $17078^2 \equiv 2^6 \cdot 3^2 \cdot 11 \pmod{3837523}$ make the number
 - * multiply the above relations of each factors even

$$(9398 \cdot 19095 \cdot 1964 \cdot 17078)^2 \equiv (2^4 \cdot 3^2 \cdot 5^3 \cdot 11 \cdot 13^2 \cdot 19)^2$$

 $2230387^2 \equiv 2586705^2$ hope they are not equal

- * since $2230387 \neq \pm 2586705 \pmod{3837523}$
- * gcd(2230387-2586705, 3837523) = 1093 is one factor of n
- * the other factor is 3837523/1093 = 3511

46

Quadratic Sieve (3/4)

- ♦ Look for linear dependencies mod 2 among the rows
 - * $1\text{st} + 5\text{th} + 6\text{th} = (6, 0, 6, 0, 0, 2, 0, 2) \equiv \mathbf{0} \pmod{2}$
 - * $1st + 2nd + 3rd + 4th = (8, 4, 6, 0, 2, 4, 0, 2) \equiv 0 \pmod{2}$
 - * $3rd + 7th = (0, 2, 2, 2, 0, 4, 0, 0) \equiv 0 \pmod{2}$
- ♦ When we have such a dependency, the product of the numbers yields a square.
 - * $(9398 \cdot 8077 \cdot 3397)^2 \equiv 2^6 \cdot 5^6 \cdot 13^2 \cdot 19^2 \equiv (2^3 \cdot 5^3 \cdot 13 \cdot 19)^2$
 - * $(9398 \cdot 19095 \cdot 1964 \cdot 17078)^2 = (2^3 \cdot 3^2 \cdot 5^3 \cdot 11 \cdot 13^2 \cdot 19)^2$
 - $* (1964 \cdot 14262)^2 \equiv (3 \cdot 5 \cdot 7 \cdot 13^2)^2$
- \Rightarrow Looking for those $x^2 \equiv y^2$ but $x \neq \pm y$

Quadratic Sieve (4/4)

♦ How do we find numbers x s.t.

 $x^2 \equiv \text{product of small primes?}$

* produce squares that are slightly larger than a multiple of n

e.g.
$$\left[\sqrt{i \cdot n} + j\right]$$
 for small j
the square is approximately $i \cdot n + 2j\sqrt{i \cdot n} + j^2$

the square is approximately $i \cdot n + 2 j / i \cdot n + j$ which is approximately $2 j / i \cdot n + j^2 \pmod{n}$

$$8077 = \sqrt{17n} + 1$$

$$9398 = \sqrt{23n} + 4$$

Probably because this number is small, the factors of it should not be too large. However, there are a lot of exceptions. So it takes time. Also, there are a lot of other methods to generate qualified x values.

49

The RSA Challenge

- ♦ 1977 Rivest, Shamir, Adleman US\$100
 - * given RSA modulus n, public exponent e, ciphertext c
 - $\begin{array}{l} n = 114381625757888867669235779976146612010218296721242362 \\ 562561842935706935245733897830597123563958705058989075 \\ 147599290026879543541 \end{array}$
 - e = 9007
 - $\begin{array}{c} c = 968696137546220614771409222543558829057599911245743198 \\ 746951209308162982251457083569314766228839896280133919 \\ 90551829945157815154 \end{array}$
 - * Find the plaintext message
- ♦ 1994 Atkins, Lenstra, and Leyland
 - * use 524339 small primes (less than 16333610)
 - * plus up to two large primes $(16333610 \sim 2^{30})$
 - * 1600 computers, 600 people, 7 months
 - * found 569466 'x²=small products' equations, out of which only 205 linear dependencies were found

0

Factorization Records

Year	Number of digits				
1964	20	_			
1974	45				
1984	71				
1994	129	(429 bits)			
1999	155	(515 bits)			
2003	174	(576 bits)			

Next challenge RSA-640

31074182404900437213507500358885679300373460228427 27545720161948823206440518081504556346829671723286 78243791627283803341547107310850191954852900733772 4822783525742386454014691736602477652346609

Security of the RSA Function

- ♦ **Break RSA** means 'inverting RSA function without knowing the trapdoor' $\sqrt{y \equiv x^e \pmod{n}}$
- ♦ Factor the modulus ⇒ Break RSA
 - * If we can factor the modulus, we can break RSA
 - * If we can break RSA, we don't know whether we can factor the modulus...open problem (with negative evidences)
- ♦ Factor the modulus ⇔ Calculate private key d
 - * If we can factor the modulus, we can calculate the private exponent d (the trapdoor information).
 - * If we have the private exponent d, we can factor the modulus.

Factoring reduces to RSA key recovery

- DeLaurentis, "A Further Weakness in the Common Modulus Protocol for the RSA Cryptosystem,"
 Cryptologia, Vol. 8, pp. 253-259, 1984
 - * If you have a pair of RSA public-key/private-key, you can factoring n=p·q with a probabilistic algorithm.
 - * An example of the Universal Exponent Factorization method
- ♦ Basic idea: find a number b, $0 \le b \le n$ s.t. $b^2 \equiv 1 \pmod{n}$ and $b \ne \pm 1 \pmod{n}$ i.e. $1 \le b \le n-1$
 - * Note: There are four roots to the equation $b^2 \equiv 1 \pmod{n}$, ± 1 are two of them, all satisfy $(b+1)(b-1) = k \cdot n = k \cdot p \cdot q$, since 0 < b-1 < b+1 < n, we have either $(p \mid b-1 \text{ and } q \mid b+1)$ or $(q \mid b-1 \text{ and } p \mid b+1)$, therefore, one of the factor can be found by gcd(b-1,n) and the other by n/gcd(b-1,n) or gcd(b+1,n)

Factoring reduces to RSA key recovery

- ♦ The above result says that "if you can recover a pair of RSA keys, you can factoring the corresponding n=p · q" i.e. "once a private key d is compromised, you need to choose a new pair of (n, e) instead of changing e only"
- ♦ The above result suggests that a scheme using (n, e₁), (n, e₂), ... (n, ek) with a common n for each k participants without giving each one the value of p, q is insecure. You should not use the same n as some others even though you are not explicitly told the value of p and q.

Factoring reduces to RSA key recovery

- ♦ Algorithm to find b: Pr{success per repetition} = ½
 - 1. Randomly choose a, $1 \le a \le n-1$, such that gcd(a, n) = 1
 - 2. Find minimal j, $a^{2^{J}h} \equiv 1 \pmod{n}$ (where h satisfies $e \cdot d 1 = 2^{t}h$)
 - 3. $b = a^{2^{J-1}h}$, if $b \ne -1 \pmod{n}$, then gcd(b-1, n) is the result, else repeat 1-3
- ♦ Note: If we randomly choose $b \in Z_n^*$ and find out that $b^2 \equiv 1 \pmod{n}$, the probability that b=1, b=-1, $b=c(\neq\pm 1)$, or $b=-c(\neq\pm 1)$ would be equal; $Pr\{success\}=Pr\{a^{2^{j-1}h}\neq\pm 1\}=1/2$

Factoring reduces to RSA key recovery

- ♦ The above result also suggests that if you can recover arbitrary RSA key pair, you can solve the problem of factoring n. Whenever you get an \mathbf{n} , you can form an RSA system with some e (assuming $gcd(e, \phi(n))=1$), then use your method to solve the private exponent d without knowing p and q, after that you can factor n.
- ♦ Although factoring is believed to be hard, and factoring breaks RSA, breaking RSA does not simplify factoring. Trivial non-factoring methods of breaking RSA could therefore exist. (What does it mean by breaking RSA? plaintext recovery? key recovery?...)

Deterministic Encryption

- RSA Cryptosystem is a deterministic encryption scheme,
 i.e. a plaintext message is encrypted to a fixed ciphertext message
- ♦ Suffers from chosen plaintext attack
 - * an attacker compiles a large codebook which contains the ciphertexts corresponding to all possible plaintext messages
 - * in a two-message scheme, the attacker can always distinguish which plaintext was transmitted by observing the ciphertext (does not satisfy the Semantic Security Notation)
- Add randomness through padding

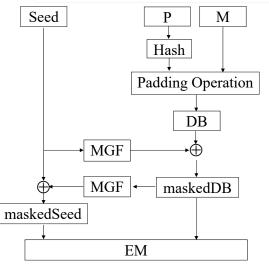
RSA PKCS #1 v1.5 padding

- ♦ E.g. k=128 bytes (1024 bits) PKCS#1 v1.5 RSA
 - * plaintext message M (at most 128-3-8=117 bytes)
 - * pseudorandom nonzero string PS (at least 8 bytes)
 - * message to be encrypted m = 00||02||PS||00||M
 - * encryption: $c \equiv m^e \pmod{n}$
 - * decryption: $m \equiv c^d \pmod{n}$
- ♦ c is now random corresponding to a fixed m, however,
 this only adds difficulties to the compilation of
 ciphertexts (a factor of 2⁶⁴ times if PS is 8 bytes)

57

58

PKCS #1 v2 padding - OAEP



M: message (emLen-1-2hLen bytes) P: encoding parameters, an octet string MGF: mask generation function Hash: selected hash function (hLen is the output bytes) DB=Hash(P)||PS||01||M PS is length emLen-||M||-2hLen-1 null bytes Seed: hLen random bytes dbMask: MGF(seed, emLen-hLen) $maskedDB = DB \oplus dbMask$ seedMask: MFG(maskedDB, hLen) $maskedSeed = seed \oplus seedMask$ EM: encoded message (emLen bytes)

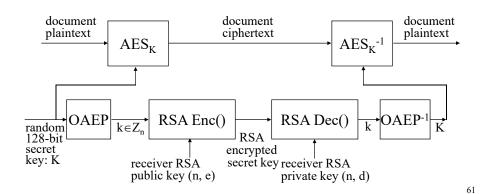
EM = maskedSeed||makedDB|

PKCS #1 v2 padding - OAEP

- ♦ Optimal Asymmetric Encryption (OAE)
 - * M. Bellare, "Optimal Asymmetric Encryption How to Encrypt with RSA," Eurocrypt'94
- ♦ Optimal Padding in the sense that
 - * RSA-OAEP is semantically secure against adaptive chosen ciphertext attackers in the random oracle model
 - * the message size in a k-bit RSA block is as large as possible (make the most advantage of the bandwidth)
- ♦ Following by more efficient padding schemes:
 - * OAEP+, SAEP+, REACT

Digital Envelop

- ♦ Hybrid system (public key and secret key)
 - * RSA is about 1000 times slower than AES
 - * smaller exponent is faster (but more dangerous)



RSA Fast Decryption with CRT

- ♦ Private Key (n, d) or (n, p, q, dp, dq, qInv) $e \cdot dp ≡ 1 \pmod{p-1}$ $e \cdot dq ≡ 1 \pmod{q-1}$ $q \cdot qInv ≡ 1 \pmod{p}$
- \Rightarrow Encryption $c \equiv m^e \pmod{n}$
- \Rightarrow Decryption $m \equiv c^d \pmod{n}$ or

$$m_1 \equiv c^{dp} \pmod{p}$$

$$m_2 \equiv c^{dq} \pmod{q}$$

$$m_2 \equiv c^{dq} \pmod{q}$$

$$m_2 \equiv (m^e)^{dq} \equiv m^{e \cdot dq} \equiv m \pmod{p}$$

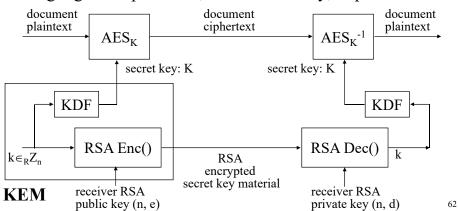
$$m_2 \equiv (m^e)^{dq} \equiv m^{e \cdot dq} \equiv m \pmod{q}$$

$$m \equiv m_1 \equiv (m^e)^{dq} \equiv m^{e \cdot dq} \equiv m \pmod{q}$$

$$m \equiv m_2 \pmod{q}$$

KEM/DEM

- ♦ Key/Data Encapsulation Mechnism, hybrid scheme
- \diamond k $\stackrel{\text{OAEP}}{\Leftrightarrow}$ K, in a digital envelope scheme, K is a session key, might get compromized, forward security, requires OAEP



Multi-Prime RSA

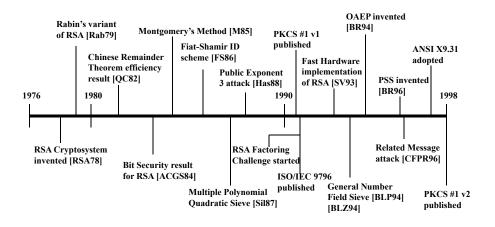
- ♦ RSA PKCS#1 v2.0 Amendment 1
- ♦ the modulus n may have more than two prime factors
- ♦ only private key operations and representations are affected (p, q, dp, dq, qInv) (r_i, d_i, t_i)
 - * $n = r_1 \cdot r_2 \cdot ... \cdot r_k$, $k \ge 2$, where $r_1 = p$, $r_2 = q$
 - * $e \cdot d_i \equiv 1 \pmod{r_i-1}, i=3,...k$
 - * $r_1 \cdot r_2 \cdot \ldots \cdot r_{i-1} \cdot t_i \equiv 1 \pmod{r_i} i=3,...k$
- ♦ Decryption:

5.
$$m = m_2 + q \cdot h$$

1. $m_1 \equiv e^{dp} \pmod{p}$
5. $m = m_2 + q \cdot h$
6. if $k > 2$, $R = r_1$, for $k = 3$ to k do
a. $R = R \cdot r_{i-1}$
b. $h \equiv (m_i - m_2) \text{ qInv (mod p)}$
6. if $k > 2$, $R = r_1$, for $k = 3$ to k do
a. $R = R \cdot r_{i-1}$
b. $h \equiv (m_i - m) \cdot t_i \pmod{r_i}$
c. $m = m + R \cdot h$

 ♦ advantages: lower computational cost for the decryption (and signature) primitives if CRT is used (also see 6.8.14) 64

Factoring & RSA Timeline



Alternative PKC's

- ♦ ElGamal Cryptosystem (Discrete-log based)
 - * Also suffers from long keys
- ♦ NTRU (Lattice based)
 - * Utilizes short keys
 - * Proprietary (License issues prevent from wide implementation)
 - * Recently, a weakness found in the signature scheme
- ♦ Elliptic Curve Cryptosystems
 - * Emerging public key cryptography standard for constrained devices.
- ♦ Paillier Cryptosystem (High order composite residue based)
- ♦ Goldwasser-Micali Cryptosystem (QR based)
 - * very low efficiency

♦ Why does it work?

bottom line of Miller-Rabin test

- * if n is prime, $a^{n-1} \equiv 1 \pmod{n}$ (Fermat Little theorem)
- * therefore, if $b_{\nu} \equiv a^{2^{k_m}} \equiv a^{n-1}$ 1 (mod n), n must be composite
- * however, there are many composite numbers that satisfy $a^{n-1} \equiv 1 \pmod{n}$, Miller-Rabin test can detect many of them

Miller-Rabin Primality Test

- * $b_0, b_1, ..., b_{k-1} (\equiv a^{(n-1)/2} \pmod{n})$ is a sequence s.t. $b_{i-1}^2 \equiv b_i \pmod{n}$
- * we consider only $b_{k-1}^2 \equiv a^{n-1} \equiv 1 \pmod{n}$ is pseudo prime
- * if $b_i = 1$ and $b_{i-1} = \pm 1$, then *n* is composite \leftarrow
- * if $b_i \equiv 1$ and $b_{i-1} \equiv 1$, consider b_{i-1} and then b_{i-2} ...

 basic factoring principle

 basic factoring principle
- * if $b_i = 1$ and $b_{i-1} = -1$ ($b_{i-2} = \pm 1$), could be prime, no guarantee

there is no chance to apply basic factoring principle

70

Miller-Rabin Primality Test

♦ In summary:

 $b_0, b_1, b_2, \dots b_{i-1}, b_i, \dots b_k$ there are four cases:

- Case 2: $b_k = 1$, let i be the minimal i, k≥i>0 such that $b_i = 1$ and $b_{i-1} \neq \pm 1$ n is a composite number (with nontrivial factors calculated)
- \Rightarrow Case 3: $b_k = 1$, let i be the minimal i, k≥i>0 such that $b_i = 1$ and $b_{i-1} = -1$ a pseudo prime number

4 possible sequences for b_0 , b_1 , b_2 , ... b_{i-1} , b_i , ... b_k :

342, 22, 5, 1, 1, 1, 1, ..., 1 composite, factored

45, 5634, 325, 213, -1, 1, ..., 1 possibly prime

1, 1, 1, ..., 1 possibly prime

214, 987, ..., 8931, 321, 134 composite

M-R Test: Prime Modulus

- \Rightarrow p-1 is an even number, therefore, let p-1=2^k·m, m is odd
- ♦ choose one $a \in_R \mathbb{Z}_p^*$, let r be the smallest integer s.t. $a^r \equiv 1 \pmod{p}$, i.e. r is the order of a modulo p, $\operatorname{ord}_p(a)$
- $\Leftrightarrow (\text{exercise 3.9}) \ a^{p-1} \equiv 1 \ (\text{mod p}) \Rightarrow r \mid p-1$
- \Rightarrow because r | p-1 (= 2^k ·m), one of {m, 2·m, 2^2 ·m, ... 2^k ·m} might be r (probability reduces if m has many factors)
- \diamond Case 1: if "2ⁱ·m (for some i>0) is r", $a^{2^{i-1}\cdot m}$ must be -1
 - * r is the smallest integer s.t. $a^r \equiv 1 \Rightarrow$ square root of a^r must be -1
 - * $\{a^{\rm m}, a^{\rm 2 \cdot m}, \dots a^{\rm 2^{\rm i} \cdot m}\}$ is $\{?, ?, -1, 1, \dots 1\}$
- \diamond Case 2: if "none of 2ⁱ·m is r" or "m is r", $a^{2^{i}\cdot m}$ must all be 1,
 - * $\{a^{\rm m}, a^{\rm 2 \cdot m}, \dots a^{\rm 2^{\rm i} \cdot m}\}$ is $\{1, 1, 1, 1, \dots 1\}$
 - * try some other $a \in \mathbb{Z}_p^*$

Miller-Rabin Primality Test

Why does it work???

an inside view

 $\Rightarrow \ b_i \equiv 1 \ (mod \ n) \ and \ b_{i\text{-}1} \qquad \pm 1 \ (mod \ n) \ happens \ when \ b_i \equiv 1 \ (mod \ p_i)$ for all prime factors p_i of n and

 $b_{i-1} \equiv 1 \pmod{p_i}$ for some prime factors p_i but $b_{i-1} \equiv -1 \pmod{q_i}$ for other prime factors q_i

Note: for a prime modulus p, $a^{\text{ord}_p(a)} \equiv 1 \pmod{p}$ if $\text{ord}_p(a)$ is even then $a^{\text{ord}_p(a)/2} \equiv -1 \pmod{p}$

 $\begin{array}{l} \Leftrightarrow \;\; e.g. \; n = 561 = 3 \times 11 \times 17, \quad 560 = 16 \times 35 = 2^4 \times 35 \\ let \; a = 2 \\ b_0 \equiv 263 \; (\text{mod } 561) \equiv -1 \; (\text{mod } 3) \equiv -1 \; (\text{mod } 11) \equiv 8 \; (\text{mod } 17) \\ b_1 \equiv 166 \; (\text{mod } 561) \equiv 1 \; (\text{mod } 3) \equiv 1 \; (\text{mod } 11) \equiv -4 \; (\text{mod } 17) \\ b_2 \equiv 67 \; (\text{mod } 561) \equiv 1 \; (\text{mod } 3) \equiv 1 \; (\text{mod } 11) \equiv -1 \; (\text{mod } 17) \\ \hline b_3 \equiv 1 \; (\text{mod } 561) \equiv 1 \; (\text{mod } 3) \equiv 1 \; (\text{mod } 11) \equiv 1 \; (\text{mod } 17) \\ \hline \end{array}$

i.e. inconsistent progress w.r.t each prime factor

73

$SAT \leq_M D$ -Subset Sum

- \diamond Given a formula ϕ with k clauses $C_1, C_2, ..., C_k$ and n variables
 - * For each variable x, create 2 integers n_{xt} and n_{xf}
 - * For each clause C_j of lengh ℓ_j , create ℓ_j -1 integers m_{j1} , m_{j2} , ...
 - * Choose t so that T must contain exactly one of each $(n_{xt}$ or $n_{xf})$ pairs and at least one from each clause
- ♦ This construction can be carried out in poly-time
- $\diamond \phi$ is satisfiable iff there exists solution to this SSP

Subset Sum Problem is NP-Complete

♦ Subset Sum Problem (SSP)

Given a set B of positive numbers and a number d

- * Search SSP: find a subset $\{b_i\}\subseteq B$ s.t. $d = \sum b_i$
- * Decision SSP: decide if there exists a subset $\{b_i\}\subseteq B$ s.t. $d = \sum b_i$
- * Decision SSP is equivalent to Search SSP: (by elimination)
- ♦ Subset Sum Problem is NP-complete
 - * Cook-Levin Thm: Satisfiability Problem (SAT) is NP-Complete
 - * SAT \leq_M SSP: there exists a poly-time reduction to convert a formula ϕ to an instance \leq B,d \geq of SSP problem
 - \Rightarrow If the formula ϕ is satisfiable, $\langle B,d \rangle$ ∈ SSP
 - ≠ If <B,d> ∈ SSP, formula φ is satisfiable

Therefore, SSP is also NP-complete

74

$SAT \leq_M D$ -Subset Sum (cont'd)

Example: $(x \lor y \lor z) \land (\neg x \lor \neg a) \land (a \lor b \lor \neg y \lor \neg z)$

		X	у	Z	a	b	C_1	C_2	C_3	,
	n _{xt} n _{xf}	1	0	0	0	0	1	0	0	
	n_{yt} n_{yf}	•	1 1	0 0	0	0 0	1 0	0	0 1	
	$rac{n_{ m zt}}{n_{ m zf}}$			1 1	0	0	1 0	0	0	
	$n_{ m at} \ n_{ m af} \ n_{ m bt}$				1	0 0 1	0 0 0	0 1 0	0	
	$n_{\rm bf}$ m_{11}					1	0	0	0	Encode all
	m ₁₂ m ₂₁						1	0	0	numbers with
	m ₃₁ m ₃₂						0	0	1	a base larger than all entries
_	m ₃₃						0	0	1	of t e.g. 10
	t	1	1	1	1	1	3	2	4	76