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Electronic SignatureElectronic Signature
El t i Si tElectronic Signature
Digital Signature 
Biometric Signature

Electronic Signature Act
 ROC, 2002/04/01,

http://www.moea.gov.tw/~meco/doc/ndoc/s5_p05.htm
http://www esign org tw/statutes asphttp://www.esign.org.tw/statutes.asp

 US Federal, 2000/06
 Japan 2000/05
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 Japan, 2000/05



RSARSA
RSA two large prime numbers p qRSA  two large prime numbers p, q

modulus n = p ꞏ q
public key e,          gcd(e, (n)) = 1p y , g ( , ( ))
private key d,        e ꞏ d  1 (mod (n)) 

RSA cryptosystemS yp y
message mZn
encryption: ciphertext c  m e (mod n)

ddecryption: plaintext m  c d (mod n)
RSA signature scheme

message digest (document) mZn
signing: signature s  m d (mod n)

ifi ti d t e ( d )
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verification: document m  s e (mod n)



RSA Signature SchemeRSA Signature Scheme
 The signature s in RSA signature scheme is required to satisfy 

m  s e (mod n)m  s (mod n)
 The signature in every digital signature scheme has to satisfy an 

equation similar to the above equation which is formed by a q q y
trapdoor one way function.  
 Given the signature s, it is easy to verify its validity.  
 Gi th d t it i diffi lt t f i t f th Given the document m, it is difficult to forge a signature s for the 

document m without the trapdoor information.
 Eve’s attack #1: Given a pair of document and Alice’s signature (m, s)

 wants to forge the signature of Alice for a second document m1

 (m1, s) does not work, since m1  s e (mod n).  
d l e ( d ) f

The same tough 
problem as decrypting needs to solve m1  s1

e (mod n) for s1

 Eve’s attack #2:
 wants to forge the signature of Alice

problem as decrypting 
an RSA ciphertext.

4

 wants to forge the signature of Alice
 chooses s1 first and calculate m1  s1

e (mod n) It is very unlikely that 
m1 will be meaningful.



Attack RSA SignatureAttack RSA Signature
 RSA signature scheme: s  md (mod n)
 suppose Alice is not willing to sign the message m

almost always is meaningless
 Eve’s attacking scheme:

 decompose the message: m  m1ꞏ m2 (mod n)

almost always is meaningless

 ask Alice to sign m1 and m2 independently and get 
s1  m1

d (mod n)  and  s2  m2
d (mod n)

l i l h i hmultiply the two signatures together to get
s  s1ꞏ s2  m1

d ꞏ m2
d  (m1m2)d  md (mod n)

 Morale: never sign a message that does not make any 
sense to you (never sign a message that contains
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sense to you (never sign a message that contains 
unrecognized binary data)



Rabin Signature SchemeRabin Signature Scheme
 Key generation: public key n=pꞏq, private key p, y g p y p q, p y p,

q

 Si i
i.e. QRn

 Signing:
 for a plaintext m, 0<m<n, mQRpQRq

i i h h 2 ( d ) signature is s, such that m  s2 (mod n)

 Verification
This is not easy if m is 
required to be plaintext Verification

 m  s2 (mod n)
required to be plaintext.

 Chosen Message Attack
 Eve chooses x and computes m  x2 (mod n)Making Rabin signature 

only on hashed message
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 Ask Alice for a signature s on m
 Pr{  s  x } = 0.5

only on hashed message 
can avoid this attack.  Never
take square root directly!!



ElGamal Signature SchemeElGamal Signature Scheme
 Probabilistic: There are many signatures that are valid for a 

given message. 
 Key generation: Alice chooses a large prime number p, a 

*primitive  in Zp
*, a secret integer a, and calculates a

(mod p)      (p, , ) are the public key, a is the secret key
 Signing: Alice signs a message m

 select a secret random k such that gcd(k, p-1) = 1
k r   k (mod p) 

 s  k -1 (m - a r) (mod p-1)
V ifi ti

(r, s) is the signature

 Verification: anyone can verify the signature (r, s)
 compute v1  

r r s (mod p) and v2  m (mod p)
i t i lid iff ( d )
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 signature is valid iff v1  v2 (mod p)



ElGamal Signature SchemeElGamal Signature Scheme
 Proof:

k+ r k s rv2  m   sk+ar  ( a)r ( k)s  r r s  v1  (mod p)
 Example

 Alice wants to sign a message ‘one’ i.e. m1 = 151405
 She chooses p=225119,  =11, a secret a=141421,  a18191 (mod p)
 To sign the message, she chooses a random number k=239, r k164130,o s g e essage, s e c ooses a a do u be 39,  6 30,

s1  k-1 (m1- a r)  130777 (mod p-1) …. (m1, r, s1) is the signature
 Bob wants to verify if Alice signs the message m1
 He calculates  r r s1  128841*193273  173527 m1 173527 He calculates  r 1  128841*193273  173527 , 1 173527

 Signature with Appendix
 message can not be recovered from the signature message can not be recovered from the signature
 ElGamal, DSA

 Message Recovery Scheme
 i dil bt i d f th i t
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 message is readily obtained from the signature
 RSA, Rabin



ElGamal Signature SchemeElGamal Signature Scheme
 Security:

 Discrete Log                      Decisional Diffie-Hellman
 given public , solving for a is a discrete log problem

r

?

 fixed r, solving v2  
r r s (mod p) for s is a discrete log problem

 fixed s, solving v2  
r r s (mod p) for r is not proven to be as 

h d di t l bl b li d t b l i lhard as a discrete log problem (believed to be non-polynomial 
time)

 it is not known whether there is a way to choose r and s it is not known whether there is a way to choose r and s
simultaneously which satisfy v2  

r r s (mod p)
 Bleichenbacher “Generating ElGamal signatures without Bleichenbacher, Generating ElGamal signatures without 

knowing the secret key,” Eurocrypt96
 forging ElGamal signature is sometimes easier than the
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 forging ElGamal signature is sometimes easier than the 
underlying discrete logarithm problem



Existential ForgeriesExistential Forgeries
RSA Choose s R Zn*RSA

Let m  se (mod n)
(m, s) is a valid message signature pair

ElGamal
1-parameter1 parameter

Choose e R Zq
Let r  ge ꞏ y (mod p), s  -r (mod q), m  e ꞏ s (mod p)

2-parameter
(m, (r,s)) is a valid message signature pair

p
Choose e, v R Zq
Let r  ge ꞏ yv (mod p), s  -r ꞏ v-1 (mod q), 
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m  e ꞏ s (mod p)
(m, (r,s)) is a valid message signature pair



ElGamal Signature SchemeElGamal Signature Scheme
 Security:

 Should not use the same random number k twice for two distinct 
messages.  Eve can easily know this by comparing r in both 
i t E th b k thi t l t l dsignatures.  Eve can then break this system completely and 

forge signatures at will.
s k m a r s k m (mod p 1)s1 k - m1  -a r  s2 k - m2 (mod p-1)
(s1 - s2) k  m1 - m2 (mod p-1)

Th d( 1) l ti f kThere are gcd(s1 - s2, p-1) solutions for k.
Eve can enumerate all  k until she finds r.
Aft k i k E l th f ll i ti fAfter knowing k, Eve can solve the following equation for a 

a r  m1 - s1 k (mod p-1)
Th d( 1) l i f
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There are gcd(r, p-1) solutions for a.  
Eve can enumerate all a until she finds . 



ExampleExample
 Example continued

 Alice wants to sign a second message ‘two’ i.e. m2 = 202315
 She uses the same ElGamal parameters as before p=225119,  
=11, a secret a=141421,  a18191 (mod p)

 She signs this message with the same random number k=239, r 
k 164130 k 1 ( ) 164899 ( d 1) ( )k 164130, s2  k-1 (m2- a r)  164899 (mod p-1) …. (m2, r, s2) 

is the signature
 E t ( ) k 34122 k 50910 ( d Eve can compute (s1 - s2) k  -34122 k  m1 - m2  -50910 (mod 

p-1).  
 Since gcd( 34122 p 1) = 2 k has two solutions 239 or 112798 Since gcd(-34122, p-1) = 2, k has two solutions 239 or 112798
 Because r  k (mod p), Eve can verify easily that k = 239
 k s  m a r (mod p 1)  a = 28862 or 141421

12

 k s1  m1 - a r (mod p-1)  a = 28862 or 141421
   a (mod p)  a = 141421



ElGamal Signature SchemeElGamal Signature Scheme
General ElGamal Signature Schemes

 Horster, Michels, and Petersen, “Meta-ElGamal Signature Schemes,” Tech. 
Report TR-94-5, Univ. of Technology Chemnitz-Zwichau, 1994

 6 t 6500+ i ti 6 types, 6500+ variations
 ex. Rearrange m, r, s of m  a r + k s (mod p-1) as

A  a B + k C (mod p-1)A  a B + k C (mod p 1)
verification equation A   B r C (mod p)

A B C
m r s m  a r + k s  m   r r s

m s r m  a s + k r  m   s r r

k s  r ms r m s  a r + k m  s   r r m

s m r s  a m + k r  s  m r r

r s m m  a s + k m  r   s r m
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r s m m  a s + k m    r
r m s r  a m + k s  r  m r s



ElGamal Signature SchemeElGamal Signature Scheme
Signing two messages at the same timeSigning two messages at the same time
r  k (mod p) 
 + k ( d 1)m1  a m2 r + k s (mod p-1)
(r, s) is the signature for m1 and m2 together

Signing three messages at the same time
r  k (mod p)r   (mod p) 
m1  a m2 r + k m3 s (mod q)
(r, s) is the signature for m1, m2 and m3 together

14



Attacks on ElGamal SignatureAttacks on ElGamal Signature
 D. Bleichenbacher, “Generating ElGamal Signatures Without 

K i th S t K ” E t’96Knowing the Secret Key,” Eurocrypt’96
1. Prime p should be large enough to prevent GNFS on DL
2  l i | 1 P hli H ll h d f il2.  large prime q | p-1  s.t.  Pohlig-Hellman method fails
3. Using collision resistant hash function on message to prevent 

e istential forgeriesexistential forgeries
4. Should verify 1 r < p: otherwise leads to forgery from a known 

signature will be shown latersignature, will be shown later
5. Avoid a smooth g which divides p-1, has trapdoor for forging 

signaturessignatures
6. ElGamal over Zn

* is not as secure as it appears: known signatures 
leak the factorization of n and the computation of either Zp

* or Zq
*
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p p q
is sufficient to forge signatures



Implementation Existential ForgeryImplementation Existential Forgery
 Verifier should verify that 1  r < p
 Otherwise anybody can forge a signature (r', s') for 

arbitrary hash value h' from a known signature (r, s) on y g ( )
hash value h

 For an arbitrary message m' with hash value h' For an arbitrary message m  with hash value h
u  h' ꞏ h-1 (mod p-1)

h' hꞏu rꞏu sꞏu ( d )gh  gh u  yr u rs u (mod p)
Calculate r' from CRT s.t. r'  r ꞏ u (mod p-1)

r (mod p)
s'  s ꞏ u (mod p-1)
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s  s  u (mod p 1)
(r', s') is the ElGamal signature for h' = hash(m')



Cryptographic Hash FunctionCryptographic Hash Function
 Input: arbitrary length of message, m
 Output: h(m), fixed length (ex. 160 bit)  message digest

h(ꞏ) message digestdocument
 Requirements:

 efficient calculation of h(m)

h(ꞏ) message digestdocument

 given y = h(m), it is computationally infeasible to find a distinct 
message m' such that h(m') = y (weak collision resistance, for 
i h )w

ay

signature scheme)
 it is computationally infeasible to find two distinct messages m1

and m with h(m ) h(m ) (strong collision resistance for

on
e-

w

and m2 with h(m1) = h(m2) (strong collision resistance, for 
resisting birthday attack)

 Examples: Snefru N Hash MD2 MD4 MD5 RIPE
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 Examples: Snefru, N-Hash, MD2, MD4, MD5, RIPE-
MD160, SHA, SHA-1, SHA-(256, 384, 512) (2002/08)



One way FunctionOne-way Function
 Definition based on Complexity theory not Mathematics
 OWF: a function that is easy to evaluate yet its inverse is 

hard to compute easyp

For e er probabilistic pol time TM A'

easy

h d

x f(x)

For every probabilistic poly-time TM A',
every positive polynomial p(ꞏ) and all sufficient large n

1

hard

Pr{A'(f(Un), 1
n)  f -1f(Un)} < 1 / p(n)

 A weak collision free hash function is a one-way function

negligible

 A weak collision free hash function is a one-way function
x
x
x
x

h(ꞏ) given y, it is computationally infeasible to 
fi d h th t h( )
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x find any message m such that h(m) = y



Popular Hash FunctionsPopular Hash Functions

MD2 MD4 Extended MD4

MD5 SHA RIPEMDHAVAL

SHA 1SHA-1 RIPEMD-128 RIPEMD-160

SHA-256 SHA-384 SHA-512
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Cryptographic Hash FunctionCryptographic Hash Function
 Discrete Log Hash Function

 D Ch E H ij t B Pfit “C t hi ll St U d i bl D. Chaum, E. van Heijst, B. Pfitzmann, “Cryptographically Strong Undeniable 
Signatures Unconditionally Secure for the Signer”, Crypto’91

 satisfies the second and the third requirements
 too slow to be used

 select a prime number p, such that q=(p-1)/2 is also a prime 
number

 choose two random primitive roots ,  in Zp

 there exists unique a such that a   (mod p), assume a is 
unknown (a discrete log problem, since ,  are chosen 
independently)

 hash function h : Zq2  Zp
h(m) = x0 x1 (mod p) 

here + ith 0 q 1
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where m = x0 + x1 q with 0 x0, x1 q-1
note: h(m) is about half the bit length of m



Cryptographic Hash FunctionCryptographic Hash Function
Proposition: If we have an algorithm A that can 

find m'm with h(m)=h(m'), then using A we can 
determine the discrete log a = L ()determine the discrete log a  L()

proof: if we are given the output of A e g m and m'
a reduction argument

proof: if we are given the output of A, e.g., m and m
we can write m = x0 + x1 q and   m ' = x '0 + x '1 q
h(m)  h(m')  x0 x1  x'0 x'1 (mod p)h(m)  h(m )  x0 x1  x 0 x 1 (mod p) 
a    a (x1 - x'1) + (x0 - x'0)  1 (mod p) 

i i iti ( ' ) ( ' ) 0 ( d 1) is primitive  a (x1- x'1) + (x0- x'0)  0 (mod p-1) 
this congruence equation has d = gcd(x1- x'1, p-1)        

l i d b f d il
21

solutions, and can be found easily



Cryptographic Hash FunctionCryptographic Hash Function
since  1. x1 x'1 (otherwise run A again with different )

2. only 1, 2, q, p-1 divides p-1 and
3. -(q-1)  x1- x'1  (q-1) d t3. (q 1)  x1 x 1  (q 1)

 d can only be 1 or 2
il t t b th l ti d

random tape

 we can easily test both solutions and
determine a = L()

 Given , , p (p=2q+1, ,  are primitives, there are (p-
1)=(2q)=q-1 primitives), find L():
1. using algorithm A to find m and m' s.t. h(m) = h(m')
2. write m = x0 + x1 q and m ' = x '0 + x '1 q
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2. write m  x0  x1 q and   m  x 0  x 1 q
3. solve    a (x1- x'1) + (x0- x'0)  0 (mod p-1)    for   a



Cryptographic Hash FunctionCryptographic Hash Function
Properties of h(m) = x0 x1 (mod p) 
h(ꞏ) is strongly collision resistant

from the above proposition, the efficient algorithm A that o t e above p opos t o , t e e c e t a go t t at
finds m and m' such that h(m) = h(m') is unlikely to exist

h(ꞏ) is weakly collision resistanth( ) is weakly collision resistant
1. Assume h() is not w.c.r.   an inverse function of h(ꞏ)
2 g(ꞏ): given m  Z 2 and y=h(m)  Z it is efficient2. g( ): given m  Zq2 and y h(m)  Zp, it is efficient

to compute m' = g(y)  Zq2 such that h(m') = y
3 |Z 2 | >> |Z |  it is very likely that g(y)  m3. |Zq2 | >> |Zp|  it is very likely that g(y)  m

(otherwise try another m), therefore, we have an
algorithm A that can find m  m' but h(m)=h(m')
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algorithm A that can find m  m but h(m) h(m )
contradict to the ‘strong collision resistant’ property



Cryptographic Hash FunctionCryptographic Hash Function
Discussion: ‘strong collision freeness of h(ꞏ)’

given h(ꞏ) it is hard to find m1, m2 such that 
h(m1)=h(m2)h(m1) h(m2) computationally infeasible

because the length of h(m) is far less than the length of 
m, the mapping h(ꞏ) is definitely many to one

 to make it computationally infeasible to find two 
distinct m1 and m2 such that h(m1)=h(m2)1 2 ( 1) ( 2)

intuitively, the set of m’s that map to the same h(m) 

24

have to be randomly distributed among many many 
other m’s that have different h(m)



Cryptographic Hash FunctionCryptographic Hash Function
 Hash function based on symmetric block cipher

 if the block algorithm is secure then the one-way hash function 
is secure?? (never proved, Damgård, Crypto’89)

Compression
function

mi

h
hifunctionhi-1

A

Key

A
C

Encrypt
Key

B
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A, B, C can be either mi, hi-1, mi  hi-1



Cryptographic Hash FunctionCryptographic Hash Function
 Not all 81 assignments of A, B, C are secure, the following 12 

assignments are OK (especially the first 4)assignments are OK (especially the first 4)
A B C

mihi-1 mi

mi  hi-1

hi-1

hi-1 mi  hi-1

mi mi  hi-1

hi-1 mi  hi-1 mi

mi hi-1 hi-1

m m  h m  h
hi-1

hi-1mi

mi

mi mi  hi-1 mi  hi-1

mi  hi-1

mi  hi-1 i 1

hi-1hi-1

i

mimi

mi  hi-1

mi  hi-1

i i-1
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hi-1

hi-1 mi

mi

mi  hi-1

mi  hi-1



Application of cryptographic hash functionApplication of cryptographic hash function

Digital Signature:Digital Signature:

document
m Hash message

digest h(m)
Digital

Signature
signature

(m sig(h(m)))m digest h(m) Signature (m, sig(h(m)))

efficient computation and storagep g
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Application of cryptographic hash functionApplication of cryptographic hash function
security: weak collision resistant property of h(m) 

thwarts forgers
‘Given (m, sig(h(m))) and another m'( m), ( , g( ( ))) ( ),

Is Eve capable of finding sig(h(m'))?’
 the underlying signature algorithm guarantees that it is the underlying signature algorithm guarantees that it is 

computationally difficult to find sig(h(m')) given h(m') 
without the trapdoor informationwithout the trapdoor information

 if h(m') = h(m) then sig(h(m')) will be sig(h(m))
However given m we know h(m) ‘weakly collisionHowever, given m, we know h(m), weakly collision 
resistant property of h(ꞏ)’ guarantees that it is 
computationally infeasible to find m' such that 
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p y
h(m') = h(m)



Application of cryptographic hash functionApplication of cryptographic hash function
Data Integrity:
data transmitted in noisy channel
data transmitted in insecure channeldata transmitted in insecure channel
errors: insertion, deletion, modification, rearrangement

non-cryptographic: parity, CRC32
only increase the detection probability of errors

cryptographic: collision resistant, detect almost all yp g p ,
errors (slow)
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The Birthday ParadoxThe Birthday Paradox

 r = 23  Pr{any two of them have the same birthday}  0.5
 r = 30  Pr{any two of them have the same birthday}  0.7
 r = 40  Pr{any two of them have the same birthday}  0.9

30

{ y y}



The Birthday Paradox (cont’d)The Birthday Paradox (cont d)
Pr { r people have different birthdays }

r = 2,   (1-1/365) = .997
r = 3,   (1-1/365)(1-2/365) = .992
r = 4,   (1-1/365)(1-2/365)(1-3/365) = .984, ( )( )( )
…
r 23 (1 1/365)(1 2/365) (1 22/365) 493r = 23, (1-1/365)(1-2/365)… (1-22/365) = .493

Pr { at least two having the same birthday }
= 1 - Pr { all r people have different birthday } = 507
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 1 Pr { all r people have different birthday }  .507



The Birthday Paradox (cont’d)The Birthday Paradox (cont d)
 e-x = 1 – x + x2 / 2! - x3 / 3! +…

if x is a small real number, ex. 1/365, then 1 – x  e-x

 (1 1/365)(1 2/365) (1 ( 1)/365)  (1 i/365)
r-1

 (1-1/365)(1-2/365)… (1-(r-1)/365) = (1 – i/365)

 -i/365 -  i/365 - r(r-1)/(2*365)
i=1

 e i/365 = e  i/365 = e r(r 1)/(2 365)

  = Pr{at least one collision}  1 - e- r(r-1)/(2n){ }
-r(r-1)/(2n)  ln (1-)
define  = ln (1 )define  = - ln (1-)
r2 – r  2 n 


32

neglecting r, we obtain r   2 n 



The Birthday Paradox (cont’d)The Birthday Paradox (cont d)
 In general, 
n kinds of objects (n is large, each kinds of objects 

have infinite supplies)ave te supp es)
r people each chooses one object independently

Let  = Pr { at least two choose the same kind of object }
define  = - ln (1-) i.e.  = 1 - e- define   ln (1 )  i.e.    1 e

From the previous derivation r  2  np

eg: if  = 0.693  Pr {..}  1 - e- .693 = 0.5
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g { }
n = 365         2 .693 365 = 22.49 



Birthday AttackBirthday Attack
A slightly different scenario
n kinds of objects (n is large, each kinds of objects 

have infinite supplies)ave te supp es)
 two groups, each has r people, every one chooses one 

object independentlyobject independently

r   nr   n
Pr { at least one in the first group chooses the same kind of

object as someone in the second group chooses }  1 - e- object as someone in the second group chooses }  1 - e

note: Pr{ i matches }  i e- / i!   2!e 2
  3

3!
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ie. Pr { at least two matches}  1 - e- - e-



Birthday AttackBirthday Attack

Ex.  Pr{ꞏ}  1 - e-  = 0.5
   0.693
 r  0.693 n  0.83 n

n=365, r  15.9
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Birthday Attack on Digital SignatureBirthday Attack on Digital Signature
Actually attack on the one-way hash function

Alice
Fred

document
m Hash message

digest h(m)
Digital

Signature

Alice
signature

(m, sig(h(m)))

Receipt serial #12345678
If h( ) i 50 bi i Ali ld

g

...
I, Fred, hereby owe 
you, Alice, 10000
dollars

If h(m) is a 50-bit string, Alice would 
think that she is safe because if the hash 
is a random mapping the computation timedollars. 

…
Fred

01/01/04

is a random mapping, the computation time
to find another document with the same 
hash as the given one, h(m), would be 
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g ( )
O(250)  (1015)



Birthday Attack on Digital SignatureBirthday Attack on Digital Signature
Receipt serial #12345678Receipt serial #12345678F's U's
...
I, Fred,   hereby owe
you,  Alice,10000
dollars.

...
I, Fred,  hereby
owe    you,Alice,
100 dollars.

…
         Fred
       01/01/04

…
         Fred
       01/01/04

 Fred finds 30 places where he can make slight changes in 
both favorable (F) and unfavorable (U) versions of 
documents.  i.e.
 r = 230, n = 250,  = r2 / n = 210 = 1024
 Fred have r variations of {F }’s and r variations of {U }’s Fred have r variations of {Fi} s and r variations of {Ui} s
 Pr{ there is at least one match in h(Fi) and h(Ui) }  1 - e-   1

 let h(Fi*) = h(Uj*), Fred gave Uj* to Alice when he got 
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e ( i*) (Uj*), ed gave Uj* o ce w e e go
$10000 from her, but later claimed that the document is Fi*



Avoid the Birthday AttackAvoid the Birthday Attack
 Alice changes slightly the document m to m' (wording, 

spaces, formats, …) before Fred signs the document
 so that h(m')  h(m)( ) ( )
 In order to obtain another document that has the same hash 

h(m'), Fred needs to search on average 250/2 documents.

 Alice should choose a hash function with output twice as 
long as what she feel safe. For example, in this case she 
should ask Fred to use a hash function with 100-bit output.  
(The birthday attack effectively halves that number of 
bits.)
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Birthday Attack to solve Discrete LogBirthday Attack to solve Discrete Log
 given , and p, find x such that x   (mod p)
 procedure
step 1: calculate and save k (mod p) for p random k
step 2: calculate and save  -i (mod p) for p random i
step 3: compare these two sets to find a matchstep 3: compare these two sets to find a match

 analysis
  = 1 Pr{k i k  -i (mod p)}  1 e-  = 0 632  = 1, Pr{k, i, k    i (mod p)}  1 - e  = 0.632

 let k*, i* be the index such that k*   -i* (mod p)
 k*+i*   (mod p)    (mod p)
 L()  k* + i* (mod p-1) 

Note: repeat step 1 and step 2 if k* and i* can not be found
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p p p
Pr{success}:   0.632    0.864    0.95

1 repetition        2nd repetition     3rd repetition



Meet in the Middle AttackMeet-in-the-Middle Attack
Similar structure to birthday attack
Deterministic, always find the solution
Double DES Encryption:Double DES Encryption: 

let Ek (ꞏ) Ek (ꞏ) be two 56-bit DESlet Ek1( ), Ek2( ) be two 56-bit DES, 
Can Ek2(Ek1(ꞏ)) achieve the level of security as a 
112 bit symmetric cryptosystem?112-bit symmetric cryptosystem?

Note: for RSA (me1)e2 is equivalent to me3 (for theNote: for RSA  (me1)e2 is equivalent to me3 (for the 
same n)

for DES E (E (ꞏ)) is not equivalent to some
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for DES Ek2(Ek1(ꞏ)) is not equivalent to some 
Ek3(ꞏ)



Meet in the Middle AttackMeet-in-the-Middle Attack
 brute-force attack on DES: given m and c, try all 256

possible keys to see which key satisfies c = Ek(m) 
 direct extension of brute-force attack on Double DES: 

given m and c, try all 2112 possible keys to see which two 
keys k1 and k2 satisfy c = Ek2(Ek1(m))y 1 2 y 2( 1( ))

 MITM attack (smarter brute-force attack): 
given m and c, Eve is going to find k1 and k2 such that c =given m and c, Eve is going to find k1 and k2 such that c  
Ek2(Ek1(m)) with only 257 DES calculations
 step 1: calculate Ek(m) for all possible k step 1: calculate Ek(m) for all possible k
 step 2: calculate Dk(c) for all possible k
 step 3: compare the two lists there is at least one match
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 step 3: compare the two lists, there is at least one match
note: if there are multiple matches, try another (m, c) pair to resolve



Meet in the Middle AttackMeet-in-the-Middle Attack
Analysis:
storage: 257 blocks (= 260 bytes ~ 230 GB ~8ꞏ106 120G HD)

computation: 257 DES + (256)2 comparisonscomputation: 2 DES + (2 ) comparisons
far less than directly try out (256)2 DES key
combinations If Eve have plenty of powercombinations.  If Eve have plenty of power
to break Ek(m) in a brute-force way, she will
be capable of breaking Ek (Ek (m)) easilybe capable of breaking Ek2(Ek1(m)) easily.

 Triple Encryption: Ek3(Ek2(Ek1(m))) storage  time tradeoff

given m and c, to break this system in a brute-force 
way, it is necessary to compute (2112 + 256) DES and 
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2168 comparisons



Meet in the Middle AttackMeet-in-the-Middle Attack

Ek1(ꞏ) Dk2(ꞏ)=m c

Note: * DES is a permutation, means that for a given key, different
message m will be encrypted to different ciphertext c1, also 
different ciphertext c will be decrypted to different mdifferent ciphertext c will be decrypted to different m1

* There could be multiple collisions for the above two lists
if E(ꞏ) and D(ꞏ) are DES and its inverse respectively Aif E( ) and D( ) are DES and its inverse, respectively.  A 
single message m could be encrypted to the same ciphertext
c1 with different keys.  In single DES encryption, this might
not be very severe, but in two concatenated DES operations,
this phenomenon would be frequent since number of key
combinations (2112) is far larger than number of ciphertexts
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combinations (2112) is far larger than number of ciphertexts
(264). [ in terms of BA: r=256, n=264, =(256)2/264]



Another thought on Double DESAnother thought on Double DES
 Why don’t we try to apply birthday attack on Double DES?
 In order to apply birthday attack, we prepare two lists:

calculate Ek1(m)
for 232 random k1 for 232 random k2

calculate Dk2(c)

Because DES encryption and decryption can be considered 
random mappings 232 Ek (m)’s and 232 Dk (c)’s are close torandom mappings, 2 Ek1(m) s and 2 Dk2(c) s are close to
random samples from 264 possible ciphertexts.  According to
the birthday attack the probability that there is a match in thethe birthday attack, the probability that there is a match in the 
two lists is about 0.632, it looks like that we can find a pair 
of keys (k k ) that can encrypt m to c
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of keys (k1, k2) that can encrypt m to c.    
Will “Double DES” be broken in 233 DES computations?



Another thought on Double DESAnother thought on Double DES

Ek1(ꞏ)m cEk2(ꞏ)

 Since c is a 64-bit block, c has 264 possibilities.  There 
are 2112 possible (k1, k2) key combinations.  Therefore,  p ( 1, 2) y ,
for a particular m, there are on average 248 key 
combinations that can generate a given c by the pigeon g g y p g
hole principle.  To find out the actual key used , we 
need to analyze many more (plaintext, ciphertext) pairs.y y (p , p ) p

 The previous birthday attack scheme can only find one 
key combination, it would be very difficult to find out
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key combination, it would be very difficult to find out 
all key pairs with that kind of probabilistic scheme.



Digital Signature AlgorithmDigital Signature Algorithm
NIST 1994 (FIPS 186), 2000 (FIPS 186-2)( ), ( )
digital signature scheme with appendix, 

SHA 1 (FIPS 180 1) th h h l ithuse SHA-1 (FIPS 180-1) as the hash algorithm
Generation of keysy
q is a 160-bit prime number, p is a 512-bit (768-bit, 

1024-bit) prime number such that q | p-11024 bit) prime number such that q | p 1
g is a primitive root modulo p

  g(p-1)/q (mod p) q  (g(p-1)/q)q  gp-1  1 (mod p)  g (mod p)                (g )  g  1 (mod p)
 choose secret value a, 1 a  q-1 and calculate   a (mod p)
 public key (p q  ) secret key a
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 public key (p, q, , ), secret key a



Digital Signature AlgorithmDigital Signature Algorithm
Signature: given message m and p, q, 
Alice selects a random secret k 0<k<q-1
compute r  (k (mod p)) (mod q)compute  r  ( (mod p)) (mod q)
compute s  k-1 (m + a r) (mod q) ( 0, kꞏk-1  1 (mod q))

signature is (r, s)                     note: r, s are both 160 bit

Verification: given message m and signature (r, s)g g g ( , )
Bob downloads (p, q, , )
compute u  s-1 m (mod q) and u  s-1 r (mod q)

sꞏs-1  1 (mod q)
compute u1  s m (mod q) and u2  s r (mod q)
compute v  (u1u2 (mod p)) (mod q)
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Bob accepts if v = r



Digital Signature AlgorithmDigital Signature Algorithm
Proof:

s  k-1 (m + a r)  (mod q)
m = (- a r + k s) (mod q)m  ( a r  k s)  (mod q)
gcd(s, q) = 1    s-1 exists
s-1 m  a r s-1 + k (mod q)s m  - a r s + k (mod q)
k  s-1 m + a r s-1  u1 + a u2 (mod q)

k ( d ) ( d )r  k (mod p) (mod q)
 u1 + a u2 + i q (mod p) (mod q)

u u i u1 u2 i q (mod p) (mod q)
 u1 u2 (mod p) (mod q)                q  1 (mod p)
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 v (mod p) (mod q)



Security of DSASecurity of DSA
a must be kept secret
k t b d t i ( ElG l)k can not be used twice (same as ElGamal)
partial information leaked from 
 let p -1 = t ꞏ q and g is a primitive root modulo p, 

if t has only small prime factors, given g a (mod p), 
a (mod t) can be calculated by Pohlig-Hellman algorithm

  gt (mod p) (i.e.   gp-1/q (mod p), q  1 (mod p))g ( p) ( g ( p), ( p))
  a  g t a(mod p)   i.e. Lg()  0 (mod t)
no information leaked by  about Lg() is useful even if y  g()
all prime factors of t are relatively small

a  L ()  L () / t (mod p-1), therefore, no information
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a  L()  Lg() / t (mod p 1), therefore, no information 
of  L() leaked by  is useful



Computation of DSAComputation of DSA
mod exp is O(n3)mod exp is O(n )
bit length:  q: 160 bits     p: n bits
ElGamal   v1 = r s (mod p)   v2 = m (mod p)

where , , r, s, m, v1 , v2 , p are all n bits
DSA  v  (u1u2 (mod p)) (mod q)

where , , p are n bits, u1 , u2 , v, q are 160 bits1 2 

overall verification computations
ElGamal: O(3 n3)ElGamal: O(3 ꞏ n3)
DSA:        O(2 ꞏ n2 ꞏ 160)

50



Other Signature Related AlgorithmsOther Signature Related Algorithms
G Si Group Signature

 Undeniable Signature (Nontransferable Signature) Undeniable Signature (Nontransferable Signature)

 Designated Confirmer Signature

 Ring Signature

 Multi-Party Digital Signature
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Other topicsOther topics
Security notions of signature schemes
Schnorr signature scheme
DSS d ElG l t blDSS and ElGamal are not provably secure
First encryption or first signature?yp g
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