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    NTOUCS 1112 密碼學與應用作業三  繳交日期 112/03/23(四) 15:10 

1. Which of the following congruence relations have solutions. If yes, what are the solutions? 

(a) X2153 (mod 419)? 

(b) X253 (mod 191)? 

(c) X252528 (mod 80029) 

  Note: 419, 191 are primes, 80029=419*191 

Sol: 

(a) 419  3 (mod 4) 

419 1
209 128 64 16 12153 153 153


      252 · 154 · 352 · 153  418  -1 (mod 419) 

x2  153 (mod 419) has no solution. 

(b) 191  3 (mod 4) 

191 1
95 64 16 8 4 2 1253 53 53


        98 · 50 · 97 · 80 · 135 · 53  190  -1 (mod 191) 

x2  53 (mod 191) has no solution. 

(c) This problem is equivalent to the system of congruence equations 

x2  153 (mod 419) and x2  3 (mod 191). 

From part (a), the first congruence has no solution, means that 153 or 52528 is not a quadratic residue 

modulo 419. Thus the congruence relation x2  52528 (mod 80029) has no solution, i.e. not a quadratic 

residue modulo 80029, even though 
191 1

95 64 16 8 4 2 123 3 3


       12 · 96 · 67 · 81 · 9 · 3  1 (mod 

191) means that 3 or 52528 is a quadratic residue mod 191. 

 

2. Find the last 3-digits of 12345632 

Sol: 

1000 = 23 · 53 

(1000) = 1000 · (1-1/2) · (1-1/5) = 400 

We would really like to use the Euler’s Theorem a(n)  1 (mod n) to simplify the modulo exponentiation. 

However, the catch is that gcd(a, n)=1 or a  *
nZ  must be satisfied and unfortunately gcd(1234,100)=2. In 

this case we still can use Fermat’s Little Theorem and Chinese Remainder Theorem to speed up the 

calculation of the modular exponentiation, which takes O((log n)3) of time and is large if log n goes to 

several thousands. 12345632 (mod 1000) is equivalent to the following system of congruence equations 
5632 56321234 (mod8) 1234 (mod125)x    where gcd(8,125)=1 

Now the first congruence relation becomes 5632 5632 5629(1234mod8) 2 8 2 0 (mod8)x      and the 

second congruence relation becomes (5632 mod100) 32(1234mod125) 109 81 (mod125)x    , where 

gcd(1234,125)=1 and (125) = 125 · (1-1/5) = 100. 

Now we use CRT to solve the following system of equations 

0 (mod8) 81 (mod125)x    where gcd(8,125)=1 
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Because we have 8 · (8-1)mod 125 + 125 · (125-1)mod 8 = 1, i.e. 8 · (-78) + 125 · 5 = 1 and the CRT 

solution for the above system of congruence relations is 

x  81 · 8 · (-78) + 0 · 125 · 5  456 (mod 1000) 

A last note, although if we neglect the fact that gcd(1234, 1000)=2 and apply Euler’s Theorem anyway, 

12345632  2345632 (mod 400)  23432  (((((2342) 2) 2) 2) 2)  456 (mod 1000). This happens by chance or 

maybe some extra conditions are satisfied and is not guaranteed. 

 

3. Find all primes p for which the matrix 
3 6

5 3

 
 
 

 (mod p) is not invertible. 

Sol: 

If gcd(det(A),p)>1 then a matrix A is not invertible modulo p. 

3 6
det( ) 3 3 5 6 21

5 3

 
      

 
 p-21 (mod p)  

If p is greater than 21 then gcd(p-21, p) = 1 since p is a prime number. Thus, A is always invertible 

modulo p. Now we need to consider all primes less than 21, i.e. {2,3,5,7,11,13,17,19}, one by one to see 

if any one satisfies gcd(p-21,p)>1. Since p is a prime number, only its multiples are not relative prime to 

itself, which implies that p-210 (mod p), or equivalently prime p that divides 21 

(1) p=19 ⇒ 19-21  -2  17 (mod 19) 
(2) p=17 ⇒ 17-21  -4  13 (mod 17) 
(3) p=13 ⇒ 13-21  -8  5 (mod 13) 
(4) p=11 ⇒ 11-21  -10  1 (mod 11) 
(5) p=7 ⇒ 7-21  -14  0 (mod 7) 
(6) p=5 ⇒ 5-21  -16  4 (mod 5) 
(7) p=3 ⇒ 3-21  -18  0 (mod 3) 
(8) p=2 ⇒ 2-21  -19  1 (mod 2) 

Hence, the only prime numbers that make the matrix 
3 6

5 3

 
 
 

 (mod p) not invertible are 3 and 7. 

 

4. Let a and n > 1 be integers with gcd( , ) 1a n  . The order of a mod n is the smallest positive integer r such  

that 1 (mod )ra n . Denote ( )nr ord a . 

(a) Show that r  (n) 

(b) Show that if m = r k is a multiple of r, then 1 (mod )ma n  

(c) Suppose 1 (mod )ta n . Write t = q r + s with 0  s < r (this is just division with remainder). Show 

that 1 (mod )sa n . 

(d) Using the definition of r and the fact that 0  s < r, show that s = 0 and therefore r | t. This, combined 

with part (b), yields the result that 1 (mod )ta n if and only if ( ) |nord a t . 

(e) Show that ( ) | ( )nord a n . 
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Sol. 

(a) Since r is the smallest positive integer such that ar  1 (mod n) and Euler theorem says that the 

integer (n) satistfies a(n)  1 (mod n) for all a *
nZ , we obtain that r ≤ (n). 

(b) Since ar  1 (mod n), am  ark  (ar)k  1k  1 (mod n). 

(c) Since at  aqr+s  aqr ꞏ as  1 ꞏ as  as (mod n), at  1 (mod n) implies as  1 (mod n). 

(d) We want to prove that “ 1 (mod )ta n  ( ) |nord a t ” 

(): part (c) shows that if t = qr + s, 0 ≤ s < r then 1 (mod )ta n  1 (mod )sa n . Since by 

definition r is the smallest number such that ar  1 (mod n), we must have s = 0 and t = qr + 0 = qr 

and therefore r | t. 

(): part (b) shows exactly that if r | t then at  1 (mod n). 

(e) Assume (n) = qr + s. From the Euler theorem a(n)  1 (mod n) and the result of part (d), we 

concludes that s = 0 and thus ordn(a) |(n). 


