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CCongruence
 Modulo Operation:

 Question: What is 12 mod 9?
 Answer: 12 mod 9  3 or 12  3 (mod 9)( )

“12 is congruent to 3 modulo 9”
 Definition: Let a, r, m   (where  is the set of all Definition: Let a, r, m   (where  is the set of all 

integers) and m  0. We write
 a  r (mod m) if m divides a – r (i e m | a-r) a  r (mod m) if m divides a r   (i.e. m | a r)
 m is called the modulus
 r is called the remainder r is called the remainder
 a = q ꞏ m + r 0  r < m

 Example: a = 42 and m=9
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 Example: a = 42 and m=9
 42 = 4 ꞏ 9 + 6 therefore 42  6 (mod 9)

G t t C Di iGreatest Common Divisor
 GCD of a and b is the largest positive integer GCD of a and b is the largest positive integer 

dividing both a and b 
d( b) ( b) gcd(a, b) or (a,b)

 ex. gcd(6, 4) = 2, gcd(5, 7) = 1g ( , ) , g ( , )
 Euclidean algorithm

 ex gcd(482482 11801180) Why does it work?
remainderdivisor  dividend  ignore

 ex. gcd(482482, 11801180) Why does it work?    
Let d = gcd(482, 1180)
d | 482 and d | 1180  d | 216

11801180 = 2 ꞏ 482482 + 216
482 = 2 ꞏ 216 + 50 because 216 = 1180 - 2 ꞏ 482

d | 216 and d | 482  d | 50
d | 50 and d | 216  d | 16

482 = 2 ꞏ 216 + 50
216 = 4 ꞏ 50 + 16
50 = 3 ꞏ 16 + 222
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| | |
d | 16 and d | 50  d | 2
2 | 16  d = 2

50  3  16  22
16 = 8 ꞏ 2 + 0 gcd
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)

 Euclidean Algorithm: calculating GCD

11804822 2

gcd(1180, 482) (輾轉相除法)

964432

20048
50 43 216

20048
2 8

16
162
0
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)
 Def: gcd(a, b) = 1 means a and b are relatively prime
 Theorem: Let a and b be two integers, with at least one 

of a, b nonzero, and let d = gcd(a,b). Then there existof a, b nonzero, and let d  gcd(a,b).  Then there exist 
integers x, y, gcd(x, y) = 1 such that a ꞏ x + b ꞏ y = d
 Constructive proof: Using Extended Euclidean Algorithm to Constructive proof: Using Extended Euclidean Algorithm to 

find x and y

216 = 11801180 - 2 ꞏ 482482d = 2d = 2 = 50 - 3 ꞏ 16 

16 = 216 - 4 ꞏ 50

50 = 482 - 2 ꞏ 216= (482 - 2 ꞏ 216) - 3 ꞏ (216 - 4 ꞏ 50)
= • • • • = 1180 1180 ꞏ (-29) + 482482 ꞏ 71
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( )
a   x             b   y

E t d d E lid Al ithExtended Euclidean Algorithm
Let gcd(a, b) = dg ( , )
 Looking for s and t, gcd(s, t) = 1 s.t. a ꞏ s + b ꞏ t = d
 When d = 1 t  b-1 (mod a) When d  1, t  b (mod a) 

11801180 = 2 ꞏ 482482 + 216
aa = q1 ꞏ bb + r1

Ex.
11801180 - 2 ꞏ 482 = 216

482 = 2 ꞏ 216 + 50
aa  q1  bb + r1

b = q2 ꞏ r1 + r2

 482 - 2 ꞏ (1180 - 2 ꞏ 482) = 50
-2 ꞏ 1180 + 5 ꞏ 482 = 50

216 = 4 ꞏ 50 + 16
q2 1 2

r1 = q3 ꞏ r2 + r3
 

 

2 1180  5 482  50

(1180 - 2 ꞏ 482) -
4 ꞏ (-2 ꞏ 1180 + 5 ꞏ 482) = 16

50 = 3 ꞏ 16 + 22r2 = q4 ꞏ r3 + dd
  9 ꞏ 1180 - 22 ꞏ 482 = 16

4  (-2  1180 + 5  482) = 16

( 2 1180 + 5 482)

6r3 = q5 ꞏ d + 0
(-2 ꞏ 1180 + 5 ꞏ 482) -

3 ꞏ (9 ꞏ 1180 - 22 ꞏ 482) = 2
-29 ꞏ 1180 + 71 ꞏ 482 = 2

G t t C Di i ( t’d)Greatest Common Divisor (cont’d)
 The above proves only the existence of integers x and y

d = a ꞏ x + b ꞏ y

Z  How about gcd(x, y)?
d  a  x + b y
d = gcd(a, b)

 1 = a/d ꞏ x + b/d ꞏ y

If gcd(x y) = r r  1 thenIf   gcd(x, y) = r , r  1 then

r | x and r | y  r | a/d ꞏ x + b/d ꞏ y
which means that     r | 1     i.e.    r = 1

¶gcd(x, y) = 1 ¶

Note: gcd(x, y) = 1 but (x, y) is not unique
d + b ( k b) + b ( +k )
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e.g.  d = a x + b y = a (x-kꞏb) + b (y+kꞏa)
when k increases, x-kꞏb decreases and become negative

G t t C Di i ( t’d)Greatest Common Divisor (cont’d)
L d( b) d( ) d( ) d( b) 1Lemma: gcd(a,b) = gcd(x,y) = gcd(a,y) = gcd(x,b) = 1 

 a, b, x, y s.t. 1 = a x + b y
pf:

() following the previous theorem

() let d = gcd(a b) d  1

( ) g p

() let d = gcd(a, b), d  1 
 d | a and d | b 
 d | a x + b y
 d = 1

= 1
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similarly, gcd(a, y)=1, gcd(x, b)=1, and gcd(x, y)=1



O ti d dOperations under mod n

 Proposition:
Let  a,b,c,d,n be integers with n  0, suppose, , , , g , pp
a  b (mod n) and c  d (mod n) then

a + c  b + d (mod n) ( )
a - c  b - d  (mod n) 
a ꞏ c  b ꞏ d (mod n)

pf.   a = k1 n + b
c = k2 n + da  c b  d  (mod n)

 Proposition:
 (a+c) = (k1+k2) n + (b+d)
 a+c  b+d (mod n)

 Proposition:
Let  a,b,c,n be integers with n  0 and gcd(a,n) =1. 
If a ꞏ b  a ꞏ c (mod n) then b  c (mod n)
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If a b  a c (mod n) then b  c (mod n)

O ti d dOperations under mod n
T

 What is the multiplicative inverse of a (mod n)?






 What is the multiplicative inverse of a (mod n)?
i.e.  a ꞏ a-1  1 (mod n)     or    a ꞏ a-1 = 1 + k ꞏ n

gcd(a, n) = 1    integer s and t such that a ꞏ s + n ꞏ t = 1
 a-1  s (mod n) Existence of a-1 and k  gcd(a,n)=1



Extended Euclidean Algo.

 a ꞏ x  b (mod n), gcd(a, n) = 1, x  ?
-1 b b ( d )

Are there any solutions?
 a ꞏ x  b (mod n), gcd(a, n) = d  1, x  ?

x  a 1 ꞏ b  s ꞏ b (mod n)

if d | b ( /d) (b/d) ( d /d) d( /d /d)

if d | b  d a' x = b + k d n'   b = d (a' x – k n')
 d | b    contradiction  no solution

a x = b + k n  
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if d | b (a/d) ꞏ x  (b/d) (mod n/d)    gcd(a/d,n/d) = 1
x0  (b/d) ꞏ (a/d)-1 (mod n/d)

M t i i i d dMatrix inversion under mod n
 A square matrix is invertible mod n if and only if A square matrix is invertible mod n if and only if 

its determinant and n are relatively prime
 ex: in real field R -1

a b d -b1

dc
=

a-cad - bc

In a finite field Z (mod n)? we need to find the inverse 
for ad-bc (mod n) in order to calculate the inverse of the ( )
matrix -1

a

d

b


d -b
(ad – bc)-1 (mod n)
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dc a-c

GGroup
 A group G is a finite or infinite set of elements and a A group G is a finite or infinite set of elements and a 

binary operation  which together satisfy 
1 Closure:  a b G a  b = c G 封閉性1. Closure:           a,b G a  b = c G                   封閉性

2. Associativity:  a,b,c G   (a  b)  c = a  (b  c)   結合性

3 Identit :  a G 1  a a  1 a 單位元素3. Identity:           a G 1  a = a  1 = a              單位元素

4. Inverse:           a G a  a-1 = 1 = a-1  a        反元素

b li 交換群
means g  g  g  …  g

 Abelian group 交換群  a,b G a  b = b  a

 Cyclic group G of order m: a group defined by an Cyclic group G of order m: a group defined by an 
element g  G such that g, g2, g3, …. gm are all distinct 
elements in G (thus cover all elements of G) and gm = 1
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*
elements in G (thus cover all elements of G) and g = 1, 
the element g is called a generator of G.  Ex: Zn (or Z/nZ)



G ( t’d)Group (cont’d)
 The order of a group: the number of elements in a group G, denoted g p g p ,

by |G|. If the order of a group is a finite number, the group is said to 
be a finite group, note g|G| = 1 (the identity element). 

 The order of an element g of a finite group G is the smallest power 
m such that gm = 1 (the identity element), denoted by ordG(g)

size of Z is n
 ex: Zn: additive group modulo n is the set {0, 1, …, n-1}

binary operation: + (mod n)

g ( y ), y G(g)

size of Zn is n, 
g+g+…+g  0 (mod n)

binary operation:  (mod n)
identity: 0
inverse: -x  n-x (mod n) Algorithm

*

size of Zn is (n), 
( )

*
* ex: Zn: multiplicative group modulo n is the set {i:0in, gcd(i,n)=1}

binary operation:  (mod n)
id i 1
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g(n)  1 (mod n)identity: 1

inverse: x-1 can be found using extended Euclidean Algorithm

Ri Ring m

 Definition: The ring m consists of
The set m = {0, 1, 2, …, m-1}The set m  {0, 1, 2, …, m 1}
Two operations “+ (mod m)” and “ (mod m)”

for all a b   such that they satisfy thefor all a, b  m such that they satisfy the
properties on the next slide

 Example: m = 9  9 = {0, 1, 2, 3, 4, 5, 6, 7, 8}p 9 { }
6 + 8 = 14  5 (mod 9)
6  8 = 48  3 (mod 9)
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( )

P ti f th i Properties of the ring m 
 Consider the ring m = {0, 1, …, m-1}Co s de e g m {0, , …, m }

 The additive identity “0”: a + 0  a (mod m)
 The additive inverse of a: -a = m – a s t a + (-a)  0 (mod m) The additive inverse of a: a  m a s.t. a + ( a)  0 (mod m)
Addition is closed i.e if a, b  m then a + b  m

Addition is associative (a + b) + c  a + (b + c) (mod m)Addition is associative (a + b) + c  a + (b + c) (mod m)
Addition is commutative a + b  b + a (mod m)

M lti li ti id tit “1” 1 ( d )

might or might not e ist

Multiplicative identity “1”: a  1  a (mod m)
 The multiplicative inverse of a exists only when gcd(a,m) = 1 

and denoted as a-1 s t a-1  a  1 (mod m) might or might not existand denoted as a s.t. a  a  1 (mod m)
Multiplication is closed i.e. if a, b  m then a  b  m

M ltiplication is associati e (  b)   (b  ) (mod )
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Multiplication is associative (a  b)  c  a  (b  c) (mod m)
Multiplication is commutative a  b  b  a (mod m)

S k th i Some remarks on the ring m

 A ring is an Abelian group under addition and an 
Abelian semigroup under multiplication..Abelian semigroup under multiplication.. 

 A semigroup is defined for a set and an associative 
binary operator. No other restrictions are placed on a 
semigroup; thus a semigroup need not have an identity
element and its elements need not have inverses within 
the semigroup. 
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S k th i  ( t’d)Some remarks on the ring m (cont’d)
R hl ki i i th ti l t t i Roughly speaking a ring is a mathematical structure in 
which we can add, subtract, multiply, and even sometimes 
di id (A i i hi h l t h lti li tidivide. (A ring in which every element has multiplicative 
inverse is called a field.)

Example: Is the division 4/15 (mod 26) possible?
In fact, 4/15 mod 26  4  15-1 (mod 26)

1Does 15-1 (mod 26) exist ? 
It exists if gcd(15, 26) = 1. 

115-1  7 (mod 26)     therefore, 
4/15 mod 26  4  7  28  2 mod 26
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Some remarks on the group  and *Some remarks on the group m andm

 The modulo operation can be applied whenever we want

in Zin Zm
(a + b) (mod m)  [(a (mod m)) + ((b mod m)) ] (mod m)

*in Zm
(a  b) (mod m)  [(a (mod m))  ((b mod m)) ] (mod m)( ) ( ) [( ( )) (( )) ] ( )
ab (mod m)  (a (mod m))b (mod m)

? Question? ab (mod m)  a (b mod m) (mod m)

18

 Question?  a (mod m)  a ( ) (mod m)

E ti ti i Exponentiation in m

E l 8 ( d ) Example: 38 (mod 7)  ?
38 (mod 7)  6561 (mod 7)  2 since 6561  937  7 + 2

oror
38 (mod 7)  34  34 (mod 7)  32  32  32  32 (mod 7) 

 (32 (mod 7))(32 (mod 7))(32 (mod 7))(32 (mod 7)) ( ( )) ( ( )) ( ( )) ( ( ))
 2  2  2  2 (mod 7)  16 (mod 7)  2

 The cyclic group  * and the modulo arithmetic is of The cyclic group m and the modulo arithmetic is of 
central importance to modern public-key cryptography.  
In practice the order of the integers involved in PKC areIn practice, the order of the integers involved in PKC are 
in the range of [2160 , 21024]. Perhaps even larger.
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Exponentiation in  (cont’d)Exponentiation in m (cont d)
 How do we do the exponentiation efficiently? How do we do the exponentiation efficiently?
 31234 (mod 789)        many ways to do this

d 1234 ti lti li ti d th l l t i da. do 1234 times multiplication and then calculate remainder
b. repeat 1234 times (multiplication by 3 and calculate remainder)
c repeated log 1234 times (square multiply and calculatec. repeated  log 1234 times (square, multiply and calculate 

remainder)
ex. first tabulate  

32  9 (mod 789)        332  4592  18          3512  7322  93
34  92  81                364  182  324        31024  932  759
38 812 249 3128 3242 3938  812  249            3128  3242  39
316  2492  459        3256  392  732

1234 = 1024 + 128 + 64 + 16 + 2 (10011010010)2

20

1234  1024  128  64  16  2          (10011010010)2
31234  3(1024+128+64+16+2)  (((759 • 39) • 324) • 459) • 9  105 (mod 789)



E ti ti i  ( t’d)Exponentiation in m (cont’d)
y ( d )calculate xy   (mod m)    where y = b0 ꞏ 22 + b1 ꞏ 2 + b2

 Method 1:
2x)( 2bx2bx 4x)( 1bꞏ 0)( bꞏ 12 )( 2 bb xx ꞏ

 Method 1:

)(
square square

)( )( )(

 Method 2:
0bx 0 2)( bx 10 22ꞏ )( bbx  2bxꞏ1bxꞏ

 Method 2:

 

x )( )(
square square
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square and multiply log y times 

Exponentiation in  (cont’d)Exponentiation in m (cont d)
M th d 1

1234 = 1024 + 128 + 64 + 16 + 2          (10011010010)2
31234 30+2(1+2(0+2(0+2(1+2(0+2(1+2(1+2(0+2(0+2(1))))))))))

Method 1:

31234  30+2(1+2(0+2(0+2(1+2(0+2(1+2(1+2(0+2(0+2(1))))))))))

 9 • 92(0+2(0+2(1+2(0+2(1+2(1+2(0+2(0+2(1)))))))))

 9 • 812(0+2(1+2(0+2(1+2(1+2(0+2(0+2(1))))))))

 9 • 2492(1+2(0+2(1+2(1+2(0+2(0+2(1)))))))

 9 • 459 • 459 2(0+2(1+2(1+2(0+2(0+2(1))))))

2(1 2(1 2(0 2(0 2(1))))) 9 • 459 • 18 2(1+2(1+2(0+2(0+2(1)))))

 9 • 459 • 324 • 3242(1+2(0+2(0+2(1))))

 9 • 459 • 324 • 39 • 392(0+2(0+2(1))) 9 • 459 • 324 • 39 • 392(0 2(0 2(1)))

 9 • 459 • 324 • 39 • 7322(0+2(1))

 9 • 459 • 324 • 39 • 932 (1)
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 9 • 459 • 324 • 39 • 759 mod 789

E ti ti i  ( t’d)Exponentiation in m (cont’d)
1234 1024 + 128 + 64 + 16 + 2 (10011010010)M th d 2 1234 = 1024 + 128 + 64 + 16 + 2          (10011010010)2
31234  30+2(1+2(0+2(0+2(1+2(0+2(1+2(1+2(0+2(0+2(1))))))))))

 (3• 32(0+2(1+2(0+2(1+2(1+2(0+2(0+2(1)))))))))2

Method 2:

(3 3 )
 (3•(32(1+2( 0+2(1+2(1+2(0+2(0+2(1))))))))2)2

 (3•((3•32( 0+2(1+2(1+2(0+2(0+2(1)))))))2)2)2( (( ) ) )
 (3•((3•(32(1+2(1+2(0+2(0+2(1))))))2)2 )2)2

 (3•((3•((3•32(1+2(0+2(0+2(1)))))2)2 )2)2)2

 (3•((3•((3•(3•32(0+2(0+2(1))))2 )2)2 )2)2)2

 (3•((3•((3•(3•(32(0+2(1)))2 )2)2)2 )2)2)2

 (3•((3•((3•(3•((32(1))2 )2)2)2 )2 )2)2)2 (3•((3•((3•(3•((3 ( )) ) ) ) ) ) ) )
 (3•((3•((3•(3•(((31)2 )2 )2)2)2 )2 )2)2)2
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Chi R i d Th (CRT)Chinese Remainder Theorem (CRT)
  ij{1 2 k} gcd(r r ) 1 0  m  r  ij{1,2,…k},  gcd(ri, rj) = 1, 0  mi  ri

Is there an m that satisfies simultaneously the following 
t f ti ?set of congruence equations?

m  m1 (mod r1) ex: m  1 (mod 3)
( d ) m2 (mod r2) 

• • •
 2 (mod 5)
 3 (mod 7)

Note: gcd(3 5) = 1 mk (mod rk) Note: gcd(3,5) = 1
gcd(3,7) = 1
gcd(5,7) = 1

 韓信點兵: 三個一數餘一, 五個一數餘二, 七個一數
餘三 請問隊伍中至少有幾名士兵?

g ( , )
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餘三, 請問隊伍中至少有幾名士兵?



Chi R i d Th (CRT)Chinese Remainder Theorem (CRT)
 first solution:

n = r1 r2 ꞏ ꞏ ꞏ rk
zi = n / rizi  n / ri
 si Zri s.t.  si ꞏ zi  1 (mod ri) (since gcd(zi, ri) = 1)

k
*

m   zi ꞏ si ꞏ mi (mod n)

 ex:
i=1

k
Unique solution in Zn?

1 2 3 ex: m1=1,  m2=2, m3=3
r1=3,    r2=5,   r3=7               n = 3 ꞏ 5 ꞏ 7

z1=35, z2=21, z3=15

s1=2 s2=1 s3=1 35 ꞏ 2 + 3 (-23) = 1
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s1 2,    s2 1,   s3 1

m  35ꞏ2ꞏ1 + 21ꞏ1ꞏ2 + 15ꞏ1ꞏ3  157  52 (mod 105)

35  2 + 3 (-23) = 1

Chi R i d Th (CRT)Chinese Remainder Theorem (CRT)
 Uniqueness: Uniqueness:

1. If there exists m'Zn ( m) also satisfies the 
i k l i hprevious k congruence relations, then 

i, m'-m0 (mod ri).
2. This is equivalent to i, ri | m'– m
3 i j gcd(r r ) = 1  r r r | m' m3. i,j, gcd(ri, rj) = 1   r1 r2…rk | m – m

m' m + k r r r m + k nm' = m + k ꞏ r1, r2…rk = m + k ꞏ n
m'Zn for all k  0
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contradiction!

Chi R i d Th (CRT)Chinese Remainder Theorem (CRT)
 second solution: second solution:

Ri = r1 r2 ꞏ ꞏ ꞏ ri-1
 1 ( d ) ( i d( ) 1)* ti Zri

s.t. ti ꞏ Ri  1 (mod ri) (since gcd(Ri, ri) = 1)
m1 = m1
^

*

satisfies the first i-1 congruence relations1 1
mi = mi-1 +  Ri ꞏ (mi - mi-1) ꞏ ti (mod Ri+1)     i  2
m = mk

^

^^ ^

m1=1, m2=2, m3=3m  mk

Note that mi  m1 (mod r1)
( d )

^
m1 1,  m2 2, m3 3
r1=3,    r2=5,   r3=7

R2=3, R3=15, R4=105
2 1 m2 (mod r2)

• • •
m (mod r )

ex:  m1  1
m2  1+3ꞏ(2-1)ꞏ2=7
^
^
^

t2=2,   t3=1
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 mi (mod ri) m  m3  7+15ꞏ(3-7)ꞏ1
 -53  52 (mod 105)

^

I t l M l C l l tiIncremental Manual Calculation
m  1 (mod 3)
 2 (mod 5)
 3 (mod 7)

m  1 (mod 3)
 2 (mod 5)

m  7 (mod 15)
 3 (mod 7)

 3 (mod 7)

 m1  1 (mod 3) satisfying the 1st eq^

 3  ꞏ (-3) + 5 ꞏ 2 = 1

 m1  1 (mod 3) … satisfying the 1 eq.
inverse of 3 (mod 5)

inverse of 5 (mod 3)

 m2  2 ꞏ 3 ꞏ (-3) + 1 ꞏ 5 ꞏ 2

 15 1 7 ( 2) 1

^
m1m2 inverse of 15 (mod 7)^

 -8  7 (mod 15) …. satisfying 
first 2 eqs. 

 15 ꞏ 1 + 7 ꞏ (-2) = 1

 m3  3 ꞏ 15 ꞏ 1 + 7 ꞏ 7 ꞏ (-2)^
inverse of 7 (mod 15)

 -53  52 (mod 105)3 ( )
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m2m3 ^
( )

… satisfying all 3 eqs. 



Chi R i d Th (CRT)Chinese Remainder Theorem (CRT)
 special case:p

x  m (mod r1)  m (mod r2) • • •  m (mod rn) x  m (mod r1 r2 • • • rn)

 i i ht f th d l ti every step satisfies one 
 insight of the second solution:

l t ^
x  m1 (mod r1)

1 ^^
• • •

2 R = r

y p
more equation

let m1 = m1

^general solution of x must be m1+ k R2 for some k

ste
p m1+ r1

^m1
^ r1 2r1 R2 = r1

m1 is the only solution for x in ZR2
*

x  m1 (mod r1) 
 m2 (mod r2)

general solution of x must be m1+ k R2 for some k

2 m2+ r2r1
^m2

^
• • •

r2r1 2r2r1 R3 = r2r1m2 (mod r2)

ste
p 

2

let m2  m1+ k* R2 (mod R3) where k*= t2(m2- m1) and t2 R2  1 (mod r2)^ ^ ^
m2+ r2r1m2 2 1 2 1

m is the only solution for x in Z*
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^general solution of x must be m2 + k R3 for some k
m2 is the only solution for x in ZR3

Chi R i d Th (CRT)Chinese Remainder Theorem (CRT)
Applications: solve x2  1 (mod 35)Applications:  solve x 1 (mod 35)

 35 = 5 ꞏ 7 
* i fi f( *) 0 ( d 35) x* satisfies f(x*)  0 (mod 35)  

x* satisfies both f(x*)  0 (mod 5) and f(x*)  0 (mod 7)
Proof:
()

p | f(x*), q | f(x*), and gcd(p,q)=1 imply that 
p ꞏ q | f(x*)  i.e. f(x*)  0 (mod p ꞏ q)

( )()
f(x*) = k ꞏ p ꞏ q implies that
f( *) (k ) (k ) i f( *) 0 ( d )
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f(x*) = (k ꞏ p) ꞏ q = (k ꞏ q) ꞏ p    i.e.  f(x*)  0 (mod p)
 0 (mod q)

Chi R i d Th (CRT)Chinese Remainder Theorem (CRT)
 since 5 and 7 are prime, we can solvep ,

x2  1 (mod 5) and x2  1 (mod 7) 
far more easily than     x2  1 (mod 35) Why?y ( )
 x2  1 (mod 5) has exactly two solutions: x  1 (mod 5) 
 x2  1 (mod 7) has exactly two solutions: x  1 (mod 7) x 1 (mod 7) has exactly two solutions: x 1 (mod 7) 

 put them together and use CRT, there are four solutions
 x 1 (mod 5) 1 (mod 7)  x 1 (mod 35) x  1 (mod 5)  1 (mod 7)  x  1 (mod 35) 
 x  1 (mod 5)  6 (mod 7)  x  6 (mod 35) 
 4 ( d 5) 1 ( d 7) 29 ( d 35) x  4 (mod 5)  1 (mod 7)  x  29 (mod 35) 
 x  4 (mod 5)  6 (mod 7)  x  34 (mod 35) 
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M tl b t lMatlab tools
format rat format longformat rat    format long

matrix inverse             inv(A)
matrix determinant      det(A)
p = q d + r                    r = mod(p, d) or r = rem(p, d)

q = floor( p / d )
d( b)g = gcd(a, b)

g = a s + b t                  [g, s, t] = gcd(a, b)
factoring factor(N)factoring                      factor(N)
prime numbers < N     primes(N)
test prime                     isprime(p)
mod exponentiation *  powermod(a,b,n)
find primitive root *    primitiveroot(p)

* ([ ] [ ])
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crt *                             crt([a1 a2 a3...], [m1 m2 m3...])

(N) *                         eulerphi(N)                  



Fi ldField
 Field: a set that has the operation of addition Field: a set that has the operation of addition, 

multiplication, subtraction, and division by nonzero 
elements Also the associative commutative andelements.  Also, the associative, commutative, and 
distributive laws hold.

 Ex Real numbers complex numbers Ex. Real numbers, complex numbers, 
rational numbers, integers mod a prime are fields

 Ex. Integers, 22 matrices with real entries are not fields
 Ex. GF(4) = {0, 1, , 2}

 0 + x = x
 x + x = 0
 1 ꞏ x = x

• Addition and multiplication are commutative and 
associative, and the distributive law x(y+z)=xy+xz
h ld f ll
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 1 ꞏ x = x
  + 1 = 2

holds for all x, y, z
• x3 = 1 for all nonzero elements

G l i Fi ldGalois Field
 Galois Field: A field with finite element, finite field
 For every power pn of a prime, there is exactly one For every power p of a prime, there is exactly one 

finite field with pn elements, GF(pn), and these are 
the only finite fieldsthe only finite fields.

 For n > 1, {integers (mod pn)} do not form a field.
Ex. p ꞏ x  1 (mod pn) does not have a solution 

(i.e. p does not have multiplicative inverse)( p p )
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H t t t GF( n)?How to construct a GF(pn)?
 Def: Z2[X]: the set of polynomials whose coefficients Def: Z2[X]: the set of polynomials whose coefficients        

are integers mod 2
 ex 0 1 1+X3+X6 ex. 0, 1, 1+X +X …
 add/subtract/multiply/divide/Euclidean Algorithm: 

ll ffi i t d 2process all coefficients mod 2
 (1+X2+X4) + (X+X2) = 1+X+X4 bitwise XOR

3 2 3 4 (1+X+X3)(1+X) = 1+X2+X3+X4

X4+X3+1 = (X2+1)(X2+X+1) + X      long division
b ittcan be written as

X4+X3+1  X (mod X2+X+1) 
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H t t t GF(2n)?How to construct GF(2n)?
2 Define Z2[X] (mod X2+X+1) to be {0, 1, X, X+1} 

 addition, subtraction, multiplication are done mod X2+X+1
 f(X)  g(X) (mod X2+X+1)

 if f(X) and g(X) have the same remainder when divided by X2+X+1
2 or equivalently  h(X) such that f(X) - g(X) = (X2+X+1) h(X)

 ex. XꞏX = X2  X+1 (mod X2+X+1)

if l b h G (4) b f if we replace X by , we can get the same GF(4) as before
 the modulus polynomial X2+X+1 should be irreducible

Irreducible: polynomial does not factor into polynomials
of lower degree with mod 2 arithmetic
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ex. X2+1 is not irreducible since X2+1 = (X+1)(X+1)



H t t t GF( n)?How to construct GF(pn)?
 Z [X] is the set of polynomials with coefficients mod p Zp[X] is the set of polynomials with coefficients mod p
 Choose P(X) to be any one irreducible polynomial mod 

p of degree n (other irreducible P(X)’s would result top of degree n (other irreducible P(X) s would result to 
isomorphisms)

 Let GF(pn) be Z [X] mod P(X) Let GF(p ) be Zp[X] mod P(X)

 A l t i Z [X] d P(X) t b f th f An element in Zp[X] mod P(X) must be of the form
a0 + a1 X + … + an-1 Xn-1

each a are integers mod p and have p choices henceeach ai are integers mod p, and have p choices, hence 
there are pn possible elements in GF(pn) 

 multiplicative inverse of any element in GF(pn) can be
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 multiplicative inverse of any element in GF(p ) can be 
found using extended Euclidean algorithm(over polynomial)

GF(28)GF(28)

 AES (Rijndael) uses GF(28) with irreducible polynomial 
X8 X4 X3 X 1X8 + X4 + X3 + X + 1 

 each element is represented as
b7 X

7 + b6 X
6 + b5 X

5 + b4 X
4 + b3 X

3 + b2 X
2 + b1 X + b0

each bi is either 0 or 1
 elements of GF(28) can be represented as 8-bit bytes 

b7b6b5b4b3b2b1b0b7b6b5b4b3b2b1b0
 mod 2 operations can be implemented by XOR in H/W
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GF( n)GF(pn)

 Definition of generating polynomial g(X) is 
parallel to the generator in Z :parallel to the generator in Zp:
 every element in GF(pn) (except 0) can be expressed 

f (X)as a power of g(X)
 the smallest exponent k such that g(X)k1 is pn -1

 Discrete log problem in GF(pn):
 given h(X), find an integer k such that 

h(X)  g(X)k (mod P(X))
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 believed to be very hard in most situations

Recursive GCDRecursive GCD

01 int gcd(int p, int q) // assume p >= q
02 {02 {
03     int ans;
04
05 if (p % q 0)05     if (p % q == 0)
06         ans = q;
07     else 01 int gcd(int p, int q)

02 {08         ans = gcd(q, p % q);
09
10 return ans;

02 {
03     int r = p%q;
04 if (r == 0)10     return ans;

11 }
04     if (r == 0)
05         return q;
06     return gcd(q, r);
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g (q )
07 }



Recursive Extended GCDRecursive Extended GCD
 Given a>b0, find g=GCD(a,b) and x, y s.t. a x + b y = g

where |x|b+1 and |y|a+1
 Let a = q b + r, b>r0  (q b + r) x + b y = g

b ( )

, if g = 1, then x is a's inverse mod b  

 b (q x + y) + r x = g
 b y' + r x  = g, where y' = q x + y

 This means that if we can find y' and x satisfying b y' + (a%b) x = g This means that if we can find y' and x satisfying b y' + (a%b) x = g
then x and y = y' – q x = y' – (a/b) x satisfies a x + b y = g
Note that in this way r will eventually be 0Note that in this way r will eventually be 0

01 void extgcd(int a, int b, int *g, int *x, int *y) { // a > b >=0
02     if (b == 0)
03 * * 1 * 003         *g = a, *x = 1, *y = 0;
04     else {
05         extgcd(b, a%b, g, y, x);
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06         *y = *y - (a/b)*(*x);
07     }
08 }

|G| 1x|G| = 1

 If G is a finite group, xG, x|G| = 1

1. Lagrange Thm: if H is a subgroup of G then |G| = k |H|

2  G li b H { 22. xG, x generates a cyclic subgroup H = {x, x2, …, 
xord(x)}, |H|=ord(x), where xord(x) = 1 is the identity

1 and 2 imply that xG, x|G| = xk|H| = (xord(x))k = 1

Note: xG ! ord(x)[1 |G|] such that xord(x) = 1
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Note: xG, ! ord(x)[1,|G|] such that x  1

 G ! d( ) [1 |G|] h th t ord(x) 1xG, ! ord(x)[1,|G|] such that xord(x) = 1

Assume that there does not exist such an integer ord(x) inAssume that there does not exist such an integer ord(x) in 
[1,|G|], i.e. 1  S={x, x2, x3, …, x|G|}

Consider the following 2 cases:
1 if any two elements in S are equal i e there exist1. if any two elements in S are equal, i.e. there exist 

distinct i, j, such that xi = xj, then xj-i = 1 and 1j-i|G|

2. if all elements are distinct, consider x|G|+1G 
(closeness) Pidgin hole principle   i 1i|G| s t(closeness), Pidgin hole principle    i, 1i|G|, s.t.
xi = x|G|+1, then x|G|+1-i = 1 and 1|G|+1-i|G|
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Both imply the result that 1ord(x)|G|

Lagrange TheoremLagrange Theorem
if H is a subgroup of a finite group G then |H| divides |G|g p g p | | | |

 let g  G define the left coset gH of the subgroup H as:
useful definition and lemmas:
 let g  G, define the left coset gH of the subgroup H as:

gH = { g x | x  H } 

  g  G, | gH | = | H |
  g1 g2  G g1  g2 either g1H = g2H or g1H  g2H = 

gG
1  H   g  gH

  g1, g2  G, g1  g2, either g1H  g2H or g1H  g2H  

 G =      gH 

gG

pf: G =      gH   =  H  g1H  g2H  …  gk-1Hg G 
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gG 

 | G | = k | H |




 g  G | gH | = | H | g  G, | gH | = | H |
 define the mapping function f: H  gH as f(x) = g xpp g g ( ) g
 prove that f() is a bijection

1. f() is 1-1
i.e. if x1  x2 then f(x1)  f(x2)
contrapositive statement: if f(x1) = f(x2) then x1 = x2

f(x1) = f(x2)  g x1 = g x2  g-1 g x1 = g-1 g x2  x1 = x2f(x1) f(x2)  g x1 g x2  g g x1 g g x2  x1 x2

2. f() is onto
 y  gH,  h  H, y = gh  h = g-1 y 
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H H H  H g1H = g2H  or  g1H  g2H = 
Lemma:   g1, g2  G, g1  g2 , g1H = g2H   g1

-1g2  Hg1, g2 , g1 g2 , g1 g2 g1 g2

() 1  H  g2  g2H
 -1 h H

 g2  g1H i.e.  h  H, g2 = g1h

() let h = g1
-1g2  H

 g1
-1g2 = h  H

1 1x  g1H, h1H, x = g1h1

x  g2H, h2H, x = g2h2

= (g2h-1) h1 = g2(h-1h1)  g2H  
= (g1h) h2 = g1(hh2)  g1H  

pf: let c  g1H  g2H  

h1H, c = g1h1 h2H, c = g2h2

 c = g1h1 = g2h2  h1h2
-1 = g1

-1g2  H  g1H = g2H
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 c  g1h1  g2h2  h1h2  g1 g2  H  g1H  g2H


