

Greatest Common Divisor (cont'd)

- * The above proves only the existence of integers x and y
- * How about gcd(x, y)?

If gcd(x, y) = r, $r \ge 1$ then

$$r \mid x \text{ and } r \mid y \implies r \mid a/d \cdot x + b/d \cdot y$$
which means that $r \mid 1$ i.e. $r = 1$

gcd(x, y) = 1

7

Note: gcd(x, y) = 1 but (x, y) is not unique

e.g.
$$d = a x + b y = a (x-k \cdot b) + b (y+k \cdot a)$$

when k increases, x-k \cdot b decreases and become negative

Greatest Common Divisor (cont'd)

Lemma:
$$gcd(a,b) = gcd(x,y) = gcd(a,y) = gcd(x,b) = 1 \Leftrightarrow$$

 $\exists a, b, x, y \text{ s.t. } 1 = a x + b y$
pf:
(\Rightarrow) following the previous theorem
(\Leftarrow) let d = gcd(a, b), d ≥ 1
 \Rightarrow d | a and d | b
 \Rightarrow d | a x + b y = 1
 \Rightarrow d = 1

similarly, gcd(a, y)=1, gcd(x, b)=1, and gcd(x, y)=1

Operations under mod n

♦ Proposition:

Let a,b,c,d,n be integers with $n \neq 0$, suppose $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then $a + c \equiv b + d \pmod{n}$

 $a - c \equiv b - d \pmod{n}$ $a \cdot c \equiv b \cdot d \pmod{n}$

pf.
$$\begin{cases} a = k_1 n + b \\ c = k_2 n + d \end{cases}$$
$$\Rightarrow (a+c) = (k_1+k_2) n + (b+d)$$
$$\Rightarrow a+c \equiv b+d \pmod{n}$$

9

11

\diamond Proposition:

Let a,b,c,n be integers with $n \neq 0$ and gcd(a,n) = 1. If $a \cdot b \equiv a \cdot c \pmod{n}$ then $b \equiv c \pmod{n}$

Matrix inversion under mod n

 A square matrix is invertible mod n if and only if its determinant and n are relatively prime

 \diamond ex: in real field R

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

In a finite field Z (mod n)? we need to find the inverse for ad-bc (mod n) in order to calculate the inverse of the matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} \equiv (ad - bc)^{-1} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \pmod{n}$

Operations under mod n

♦ What is the multiplicative inverse of a (mod n)?
i.e. $a \cdot a^{-1} \equiv 1 \pmod{n}$ or $a \cdot a^{-1} = 1 + k \cdot n$ gcd(a, n) = 1 ⇒ ∃ integer s and t such that $a \cdot s + n \cdot t = 1$ Extended Euclidean Algo. ⇒ $a^{-1} \equiv s \pmod{n}$ Existence of a^{-1} and $k \Leftrightarrow \gcd(a,n)=1$ ♦ $a \cdot x \equiv b \pmod{n}$, gcd(a, n) = 1, $x \equiv ?$ $x \equiv a^{-1} \cdot b \equiv s \cdot b \pmod{n}$ ♦ $a \cdot x \equiv b \pmod{n}$, gcd(a, n) = d > 1, $x \equiv ?$ if $d \mid b \pmod{n}$, gcd(a, n) = d > 1, $x \equiv ?$ if $d \mid b \pmod{n}$, gcd(a, n) = d > 1, $x \equiv ?$ if $d \mid b \pmod{n}$, gcd(a, n) = d > 1, $x \equiv ?$ if $d \mid b \pmod{n}$, gcd(a, n) = d > 1, $x \equiv ?$ if $d \mid b \pmod{n}$, gcd(a, n) = d > 1, $x \equiv ?$ if $d \mid b \pmod{n}$, gcd(a, n) = d > 1, $x \equiv ?$ if $d \mid b \pmod{n}$, gcd(a, n) = d > 1, $x \equiv ?$ if $d \mid b \pmod{n}$, gcd(a, n) = 1 $x_0 \equiv (b/d) \cdot (a/d)^{-1} \pmod{n/d}$ 10

Group

A group G is a finite or infinite set of elements and a binary operation × which together satisfy

			_ means g × g >	< g × × g
♦ Abelian group	交換群	∀ a,b ∈G	$a \times b = b \times a$	l
4. Inverse:	$\forall \ a \in G$	$a \times a^{-1} = 1$	$=a^{-1} \times a$	反元素
3. Identity:	$\forall \ a \in G$	$1 \times a = a \times$	1 = a	單位元素
2. Associativity:	$\forall a,b,c \in G$	$(a \times b) \times c$	$= a \times (b \times c)$	結合性
1. Closure:	$\forall a,b \in G$	$a \times b = c \in$	G	封閉性

♦ Cyclic group G of order m: a group defined by an element g ∈ G such that g, g^2 , g^3 , ..., g^m are all distinct elements in G (thus cover all elements of G) and $g^m = 1$, the element g is called a generator of G. Ex: Z_n^* (or Z/nZ)

Group (cont'd)

- ♦ The order of a group: the number of elements in a group G, denoted by |G|. If the order of a group is a finite number, the group is said to be a finite group, note g^{|G|} = 1 (the identity element).
- ♦ The order of an element g of a finite group G is the smallest power m such that $g^m = 1$ (the identity element), denoted by $ord_G(g)$
- $\begin{array}{l} \Leftrightarrow \mbox{ ex: } \mathbf{Z_n}: \mbox{ additive group modulo n is the set } \{0, 1, \dots, n-1\} \\ & \mbox{ binary operation: } + (mod n) \\ & \mbox{ identity: } 0 \\ & \mbox{ inverse: } \cdot x \equiv n-x \ (mod n) \ Algorithm \end{array} \qquad \begin{array}{l} \mbox{ size of } Z_n \ is \ n, \\ g+g+\ldots+g \equiv 0 \ (mod n) \end{array}$
- $↔ ex: Z_n^*: multiplicative group modulo n is the set {i:0<i<n, gcd(i,n)=1}$ binary operation: × (mod n)identity: 1inverse: x⁻¹ can be found using extended Euclidean Algorithm

inverse. x can be found using extended Euclidean Algorithm

13

15

Properties of the ring Z_m

Ring Z_m

- \diamond **Definition:** The ring Z_m consists of
 - * The set $Z_m = \{0, 1, 2, ..., m-1\}$
 - ★ Two operations "+ (mod m)" and "× (mod m)" for all a, b ∈ Z_m such that they satisfy the properties on the next slide
- $\Rightarrow Example: m = 9 \ Z_9 = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$ 6 + 8 = 14 = 5 (mod 9) 6 × 8 = 48 = 3 (mod 9)

Some remarks on the ring Z_m

- A ring is an Abelian group under addition and an Abelian semigroup under multiplication..
- A semigroup is defined for a set and an associative binary operator. No other restrictions are placed on a semigroup; thus a semigroup <u>need not have an identity</u> element and its elements <u>need not have inverses</u> within the semigroup.

Some remarks on the ring Z_m (cont'd)

 Roughly speaking a ring is a mathematical structure in which we can add, subtract, multiply, and even sometimes divide. (A ring in which every element has multiplicative inverse is called a field.)

> ★ Example: Is the division 4/15 (mod 26) possible? In fact, 4/15 mod 26 = 4 × 15⁻¹ (mod 26) Does 15⁻¹ (mod 26) exist ? It exists if gcd(15, 26) = 1. $15^{-1} \equiv 7 \pmod{26}$ therefore, $4/15 \mod 26 \equiv 4 \times 7 \equiv 28 \equiv 2 \mod 26$

Some remarks on the group $Z_m and Z_m^*$

♦ The modulo operation can be applied whenever we want
in Z_m

(a + b) (mod m) = [(a (mod m)) + ((b mod m))] (mod m)
in Z_m^{*}

(a × b) (mod m) = [(a (mod m)) × ((b mod m))] (mod m)
a^b (mod m) = (a (mod m))^b (mod m)
Guestion? a^b (mod m) = a^(b mod m) (mod m)
18

Exponentiation in Z_m

- The cyclic group Z_m^{*} and the modulo arithmetic is of central importance to modern public-key cryptography. In practice, the order of the integers involved in PKC are in the range of [2¹⁶⁰, 2¹⁰²⁴]. Perhaps even larger.

Exponentiation in Z_m (cont'd)

♦ How do we do the exponentiation efficiently?				
$\Rightarrow 3^{1234} \pmod{789}$) many	ways to do	this	
a. do 1234 times m	ultiplication and	1 then calcula	ate remainder	
b. repeat 1234 time	s (multiplicatio	n by 3 and ca	lculate remainder)	
c. repeated ∠log 12 remainder)	34」 times (squ	are, multiply	and calculate	
ex. first tabulate				
$3^2 \equiv 9 \;(m$	and 789) $3^{32} \equiv$	$459^2 \equiv 18$	$3^{512} \equiv 732^2 \equiv 93$	
$3^4 \equiv 9^2 \equiv$	81 3 ⁶⁴ =	$18^2 \equiv 324$	$3^{1024} \equiv 93^2 \equiv 759$	
$3^8 \equiv 81^2$	$= 249 \qquad 3^{128}$	$\equiv 324^2 \equiv 39$		
$3^{16} \equiv 249$	$\theta^2 \equiv 459 \qquad 3^{256}$	$\equiv 39^2 \equiv 732$		
$1234 = 1024 + 128$ $3^{1234} \equiv 3^{(1024+128+64+128+128+128+128+128+128+128+128+128+128$	+ 64 + 16 + 2 $+ 64 + 16 + 2 \equiv (((759 \cdot 39)))$	(10011010010) • 324) • 459) •	$(9)_2 = 105 \pmod{789}$	

Chinese Remainder Theorem (CRT) ♦ first solution: $n = r_1 r_2 \cdot \cdot \cdot r_k$ $z_i = n / r_i$

 $\exists ! s_i \in Z_{r_i}^* \text{ s.t. } s_i \cdot z_i \equiv 1 \pmod{r_i} \text{ (since gcd}(z_i, r_i) = 1)$ $m \equiv \sum_{i=1}^{n} z_i \cdot s_i \cdot m_i \pmod{n}$ Unique solution in Z_n ? \diamond ex: m₁=1, m₂=2, m₃=3 $n=3\cdot 5\cdot 7$ r₁=3, r₂=5, r₃=7 $z_1=35, z_2=21, z_3=15$ $s_1=2, \quad s_2=1, \quad s_3=1$ $35 \cdot 2 + 3 (-23) = 1$ $m \equiv 35 \cdot 2 \cdot 1 + 21 \cdot 1 \cdot 2 + 15 \cdot 1 \cdot 3 \equiv 157 \equiv 52 \pmod{105}$

Chinese Remainder Theorem (CRT) \diamond Uniqueness: 1. If there exists $m' \in Z_n (\neq m)$ also satisfies the previous k congruence relations, then $\forall i, m'-m \equiv 0 \pmod{r_i}$. 2. This is equivalent to $\forall i, r_i \mid m'-m$ 3. $\forall i, j, gcd(r_i, r_i) = 1 \implies r_1 r_2 \dots r_k \mid m' - m$ $m' = m + k \cdot r_1, r_2 \dots r_k = m + k \cdot n$ \implies m' \notin Z_n for all k \neq 0 contradiction!

Chinese Remainder Theorem (CRT)

♦ second solution:

 $(2)(3 \cdot (-3)) + (5 \cdot 2) = 1$

inverse of 5 (mod 3)

25

28

Chinese Remainder Theorem (CRT)

 \diamond special case:

 $X \equiv m \pmod{r_1} \equiv m \pmod{r_2} \cdot \cdot \cdot \equiv m \pmod{r_n} \Longrightarrow X \equiv m \pmod{r_1 r_2 \cdot \cdot \cdot r_n}$ $x \equiv m_1 \pmod{r_1}$ m_1 is the only solution for x in $Z_{R_2}^*$ step 1 $2r_1$ $R_2 = r_1$ general solution of x must be $\hat{m}_1 + \hat{k} R_2$ for some k $x \equiv m_1 \pmod{r_1}$ $r_2r_1 \stackrel{\wedge}{m_2 + r_2r_1} 2r_2r_1$ $R_3 = r_2 r_1$ \hat{m}_2 $\equiv m_2 \pmod{r_2}$ \sim step let $\hat{m}_2 \equiv \hat{m}_1 + k^* R_2 \pmod{R_2}$ where $k^* \equiv t_2(m_2 - \hat{m}_1)$ and $t_2 R_2 \equiv 1 \pmod{r_2}$ m_2 is the only solution for x in $Z_{R_2}^*$ general solution of x must be $\hat{m}_2 + k R_3$ for some k 29

Chinese Remainder Theorem (CRT)

* since 5 and 7 are prime, we can solve $x^2 \equiv 1 \pmod{5}$ and $x^2 \equiv 1 \pmod{7}$ Why? far more easily than $x^2 \equiv 1 \pmod{35}$ $angle x^2 \equiv 1 \pmod{5}$ has exactly two solutions: $x \equiv \pm 1 \pmod{5}$ $angle x^2 \equiv 1 \pmod{7}$ has exactly two solutions: $x \equiv \pm 1 \pmod{7}$ * put them together and use CRT, there are four solutions $\Rightarrow x \equiv 1 \pmod{5} \equiv 1 \pmod{7} \Rightarrow x \equiv 1 \pmod{35}$ $\Rightarrow x \equiv 1 \pmod{5} \equiv 6 \pmod{7} \Rightarrow x \equiv 6 \pmod{35}$ $\Rightarrow x \equiv 4 \pmod{5} \equiv 1 \pmod{7} \Rightarrow x \equiv 29 \pmod{35}$ $\Rightarrow x \equiv 4 \pmod{5} \equiv 6 \pmod{7} \Rightarrow x \equiv 34 \pmod{35}$

Chinese Remainder Theorem (CRT) \diamond Applications: solve $x^2 \equiv 1 \pmod{35}$ $*35 = 5 \cdot 7$ * x* satisfies $f(x^*) \equiv 0 \pmod{35}$ \Leftrightarrow x* satisfies both $f(x^*) \equiv 0 \pmod{5}$ and $f(x^*) \equiv 0 \pmod{7}$ Proof: (⇐) $p \mid f(x^*), q \mid f(x^*), and gcd(p,q)=1$ imply that $\mathbf{p} \cdot \mathbf{q} \mid \mathbf{f}(\mathbf{x}^*)$ i.e. $\mathbf{f}(\mathbf{x}^*) \equiv 0 \pmod{\mathbf{p} \cdot \mathbf{q}}$ (⇒) $f(x^*) = k \cdot p \cdot q$ implies that $f(x^*) = (k \cdot p) \cdot q = (k \cdot q) \cdot p$ i.e. $f(x^*) \equiv 0 \pmod{p}$ $\equiv 0 \pmod{q}$ 30

Matlab tools

	format rat format long
matrix inverse	inv(A)
matrix determinant	det(A)
p = q d + r	r = mod(p, d) or $r = rem(p, d)$
	q = floor(p / d)
	g = gcd(a, b)
g = a s + b t	[g, s, t] = gcd(a, b)
factoring	factor(N)
prime numbers < N	primes(N)
test prime	isprime(p)
mod exponentiation *	powermod(a,b,n)
find primitive root *	primitiveroot(p)
crt *	$crt([a_1 a_2 a_3], [m_1 m_2 m_3])$
φ(N) *	eulerphi(N)

Galois Field

Field

- Field: a set that has the operation of addition, multiplication, subtraction, and division by nonzero elements. Also, the associative, commutative, and distributive laws hold.
- Ex. Real numbers, complex numbers, rational numbers, integers mod a prime are fields
- ♦ Ex. Integers, 2×2 matrices with real entries are not fields
- $\Rightarrow \text{ Ex. GF}(4) = \{0, 1, \omega, \omega^2\}$

 $\begin{array}{l} \Rightarrow \ 0+x=x \\ \Rightarrow \ x+x=0 \\ \Rightarrow \ 1\cdot x=x \\ \Rightarrow \ \omega+1=\omega^2 \end{array} \qquad \begin{array}{l} \bullet \ \ Addition \ and \ multiplication \ are \ commutative \ and \\ \bullet \ \ Addition \ and \ multiplication \ are \ commutative \ and \\ associative, \ and \ the \ distributive \ law \ x(y+z)=xy+xz \\ holds \ for \ all \ x, \ y, \ z \\ \bullet \ x^3=1 \ for \ all \ nonzero \ elements \end{array}$

33

- ♦ Galois Field: A field with finite element, finite field
- ♦ For every power pⁿ of a prime, there is exactly one finite field with pⁿ elements, GF(pⁿ), and these are the only finite fields.
- \diamond For $n \ge 1$, {integers (mod p^n)} do not form a field.
 - * Ex. $p \cdot x \equiv 1 \pmod{p^n}$ does not have a solution (i.e. p does not have multiplicative inverse)

34

How to construct a $GF(p^n)$?

- ♦ Def: Z₂[X]: the set of polynomials whose coefficients are integers mod 2
 - * ex. 0, 1, $1+X^3+X^6...$
 - * add/subtract/multiply/divide/Euclidean Algorithm: process all coefficients mod 2
 - $\Rightarrow (1+X^2+X^4) + (X+X^2) = 1+X+X^4$ bitwise XOR

$$\Rightarrow (1 + X + X^3)(1 + X) = 1 + X^2 + X^3 + X^4$$

 $\Rightarrow X^4 + X^3 + 1 = (X^2 + 1)(X^2 + X + 1) + X \quad \text{long division}$ can be written as $X^4 + X^3 + 1 \equiv X \pmod{X^2 + X + 1}$

How to construct $GF(2^n)$?

- $\diamond \text{ Define } Z_2[X] \text{ (mod } X^2 \!\!+\! X \!\!+\! 1) \text{ to be } \{0, 1, X, X \!\!+\! 1\}$
 - \star addition, subtraction, multiplication are done mod X²+X+1
 - * $f(X) \equiv g(X) \pmod{X^2 + X + 1}$
 - ★ if f(X) and g(X) have the same remainder when divided by X²+X+1
 ★ or equivalently ∃ h(X) such that f(X) g(X) = (X²+X+1) h(X)

 $\Rightarrow \text{ ex. } X \cdot X = X^2 \equiv X+1 \pmod{X^2+X+1}$

- \star if we replace X by $\omega,$ we can get the same GF(4) as before
- * the modulus polynomial $X^{2}+X+1$ should be irreducible

Irreducible: polynomial does not factor into polynomials of lower degree with mod 2 arithmetic ex. $X^{2}+1$ is not irreducible since $X^{2}+1 = (X+1)(X+1)$

How to construct $GF(p^n)$?

- $Z_p[X]$ is the set of polynomials with coefficients mod p
- Choose P(X) to be any one irreducible polynomial mod p of degree n (other irreducible P(X)'s would result to isomorphisms)
- \diamond Let GF(pⁿ) be Z_p[X] mod P(X)
- ♦ An element in Z_p[X] mod P(X) must be of the form $a_0 + a_1 X + ... + a_{n-1} X^{n-1}$ each a_i are integers mod p, and have p choices, hence there are pⁿ possible elements in GF(pⁿ)
- * multiplicative inverse of any element in GF(pⁿ) can be found using extended Euclidean algorithm(over polynomial)
 37

$GF(2^{8})$

- \diamond AES (Rijndael) uses GF(2⁸) with irreducible polynomial $X^8 + X^4 + X^3 + X + 1$
- $\diamond \ each \ element \ is \ represented as$ $<math display="inline">b_7 \, X^7 + b_6 \, X^6 + b_5 \, X^5 + b_4 \, X^4 + b_3 \, X^3 + b_2 \, X^2 + b_1 \, X + b_0$ each $b_i \ is \ either \ 0 \ or \ 1$
- \diamond elements of GF(2⁸) can be represented as 8-bit bytes b₇b₆b₅b₄b₃b₂b₁b₀
- $\diamond\,$ mod 2 operations can be implemented by XOR in H/W

$GF(p^n)$

- ♦ Definition of generating polynomial g(X) is parallel to the generator in Z_n:
 - * every element in GF(pⁿ) (except 0) can be expressed as a power of g(X)
 - * the smallest exponent k such that $g(X)^k \equiv 1$ is $p^n 1$
- \diamond Discrete log problem in GF(pⁿ):
 - * given h(X), find an integer k such that $h(X) \equiv g(X)^{k} \pmod{P(X)}$
 - * believed to be very hard in most situations

Recursive GCD

- 01 int gcd(int p, int q) // assume $p \ge q$ 02 { int ans; 03 04 if (p % q == 0)05 06 ans = q;07 else 02 { ans = gcd(q, p % q); 08 03 09 10 04 return ans; 11 } 05 06
 - 01 int gcd(int p, int q) 02 { 03 int r = p%q; 04 if (r == 0) 05 return q; 06 return gcd(q, r); 07 }

$$\forall g \in G, |gH| = |H|$$

$$\Rightarrow \text{ define the mapping function f: } H \rightarrow gH \text{ as } f(x) = g x$$

$$\Rightarrow \text{ prove that } f() \text{ is a bijection}$$
1. $f() \text{ is } 1-1$
i.e. if $x_1 \neq x_2$ then $f(x_1) \neq f(x_2)$
contrapositive statement: if $f(x_1) = f(x_2)$ then $x_1 = x_2$
 $f(x_1) = f(x_2) \Rightarrow g x_1 = g x_2 \Rightarrow g^{-1} g x_1 = g^{-1} g x_2 \Rightarrow x_1 = x_2$
2. $f() \text{ is onto}$
 $\forall y \in gH, \exists h \in H, y = gh \Rightarrow h = g^{-1} y$

45

$g_1H = g_2H$ or $g_1H \cap g_2H = \phi$

 $\underline{\text{Lemma:}} \quad \forall \ g_1, g_2 \in G, g_1 \neq g_2, g_1 H = g_2 H \iff g_1^{-1}g_2 \in H$

- $(\Rightarrow) \quad 1 \in H \Rightarrow g_2 \in g_2H \Rightarrow g_2 \in g_1H \quad \text{i.e. } \exists h \in H, g_2 = g_1h$ $\Rightarrow g_1^{-1}g_2 = h \in H$
- $\begin{array}{ll} (\Leftarrow) & \mbox{ let } h = g_1^{-1}g_2 \in H \\ & \forall x \in g_1H, \, \exists h_1 \in H, \, x = g_1h_1 = (g_2h^{-1}) \ h_1 = g_2(h^{-1}h_1) \in g_2H \\ & \forall x \in g_2H, \, \exists h_2 \in H, \, x = g_2h_2 = (g_1h) \ h_2 = g_1(hh_2) \in g_1H \end{array}$
- $\underline{pf}: \quad \text{let } c \in g_1 H \cap g_2 H \neq \phi$

 $\exists h_1 \in H, c = g_1 h_1 \qquad \exists h_2 \in H, c = g_2 h_2$

$$\Rightarrow c = g_1 h_1 = g_2 h_2 \quad \Rightarrow h_1 h_2^{-1} = g_1^{-1} g_2 \in H \quad \Rightarrow g_1 H = g_2 H$$