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CCongruence
 Modulo Operation:

 Question: What is 12 mod 9?
 Answer: 12 mod 9  3 or 12  3 (mod 9)( )

“12 is congruent to 3 modulo 9”
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CCongruence
 Modulo Operation:

 Question: What is 12 mod 9?
 Answer: 12 mod 9  3 or 12  3 (mod 9)( )

“12 is congruent to 3 modulo 9”

 Definition: Let a, r, m   (where  is the set of all Definition: Let a, r, m   (where  is the set of all 
integers) and m  0. We write
 a  r (mod m) if m divides a – r (i e m | a-r) a  r (mod m) if m divides a r   (i.e. m | a r)
 m is called the modulus
 r is called the remainder r is called the remainder
 a = q ꞏ m + r 0  r < m
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CCongruence
 Modulo Operation:

 Question: What is 12 mod 9?
 Answer: 12 mod 9  3 or 12  3 (mod 9)( )

“12 is congruent to 3 modulo 9”

 Definition: Let a, r, m   (where  is the set of all Definition: Let a, r, m   (where  is the set of all 
integers) and m  0. We write
 a  r (mod m) if m divides a – r (i e m | a-r) a  r (mod m) if m divides a r   (i.e. m | a r)
 m is called the modulus
 r is called the remainder r is called the remainder
 a = q ꞏ m + r 0  r < m

 Example: a = 42 and m=9
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 Example: a = 42 and m=9
 42 = 4 ꞏ 9 + 6 therefore 42  6 (mod 9)



G t t C Di iGreatest Common Divisor
 GCD of a and b is the largest positive integer GCD of a and b is the largest positive integer 

dividing both a and b 
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G t t C Di iGreatest Common Divisor
 GCD of a and b is the largest positive integer GCD of a and b is the largest positive integer 

dividing both a and b 
d( b) ( b) gcd(a, b) or (a,b)
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G t t C Di iGreatest Common Divisor
 GCD of a and b is the largest positive integer GCD of a and b is the largest positive integer 

dividing both a and b 
d( b) ( b) gcd(a, b) or (a,b)

 ex. gcd(6, 4) = 2, gcd(5, 7) = 1g ( , ) , g ( , )
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G t t C Di iGreatest Common Divisor
 GCD of a and b is the largest positive integer GCD of a and b is the largest positive integer 

dividing both a and b 
d( b) ( b) gcd(a, b) or (a,b)

 ex. gcd(6, 4) = 2, gcd(5, 7) = 1g ( , ) , g ( , )
 Euclidean algorithm

 ex gcd(482482 11801180) ex. gcd(482482, 11801180) 
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G t t C Di iGreatest Common Divisor
 GCD of a and b is the largest positive integer GCD of a and b is the largest positive integer 

dividing both a and b 
d( b) ( b) gcd(a, b) or (a,b)

 ex. gcd(6, 4) = 2, gcd(5, 7) = 1g ( , ) , g ( , )
 Euclidean algorithm

 ex gcd(482482 11801180) ex. gcd(482482, 11801180) 
11801180 = 2 ꞏ 482482 + 216
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G t t C Di iGreatest Common Divisor
 GCD of a and b is the largest positive integer GCD of a and b is the largest positive integer 

dividing both a and b 
d( b) ( b) gcd(a, b) or (a,b)

 ex. gcd(6, 4) = 2, gcd(5, 7) = 1g ( , ) , g ( , )
 Euclidean algorithm

 ex gcd(482482 11801180) ex. gcd(482482, 11801180) 
11801180 = 2 ꞏ 482482 + 216
482 = 2 ꞏ 216 + 50482 = 2 ꞏ 216 + 50
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G t t C Di iGreatest Common Divisor
 GCD of a and b is the largest positive integer GCD of a and b is the largest positive integer 

dividing both a and b 
d( b) ( b) gcd(a, b) or (a,b)

 ex. gcd(6, 4) = 2, gcd(5, 7) = 1g ( , ) , g ( , )
 Euclidean algorithm

 ex gcd(482482 11801180) ex. gcd(482482, 11801180) 
11801180 = 2 ꞏ 482482 + 216
482 = 2 ꞏ 216 + 50482 = 2 ꞏ 216 + 50
216 = 4 ꞏ 50 + 16
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G t t C Di iGreatest Common Divisor
 GCD of a and b is the largest positive integer GCD of a and b is the largest positive integer 

dividing both a and b 
d( b) ( b) gcd(a, b) or (a,b)

 ex. gcd(6, 4) = 2, gcd(5, 7) = 1g ( , ) , g ( , )
 Euclidean algorithm

 ex gcd(482482 11801180) ex. gcd(482482, 11801180) 
11801180 = 2 ꞏ 482482 + 216
482 = 2 ꞏ 216 + 50482 = 2 ꞏ 216 + 50
216 = 4 ꞏ 50 + 16
50 = 3 ꞏ 16 + 22

3

50  3  16  22



G t t C Di iGreatest Common Divisor
 GCD of a and b is the largest positive integer GCD of a and b is the largest positive integer 

dividing both a and b 
d( b) ( b) gcd(a, b) or (a,b)

 ex. gcd(6, 4) = 2, gcd(5, 7) = 1g ( , ) , g ( , )
 Euclidean algorithm

 ex gcd(482482 11801180) ex. gcd(482482, 11801180) 
11801180 = 2 ꞏ 482482 + 216
482 = 2 ꞏ 216 + 50482 = 2 ꞏ 216 + 50
216 = 4 ꞏ 50 + 16
50 = 3 ꞏ 16 + 22

3

50  3  16  22
16 = 8 ꞏ 2 + 0



G t t C Di iGreatest Common Divisor
 GCD of a and b is the largest positive integer GCD of a and b is the largest positive integer 

dividing both a and b 
d( b) ( b) gcd(a, b) or (a,b)

 ex. gcd(6, 4) = 2, gcd(5, 7) = 1g ( , ) , g ( , )
 Euclidean algorithm

 ex gcd(482482 11801180) ex. gcd(482482, 11801180) 
11801180 = 2 ꞏ 482482 + 216
482 = 2 ꞏ 216 + 50482 = 2 ꞏ 216 + 50
216 = 4 ꞏ 50 + 16
50 = 3 ꞏ 16 + 222

3

50  3  16  22
16 = 8 ꞏ 2 + 0 gcd
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G t t C Di iGreatest Common Divisor
 GCD of a and b is the largest positive integer GCD of a and b is the largest positive integer 

dividing both a and b 
d( b) ( b) gcd(a, b) or (a,b)

 ex. gcd(6, 4) = 2, gcd(5, 7) = 1g ( , ) , g ( , )
 Euclidean algorithm

 ex gcd(482482 11801180)
remainderdivisor  dividend  ignore

 ex. gcd(482482, 11801180) 
11801180 = 2 ꞏ 482482 + 216
482 = 2 ꞏ 216 + 50482 = 2 ꞏ 216 + 50
216 = 4 ꞏ 50 + 16
50 = 3 ꞏ 16 + 222
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50  3  16  22
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 Euclidean algorithm

 ex gcd(482482 11801180)
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 ex. gcd(482482, 11801180) 
11801180 = 2 ꞏ 482482 + 216
482 = 2 ꞏ 216 + 50482 = 2 ꞏ 216 + 50
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G t t C Di iGreatest Common Divisor
 GCD of a and b is the largest positive integer GCD of a and b is the largest positive integer 

dividing both a and b 
d( b) ( b) gcd(a, b) or (a,b)

 ex. gcd(6, 4) = 2, gcd(5, 7) = 1g ( , ) , g ( , )
 Euclidean algorithm

 ex gcd(482482 11801180) Why does it work?
remainderdivisor  dividend  ignore

 ex. gcd(482482, 11801180) Why does it work?    
Let d = gcd(482, 1180)
d | 482 and d | 1180  d | 216

11801180 = 2 ꞏ 482482 + 216
482 = 2 ꞏ 216 + 50 because 216 = 1180 - 2 ꞏ 482

d | 216 and d | 482  d | 50
d | 50 and d | 216  d | 16

482 = 2 ꞏ 216 + 50
216 = 4 ꞏ 50 + 16
50 = 3 ꞏ 16 + 222

3

| | |
d | 16 and d | 50  d | 2
2 | 16  d = 2

50  3  16  22
16 = 8 ꞏ 2 + 0 gcd
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)

 Euclidean Algorithm: calculating GCD

gcd(1180, 482)
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)

 Euclidean Algorithm: calculating GCD

1180

gcd(1180, 482)
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)

 Euclidean Algorithm: calculating GCD

1180482

gcd(1180, 482)
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)

 Euclidean Algorithm: calculating GCD

1180482 2

gcd(1180, 482)
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)

 Euclidean Algorithm: calculating GCD

1180482 2

gcd(1180, 482)

964
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)

 Euclidean Algorithm: calculating GCD

1180482 2

gcd(1180, 482)

964
216
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)

 Euclidean Algorithm: calculating GCD

11804822 2

gcd(1180, 482)

964
216
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)

 Euclidean Algorithm: calculating GCD

11804822 2

gcd(1180, 482)

964432
216
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)

 Euclidean Algorithm: calculating GCD

11804822 2

gcd(1180, 482)

964432
50 216
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)

 Euclidean Algorithm: calculating GCD

11804822 2

gcd(1180, 482)

964432
50 4216
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)

 Euclidean Algorithm: calculating GCD

11804822 2

gcd(1180, 482)

964432

200
50 4216
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)

 Euclidean Algorithm: calculating GCD

11804822 2

gcd(1180, 482)

964432

200
50 4216
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)

 Euclidean Algorithm: calculating GCD

11804822 2

gcd(1180, 482)

964432

200
50 43 216
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)

 Euclidean Algorithm: calculating GCD

11804822 2

gcd(1180, 482)

964432
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50 43 216
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)

 Euclidean Algorithm: calculating GCD

11804822 2

gcd(1180, 482)

964432

20048
50 43 216

20048
2 16
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)

 Euclidean Algorithm: calculating GCD

11804822 2

gcd(1180, 482)

964432

20048
50 43 216

20048
2 816
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)

 Euclidean Algorithm: calculating GCD

11804822 2

gcd(1180, 482)

964432

20048
50 43 216

20048
2 8

16
16

4



G t t C Di i ( t’d)Greatest Common Divisor (cont’d)

 Euclidean Algorithm: calculating GCD

11804822 2

gcd(1180, 482)

964432

20048
50 43 216

20048
2 8

16
16

0
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)

 Euclidean Algorithm: calculating GCD

11804822 2

gcd(1180, 482)

964432

20048
50 43 216

20048
2 8

16
162
0
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)

 Euclidean Algorithm: calculating GCD

11804822 2

gcd(1180, 482) (輾轉相除法)

964432

20048
50 43 216

20048
2 8

16
162
0
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)
 Def: gcd(a, b) = 1 means a and b are relatively prime
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)
 Def: gcd(a, b) = 1 means a and b are relatively prime

 Theorem: Let a and b be two integers, with at least one 
of a, b nonzero, and let d = gcd(a,b). Then there existof a, b nonzero, and let d  gcd(a,b).  Then there exist 
integers x, y, gcd(x, y) = 1 such that a ꞏ x + b ꞏ y = d
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)
 Def: gcd(a, b) = 1 means a and b are relatively prime

 Theorem: Let a and b be two integers, with at least one 
of a, b nonzero, and let d = gcd(a,b). Then there existof a, b nonzero, and let d  gcd(a,b).  Then there exist 
integers x, y, gcd(x, y) = 1 such that a ꞏ x + b ꞏ y = d
 Constructive proof: Using Extended Euclidean Algorithm to Constructive proof: Using Extended Euclidean Algorithm to 

find x and y
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)
 Def: gcd(a, b) = 1 means a and b are relatively prime

 Theorem: Let a and b be two integers, with at least one 
of a, b nonzero, and let d = gcd(a,b). Then there existof a, b nonzero, and let d  gcd(a,b).  Then there exist 
integers x, y, gcd(x, y) = 1 such that a ꞏ x + b ꞏ y = d
 Constructive proof: Using Extended Euclidean Algorithm to Constructive proof: Using Extended Euclidean Algorithm to 

find x and y

d = 2d = 2 = 50 - 3 ꞏ 16 
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)
 Def: gcd(a, b) = 1 means a and b are relatively prime

 Theorem: Let a and b be two integers, with at least one 
of a, b nonzero, and let d = gcd(a,b). Then there existof a, b nonzero, and let d  gcd(a,b).  Then there exist 
integers x, y, gcd(x, y) = 1 such that a ꞏ x + b ꞏ y = d
 Constructive proof: Using Extended Euclidean Algorithm to Constructive proof: Using Extended Euclidean Algorithm to 

find x and y

d = 2d = 2 = 50 - 3 ꞏ 16 
50 = 482 - 2 ꞏ 216
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)
 Def: gcd(a, b) = 1 means a and b are relatively prime

 Theorem: Let a and b be two integers, with at least one 
of a, b nonzero, and let d = gcd(a,b). Then there existof a, b nonzero, and let d  gcd(a,b).  Then there exist 
integers x, y, gcd(x, y) = 1 such that a ꞏ x + b ꞏ y = d
 Constructive proof: Using Extended Euclidean Algorithm to Constructive proof: Using Extended Euclidean Algorithm to 

find x and y

d = 2d = 2 = 50 - 3 ꞏ 16 
50 = 482 - 2 ꞏ 216
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)
 Def: gcd(a, b) = 1 means a and b are relatively prime

 Theorem: Let a and b be two integers, with at least one 
of a, b nonzero, and let d = gcd(a,b). Then there existof a, b nonzero, and let d  gcd(a,b).  Then there exist 
integers x, y, gcd(x, y) = 1 such that a ꞏ x + b ꞏ y = d
 Constructive proof: Using Extended Euclidean Algorithm to Constructive proof: Using Extended Euclidean Algorithm to 

find x and y

d = 2d = 2 = 50 - 3 ꞏ 16 

16 = 216 - 4 ꞏ 50

50 = 482 - 2 ꞏ 216
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)
 Def: gcd(a, b) = 1 means a and b are relatively prime

 Theorem: Let a and b be two integers, with at least one 
of a, b nonzero, and let d = gcd(a,b). Then there existof a, b nonzero, and let d  gcd(a,b).  Then there exist 
integers x, y, gcd(x, y) = 1 such that a ꞏ x + b ꞏ y = d
 Constructive proof: Using Extended Euclidean Algorithm to Constructive proof: Using Extended Euclidean Algorithm to 

find x and y

d = 2d = 2 = 50 - 3 ꞏ 16 

16 = 216 - 4 ꞏ 50

50 = 482 - 2 ꞏ 216
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)
 Def: gcd(a, b) = 1 means a and b are relatively prime

 Theorem: Let a and b be two integers, with at least one 
of a, b nonzero, and let d = gcd(a,b). Then there existof a, b nonzero, and let d  gcd(a,b).  Then there exist 
integers x, y, gcd(x, y) = 1 such that a ꞏ x + b ꞏ y = d
 Constructive proof: Using Extended Euclidean Algorithm to Constructive proof: Using Extended Euclidean Algorithm to 

find x and y

d = 2d = 2 = 50 - 3 ꞏ 16 

16 = 216 - 4 ꞏ 50

50 = 482 - 2 ꞏ 216= (482 - 2 ꞏ 216) - 3 ꞏ (216 - 4 ꞏ 50)
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)
 Def: gcd(a, b) = 1 means a and b are relatively prime

 Theorem: Let a and b be two integers, with at least one 
of a, b nonzero, and let d = gcd(a,b). Then there existof a, b nonzero, and let d  gcd(a,b).  Then there exist 
integers x, y, gcd(x, y) = 1 such that a ꞏ x + b ꞏ y = d
 Constructive proof: Using Extended Euclidean Algorithm to Constructive proof: Using Extended Euclidean Algorithm to 

find x and y

216 = 11801180 - 2 ꞏ 482482d = 2d = 2 = 50 - 3 ꞏ 16 

16 = 216 - 4 ꞏ 50

50 = 482 - 2 ꞏ 216= (482 - 2 ꞏ 216) - 3 ꞏ (216 - 4 ꞏ 50)
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)
 Def: gcd(a, b) = 1 means a and b are relatively prime

 Theorem: Let a and b be two integers, with at least one 
of a, b nonzero, and let d = gcd(a,b). Then there existof a, b nonzero, and let d  gcd(a,b).  Then there exist 
integers x, y, gcd(x, y) = 1 such that a ꞏ x + b ꞏ y = d
 Constructive proof: Using Extended Euclidean Algorithm to Constructive proof: Using Extended Euclidean Algorithm to 

find x and y

216 = 11801180 - 2 ꞏ 482482d = 2d = 2 = 50 - 3 ꞏ 16 

16 = 216 - 4 ꞏ 50

50 = 482 - 2 ꞏ 216= (482 - 2 ꞏ 216) - 3 ꞏ (216 - 4 ꞏ 50)
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)
 Def: gcd(a, b) = 1 means a and b are relatively prime

 Theorem: Let a and b be two integers, with at least one 
of a, b nonzero, and let d = gcd(a,b). Then there existof a, b nonzero, and let d  gcd(a,b).  Then there exist 
integers x, y, gcd(x, y) = 1 such that a ꞏ x + b ꞏ y = d
 Constructive proof: Using Extended Euclidean Algorithm to Constructive proof: Using Extended Euclidean Algorithm to 

find x and y

216 = 11801180 - 2 ꞏ 482482d = 2d = 2 = 50 - 3 ꞏ 16 

16 = 216 - 4 ꞏ 50

50 = 482 - 2 ꞏ 216= (482 - 2 ꞏ 216) - 3 ꞏ (216 - 4 ꞏ 50)
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)
 Def: gcd(a, b) = 1 means a and b are relatively prime

 Theorem: Let a and b be two integers, with at least one 
of a, b nonzero, and let d = gcd(a,b). Then there existof a, b nonzero, and let d  gcd(a,b).  Then there exist 
integers x, y, gcd(x, y) = 1 such that a ꞏ x + b ꞏ y = d
 Constructive proof: Using Extended Euclidean Algorithm to Constructive proof: Using Extended Euclidean Algorithm to 

find x and y

216 = 11801180 - 2 ꞏ 482482d = 2d = 2 = 50 - 3 ꞏ 16 

16 = 216 - 4 ꞏ 50

50 = 482 - 2 ꞏ 216= (482 - 2 ꞏ 216) - 3 ꞏ (216 - 4 ꞏ 50)
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)
 Def: gcd(a, b) = 1 means a and b are relatively prime

 Theorem: Let a and b be two integers, with at least one 
of a, b nonzero, and let d = gcd(a,b). Then there existof a, b nonzero, and let d  gcd(a,b).  Then there exist 
integers x, y, gcd(x, y) = 1 such that a ꞏ x + b ꞏ y = d
 Constructive proof: Using Extended Euclidean Algorithm to Constructive proof: Using Extended Euclidean Algorithm to 

find x and y

216 = 11801180 - 2 ꞏ 482482d = 2d = 2 = 50 - 3 ꞏ 16 

16 = 216 - 4 ꞏ 50

50 = 482 - 2 ꞏ 216= (482 - 2 ꞏ 216) - 3 ꞏ (216 - 4 ꞏ 50)
= • • • • = 1180 1180 ꞏ (-29) + 482482 ꞏ 71

5
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G t t C Di i ( t’d)Greatest Common Divisor (cont’d)
 Def: gcd(a, b) = 1 means a and b are relatively prime

 Theorem: Let a and b be two integers, with at least one 
of a, b nonzero, and let d = gcd(a,b). Then there existof a, b nonzero, and let d  gcd(a,b).  Then there exist 
integers x, y, gcd(x, y) = 1 such that a ꞏ x + b ꞏ y = d
 Constructive proof: Using Extended Euclidean Algorithm to Constructive proof: Using Extended Euclidean Algorithm to 

find x and y

216 = 11801180 - 2 ꞏ 482482d = 2d = 2 = 50 - 3 ꞏ 16 

16 = 216 - 4 ꞏ 50

50 = 482 - 2 ꞏ 216= (482 - 2 ꞏ 216) - 3 ꞏ (216 - 4 ꞏ 50)
= • • • • = 1180 1180 ꞏ (-29) + 482482 ꞏ 71

5

( )
a   x             b   y



E t d d E lid Al ithExtended Euclidean Algorithm
Let gcd(a, b) = dg ( , )
 Looking for s and t, gcd(s, t) = 1 s.t. a ꞏ s + b ꞏ t = d
 When d = 1 t  b-1 (mod a) When d  1, t  b (mod a) 

11801180 = 2 ꞏ 482482 + 216
aa = q1 ꞏ bb + r1

Ex.
11801180 - 2 ꞏ 482 = 216

482 = 2 ꞏ 216 + 50
aa  q1  bb + r1

b = q2 ꞏ r1 + r2

 482 - 2 ꞏ (1180 - 2 ꞏ 482) = 50
-2 ꞏ 1180 + 5 ꞏ 482 = 50

216 = 4 ꞏ 50 + 16
q2 1 2

r1 = q3 ꞏ r2 + r3

 

 

2 1180  5 482  50

(1180 - 2 ꞏ 482) -
4 ꞏ (-2 ꞏ 1180 + 5 ꞏ 482) = 16

50 = 3 ꞏ 16 + 22r2 = q4 ꞏ r3 + dd
  9 ꞏ 1180 - 22 ꞏ 482 = 16

4  (-2  1180 + 5  482) = 16

( 2 1180 + 5 482)

6r3 = q5 ꞏ d + 0
(-2 ꞏ 1180 + 5 ꞏ 482) -

3 ꞏ (9 ꞏ 1180 - 22 ꞏ 482) = 2
-29 ꞏ 1180 + 71 ꞏ 482 = 2
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d + b ( k b) + b ( +k )

7

e.g.  d = a x + b y = a (x-kꞏb) + b (y+kꞏa)
when k increases, x-kꞏb decreases and become negative
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L d( b) d( ) d( ) d( b) 1Lemma: gcd(a,b) = gcd(x,y) = gcd(a,y) = gcd(x,b) = 1 

 a, b, x, y s.t. 1 = a x + b y









8
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( ) g p
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8

similarly, gcd(a, y)=1, gcd(x, b)=1, and gcd(x, y)=1



O ti d dOperations under mod n

 Proposition:
Let  a,b,c,d,n be integers with n  0, suppose, , , , g , pp
a  b (mod n) and c  d (mod n) then













9
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 Proposition:
Let  a,b,c,d,n be integers with n  0, suppose, , , , g , pp
a  b (mod n) and c  d (mod n) then

a + c b + d (mod n) ( )
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





9
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 Proposition:
Let  a,b,c,d,n be integers with n  0, suppose, , , , g , pp
a  b (mod n) and c  d (mod n) then

a + c b + d (mod n) ( )



pf.   a = k1 n + b
c = k2 n + d







9
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 Proposition:
Let  a,b,c,d,n be integers with n  0, suppose, , , , g , pp
a  b (mod n) and c  d (mod n) then

a + c b + d (mod n) ( )



pf.   a = k1 n + b
c = k2 n + d



 (a+c) = (k1+k2) n + (b+d)







9
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 Proposition:
Let  a,b,c,d,n be integers with n  0, suppose, , , , g , pp
a  b (mod n) and c  d (mod n) then

a + c b + d (mod n) ( )



pf.   a = k1 n + b
c = k2 n + d


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 a+c  b+d (mod n)







9
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 Proposition:
Let  a,b,c,d,n be integers with n  0, suppose, , , , g , pp
a  b (mod n) and c  d (mod n) then
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Let  a,b,c,d,n be integers with n  0, suppose, , , , g , pp
a  b (mod n) and c  d (mod n) then

a + c b + d (mod n) ( )
a - c 　 b - d  (mod n) 
a ꞏ c b ꞏ d (mod n)a  c b  d  (mod n)

 Proposition: Proposition:
Let  a,b,c,n be integers with n  0 and gcd(a,n) =1. 


9





O ti d dOperations under mod n

 Proposition:
Let  a,b,c,d,n be integers with n  0, suppose, , , , g , pp
a  b (mod n) and c  d (mod n) then

a + c b + d (mod n) ( )
a - c 　 b - d  (mod n) 
a ꞏ c b ꞏ d (mod n)a  c b  d  (mod n)

 Proposition: Proposition:
Let  a,b,c,n be integers with n  0 and gcd(a,n) =1. 
If a ꞏ b  a ꞏ c (mod n) then b  c (mod n)

9

If a b  a c (mod n) then b  c (mod n)



O ti d dOperations under mod n
 What is the multiplicative inverse of a (mod n)? What is the multiplicative inverse of a (mod n)?

i.e.  a ꞏ a-1  1 (mod n)     or    a ꞏ a-1 = 1 + k ꞏ n




10
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i.e.  a ꞏ a-1  1 (mod n)     or    a ꞏ a-1 = 1 + k ꞏ n
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10



O ti d dOperations under mod n
 What is the multiplicative inverse of a (mod n)? What is the multiplicative inverse of a (mod n)?

i.e.  a ꞏ a-1  1 (mod n)     or    a ꞏ a-1 = 1 + k ꞏ n
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10
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its determinant and n are relatively prime
 ex: in real field R -1

a b d -b1

dc
=

a-cad - bc

In a finite field Z (mod n)? we need to find the inverse 
for ad-bc (mod n) in order to calculate the inverse of the ( )
matrix -1

a

d

b


d -b
(ad – bc)-1 (mod n)
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 Example: m = 9  9 = {0, 1, 2, 3, 4, 5, 6, 7, 8}p 9 { }
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P ti f th i Properties of the ring m 
 Consider the ring m = {0, 1, …, m-1}Co s de e g m {0, , …, m }

 The additive identity “0”: a + 0  a (mod m)
 The additive inverse of a: -a = m – a s t a + (-a)  0 (mod m) The additive inverse of a: a  m a s.t. a + ( a)  0 (mod m)
Addition is closed i.e if a, b  m then a + b  m

Addition is associative (a + b) + c  a + (b + c) (mod m)Addition is associative (a + b) + c  a + (b + c) (mod m)
Addition is commutative a + b  b + a (mod m)

M lti li ti id tit “1” 1 ( d )

might or might not e ist

Multiplicative identity “1”: a  1  a (mod m)
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and denoted as a-1 s t a-1  a  1 (mod m) might or might not existand denoted as a 1 s.t. a 1  a  1 (mod m)
Multiplication is closed i.e. if a, b  m then a  b  m

M ltiplication is associati e (  b)   (b  ) (mod )
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Multiplication is associative (a  b)  c  a  (b  c) (mod m)
Multiplication is commutative a  b  b  a (mod m)



S k th i Some remarks on the ring m

 A ring is an Abelian group under addition and an 
Abelian semigroup under multiplication..Abelian semigroup under multiplication.. 
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S k th i Some remarks on the ring m

 A ring is an Abelian group under addition and an 
Abelian semigroup under multiplication..Abelian semigroup under multiplication.. 

 A semigroup is defined for a set and an associative 
binary operator. No other restrictions are placed on a 
semigroup; thus a semigroup need not have an identity
element and its elements need not have inverses within 
the semigroup. 
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S k th i  ( t’d)Some remarks on the ring m (cont’d)
R hl ki i i th ti l t t i Roughly speaking a ring is a mathematical structure in 
which we can add, subtract, multiply, and even sometimes 
di id (A i i hi h l t h lti li tidivide. (A ring in which every element has multiplicative 
inverse is called a field.)


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S k th i  ( t’d)Some remarks on the ring m (cont’d)
R hl ki i i th ti l t t i Roughly speaking a ring is a mathematical structure in 
which we can add, subtract, multiply, and even sometimes 
di id (A i i hi h l t h lti li tidivide. (A ring in which every element has multiplicative 
inverse is called a field.)

Example: Is the division 4/15 (mod 26) possible?
In fact, 4/15 mod 26  4  15-1 (mod 26)

1Does 15-1 (mod 26) exist ? 
It exists if gcd(15, 26) = 1. 

115-1  7 (mod 26)     therefore, 
4/15 mod 26  4  7  28  2 mod 26

17



Some remarks on the group  and *Some remarks on the group m andm

 The modulo operation can be applied whenever we want
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Some remarks on the group  and *Some remarks on the group m andm

 The modulo operation can be applied whenever we want

in Zin Zm
(a + b) (mod m)  [(a (mod m)) + ((b mod m)) ] (mod m)
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*in Zm
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ab (mod m)  (a (mod m))b (mod m)
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Some remarks on the group  and *Some remarks on the group m andm

 The modulo operation can be applied whenever we want

in Zin Zm
(a + b) (mod m)  [(a (mod m)) + ((b mod m)) ] (mod m)

*in Zm
(a  b) (mod m)  [(a (mod m))  ((b mod m)) ] (mod m)( ) ( ) [( ( )) (( )) ] ( )
ab (mod m)  (a (mod m))b (mod m)

? Question? ab (mod m)  a (b mod m) (mod m)

18

 Question?  a (mod m)  a ( ) (mod m)



E ti ti i Exponentiation in m

E l 8 ( d ) Example: 38 (mod 7)  ?











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E ti ti i Exponentiation in m

E l 8 ( d ) Example: 38 (mod 7)  ?
38 (mod 7)  6561 (mod 7)  2 since 6561  937  7 + 2









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E ti ti i Exponentiation in m

E l 8 ( d ) Example: 38 (mod 7)  ?
38 (mod 7)  6561 (mod 7)  2 since 6561  937  7 + 2

oror
38 (mod 7)  34  34 (mod 7)  32  32  32  32 (mod 7) 

 (32 (mod 7))(32 (mod 7))(32 (mod 7))(32 (mod 7)) ( ( )) ( ( )) ( ( )) ( ( ))
 2  2  2  2 (mod 7)  16 (mod 7)  2
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E ti ti i Exponentiation in m

E l 8 ( d ) Example: 38 (mod 7)  ?
38 (mod 7)  6561 (mod 7)  2 since 6561  937  7 + 2

oror
38 (mod 7)  34  34 (mod 7)  32  32  32  32 (mod 7) 

 (32 (mod 7))(32 (mod 7))(32 (mod 7))(32 (mod 7)) ( ( )) ( ( )) ( ( )) ( ( ))
 2  2  2  2 (mod 7)  16 (mod 7)  2

 The cyclic group  * and the modulo arithmetic is of The cyclic group m and the modulo arithmetic is of 
central importance to modern public-key cryptography.  
In practice the order of the integers involved in PKC areIn practice, the order of the integers involved in PKC are 
in the range of [2160 , 21024]. Perhaps even larger.
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Exponentiation in  (cont’d)Exponentiation in m (cont d)
 How do we do the exponentiation efficiently? How do we do the exponentiation efficiently?

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
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








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Exponentiation in  (cont’d)Exponentiation in m (cont d)
 How do we do the exponentiation efficiently? How do we do the exponentiation efficiently?
 31234 (mod 789)        many ways to do this

















20







Exponentiation in  (cont’d)Exponentiation in m (cont d)
 How do we do the exponentiation efficiently? How do we do the exponentiation efficiently?
 31234 (mod 789)        many ways to do this

d 1234 ti lti li ti d th l l t i da. do 1234 times multiplication and then calculate remainder
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Exponentiation in  (cont’d)Exponentiation in m (cont d)
 How do we do the exponentiation efficiently? How do we do the exponentiation efficiently?
 31234 (mod 789)        many ways to do this

d 1234 ti lti li ti d th l l t i da. do 1234 times multiplication and then calculate remainder
b. repeat 1234 times (multiplication by 3 and calculate remainder)
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
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Exponentiation in  (cont’d)Exponentiation in m (cont d)
 How do we do the exponentiation efficiently? How do we do the exponentiation efficiently?
 31234 (mod 789)        many ways to do this

d 1234 ti lti li ti d th l l t i da. do 1234 times multiplication and then calculate remainder
b. repeat 1234 times (multiplication by 3 and calculate remainder)
c repeated log 1234 times (square multiply and calculatec. repeated  log 1234 times (square, multiply and calculate 

remainder)
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Exponentiation in  (cont’d)Exponentiation in m (cont d)
 How do we do the exponentiation efficiently? How do we do the exponentiation efficiently?
 31234 (mod 789)        many ways to do this

d 1234 ti lti li ti d th l l t i da. do 1234 times multiplication and then calculate remainder
b. repeat 1234 times (multiplication by 3 and calculate remainder)
c repeated log 1234 times (square multiply and calculatec. repeated  log 1234 times (square, multiply and calculate 

remainder)
ex. first tabulate  

32 　 9 (mod 789)        332  4592  18          3512  7322  93
34  92  81                364  182  324        31024  932  759
38 812 249 3128 3242 3938  812  249            3128  3242  39
316  2492  459        3256  392  732
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Exponentiation in  (cont’d)Exponentiation in m (cont d)
 How do we do the exponentiation efficiently? How do we do the exponentiation efficiently?
 31234 (mod 789)        many ways to do this

d 1234 ti lti li ti d th l l t i da. do 1234 times multiplication and then calculate remainder
b. repeat 1234 times (multiplication by 3 and calculate remainder)
c repeated log 1234 times (square multiply and calculatec. repeated  log 1234 times (square, multiply and calculate 

remainder)
ex. first tabulate  

32 　 9 (mod 789)        332  4592  18          3512  7322  93
34  92  81                364  182  324        31024  932  759
38 812 249 3128 3242 3938  812  249            3128  3242  39
316  2492  459        3256  392  732

1234 = 1024 + 128 + 64 + 16 + 2 (10011010010)2

20

1234  1024  128  64  16  2          (10011010010)2



Exponentiation in  (cont’d)Exponentiation in m (cont d)
 How do we do the exponentiation efficiently? How do we do the exponentiation efficiently?
 31234 (mod 789)        many ways to do this

d 1234 ti lti li ti d th l l t i da. do 1234 times multiplication and then calculate remainder
b. repeat 1234 times (multiplication by 3 and calculate remainder)
c repeated log 1234 times (square multiply and calculatec. repeated  log 1234 times (square, multiply and calculate 

remainder)
ex. first tabulate  

32 　 9 (mod 789)        332  4592  18          3512  7322  93
34  92  81                364  182  324        31024  932  759
38 812 249 3128 3242 3938  812  249            3128  3242  39
316  2492  459        3256  392  732

1234 = 1024 + 128 + 64 + 16 + 2 (10011010010)2

20

1234  1024  128  64  16  2          (10011010010)2
31234  3(1024+128+64+16+2)  (((759 • 39) • 324) • 459) • 9  105 (mod 789)



E ti ti i  ( t’d)Exponentiation in m (cont’d)
y ( d )calculate xy   (mod m)    where y = b0 ꞏ 22 + b1 ꞏ 2 + b2
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x
 Method 1:
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E ti ti i  ( t’d)Exponentiation in m (cont’d)
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 Method 1:
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E ti ti i  ( t’d)Exponentiation in m (cont’d)
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E ti ti i  ( t’d)Exponentiation in m (cont’d)
y ( d )calculate xy   (mod m)    where y = b0 ꞏ 22 + b1 ꞏ 2 + b2

 Method 1:
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E ti ti i  ( t’d)Exponentiation in m (cont’d)
y ( d )calculate xy   (mod m)    where y = b0 ꞏ 22 + b1 ꞏ 2 + b2

 Method 1:
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E ti ti i  ( t’d)Exponentiation in m (cont’d)
y ( d )calculate xy   (mod m)    where y = b0 ꞏ 22 + b1 ꞏ 2 + b2

 Method 1:
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E ti ti i  ( t’d)Exponentiation in m (cont’d)
y ( d )calculate xy   (mod m)    where y = b0 ꞏ 22 + b1 ꞏ 2 + b2

 Method 1:
2x)( 2bx2bx 4x)( 1bꞏ 0)( bꞏ 12 )( 2 bb xx ꞏ
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)(
square square

)( )( )(

 Method 2:
0bx 0 2)( bx 10 22ꞏ )( bbx  2bxꞏ1bxꞏ

 Method 2:

 

x )( )(
square square

21

square and multiply log y times 



Exponentiation in  (cont’d)Exponentiation in m (cont d)
M th d 1

1234 = 1024 + 128 + 64 + 16 + 2          (10011010010)2
31234 30+2(1+2(0+2(0+2(1+2(0+2(1+2(1+2(0+2(0+2(1))))))))))

Method 1:

31234  30+2(1+2(0+2(0+2(1+2(0+2(1+2(1+2(0+2(0+2(1))))))))))

 9 • 92(0+2(0+2(1+2(0+2(1+2(1+2(0+2(0+2(1)))))))))

 9 • 812(0+2(1+2(0+2(1+2(1+2(0+2(0+2(1))))))))

 9 • 2492(1+2(0+2(1+2(1+2(0+2(0+2(1)))))))

 9 • 459 • 459 2(0+2(1+2(1+2(0+2(0+2(1))))))

2(1 2(1 2(0 2(0 2(1))))) 9 • 459 • 18 2(1+2(1+2(0+2(0+2(1)))))

 9 • 459 • 324 • 3242(1+2(0+2(0+2(1))))

 9 • 459 • 324 • 39 • 392(0+2(0+2(1))) 9 • 459 • 324 • 39 • 392(0 2(0 2(1)))

 9 • 459 • 324 • 39 • 7322(0+2(1))

 9 • 459 • 324 • 39 • 932 (1)

22

 9 • 459 • 324 • 39 • 759 mod 789



E ti ti i  ( t’d)Exponentiation in m (cont’d)
1234 1024 + 128 + 64 + 16 + 2 (10011010010)M th d 2 1234 = 1024 + 128 + 64 + 16 + 2          (10011010010)2
31234  30+2(1+2(0+2(0+2(1+2(0+2(1+2(1+2(0+2(0+2(1))))))))))

 (3• 32(0+2(1+2(0+2(1+2(1+2(0+2(0+2(1)))))))))2

Method 2:

(3 3 )
 (3•(32(1+2( 0+2(1+2(1+2(0+2(0+2(1))))))))2)2

 (3•((3•32( 0+2(1+2(1+2(0+2(0+2(1)))))))2)2)2( (( ) ) )
 (3•((3•(32(1+2(1+2(0+2(0+2(1))))))2)2 )2)2

 (3•((3•((3•32(1+2(0+2(0+2(1)))))2)2 )2)2)2

 (3•((3•((3•(3•32(0+2(0+2(1))))2 )2)2 )2)2)2

 (3•((3•((3•(3•(32(0+2(1)))2 )2)2)2 )2)2)2

 (3•((3•((3•(3•((32(1))2 )2)2)2 )2 )2)2)2 (3•((3•((3•(3•((3 ( )) ) ) ) ) ) ) )
 (3•((3•((3•(3•(((31)2 )2 )2)2)2 )2 )2)2)2

23



Chi R i d Th (CRT)Chinese Remainder Theorem (CRT)
  ij{1 2 k} gcd(r r ) 1 0  m  r  ij{1,2,…k},  gcd(ri, rj) = 1, 0  mi  ri

Is there an m that satisfies simultaneously the following 
t f ti ?set of congruence equations?

m  m1 (mod r1)
 m2 (mod r2) 

• • •
 mk (mod rk)



24



Chi R i d Th (CRT)Chinese Remainder Theorem (CRT)
  ij{1 2 k} gcd(r r ) 1 0  m  r  ij{1,2,…k},  gcd(ri, rj) = 1, 0  mi  ri

Is there an m that satisfies simultaneously the following 
t f ti ?set of congruence equations?

m  m1 (mod r1) ex: m  1 (mod 3)
( d ) m2 (mod r2) 

• • •
 2 (mod 5)
 3 (mod 7)

Note: gcd(3 5) = 1 mk (mod rk) Note: gcd(3,5) = 1
gcd(3,7) = 1
gcd(5,7) = 1



g ( , )
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Chi R i d Th (CRT)Chinese Remainder Theorem (CRT)
  ij{1 2 k} gcd(r r ) 1 0  m  r  ij{1,2,…k},  gcd(ri, rj) = 1, 0  mi  ri

Is there an m that satisfies simultaneously the following 
t f ti ?set of congruence equations?

m  m1 (mod r1) ex: m  1 (mod 3)
( d ) m2 (mod r2) 

• • •
 2 (mod 5)
 3 (mod 7)

Note: gcd(3 5) = 1 mk (mod rk) Note: gcd(3,5) = 1
gcd(3,7) = 1
gcd(5,7) = 1

 韓信點兵: 三個一數餘一, 五個一數餘二, 七個一數
餘三, 請問隊伍中至少有幾名士兵?

g ( , )

24

餘三, 請問隊伍中至少有幾名士兵



Chi R i d Th (CRT)Chinese Remainder Theorem (CRT)
 first solution:




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


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Chi R i d Th (CRT)Chinese Remainder Theorem (CRT)
 first solution:

n = r1 r2 ꞏ ꞏ ꞏ rk
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 first solution:

n = r1 r2 ꞏ ꞏ ꞏ rk
zi = n / rizi  n / ri
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Chi R i d Th (CRT)Chinese Remainder Theorem (CRT)
 first solution:

n = r1 r2 ꞏ ꞏ ꞏ rk
zi = n / rizi  n / ri
 si Zri s.t.  si ꞏ zi  1 (mod ri) (since gcd(zi, ri) = 1)*
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 

 




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Chi R i d Th (CRT)Chinese Remainder Theorem (CRT)
 first solution:

n = r1 r2 ꞏ ꞏ ꞏ rk
zi = n / rizi  n / ri
 si Zri s.t.  si ꞏ zi  1 (mod ri) (since gcd(zi, ri) = 1)

k
*

m   zi ꞏ si ꞏ mi (mod n)



i=1

k

 

 




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Chi R i d Th (CRT)Chinese Remainder Theorem (CRT)
 first solution:

n = r1 r2 ꞏ ꞏ ꞏ rk
zi = n / rizi  n / ri
 si Zri s.t.  si ꞏ zi  1 (mod ri) (since gcd(zi, ri) = 1)

k
*

m   zi ꞏ si ꞏ mi (mod n)

 ex:
i=1

k

1 2 3 ex: m1=1,  m2=2, m3=3

r1=3,    r2=5,   r3=7               n = 3 ꞏ 5 ꞏ 7
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 first solution:

n = r1 r2 ꞏ ꞏ ꞏ rk
zi = n / rizi  n / ri
 si Zri s.t.  si ꞏ zi  1 (mod ri) (since gcd(zi, ri) = 1)

k
*

m   zi ꞏ si ꞏ mi (mod n)

 ex:
i=1

k

1 2 3 ex: m1=1,  m2=2, m3=3

r1=3,    r2=5,   r3=7               n = 3 ꞏ 5 ꞏ 7

z1=35, z2=21, z3=15
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Chi R i d Th (CRT)Chinese Remainder Theorem (CRT)
 first solution:

n = r1 r2 ꞏ ꞏ ꞏ rk
zi = n / rizi  n / ri
 si Zri s.t.  si ꞏ zi  1 (mod ri) (since gcd(zi, ri) = 1)

k
*

m   zi ꞏ si ꞏ mi (mod n)

 ex:
i=1

k

1 2 3 ex: m1=1,  m2=2, m3=3

r1=3,    r2=5,   r3=7               n = 3 ꞏ 5 ꞏ 7

z1=35, z2=21, z3=15

s1=2 s2=1 s3=1 35 ꞏ 2 + 3 (-23) = 1

25

s1 2,    s2 1,   s3 1



35  2 + 3 (-23) = 1



Chi R i d Th (CRT)Chinese Remainder Theorem (CRT)
 first solution:

n = r1 r2 ꞏ ꞏ ꞏ rk
zi = n / rizi  n / ri
 si Zri s.t.  si ꞏ zi  1 (mod ri) (since gcd(zi, ri) = 1)

k
*

m   zi ꞏ si ꞏ mi (mod n)

 ex:
i=1

k

1 2 3 ex: m1=1,  m2=2, m3=3

r1=3,    r2=5,   r3=7               n = 3 ꞏ 5 ꞏ 7

z1=35, z2=21, z3=15

s1=2 s2=1 s3=1

25

s1 2,    s2 1,   s3 1

m  35ꞏ2ꞏ1 + 21ꞏ1ꞏ2 + 15ꞏ1ꞏ3  157  52 (mod 105)



Chi R i d Th (CRT)Chinese Remainder Theorem (CRT)
 first solution:

n = r1 r2 ꞏ ꞏ ꞏ rk
zi = n / rizi  n / ri
 si Zri s.t.  si ꞏ zi  1 (mod ri) (since gcd(zi, ri) = 1)

k
*

m   zi ꞏ si ꞏ mi (mod n)

 ex:
i=1

k
Unique solution in Zn?

1 2 3 ex: m1=1,  m2=2, m3=3

r1=3,    r2=5,   r3=7               n = 3 ꞏ 5 ꞏ 7

z1=35, z2=21, z3=15

s1=2 s2=1 s3=1

25

s1 2,    s2 1,   s3 1

m  35ꞏ2ꞏ1 + 21ꞏ1ꞏ2 + 15ꞏ1ꞏ3  157  52 (mod 105)



Chi R i d Th (CRT)Chinese Remainder Theorem (CRT)
 Uniqueness: Uniqueness:

1. If there exists m'Zn ( m) also satisfies the 
i k l i hprevious k congruence relations, then 

i, m'-m0 (mod ri).
2. This is equivalent to i, ri | m'– m
3 i j gcd(r r ) = 1  r r r | m' m3. i,j, gcd(ri, rj) = 1   r1 r2…rk | m – m

m' m + k r r r m + k nm' = m + k ꞏ r1, r2…rk = m + k ꞏ n
m'Zn for all k  0

26

contradiction!



Chi R i d Th (CRT)Chinese Remainder Theorem (CRT)
 second solution: second solution:

Ri = r1 r2 ꞏ ꞏ ꞏ ri-1
 1 ( d ) ( i d( ) 1)* ti Zri

s.t. ti ꞏ Ri  1 (mod ri) (since gcd(Ri, ri) = 1)
m1 = m1
^

*

satisfies the first i-1 congruence relations1 1
mi = mi-1 +  Ri ꞏ (mi - mi-1) ꞏ ti (mod Ri+1)     i  2
m = mk

^

^^ ^

m1=1, m2=2, m3=3m  mk

Note that mi  m1 (mod r1)
( d )

^
m1 1,  m2 2, m3 3
r1=3,    r2=5,   r3=7

R2=3, R3=15, R4=105
2 1 m2 (mod r2)

• • •
m (mod r )

ex:  m1  1
m2  1+3ꞏ(2-1)ꞏ2=7
^
^
^

t2=2,   t3=1

27

 mi (mod ri) m  m3  7+15ꞏ(3-7)ꞏ1
 -53  52 (mod 105)

^



I t l M l C l l tiIncremental Manual Calculation
m  1 (mod 3)
 2 (mod 5)
 3 (mod 7) 3 (mod 7)

187



I t l M l C l l tiIncremental Manual Calculation
m  1 (mod 3)
 2 (mod 5)
 3 (mod 7) 3 (mod 7)

 m1  1 (mod 3) satisfying the 1st eq^ m1  1 (mod 3) … satisfying the 1 eq.

188



I t l M l C l l tiIncremental Manual Calculation
m  1 (mod 3)
 2 (mod 5)
 3 (mod 7)

m  1 (mod 3)
 2 (mod 5)

 3 (mod 7)

 m1  1 (mod 3) satisfying the 1st eq^ m1  1 (mod 3) … satisfying the 1 eq.

189



I t l M l C l l tiIncremental Manual Calculation
m  1 (mod 3)
 2 (mod 5)
 3 (mod 7)

m  1 (mod 3)
 2 (mod 5)

 3 (mod 7)

 m1  1 (mod 3) satisfying the 1st eq^

 3  ꞏ (-3) + 5 ꞏ 2 = 1

 m1  1 (mod 3) … satisfying the 1 eq.
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I t l M l C l l tiIncremental Manual Calculation
m  1 (mod 3)
 2 (mod 5)
 3 (mod 7)

m  1 (mod 3)
 2 (mod 5)

 3 (mod 7)

 m1  1 (mod 3) satisfying the 1st eq^

 3  ꞏ (-3) + 5 ꞏ 2 = 1

 m1  1 (mod 3) … satisfying the 1 eq.
inverse of 3 (mod 5)
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I t l M l C l l tiIncremental Manual Calculation
m  1 (mod 3)
 2 (mod 5)
 3 (mod 7)

m  1 (mod 3)
 2 (mod 5)

 3 (mod 7)

 m1  1 (mod 3) satisfying the 1st eq^

 3  ꞏ (-3) + 5 ꞏ 2 = 1

 m1  1 (mod 3) … satisfying the 1 eq.
inverse of 3 (mod 5)

inverse of 5 (mod 3)
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I t l M l C l l tiIncremental Manual Calculation
m  1 (mod 3)
 2 (mod 5)
 3 (mod 7)

m  1 (mod 3)
 2 (mod 5)

 3 (mod 7)

 m1  1 (mod 3) satisfying the 1st eq^

 3  ꞏ (-3) + 5 ꞏ 2 = 1

 m1  1 (mod 3) … satisfying the 1 eq.
inverse of 3 (mod 5)

inverse of 5 (mod 3)

 m2  2 ꞏ 3 ꞏ (-3) + 1 ꞏ 5 ꞏ 2^
m1
^
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I t l M l C l l tiIncremental Manual Calculation
m  1 (mod 3)
 2 (mod 5)
 3 (mod 7)

m  1 (mod 3)
 2 (mod 5)

 3 (mod 7)

 m1  1 (mod 3) satisfying the 1st eq^

 3  ꞏ (-3) + 5 ꞏ 2 = 1

 m1  1 (mod 3) … satisfying the 1 eq.
inverse of 3 (mod 5)

inverse of 5 (mod 3)

 m2  2 ꞏ 3 ꞏ (-3) + 1 ꞏ 5 ꞏ 2^
m1m2 ^
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I t l M l C l l tiIncremental Manual Calculation
m  1 (mod 3)
 2 (mod 5)
 3 (mod 7)

m  1 (mod 3)
 2 (mod 5)

 3 (mod 7)

 m1  1 (mod 3) satisfying the 1st eq^

 3  ꞏ (-3) + 5 ꞏ 2 = 1

 m1  1 (mod 3) … satisfying the 1 eq.

 m2  2 ꞏ 3 ꞏ (-3) + 1 ꞏ 5 ꞏ 2^  -8  7 (mod 15) …. satisfying 
first 2 eqs. 
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I t l M l C l l tiIncremental Manual Calculation
m  1 (mod 3)
 2 (mod 5)
 3 (mod 7)

m  7 (mod 15)
 3 (mod 7)

 3 (mod 7)

 m1  1 (mod 3) satisfying the 1st eq^

 3  ꞏ (-3) + 5 ꞏ 2 = 1

 m1  1 (mod 3) … satisfying the 1 eq.

 m2  2 ꞏ 3 ꞏ (-3) + 1 ꞏ 5 ꞏ 2^  -8  7 (mod 15) …. satisfying 
first 2 eqs. 
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I t l M l C l l tiIncremental Manual Calculation
m  1 (mod 3)
 2 (mod 5)
 3 (mod 7)

m  7 (mod 15)
 3 (mod 7)

 3 (mod 7)

 m1  1 (mod 3) satisfying the 1st eq^

 3  ꞏ (-3) + 5 ꞏ 2 = 1

 m1  1 (mod 3) … satisfying the 1 eq.

 m2  2 ꞏ 3 ꞏ (-3) + 1 ꞏ 5 ꞏ 2

 15 1 7 ( 2) 1

^  -8  7 (mod 15) …. satisfying 
first 2 eqs. 

 15 ꞏ 1 + 7 ꞏ (-2) = 1
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I t l M l C l l tiIncremental Manual Calculation
m  1 (mod 3)
 2 (mod 5)
 3 (mod 7)

m  7 (mod 15)
 3 (mod 7)

 3 (mod 7)

 m1  1 (mod 3) satisfying the 1st eq^

 3  ꞏ (-3) + 5 ꞏ 2 = 1

 m1  1 (mod 3) … satisfying the 1 eq.

 m2  2 ꞏ 3 ꞏ (-3) + 1 ꞏ 5 ꞏ 2

 15 1 7 ( 2) 1

^
inverse of 15 (mod 7)
 -8  7 (mod 15) …. satisfying 

first 2 eqs. 
 15 ꞏ 1 + 7 ꞏ (-2) = 1 inverse of 7 (mod 15)
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I t l M l C l l tiIncremental Manual Calculation
m  1 (mod 3)
 2 (mod 5)
 3 (mod 7)

m  7 (mod 15)
 3 (mod 7)

 3 (mod 7)

 m1  1 (mod 3) satisfying the 1st eq^

 3  ꞏ (-3) + 5 ꞏ 2 = 1

 m1  1 (mod 3) … satisfying the 1 eq.

 m2  2 ꞏ 3 ꞏ (-3) + 1 ꞏ 5 ꞏ 2

 15 1 7 ( 2) 1

^
inverse of 15 (mod 7)
 -8  7 (mod 15) …. satisfying 

first 2 eqs. 
 15 ꞏ 1 + 7 ꞏ (-2) = 1

 m3  3 ꞏ 15 ꞏ 1 + 7 ꞏ 7 ꞏ (-2)^
inverse of 7 (mod 15)

3 ( )
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^



I t l M l C l l tiIncremental Manual Calculation
m  1 (mod 3)
 2 (mod 5)
 3 (mod 7)

m  7 (mod 15)
 3 (mod 7)

 3 (mod 7)

 m1  1 (mod 3) satisfying the 1st eq^

 3  ꞏ (-3) + 5 ꞏ 2 = 1

 m1  1 (mod 3) … satisfying the 1 eq.

 m2  2 ꞏ 3 ꞏ (-3) + 1 ꞏ 5 ꞏ 2

 15 1 7 ( 2) 1

^
inverse of 15 (mod 7)
 -8  7 (mod 15) …. satisfying 

first 2 eqs. 
 15 ꞏ 1 + 7 ꞏ (-2) = 1

 m3  3 ꞏ 15 ꞏ 1 + 7 ꞏ 7 ꞏ (-2)^
inverse of 7 (mod 15)

3 ( )

200

m2m3 ^



I t l M l C l l tiIncremental Manual Calculation
m  1 (mod 3)
 2 (mod 5)
 3 (mod 7) 3 (mod 7)

 m1  1 (mod 3) satisfying the 1st eq^

 3  ꞏ (-3) + 5 ꞏ 2 = 1

 m1  1 (mod 3) … satisfying the 1 eq.

 m2  2 ꞏ 3 ꞏ (-3) + 1 ꞏ 5 ꞏ 2

 15 1 7 ( 2) 1

^  -8  7 (mod 15) …. satisfying 
first 2 eqs. 

 15 ꞏ 1 + 7 ꞏ (-2) = 1

 m3  3 ꞏ 15 ꞏ 1 + 7 ꞏ 7 ꞏ (-2)^  -53  52 (mod 105)3 ( )
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… satisfying all 3 eqs. 



Chi R i d Th (CRT)Chinese Remainder Theorem (CRT)
 special case:p

x  m (mod r1)  m (mod r2) • • •  m (mod rn) x  m (mod r1 r2 • • • rn)

 i i ht f th d l ti every step satisfies one 
 insight of the second solution:

l t ^
x  m1 (mod r1)

1 ^^
• • •

2 R = r

y p
more equation

let m1 = m1

^general solution of x must be m1+ k R2 for some k

st
ep

 m1+ r1
^m1

^ r1 2r1 R2 = r1
m1 is the only solution for x in ZR2

*

x  m1 (mod r1) 
 m2 (mod r2)

general solution of x must be m1+ k R2 for some k

2 m2+ r2r1
^m2

^
• • •

r2r1 2r2r1 R3 = r2r1m2 (mod r2)

st
ep

 2

let m2  m1+ k* R2 (mod R3) where k*= t2(m2- m1) and t2 R2  1 (mod r2)^ ^ ^
m2+ r2r1m2 2 1 2 1

m is the only solution for x in Z*

29

^general solution of x must be m2 + k R3 for some k
m2 is the only solution for x in ZR3



Chi R i d Th (CRT)Chinese Remainder Theorem (CRT)
Applications: solve x2  1 (mod 35)Applications:  solve x 1 (mod 35)

 35 = 5 ꞏ 7 
* i fi f( *) 0 ( d 35) x* satisfies f(x*)  0 (mod 35)  

x* satisfies both f(x*)  0 (mod 5) and f(x*)  0 (mod 7)
Proof:
()

p | f(x*), q | f(x*), and gcd(p,q)=1 imply that 
p ꞏ q | f(x*)  i.e. f(x*)  0 (mod p ꞏ q)

( )()
f(x*) = k ꞏ p ꞏ q implies that
f( *) (k ) (k ) i f( *) 0 ( d )

30

f(x*) = (k ꞏ p) ꞏ q = (k ꞏ q) ꞏ p    i.e.  f(x*)  0 (mod p)
 0 (mod q)



Chi R i d Th (CRT)Chinese Remainder Theorem (CRT)
 since 5 and 7 are prime, we can solvep ,

x2  1 (mod 5) and x2  1 (mod 7) 
far more easily than     x2  1 (mod 35) Why?y ( )














31



Chi R i d Th (CRT)Chinese Remainder Theorem (CRT)
 since 5 and 7 are prime, we can solvep ,

x2  1 (mod 5) and x2  1 (mod 7) 
far more easily than     x2  1 (mod 35) Why?y ( )
 x2  1 (mod 5) has exactly two solutions: x  1 (mod 5) 












31



Chi R i d Th (CRT)Chinese Remainder Theorem (CRT)
 since 5 and 7 are prime, we can solvep ,

x2  1 (mod 5) and x2  1 (mod 7) 
far more easily than     x2  1 (mod 35) Why?y ( )
 x2  1 (mod 5) has exactly two solutions: x  1 (mod 5) 
 x2  1 (mod 7) has exactly two solutions: x  1 (mod 7) x 1 (mod 7) has exactly two solutions: x 1 (mod 7) 











31



Chi R i d Th (CRT)Chinese Remainder Theorem (CRT)
 since 5 and 7 are prime, we can solvep ,

x2  1 (mod 5) and x2  1 (mod 7) 
far more easily than     x2  1 (mod 35) Why?y ( )
 x2  1 (mod 5) has exactly two solutions: x  1 (mod 5) 
 x2  1 (mod 7) has exactly two solutions: x  1 (mod 7) x 1 (mod 7) has exactly two solutions: x 1 (mod 7) 

 put them together and use CRT, there are four solutions








31



Chi R i d Th (CRT)Chinese Remainder Theorem (CRT)
 since 5 and 7 are prime, we can solvep ,

x2  1 (mod 5) and x2  1 (mod 7) 
far more easily than     x2  1 (mod 35) Why?y ( )
 x2  1 (mod 5) has exactly two solutions: x  1 (mod 5) 
 x2  1 (mod 7) has exactly two solutions: x  1 (mod 7) x 1 (mod 7) has exactly two solutions: x 1 (mod 7) 

 put them together and use CRT, there are four solutions
 x 1 (mod 5) 1 (mod 7)  x 1 (mod 35) x  1 (mod 5)  1 (mod 7)  x  1 (mod 35) 






31



Chi R i d Th (CRT)Chinese Remainder Theorem (CRT)
 since 5 and 7 are prime, we can solvep ,

x2  1 (mod 5) and x2  1 (mod 7) 
far more easily than     x2  1 (mod 35) Why?y ( )
 x2  1 (mod 5) has exactly two solutions: x  1 (mod 5) 
 x2  1 (mod 7) has exactly two solutions: x  1 (mod 7) x 1 (mod 7) has exactly two solutions: x 1 (mod 7) 

 put them together and use CRT, there are four solutions
 x 1 (mod 5) 1 (mod 7)  x 1 (mod 35) x  1 (mod 5)  1 (mod 7)  x  1 (mod 35) 
 x  1 (mod 5)  6 (mod 7)  x  6 (mod 35) 




31



Chi R i d Th (CRT)Chinese Remainder Theorem (CRT)
 since 5 and 7 are prime, we can solvep ,

x2  1 (mod 5) and x2  1 (mod 7) 
far more easily than     x2  1 (mod 35) Why?y ( )
 x2  1 (mod 5) has exactly two solutions: x  1 (mod 5) 
 x2  1 (mod 7) has exactly two solutions: x  1 (mod 7) x 1 (mod 7) has exactly two solutions: x 1 (mod 7) 

 put them together and use CRT, there are four solutions
 x 1 (mod 5) 1 (mod 7)  x 1 (mod 35) x  1 (mod 5)  1 (mod 7)  x  1 (mod 35) 
 x  1 (mod 5)  6 (mod 7)  x  6 (mod 35) 
 4 ( d 5) 1 ( d 7) 29 ( d 35) x  4 (mod 5)  1 (mod 7)  x  29 (mod 35) 


31



Chi R i d Th (CRT)Chinese Remainder Theorem (CRT)
 since 5 and 7 are prime, we can solvep ,

x2  1 (mod 5) and x2  1 (mod 7) 
far more easily than     x2  1 (mod 35) Why?y ( )
 x2  1 (mod 5) has exactly two solutions: x  1 (mod 5) 
 x2  1 (mod 7) has exactly two solutions: x  1 (mod 7) x 1 (mod 7) has exactly two solutions: x 1 (mod 7) 

 put them together and use CRT, there are four solutions
 x 1 (mod 5) 1 (mod 7)  x 1 (mod 35) x  1 (mod 5)  1 (mod 7)  x  1 (mod 35) 
 x  1 (mod 5)  6 (mod 7)  x  6 (mod 35) 
 4 ( d 5) 1 ( d 7) 29 ( d 35) x  4 (mod 5)  1 (mod 7)  x  29 (mod 35) 
 x  4 (mod 5)  6 (mod 7)  x  34 (mod 35) 
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M tl b t lMatlab tools
format rat format longformat rat    format long

matrix inverse             inv(A)
matrix determinant      det(A)
p = q d + r                    r = mod(p, d) or r = rem(p, d)

q = floor( p / d )
d( b)g = gcd(a, b)

g = a s + b t                  [g, s, t] = gcd(a, b)
factoring factor(N)factoring                      factor(N)
prime numbers < N     primes(N)
test prime                     isprime(p)
mod exponentiation *  powermod(a,b,n)
find primitive root *    primitiveroot(p)

* ([ ] [ ])
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crt *                             crt([a1 a2 a3...], [m1 m2 m3...])

(N) *                         eulerphi(N)                  



Fi ldField
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 Ex. GF(4) = {0, 1, , 2}

 0 + x = x
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• Addition and multiplication are commutative and 
associative, and the distributive law x(y+z)=xy+xz
h ld f ll
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holds for all x, y, z
 x3 = 1 for all nonzero elements
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G l i Fi ldGalois Field
 Galois Field: A field with finite element, finite field
 For every power pn of a prime, there is exactly one For every power p of a prime, there is exactly one 

finite field with pn elements, GF(pn), and these are 
the only finite fieldsthe only finite fields.

 For n > 1, {integers (mod pn)} do not form a field.
Ex. p ꞏ x  1 (mod pn) does not have a solution 

(i.e. p does not have multiplicative inverse)( p p )
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 Def: Z2[X]: the set of polynomials whose coefficients Def: Z2[X]: the set of polynomials whose coefficients        
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 Def: Z2[X]: the set of polynomials whose coefficients Def: Z2[X]: the set of polynomials whose coefficients        

are integers mod 2
 ex 0 1 1+X3+X6 ex. 0, 1, 1+X3+X6…
 add/subtract/multiply/divide/Euclidean Algorithm: 

ll ffi i t d 2process all coefficients mod 2
 (1+X2+X4) + (X+X2) = 1+X+X4 bitwise XOR

3 2 3 4 (1+X+X3)(1+X) = 1+X2+X3+X4

X4+X3+1 = (X2+1)(X2+X+1) + X      long division
b ittcan be written as

X4+X3+1  X (mod X2+X+1) 
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 addition, subtraction, multiplication are done mod X2+X+1
 f(X)  g(X) (mod X2+X+1)

 if f(X) and g(X) have the same remainder when divided by X2+X+1
 or equivalently  h(X) such that f(X) - g(X) = (X2+X+1) h(X)

 ex. XꞏX = X2  X+1 (mod X2+X+1)

if l b h G (4) b f if we replace X by , we can get the same GF(4) as before
 the modulus polynomial X2+X+1 should be irreducible

Irreducible: polynomial does not factor into polynomials
of lower degree with mod 2 arithmetic
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ex. X2+1 is not irreducible since X2+1 = (X+1)(X+1)
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each a are integers mod p and have p choices henceeach ai are integers mod p, and have p choices, hence 
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 multiplicative inverse of any element in GF(p ) can be 
found using extended Euclidean algorithm(over polynomial)
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 AES (Rijndael) uses GF(28) with irreducible polynomial 
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





38



GF(28)GF(28)

 AES (Rijndael) uses GF(28) with irreducible polynomial 
X8 X4 X3 X 1X8 + X4 + X3 + X + 1 

 each element is represented as
b7 X7 + b6 X6 + b5 X5 + b4 X4 + b3 X3 + b2 X2 + b1 X + b0
each bi is either 0 or 1





38



GF(28)GF(28)

 AES (Rijndael) uses GF(28) with irreducible polynomial 
X8 X4 X3 X 1X8 + X4 + X3 + X + 1 

 each element is represented as
b7 X7 + b6 X6 + b5 X5 + b4 X4 + b3 X3 + b2 X2 + b1 X + b0
each bi is either 0 or 1

 elements of GF(28) can be represented as 8-bit bytes 
b7b6b5b4b3b2b1b0b7b6b5b4b3b2b1b0



38



GF(28)GF(28)

 AES (Rijndael) uses GF(28) with irreducible polynomial 
X8 X4 X3 X 1X8 + X4 + X3 + X + 1 

 each element is represented as
b7 X7 + b6 X6 + b5 X5 + b4 X4 + b3 X3 + b2 X2 + b1 X + b0
each bi is either 0 or 1

 elements of GF(28) can be represented as 8-bit bytes 
b7b6b5b4b3b2b1b0b7b6b5b4b3b2b1b0

 mod 2 operations can be implemented by XOR in H/W
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 Definition of generating polynomial g(X) is 
parallel to the generator in Z :parallel to the generator in Zp:
 every element in GF(pn) (except 0) can be expressed 

f (X)as a power of g(X)






39





GF( n)GF(pn)

 Definition of generating polynomial g(X) is 
parallel to the generator in Z :parallel to the generator in Zp:
 every element in GF(pn) (except 0) can be expressed 

f (X)as a power of g(X)
 the smallest exponent k such that g(X)k1 is pn -1





39





GF( n)GF(pn)

 Definition of generating polynomial g(X) is 
parallel to the generator in Z :parallel to the generator in Zp:
 every element in GF(pn) (except 0) can be expressed 

f (X)as a power of g(X)
 the smallest exponent k such that g(X)k1 is pn -1

 Discrete log problem in GF(pn):
 given h(X), find an integer k such that 

h(X)  g(X)k (mod P(X))

39





GF( n)GF(pn)

 Definition of generating polynomial g(X) is 
parallel to the generator in Z :parallel to the generator in Zp:
 every element in GF(pn) (except 0) can be expressed 

f (X)as a power of g(X)
 the smallest exponent k such that g(X)k1 is pn -1

 Discrete log problem in GF(pn):
 given h(X), find an integer k such that 

h(X)  g(X)k (mod P(X))
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 believed to be very hard in most situations



Recursive GCDRecursive GCD

01 int gcd(int p, int q) // assume p >= q
02 {02 {
03     int ans;
04
05 if (p % q 0)05     if (p % q == 0)
06         ans = q;
07     else
08         ans = gcd(q, p % q);
09
10 return ans;10     return ans;
11 }
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Recursive GCDRecursive GCD

01 int gcd(int p, int q) // assume p >= q
02 {02 {
03     int ans;
04
05 if (p % q 0)05     if (p % q == 0)
06         ans = q;
07     else 01 int gcd(int p, int q)

02 {08         ans = gcd(q, p % q);
09
10 return ans;

02 {
03     int r = p%q;
04 if (r == 0)10     return ans;

11 }
04     if (r == 0)
05         return q;
06     return gcd(q, r);

40
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07 }



Recursive Extended GCDRecursive Extended GCD
 Given a>b0, find g=GCD(a,b) and x, y s.t. a x + b y = g

where |x|b+1 and |y|a+1
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 Given a>b0, find g=GCD(a,b) and x, y s.t. a x + b y = g

where |x|b+1 and |y|a+1
 Let a = q b + r, b>r0  (q b + r) x + b y = g

b ( )

, if g = 1, then x is a's inverse mod b  

 b (q x + y) + r x = g
 b y' + r x  = g, where y' = q x + y
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where |x|b+1 and |y|a+1
 Let a = q b + r, b>r0  (q b + r) x + b y = g

b ( )

, if g = 1, then x is a's inverse mod b  

 b (q x + y) + r x = g
 b y' + r x  = g, where y' = q x + y

 This means that if we can find y' and x satisfying b y' + (a%b) x = g This means that if we can find y' and x satisfying b y' + (a%b) x = g
then x and y = y' – q x = y' – (a/b) x satisfies a x + b y = g
Note that in this way r will eventually be 0Note that in this way r will eventually be 0
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Recursive Extended GCDRecursive Extended GCD
 Given a>b0, find g=GCD(a,b) and x, y s.t. a x + b y = g

where |x|b+1 and |y|a+1
 Let a = q b + r, b>r0  (q b + r) x + b y = g

b ( )

, if g = 1, then x is a's inverse mod b  

 b (q x + y) + r x = g
 b y' + r x  = g, where y' = q x + y

 This means that if we can find y' and x satisfying b y' + (a%b) x = g This means that if we can find y' and x satisfying b y' + (a%b) x = g
then x and y = y' – q x = y' – (a/b) x satisfies a x + b y = g
Note that in this way r will eventually be 0Note that in this way r will eventually be 0

01 void extgcd(int a, int b, int *g, int *x, int *y) { // a > b >=0
02     if (b == 0)
03 * * 1 * 003         *g = a, *x = 1, *y = 0;
04     else {
05         extgcd(b, a%b, g, y, x);

41

06         *y = *y - (a/b)*(*x);
07     }
08 }
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|G| 1x|G| = 1

 If G is a finite group, xG, x|G| = 1

1. Lagrange Thm: if H is a subgroup of G then |G| = k |H|
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() 1  H  g2  g2H
 -1 h H

 g2  g1H i.e.  h  H, g2 = g1h

() let h = g1
-1g2  H

 g1
-1g2 = h  H

1 1x  g1H, h1H, x = g1h1

x  g2H, h2H, x = g2h2

= (g2h-1) h1 = g2(h-1h1)  g2H  
= (g1h) h2 = g1(hh2)  g1H  
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H H H  H g1H = g2H  or  g1H  g2H = 
Lemma:   g1, g2  G, g1  g2 , g1H = g2H   g1

-1g2  Hg1, g2 , g1 g2 , g1 g2 g1 g2

() 1  H  g2  g2H
 -1 h H

 g2  g1H i.e.  h  H, g2 = g1h

() let h = g1
-1g2  H

 g1
-1g2 = h  H

1 1x  g1H, h1H, x = g1h1

x  g2H, h2H, x = g2h2

= (g2h-1) h1 = g2(h-1h1)  g2H  
= (g1h) h2 = g1(hh2)  g1H  

pf: let c  g1H  g2H  
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H H H  H g1H = g2H  or  g1H  g2H = 
Lemma:   g1, g2  G, g1  g2 , g1H = g2H   g1

-1g2  Hg1, g2 , g1 g2 , g1 g2 g1 g2

() 1  H  g2  g2H
 -1 h H

 g2  g1H i.e.  h  H, g2 = g1h

() let h = g1
-1g2  H

 g1
-1g2 = h  H

1 1x  g1H, h1H, x = g1h1

x  g2H, h2H, x = g2h2

= (g2h-1) h1 = g2(h-1h1)  g2H  
= (g1h) h2 = g1(hh2)  g1H  

pf: let c  g1H  g2H  

h1H, c = g1h1

46



H H H  H g1H = g2H  or  g1H  g2H = 
Lemma:   g1, g2  G, g1  g2 , g1H = g2H   g1

-1g2  Hg1, g2 , g1 g2 , g1 g2 g1 g2

() 1  H  g2  g2H
 -1 h H

 g2  g1H i.e.  h  H, g2 = g1h

() let h = g1
-1g2  H

 g1
-1g2 = h  H

1 1x  g1H, h1H, x = g1h1

x  g2H, h2H, x = g2h2

= (g2h-1) h1 = g2(h-1h1)  g2H  
= (g1h) h2 = g1(hh2)  g1H  

pf: let c  g1H  g2H  

h1H, c = g1h1 h2H, c = g2h2
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H H H  H g1H = g2H  or  g1H  g2H = 
Lemma:   g1, g2  G, g1  g2 , g1H = g2H   g1

-1g2  Hg1, g2 , g1 g2 , g1 g2 g1 g2

() 1  H  g2  g2H
 -1 h H

 g2  g1H i.e.  h  H, g2 = g1h

() let h = g1
-1g2  H

 g1
-1g2 = h  H

1 1x  g1H, h1H, x = g1h1

x  g2H, h2H, x = g2h2

= (g2h-1) h1 = g2(h-1h1)  g2H  
= (g1h) h2 = g1(hh2)  g1H  

pf: let c  g1H  g2H  

h1H, c = g1h1 h2H, c = g2h2

 c = g1h1 = g2h2
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 c  g1h1  g2h2



H H H  H g1H = g2H  or  g1H  g2H = 
Lemma:   g1, g2  G, g1  g2 , g1H = g2H   g1

-1g2  Hg1, g2 , g1 g2 , g1 g2 g1 g2

() 1  H  g2  g2H
 -1 h H

 g2  g1H i.e.  h  H, g2 = g1h

() let h = g1
-1g2  H

 g1
-1g2 = h  H

1 1x  g1H, h1H, x = g1h1

x  g2H, h2H, x = g2h2

= (g2h-1) h1 = g2(h-1h1)  g2H  
= (g1h) h2 = g1(hh2)  g1H  

pf: let c  g1H  g2H  

h1H, c = g1h1 h2H, c = g2h2

 c = g1h1 = g2h2  h1h2
-1 = g1

-1g2  H
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 c  g1h1  g2h2  h1h2  g1 g2  H 



H H H  H g1H = g2H  or  g1H  g2H = 
Lemma:   g1, g2  G, g1  g2 , g1H = g2H   g1

-1g2  Hg1, g2 , g1 g2 , g1 g2 g1 g2

() 1  H  g2  g2H
 -1 h H

 g2  g1H i.e.  h  H, g2 = g1h

() let h = g1
-1g2  H

 g1
-1g2 = h  H

1 1x  g1H, h1H, x = g1h1

x  g2H, h2H, x = g2h2

= (g2h-1) h1 = g2(h-1h1)  g2H  
= (g1h) h2 = g1(hh2)  g1H  

pf: let c  g1H  g2H  

h1H, c = g1h1 h2H, c = g2h2

 c = g1h1 = g2h2  h1h2
-1 = g1

-1g2  H  g1H = g2H
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 c  g1h1  g2h2  h1h2  g1 g2  H  g1H  g2H


