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< Prime number: an integer p>1 that is divisible only by 1
and 1itself, ex. 2, 3.5, 7, 11, 13, 17...

<~ Composite number: an integer n>1 that is not prime

< Fact: there are infinitely many prime numbers. (by Euclid)
pf: #=on the contrary, assume a, is the largest prime number
& ]et the finite set of prime numbers be {a,, a;, a,, .... a_}
& the number b = aj*a; *a,*...*a_+ 1 1s not divisible by any a;
1.e. b does not have prime factors < a_

2 cases: »if b has a prime factor d, b>d>a_, then “d is a prime
number that 1s larger than a_.” ... contradiction

> 1f b does not have any prime factor less than b, then “b 1s a

prime number that is larger than a_” ... contradiction
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< Prime Number Theorem:

* Let m(x) be the number of primes less than x

*x Then X

)~ In x

in the sense that the ratio n(x) / (x/Inx) > 1 as x —» «©

() A > T < A
IWX) > In x and fOI'X217, :u(X) < 1.10555 In x

1.2

< Ex: number of 100-digit primes 8

1.0

| ,m"’ 1
100 /) 7w(x) —dt
7-5(10100) _ 7'5(1099) ~ 10 _ 0'9; ML //2 It

100 |




Factors

<~ Every composite number can be expressible as a
product a'b of integers with 1 <a, b<n

< Every positive integer has a unique representation
as a product of prime numbers raised to different

pOWers.
2 Ex.504=2>-3%-7 1125=3%-5°




Factors

< Lemma: p is a prime number and p|a-b—>p|aorp|b,
more generally, p 1s a prime number and p | a-b-...:Z
—> p must divide one of a, b, ..., z

* proof:
xcase l: p|a

xcase 2: p/fa,
> p/aand p is a prime number = ged(p,a)=1=>1=ax+py
> multiply both side by b, b=bax+bpy
>plab=p|b
% In general: if p | a then we are done, if p/ a then p | bc...z, continuing

this way, we eventually find that p divides one of the factors of the
product




['heorem: Every positive integer 1s a product of primes.
T'his factorization into primes 1s unique, up to

reordering of the factors. « Empty product equals 1.

x Proof: product of primes  Prime 1s a one factor product.

% assume there exist positive uitegers that are not product of primes
% let n be the smallest such/integer

% since n can not be 1 or a prime, n must be composite, i.e. n=a-b
& since n 1s the smallest, both a and b must be products of primes.
% n = a'b must also be a product of primes, contradiction

* Proof: uniqueness of factorization
& assUme N =1y 1, 2 [ kP 1Py 2Py S =1 1T 2 1y K Q1bIQ2b2' ' 'Chbt
where p, q; are all distinct primes.
& letm=n/(r,"1ry, 21, X)
& consider py for example, since p; divide m = q;q;..q;q...q;, p; must
divide one of the factors di, contradict the fact that “p;, q; are distinct
primes”




(“Fair-MAH”)

<Ifp1saprime, ptfa then aP =] (mod p)

Proof: %letS={1,2,3,...,p-1} (Z,"), define y(x) =a - x (mod p) be
a mapping y: S—Z

xVX e S, yx) =0 (modp)= Vx € S, y(X) € S, 1.e. y: S>S

C/ ify(x)=a:x=0(modp) = x=0 (mod p) since gcd(a, p) =1

2V X,y € S, 1f x #y then y(x) # y(y)

ifyx)=y(y) >a-x=a- y=x=ysince gcd(a, p) =1
% from the above two observations, y(1), w(2),... y(p-1) are
distinct elements of S
12 .. (p-D)=vw(l)y2)....yp-1)=(a1)(a2)...-(a(p-1))
=aP!l (12 ... «(p-1)) (mod p)
% since ged(j, p) = 1 forj € S, we can divide both side by 1, 2,
3, ... p-1, and obtain aP'=1 (mod p)




& Ex:219=1024 =1 (mod 11)
223 = (21%°2°=1°23 = 8 (mod 11)
ie 223 =2>3mod10- 93— g (1n0d 11)

& if n is prime, then 2" = 1 (mod n)
ie if 2%l =1 (mod n) then n 1s not prime <«—(*)
usually, if 2™ = 1 (mod n), then n is prime
* exceptions: 2”011 = (mod 561) although 561 =3-11-17
21729-1 = 1 (mod 1729) although 1729 =7-13-19

x (*) 1S a quick test for eliminating composite number




Euler’s Totient Function o(n

< ¢(n): the number of integers 1<a<n s.t. gcd(a,n)-=1
ex. n=10, p(n)-4 thesetis Z,, = {1,3,7,9}

< properties of ¢(*)
* O(p) = p-1, if p 1s prime

*xO(pY) =p'-pl=p" - (1-1/p), if p is prime

multiplicative
property

+o(n'm) - H((dy/dy/d;))-o(d,)o(ds™) d(n/d, /dy)-d(m/d, /dy)
if ged(n,m)=d,, gcd(n/d,,d,)=d,, gcd(m/d,,d,)=d,4
*xp(n)=n II (1-1/p)
Vp/n

ex. O(10)=(2-1)-(5-1)=4 $(120)=120(1-1/2)(1-1/3)(1-1/5)=32
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< d(n) ~ n - 6/7° as n goes large

<~ Probability that a random number r 1s multiples of a prime
() o
number p° 1 /p think of 2 (even numbef%u% " g’e Sl Form

p 2p 3p 4p

< Probability that two independent random numbers r, and r,
both have a given prime number p as a factor? ]/p2

{- The probability that they do not have p as a common factor
is thus 1 — 1/p?
< The probability that two numbers r, and r, have no common

prime factor? p = (1-1/22)(1-1/32)(1-1/52)(1-1/72)...
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Pr{ r, and r, relatively prime |

< Equalities:

1 = [+x+x>+x3+. ..

1 +1/22+1/32+1/4>+ 1/52+ 1/6*> + ... = 7?/6
<% P = (1-1/2)(1-1/3)(1-1/5)(1-1/7) - \
= ((”1/22“/24+°-°)(1*1/32+1/34+...) s
= (1H1/2241/324+1/42+1/52+1/62+..) !

~..each positive number has a unique prime number factorization
ex. 452=3%-52




< ¢(n) 1s the number of integers less than n that are relative
prime to n

< ¢(n)/n 1s the probability that a randomly chosen integer 1s
relatively prime to n

< Therefore, ¢(n) ~ n - 6/7

< P, = Pr { n random numbers have no common factor }

* n independent random numbers all have a given prime p as a

factor is 1/p"
x They do not all have p as a common factor 1 — 1/p"

* P = (1+1/2"+1/3"+1/4"+1/5"+1/6"+...)" is the Riemann zeta
function C(n) http://mathworld.wolfram.com/RiemannZetaFunction.html

* Ex. n=4, {(4) = "/90 =~ 0.92




true when n is prime

& If ged(a,n)=1 then a®™ =1 (mod n) trueevenwhenn=pt
Proof: #let S be the set of integers 1<x<n, with gcd(x, n) =1
x define y(x) = a - x (mod n) be a mapping y: S—>Z

L)

& Vx € S and ged(a, n) = 1, [T v(Epr=a—x=0tmedm=x=6(modn) ‘

d gbd(d, 11}21 Cllld 5&4(]1(2&, 11)_1
X)# 0 (modn no mopg prime factoss
W(x) # 0 (mod ) 30— (g eommogprime frery), &

ged(y(x), n) =1
xV X,y € S, ‘if X #y then y(X) # y(y) (mod n)’
e ifyx)=y(y) >a-x=a-y=x=ysince gcd(a, n) =1

% from the above two observations, VxeS, y(x) are distinct
elements of S (i.e. {y(X) | VxeS} 1s S)

¢ [Ix=[lwx)=za®™[Ix (modn)
XeS  XeS XeS

% since gcd(x, n) = 1 for x € S, we can cancel one by one
X € S of both sides, and obtain a¥(=1 (mod n)




< Example: What are the last three digits of 78039
i.e. we want to find 75 (mod 1000)
1000 =23-5°,  $(1000) = 1000(1-1/2)(1-1/5) = 400
7803 = 7803 (mod 400) — 73 = 343 (mod 1000))

<~ Example: Compute 43210 (mod 101)?
101=1- 101, d(101) = 100
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Euler’s Theorem: VaeZ ~, 2™ = | (mod n)

<~ We have proved the above theorem by showing that the function
y(x) =a - x (mod n) 1s a permutation.

<~ We can also prove it through Fermat’s Little Theorem & CRT
> considern=1p - q, ¢(n) = (p-1)(q-1)
Vanp*, aP! = 1 (mod p) = (ap'l)q'i =a®™ = 1 (mod p)
VaeZ.,", a4 =1 (mod q) = (a4 =a®™ = 1 (mod q)
ged(p,q)=1 = p-q|a®™-1,1ie. VaeZ (pfaand qfa),a®™ =1 (mod n)

> consider n = p’, ¢(n) = p~!(p-1) :
Vaezzr, aPl =1 (mod p) = aP! = 1+Ap a®n) = (H}bp)p
= ] (mod n)

a%® = (144p) =1+C" Ap+C” (Ap)+...
=1+p"~! ap+p~l(p™-1)2 (Ap)* +...




> consider n=p" - @3, ¢(n) = p~l(p-1) qs'l(q 1)
Van ,aP” =1 (mod p) = (ap 1) =1 (mod p")

— (a(p D)p” )(q-l)q — a(l)(ﬂ)E 1 (mod p") = p' | 20(m)_q
VaeZ. > a0l =1 (mod q) = (aT 1) =1 (mod q°)
— (a(q Da” )(p Dp~Z 0 = (mod q°) = ¢° | 20(M)_1
gcd(p.,q®)=1= p'q° | a®™_1, j.e. VYaeZ (pyaand qjfa), 2™ = (mod n)

> considern=p, 'p, 2--p X, ¢(n) =n VH| (1-1/p) Unique Prime
p|n

Factorization

ri-1
‘v’aezz.ﬁ, aPl =1 (mod p,)) = (api'l)pi =1 (mod p,")

S (pDpy
— (a(pi'l)p ) Vi# ] ] — a(l)(n) — 1 (mOd plr) — piri | ad)(n)_l

all p/li are . o(n)
relatively prime le | a®™-1, i.e. VaeZ (Vip; ya),a®™ =1 (mod n) 9




Carmichael Theorem

Theorem:
VaeZ. " a*"™ =1 (mod n) and a"™" =1 (mod n?)
where n=p-q, p # q, Mn) = lem(p-1, g-1), A(n) | ¢(n)
$- like Euler’s Theorem, we can prove 1t through Fermat’s
Little Theorem, consider n =p * q, where p=q,
VaeZS, aP! = 1 (mod p) = (2P 1)@VeedP-La-h) = M) = | (;mod p)
291 = 1 (mod q) = (aQ-l)(p-l)/gcd(p-l,q-l) — aM0) _ (mod q)
ged(p,q)=1 = pq | a*W-1, VaeZ " (i.e. pfarq/fa), a*™ = 1 (mod n)
therefore, VaeZ *, a*™ =1 +k - n

raise both side to the n-th power, we get " M) — (1 +k - n)",

—a" =] 4t nkn+..=Vae Z. " (or Z ,*), a" M) = 1 (mod n?)
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< Let a, n, X, y be integers with n>1, and gcd(a,n)=1
if X =y (mod ¢(n)), then a* = a’ (mod n).

< If you want to work mod n, you should work mod
¢(n) or A(n) 1in the exponent.




—— =

<- When p 1s a prime number, a primitive root
modulo p 1s a number whose powers yield every
nonzero element mod p. (equivalently, the order of
a primitive root 1s p-1)

sex: 31=3,3%=2, 33=6, 3%=4, 3°=5, 3°=1 (mod 7)
3 1s a primitive root mod 7

<-sometimes called a multiplicative generator

$-there are plenty of primitive roots, actually ¢(p-1)

* ex. p=101, d(p-1)=100-(1-1/2)-(1-1/5)=40
p=143537, d(p-1)=143536-(1-1/2)-(1-1/8971)=71760




< How do we test whether h 1s a primitive root modulo p?

* naive inefficient method:
o0 through all powers h2 b2, ..., h*, and make sure
they all # 1 modulo p

* fast method:
let p-1 has prime factors q;, q,, ---, q,,

for all q;, make sure h®4i modulo p is not 1,

then h 1s a primitive root
Intuition: let h = g* (mod p), ged(a, p-1)=d = h is not a primitive root
(g "= (g“)" = 1 (mod p)
= V prime q.| d, h®*V% = (g% P-1)/g; = (g¥%)®-D = | (mod p)
ex. p=29, p-1=2-2-7, h=5, h?¥>=1, h*¥/7=16, 5 is not a primitive
h=11, h?¥2=28, h?%7=25, 11 is a primitive




<~ Procedure to test if h 1s a primitive root :
let p-1 has prime factors q,, q,, ..., q,, (1.e. ¢(p)=p-1=q,"...q,")
for all q, h®14 (mod p) is not 1 = h is a primitive
pf:
(a) by definition, ord,(h) is the smallest positive X s.t. h* =1 (mod p)
Fermat Theorem: h*® = 1 (mod p) therefore implies ord (h) < ¢(p)

rdp(h) *k+s with 0 <s<ord

(h)
= = “p\ J

%™ "“h*=h*= 1 (mod p), but s < ord (h) = s = 0, i.e. ord (h) | ¢(p)

(b) assume h is not a primitive root 1.e ord (h) < ¢(p)=p-1 q,"..-qy

then 3 i such that ord (h) | (p-l)/qi/i.e. h®-D4i =1 (mod p) for some of
(c) if for all g, h®-D4i = 1 (mod p)

then ord (h) = ¢(p) and h is a primitive root modulo p




of P

< Why are there ¢(p-1) primitive roots?

* leth be a primitive root (the order of h 1s p-1) an integer
2 13 . less than p-1
* h, h*, h”,

* if gcd(a, p- 1) =d, then (h?) ®-1/d = (if‘/d)<lo ) _ = (mod p) which
says that the order of h" is at most (p-1)/d, therefore, h® is not a
primitive root = There are at most ¢(p-1) primitive roots in Z *

x For any element h” in Zp* where gcd(a, p-1) = 1, it 1s guaranteed
that (h*)*"""% % 1 (mod p) for all q; (q; is prime factors of p-1)
pf. assume that for a certain q,, (ha)(p'l)/ %=1 (mod p)

h is a primitive root = p-1 |a - (p-1)/ q.
— Jdintegerk s.t. a-(p-1)/q.=k-(p-1) 1e.a=k-q.
=q.|a

= q. | ged(a, p-1) contradiction




Lucas Primality Test
< An integer n is prime iff the converse of
Ja, s.t. {1. a™! =1 (mod n)
2. Vprime factor q of n-1, a4 % 1 (mod n)
(=) ifnis prime, catch: inefficient, factors of n-1 are required

Fermat Little Theorem

Proof:

Fermat's little theorem ensures that "Vazkn, a™! = 1 (mod n)"
a primitive a ensures "V prime factor q of n-1, a4 % 1 (mod n)"

(<) ifda, s.t. 1. a™!' = 1 (mod n) and
2. Vprime factor q of n-1, a»4# 1 (mod n)
By definition, ord (a) is the smallest positive x s.t. a* = 1 (mod n)
the first condition implies that ord (a) <n-1 and ord (a) | n-1
the second condition then implies that ord (a) = n-1 (*)

Euler thm says that a®™ = 1 (mod n), by definition ¢(n)<n-1 if n is
a composite number, 1.e. ord, (a) | ¢(n) < n-1, contradict with (*). ,,




Pratt's Primalitv Certif

<$- Pratt's proved in 1975 that the following polynomial-
size structure can prove that a number is prime and
1s verifiable in polynomial time

<- based on the Lucas Primality Test (LPT)
<~ example:

229 (a=6,229 —1=2°x3x19) verification
2 (known prime) PP {(ambB1ED9)

3 @=2,3—-1=2) B2 1 B iR H9)29)

2 (known prime) géééi%ﬁ@zpﬁgm&)m)

19 (a=2,19—-1=2x3?) By ngﬁ@p&g(m%,
2 (known prime) él}lleﬁ;ﬁ 1lsfzi1,s&a1 rime .

are primes,

3(@=2,3-1=2) then 229 1s also a prime

2 (known prime)




Multiplicative Generators in Z_~

1V 1 LJn

< How do we define a multiplicative generator in
Z._" if n is a composite number?

x [s there an element in Z " that can generate all elements
of 77

* [fn=p - q, the answer 1s negative. From Carmichael
theorem, VaeZ ", aMn) = | (mod n), gcd(p-1, g-1) 1s at
least 2, A(n) = lcm(p-1, g-1) 1s at most ¢(n) / 2. The
size of a maximal possible multiplicative subgroup in
Z. " is therefore no larger than A(n).

x I[f n = p¥, the answer is yes

* How many elements in Z_* can generate the maximal
possible subgroup of Z *?




Findi S R I n
< For example: find x such that x* = 71 (mod 77)

Is there any solution?

How many solutions are there?

How do we solve the above equation systematically?

& In general: find x s.t. x> = b (mod n),

where b € QR , n =p-q, and p, g are prime numbers

+ Easier case: find x s.t. x> = b (mod p),

where p 1s a prime number, b € QR

Note: QR is “Quadratic Residue in Z_*” to be defined later




Finding Square Root mod p
< G1ven yeZp*, find x, s.t. x* = y (mod p), p is prime
p=1(mod4) (1.e. p=4k+ 1) : probabilistic algorithm

Two cases:
p =3 (mod4) (i.e. p =4k + 3) : deterministic algorithm

<-Is there any soluti%r_ll? (Isy a QR)?)

check yT 2 1 (mod p)
$p=3(mod4) ptl

4
x=xy = (modp)
% (pt+1)/4 = (4k+3+1)/4 = k+1 1s an integer
£ x2 :y(p+l)/2 :y(p-l)/z Y=y (mOdp)

Euler's Criterion




Finding Square Root mod p
$p=1(mod4)
* Peralta, Eurocrypt’86, p =2" g + 1, both p, g are prime

* 3-step probabilistic procedure
{ 1. Choose a random number r, if 7> = y (mod p), output z = r

2. Calculate (r + x)(p—l)/2 =u + vx (mod f(x)), f(x)= x2—y
3. If u =0 then output z = yl (mod p), else goto step 1

note: (b+cx)(d+ex) = (bd+ce x%) + (betcd) x
= (bd+ce y) + (betcd) x (mod x%-y)
use square-multiply algorithm to calculate the

polynomial (r + x)@-1)/2

* the probability to successfully find z for each » > 1/2




+ex: find z such that z2 = 12 (mod 13)

solution:
x13=1(mod4) 1e.4k+l
&choose 7r=3,32=9 =12

53 +x) B3 D2=3+x)0=12+0x (modx3-12)
&choose r=7,72=10= 12

(7 +x) B3 D2=7+x)0=0+8x (modx3-12)
—z=8"'1=5 (mod 13)

Why does it work???
Why 1s the success probability > %2 277




B dio ; ™

<~ Now let's return to the question of solving square roots
inZ’,i.e
for an integer yeQR_,
find xeZ_* such that x* = y (mod n)

< We would like to transform the problem into solving
square roots mod p.

< Question: for n=p-q

662

Is solving “x“ =y (mod »n)” equivalent to solving

“x” =y (mod p) and x* = y (mod ¢)"??? yes
(=) x*-y=kn=kpg = p | x*-y and q | x*>-y [

(<) plx*-y, q|x*-y, i.e. x*>-y=kp=k'q, qfp = qlk, i.e. x*-y=k"pq [1,,




4 find x such that x*> = 71 (mod 77)
x77=7"-11

* “x* satisfies f(x*) =71 (mod 77)” <
“x* satisfies both f(x*) =1 (mod 7) and {(x*)=5 (mod 11)”

* since 7 and 11 are prime numbers, we can solve x* = 1 (mod 7)
and x? = 5 (mod 11) far more easily than x* = 71 (mod 77)
x%= 1 (mod 7) has two solutions: x = +1 (mod 7)

x?>= 5 (mod 11) has two solutions: x = +4 (mod 11)

* put them together and use CRT to calculate the four solutions
x= 1(mod7)= 4(mod 11) = x= 15 (mod 77)
x= 1(mod7)= 7(mod 11) = x= 29 (mod 77)
x= 6(mod7)= 4 (mod 11) = x= 48 (mod 77)
x= 6(mod7)= 7(mod 11) = x= 62 (mod 77)




<~ Previous slides show that once you know the factors of n
are p and g, you can easily solve the square roots of n

<~ Indeed, if you can solve the square roots for one single
quadratic residue mod 7, you can factor n.

* from the four solutions *a, +b on the previous slide
x=c (modp)=d(mod g) = x=a (modp-q)
x=c (mod p) =-d(mod g) = x=b (mod p-q)
x=-c (modp)=d(mod g) = x=-b (mod p-q)
x =-c (mod p) =-d (mod g) = x =-a (mod p-q)
we can find out a = b (mod p) and a =-b (mod q)
(or equivalently a = -b (mod p) and a = b (mod g))

* therefore, p | (a-b) 1.e. gcd(a-b, n) =p (ex. gcd(15-29, 77)=7)
g | (atb)1.e. gcd(at+b, n) =q (ex. gcd(15+29, 77)=11)

32




< Consider yeZ ~ if 3x €Z °, such that x> = y (mod n),

then y 1s called a quadratic residue mod », 1.e. yeQR,

< If the modulus p 1s prime, there are (p-1)/2 quadratic
residues in Z "

* let g be a primitive rootin Z *, {g, g%, &°, ..., g"'} isa
permutation of {1,2,...p-1}

x in the above set, {g°, g*,..., ¢!} are quadratic
residues (QR))

* {g,g",..., &} are quadratic non-residues (QNR ),
out of which there are ¢(p-1) primitive roots




° ° ° r7>x<
Quadratic Residues in Z,

15t proof:

* For eachxeZ ", p-x # x (mod p) (since if x 1s odd, p-
x 1s even), 1t’s clear that x and p-x (-x) are both
square roots of a certain yeZ -

* Because there are only p-1 elements 1n Zp*, we know
that |QR | < (p-1)/2

x Because | {g°, g%,..., &'} | = (p-1)/2, there can be no
more quadratic residues outside this set. Therefore,

the set {g, g°,..., g’} contains only quadratic non-
residues




° ° ° r7>x<
Quadratic Residues in Z,

* Because the squares of x and p-x are the same, the number of
quadratic residues must be less than p-1 (i1.e. some element 1n Zp*
must be quadratic non-residue)

214 proof:

x Let g is a primitive, consider this set {g, g°,..., g#*} directly

* It ge QR ), then g cannot be a primitive (because g* must all be

quadratic residues). Thus, if g 1s a primitive then ge QNR |
* If g?tl=g**g € QR ,, I xeZ " such that x* = g g" g (mod p)

Since ged(gs, p)=1, g = ((g4) ") x? = ((g)'x)? €eQR, contradiction
* Thus, g**"'eQNR,




° ° ° r7 *
Quadratic Residues mn Z
P
<+ ex. p=143537, p-1=143536=2*-8971,
d(p-1)=24-8971-(1-1/2)-(1-1/8971)=71760 primitives,
(p-1)12=71768 QR ’s and 71768 QNR s

* Note: 1f g 1s a primitive, then g3 : g5 ... are also primitives

except the following 8 numbers g®77!, g®713 897115

* Elements 1n Zp* can be grouped further according to their order

since Verp*, ord,(x) | p-1, we can list all possible orders

8971 |

p-1| p-1| p-1]| p-1 p-1
2 4 8 16 : : -8 [ 897116

QR,| QR QR QR, QR,

1 36




< If y 1s a quadratic residue modulo 7, 1t must be a
quadratic residue modulo all prime factors of 7.

IxeZ, st.x’=y(modn) > x*=kn+y=kpq+y

— x° = y (mod p) and X° = y (mod ¢q)

< If y 1s a quadratic residue modulo p and also a quadratic
residue modulo ¢, then y 1s a quadratic residue modulo 7.

r€Z, and r,eZ" such that

y =r* (mod p) = (r; mod p)* (mod p)

=r,* (mod gq) = (r, mod g)* (mod q)

from CRT, 3! » €Z " such that » = r, (mod p) = r, (mod q)
therefore, y = r? (mod p) = r?> (mod q)
again from CRT, y = 7? (mod p-q)




|
Legendre Symbol
< Legendre symbol L(a, p) 1s defined when a 1s any integer,
p 1s a prime number greater than 2
* L(a,p)=01fp|a
* L(a, p) =1 1f a 1s a quadratic residue mod p
* L(a, p) =-1 1f a 1s a quadratic non-residue mod p

<~ Two methods to compute (a/p)
x (alp) = a?" D2 (mod p)
* recursively calculate by L(a - b, p) = L(a, p) - L(b, p)
l.Ifa=1,L(a,p)=1
2. If a is even, L(a, p) = L(a/2, p)-(-1)@* D8
3. If a is odd prime, L(a, p) = L((p mod a), a)-(-1)«D@e-D/4

< Legendre symbol L(a, p) =-1 1f a € QNR,
L(a,p)=11ta € QR




Legendre Symbol

yeQR, <y D2=] (mod p)

(=)
* [t yeQR,
* Then IxeZ " such that y=x* (mod p)
x Therefore, y?-12 = (x?2)P-D2 = x-D=1 (mod p)

(<)

* Ify#QR  i.e. yeQNR, ord,(g) = p-1

* Then y=g?*1 (mod p) /\/

* Therefore, yP-D2 = (g2 - g)P-D2 = ghp-]) o-12= o2 X1 (mod p)
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< Jacob1 symbol J(a, n) 1s a generalization of the

Legendre symbol to a composite modulus 7

< If n 1s a prime, J(a, n) 1s equal to the Legendre symbol

i.e. J(a, n) = a"Y2(mod n)

<~ Jacobi symbol cannot be used to determine whether a
1s a quadratic residue mod » (unless # 1s a prime)
ex. J(7,143)=J(7, 11)-J(7, 13) = (-1)-(-1) =1
however, there 1s no mteger x such that
x? =7 (mod 143)




<~ The following algorithm computes the Jacobi symbol J(a, n), for any
integer a and odd integer n, recursively:

* Def 1:J(0, n) =0 also If n 1s prime, J(a, n) = 0 if n|a
Def 2: Ifnis prime, J(a, n) =1 1fa € QR, and J(a,n) =-11fa ¢ QR,
Def 3: If n 1s a composite, J(a, n) = J(a, p,'p,...'p,,) = Ia.p,) J(ap,)...-J(a,p,,)
Rule 1: J(1,n) =1

Rule 2: J(a-b, n) = J(a, n) - J(b, n)
Rule 3: J(2, n) =1 if (n?-1)/8 is even and J(2, n) = -1 otherwise
Rule 4: J(a, n) = J(a mod n, n)
Rule 5: J(a, b) = J(-a, b) 1f a <0 and (b-1)/2 is even,
J(a, b) =-J(-a, b) if a<0 and (b-1)/2 1s odd
Rule 6: J(a, b,"b,) =J(a, b)) - I(a, b,)
Rule 7: if gcd(a, b)=1, a and b are odd

x 7a: J(a, b) = 1(b, a) if (a-1):(b-1)/4 1s even
%« 7b: J(a, b) =-J(b, a) if (a-1)-(b-1)/4 is odd




QR and Jacobt Symbol

<~ Consider n = p-q, where p and g are prime numbers

x € QR,
<x € QR andx € QR
< J(x, p) =xP D2 =1 (mod p) and J(x, g) =x¢V? =1 (mod g)

= Jx,n)=Jx,p) Jx,qg)=1

I, p) | Ix, q) | JCx, m)

Qoo
Qo
Qio
Qi




