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Prime NumbersPrime Numbers
 Prime number: an integer p>1 that is divisible only by 1 

and itself, ex. 2, 3,5, 7, 11, 13, 17…
 Composite number: an integer n>1 that is not primep g p
 Fact: there are infinitely many prime numbers.  (by Euclid)

on the contrary assume a is the largest prime numberpf: on the contrary, assume an is the largest prime number
 let the finite set of prime numbers be {a0, a1, a2, …. an}
 the n mber b a *a *a * *a + 1 is not di isible b an a

pf:

 the number b = a0*a1*a2*…*an + 1 is not divisible by any ai
i.e. b does not have prime factors  an
 if b h i f t d b>d> th “d i i2  if b has a prime factor d,  b>d>an, then “d is a prime 

number that is larger than an” … contradiction
 if b does not have any prime factor less than b then “b is a

2 cases:
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 if b does not have any prime factor less than b, then b is a 
prime number that is larger than an” … contradiction

Prime Number TheoremPrime Number Theorem
 Prime Number Theorem:e Nu be eo e :

 Let (x) be the number of primes less than x
 Then x Then

in the sense that the ratio (x) / (x/ln x)  1 as x 

(x)   x
ln x

in the sense that the ratio (x) / (x/ln x)  1 as x 

 Also and for x17(x)  x (x)  1 10555 x
 Also,                          and for x17,

 Ex: number of 100 digit primes

(x)   ln x (x)   1.10555 ln x

 Ex: number of 100-digit primes

(10100) (1099)  10100 1099
 3 9  1097
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(10100) - (1099) 
ln 10100 ln 1099-  3.9  10

FactorsFactors

Every composite number can be expressible as a 
product aꞏb of integers with 1 < a, b< n

Every positive integer has a unique representation 
as a product of prime numbers raised to different 
powers.p

Ex. 504 = 23 ꞏ 32 ꞏ 7,  1125 = 32 ꞏ 53
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FactorsFactors
Lemma: p is a prime number and p | aꞏb p | a or p | bLemma: p is a prime number and p | a b       p | a or p | b, 

more generally, p is a prime number and p | aꞏbꞏ...ꞏz 
p must divide one of a b zp must divide one of a, b, …, z

 proof:
case 1: p | acase 1:  p | a
case 2:  p | a,

 p | a and p is a prime number  gcd(p a) = 1  1 = a x + p y p | a and p is a prime number  gcd(p, a) = 1  1 = a x + p y
 multiply both side by b,  b = b a x + b p y
 p | a b  p | b

 In general: if p | a then we are done, if p | a then p | bc…z, continuing 
this way, we eventually find that p divides one of the factors of the 
product
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product

Unique Prime Factorization TheoremUnique Prime Factorization Theorem
 Theorem: Every positive integer is a product of primes.  

This factorization into primes is unique, up to 
reordering of the factors. • Empty product equals 1.

P i i f t d t Proof: product of primes
 assume there exist positive integers that are not product of primes
 let n be the smallest such integer

• Prime is a one factor product.

 let n be the smallest such integer
 since n can not be 1 or a prime, n must be composite, i.e. n = aꞏb
 since n is the smallest, both a and b must be products of primes.
 n = aꞏb must also be a product of primes contradiction n = a b must also be a product of primes, contradiction

 Proof: uniqueness of factorization
 assume n = r1

c1r2
c2ꞏꞏꞏrk

ck p1
a1p2

a2ꞏꞏꞏps
as = r1

c1r2
c2ꞏꞏꞏrk

ck q1
b1q2

b2ꞏꞏꞏqt
bt

where pi, qj are all distinct primes. 
 let m = n / (r1

c1r2
c2ꞏꞏꞏrk

ck)
 consider p1 for example, since p1 divide m = q1q1..q1q2…qt, p1 must 
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1 1 1 1 1 2 t 1
divide one of the factors qj, contradict the fact that “pi, qj are distinct 
primes”

Fermat’s Little Theorem
(“Fair-MAH”)

Fermat s Little Theorem
 If p is a prime p | a then ap-11 (mod p) If p is a prime, p | a  then  a 1 (mod p)

 let S = {1, 2, 3, …, p-1} (Zp
*), define (x)  a ꞏ x (mod p) be 

a mapping : SZ
Proof:

a mapping : SZ
x  S, (x)  0 (mod p) x  S, (x)  S, i.e. : SS 

if (x)  a ꞏ x  0 (mod p)   x  0 (mod p) since gcd(a, p) = 1

 x, y  S, if x  y then (x)  (y)
( ) ( p) ( p) g ( , p)

if (x)  (y)  a ꞏ x  a ꞏ y  x  y since gcd(a, p) = 1
 from the above two observations, (1), (2),... (p-1) are 

distinct elements of S
1 2 ( 1) (1) (2) ( 1) ( 1) ( 2) ( ( 1))1ꞏ2 ꞏ... ꞏ(p-1)  (1)ꞏ(2)ꞏ...ꞏ(p-1)  (aꞏ1)ꞏ(aꞏ2)ꞏ…ꞏ(aꞏ(p-1))

 ap-1 (1ꞏ2 ꞏ... ꞏ(p-1)) (mod p)
since gcd(j p) = 1 for j  S we can divide both side by 1 2

7

since gcd(j, p) = 1 for j  S, we can divide both side by 1, 2, 
3, … p-1, and obtain ap-11 (mod p)

Fermat’s Little TheoremFermat s Little Theorem
 Ex: 210 = 1024  1 (mod 11)( )

253 = (210)523  1523  8 (mod 11)
i e 253 253 mod 10 23 8 (mod 11)i.e. 253  253 od 0  23  8 (mod 11)

1 if n is prime, then 2n-1  1 (mod n)
i.e. if 2n-1  1 (mod n) then n is not prime ()

1usually, if 2n-1  1 (mod n), then n is prime
 exceptions: 2561-1  1 (mod 561) although 561 = 3ꞏ11ꞏ17p ( ) g

21729-1  1 (mod 1729) although 1729 = 7ꞏ13ꞏ19
 () is a quick test for eliminating composite number
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( ) q g p



Euler’s Totient Function (n)Euler s Totient Function (n)
(n): the number of integers 1a<n s.t. gcd(a,n)=1( ): t e u be o tege s a s.t. gcd(a, )

ex. n=10, (n)=4     the set is Z10
* = {1,3,7,9}

properties of (•)properties of (•)
(p) = p-1, if p is prime
(pr) = pr - pr-1= pr ꞏ (1-1/p), if p is prime
(nꞏm) = (n) ꞏ (m) if gcd(n,m)=1 multiplicative 

property(n m) (n)  (m)  if  gcd(n,m) 1
(nꞏm) = ((d1/d2/d3)

2)ꞏ(d2
3)ꞏ(d3

3)ꞏ(n/d1/d2)ꞏ(m/d1/d3)
if d( ) d d( /d d ) d d( /d d ) d

property

if  gcd(n,m)=d1, gcd(n/d1,d1)=d2, gcd(m/d1,d1)=d3

(n) = n    (1-1/p)
p|n
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ex. (10)=(2-1)ꞏ(5-1)=4  (120)=120(1-1/2)(1-1/3)(1-1/5)=32

p|n

How large is (n)?How large is (n)?
(n)  n ꞏ 6/2 as n goes large
 Probability that a random number r is multiples of a prime 

number p? t b f th f k1/p think of 2 (even numbers), 3, 5, …u be p?

p 2p 3p 4p

r must be of the form kp1/p think of 2 (even numbers), 3, 5, …

 Probability that two independent random numbers r1 and r2
b h h i i b

p       2p       3p      4p

both have a given prime number p as a factor?
 The probability that they do not have p as a common factor 

1/p2

is thus 1 – 1/p2

 The probability that two numbers r1 and r2 have no common 
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p y 1 2
prime factor? P = (1-1/22)(1-1/32)(1-1/52)(1-1/72)…

Pr{ r and r relatively prime }Pr{ r1 and r2 relatively prime }
 Equalities: 1

1 + 1/22 + 1/32 + 1/42 + 1/52 + 1/62 + = 2/6

= 1+x+x2+x3+…1
1-x

 P = (1-1/22)(1-1/32)(1-1/52)(1-1/72) ꞏ ...
((1+1/22+1/24+ )(1+1/32+1/34+ ) )-1

1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + …   /6

= ((1+1/22+1/24+...)(1+1/32+1/34+...) ꞏ ...) 1

= (1+1/22+1/32+1/42 +1/52 +1/62+…)-1

= 6/2

 0.610.61
each positive number has a unique prime number factorization
ex 452 = 34 ꞏ 52
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ex.    45 = 3  5

How large is (n)?How large is (n)?
 (n) is the number of integers less than n that are relative 

prime to n
 (n)/n is the probability that a randomly chosen integer is ( ) p y y g

relatively prime to n
 Therefore, (n)  n ꞏ 6/2 Therefore, (n) n  6/
 Pn = Pr { n random numbers have no common factor } 

 n independent random numbers all have a given prime p as a n independent random numbers all have a given prime p as a 
factor is 1/pn

 They do not all have p as a common factor 1 – 1/pn They do not all have p as a common factor 1 – 1/p
 Pn = (1+1/2n+1/3n+1/4n +1/5n +1/6n+…)-1 is the Riemann zeta 

function (n) http://mathworld.wolfram.com/RiemannZetaFunction.html
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function (n) http://mathworld.wolfram.com/RiemannZetaFunction.html

 Ex. n=4, (4) = 4/90  0.92



Euler’s TheoremEuler s Theorem
 If gcd(a,n)=1  then  a(n)  1 (mod n) true even when n = pk

true when n is prime

g ( , ) ( )
 let S be the set of integers 1x<n, with gcd(x, n) = 1
define (x)  a ꞏ x (mod n) be a mapping : SZ

Proof:
( ) ( ) pp g 

x  S and gcd(a, n) = 1, if (x)  a ꞏ x  0 (mod n)  x  0 (mod n)
gcd(a, n)=1 and gcd(x, n)=1 
(no common prime factors)(x)  0 (mod n) x  S (x)  S i e : SS

 x, y  S, ‘if x  y then (x)  (y) (mod n)’
if ( ) ( ) i d( ) 1

gcd((x), n) = 1
x  S, (x)  S, i.e. : SS

 from the above two observations, xS, (x) are distinct 
elements of S (i e {(x) | xS} is S)

if (x)  (y)  a ꞏ x  a ꞏ y  x  y since gcd(a, n) = 1

elements of S (i.e. {(x) | xS} is S)
  x   (x)  a(n)  x    (mod n)

xS xS xS
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since gcd(x, n) = 1 for x  S, we can cancel one by one 
x  S of both sides, and obtain a(n)1 (mod n)

Euler’s TheoremEuler s Theorem
Example: What are the last three digits of 7803?Example: What are the last three digits of 7 ?

i.e. we want to find 7803 (mod 1000)
1000 23 53 (1000) 1000(1 1/2)(1 1/5) 4001000 = 23ꞏ53,    (1000) = 1000(1-1/2)(1-1/5) = 400
7803  7803 (mod 400)  73  343 (mod 1000))

Example: Compute 243210 (mod 101)?p p ( )
101 = 1 ꞏ 101,            (101) = 100
243210  243210 (mod 100)  210  1024  14 (mod 101)2  2  2  1024  14 (mod 101)
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A second proof of Euler’s TheoremA second proof of Euler s Theorem
Euler’s Theorem:  aZn

*, a(n)  1 (mod n)n , ( )
 We have proved the above theorem by showing that the function 

(x)  a ꞏ x (mod n) is a permutation.
 We can also prove it through Fermat’s Little Theorem & CRT
 consider n = p ꞏ q, (n) = (p-1)(q-1)p q, ( ) (p )(q )

aZp
*, ap-1  1 (mod p)  (ap-1)q-1  a(n)  1 (mod p) 

aZq
*, aq-1  1 (mod q)  (aq-1)p-1  a(n)  1 (mod q)

 consider n = pr, (n) = pr-1(p-1)

 pq | a(n)-1 , i.e. aZ* (p | a and q | a), a(n)  1 (mod n)ngcd(p,q)=1

 consider n  p , (n)  p (p 1)

( ) 2pr-1 pr-1pr-1

a(n)  (1+p)
 1 (mod n)

pr-1

aZ* , ap-1  1 (mod p)  ap-1 = 1+ppr
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a(n) = (1+p) = 1 +       p +       (p)2 +… 
= 1 + pr-1 p + pr-1(pr-1-1)/2 (p)2 +…

p
1C

p
2C

p 1 (mod n)

A second proof (cont'd)A second proof (cont d)
 consider n = pr ꞏ qs, (n) = pr-1(p-1) qs-1(q-1)

aZ* , ap-1  1 (mod p)pr

pr-1 qs-1
 (a(p-1)     )(q-1)  a(n)  1 (mod pr)

 (ap-1)  1 (mod pr)pr-1

 pr | a(n)-1

aZ* , aq-1  1 (mod q)qs

 (a )  a  1 (mod p ) 

qs-1 pr-1( (q-1) )(p 1) (n) 1 ( d s)

 (aq-1)  1 (mod qs)qs-1
 p | a 1

s (n)q p (a(q-1)     )(p-1)  a(n)  1 (mod qs) 

 prqs | a(n)-1

 qs | a(n)-1

gcd(pr,qs)=1 n, i.e. aZ* (p | a and q | a), a(n)  1 (mod n)

Unique Prime 
Factorization

 consider n = p1
r1 p2

r2ꞏꞏꞏpk
rk(n) = n    (1-1/p)

p|n
1 1 ri-1

aZ* , api-1  1 (mod pi)pi
ri  (api-1)  1 (mod pi

ri)pi
ri 1

pi
ri-1

 (a(pi-1)      )  a(n)  1 (mod pi
ri)

(pj-1)pj
rj-1

ji  pi
ri | a(n)-1
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 (a )                   a  1 (mod pi ) ji  pi | a -1
all pi

ri are 
relatively prime  pi

ri | a(n)-1
i=1

k


n, i.e. aZ* (i,pi | a), a(n)  1 (mod n)



Carmichael TheoremCarmichael Theorem
Theorem:  
aZn

*, a(n)  1 (mod n)  and anꞏ(n)  1 (mod n2)
where n p q p q (n) lcm(p 1 q 1) (n) | (n)where n=pꞏq, p  q, (n) = lcm(p-1, q-1), (n) | (n)

 like Euler’s Theorem, we can prove it through Fermat’s 
Little Theorem, consider n = p ꞏ q, where pq,  
aZp

*, ap-1  1 (mod p)  (ap-1)(q-1)/gcd(p-1,q-1)  a(n)  1 (mod p) p ( p) ( ) ( p)
aZq

*, aq-1  1 (mod q)  (aq-1)(p-1)/gcd(p-1,q-1)  a(n)  1 (mod q) 
gcd(p q)=1  pq | a(n)–1 aZ * (i e p | aq | a) a(n)  1 (mod n)gcd(p,q)=1  pq | a ( )–1, aZn (i.e. p | aq | a), a  1 (mod n)
therefore, aZn

*, a(n) = 1 + k ꞏ n
raise both side to the n th power we get anꞏ(n) = (1 + k ꞏ n)n
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raise both side to the n-th power, we get a ( ) = (1 + k ꞏ n) ,
 anꞏ(n) = 1 + nꞏkꞏn + ... a  Zn

* (or Zn2*), anꞏ(n)  1 (mod n2)

Basic Speedup in ExponentiationBasic Speedup in Exponentiation

Let a, n, x, y be integers with n1, and gcd(a,n)=1 
if x  y (mod (n)), then ax  ay (mod n).

 If you want to work mod n, you should work mod 
(n) or (n) in the exponent.
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Primitive Roots modulo pPrimitive Roots modulo p
When p is a prime number a primitive rootWhen p is a prime number, a primitive root 

modulo p is a number whose powers yield every 
nonzero element mod p (equivalently the order ofnonzero element mod p. (equivalently, the order of 
a primitive root is p-1)

ex:  313, 322, 336, 344, 355, 361 (mod 7)
3 is a primitive root mod 73 is a primitive root mod 7

 sometimes called a multiplicative generator
 there are plenty of primitive roots, actually (p-1)

 ex. p=101, (p-1)=100ꞏ(1-1/2)ꞏ(1-1/5)=40
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p=143537, (p-1)=143536ꞏ(1-1/2)ꞏ(1-1/8971)=71760

Primitive Testing ProcedurePrimitive Testing Procedure
 How do we test whether h is a primitive root modulo p?p p

 naïve inefficient method: 
go through all powers h2, h3, …, hp-2, and make sure
they all  1 modulo p

 fast method: 
l 1 h i flet p-1 has prime factors q1, q2, …, qn,
for all qi, make sure h(p-1)/qi modulo p is not 1, 
th h i i iti tthen h is a primitive root

Intuition: let h  ga (mod p), gcd(a, p-1)=d  h is not a primitive root
( 1)/d /d ( 1)

 prime qi | d, h(p-1)/qi  (ga) (p-1)/qi  (ga/qi)(p-1)  1 (mod p)
(ga) (p-1)/d  (ga/d)(p-1)  1 (mod p)
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ex. p=29, p-1=227, h=5, h28/2=1, h28/7=16, 5 is not a primitive
h=11, h28/2=28, h28/7=25, 11 is a primitive



Primitive Testing Procedure (cont’d)Primitive Testing Procedure (cont d)
 Procedure to test if h is a primitive root :

let p-1 has prime factors q1, q2, …, qn, (i.e. (p)=p-1=q1
r1...qn

rn)
for all q i, h

(p-1)/qi (mod p) is not 1  h is a primitiveqi, ( p) p
pf:

(a) by definition, ord (h) is the smallest positive x s.t. hx  1 (mod p)(a) by definition, ordp(h) is the smallest positive x s.t. h 1 (mod p)
Fermat Theorem: h(p)  1 (mod p) therefore implies ordp(h)  (p)

if (p) = ord (h) * k + s with 0  s < ord (h)if (p)  ordp(h)  k + s  with 0  s < ordp(h)

h(p)  hordp(h) * k hs  hs  1 (mod p), but s < ordp(h)  s = 0, i.e. ordp(h) | (p)

(b) assume h is not a primitive root i e ord (h) < (p)=p 1(b) assume h is not a primitive root i.e ordp(h) < (p)=p-1 

then  i such that ordp(h) | (p-1)/q i         i.e. h(p-1)/q i  1 (mod p) for some q
i

( ) if f ll h(p 1)/q 1 ( d )

q1
r1...qn

rn
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(c) if for all q i, h(p-1)/q i  1 (mod p) 

then ordp(h) = (p) and h is a primitive root modulo p

Number of Primitive Roots in Z *Number of Primitive Roots in Zp
 Why are there (p-1) primitive roots?

 let h be a primitive root (the order of h is p-1)
 h, h2, h3, …, hp-1 is a permutation of 1,2,…p-1

an integer 
less than p-1

 if gcd(a, p-1)=d, then (ha) (p-1)/d  (ha/d)(p-1)  1 (mod p) which
says that the order of ha is at most (p-1)/d, therefore, ha is not a 
primitive root  There are at most (p-1) primitive roots in Zp

*

 For any element ha in Zp
* where gcd(a, p-1) = 1, it is guaranteed y p g ( p ) g

that (ha)(p-1)/qi  1 (mod p) for all qi (qi is prime factors of p-1)
pf.  assume that for a certain qi, (h

a)(p-1)/qi  1 (mod p)
h is a primitive root  p-1 | a ꞏ (p-1) / qi

  integer k   s.t. a ꞏ (p-1) / qi = k ꞏ (p-1)   i.e. a = k ꞏ qi

22

 qi | a 
 qi | gcd(a, p-1)  contradiction

Lucas Primality TestLucas Primality Test
 An integer n is prime iff the converse of 

F t Littl Tha, s.t.    1. an-1  1 (mod n)
2. prime factor q of n-1, an-1/q  1 (mod n)Proof:

Fermat Little Theorem

()  if n is prime, 
Fermat's little theorem ensures that "akn, an-1  1 (mod n)"

catch: inefficient, factors of n-1 are required

()  if a, s.t. 1. an-1  1 (mod n) and 
a primitive a ensures " prime factor q of n-1, an-1/q  1 (mod n)"

2. prime factor q of n-1, an-1/q  1 (mod n)
By definition, ordn(a) is the smallest positive x s.t. ax  1 (mod n)
the first condition implies that  ordn(a)  n-1  and  ordn(a) | n-1
the second condition then implies that ordn(a) = n-1 (*)
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Euler thm says that a(n)  1 (mod n), by definition (n)<n-1 if n is 
a composite number, i.e. ordn(a) | (n) < n-1, contradict with (*).

Pratt's Primality CertificatePratt s Primality Certificate
 Pratt's proved in 1975 that the following polynomial-

size structure can prove that a number is prime and 
is verifiable in polynomial time

 example:
 based on the Lucas Primality Test (LPT)

229
2 6229-1  1 (mod 229)23-1  1 (mod 3)219-1  1 (mod 19)

verification(a = 6, 229 − 1 = 22 × 3 × 19)
(known prime)

3
2

6  1 (mod 229)
6228/2  228 (mod 229)
6228/3  134 (mod 229)

2  1 (mod 3)
22/2  2 (mod 3)
By LPT 2 is a prime

2 1 (mod 19)

218/3  7 (mod 19)
218/2  18 (mod 19)

( p )
(a = 2, 3 − 1 = 2)

(known prime)
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6228/3  134 (mod 229)
6228/19  165 (mod 229)

B LPT if 2 3 19 i

By LPT, 2 is a prime, 
then 3 is also a prime 
2 7 (mod 19)

By LPT, if 2 and 3 are primes, 
then 19 is also a prime 

(a = 2, 19 − 1 = 2 × 32)
( p )

2 (known prime)

242 (known prime)
3 By LPT, if 2, 3, 19 are primes, 

then 229 is also a prime 

p( p )
(a = 2, 3 − 1 = 2)



Multiplicative Generators in Z *Multiplicative Generators in Zn
How do we define a multiplicative generator in 

Zn
* if n is a composite number?

Is there an element in Z * that can generate all elementsIs there an element in Zn that can generate all elements 
of Zn

*?
If n = p q the answer is negative From CarmichaelIf n = p ꞏ q, the answer is negative.  From Carmichael 

theorem, aZn
*, a(n)  1 (mod n), gcd(p-1, q-1) is at 

least 2 (n) = lcm(p 1 q 1) is at most (n) / 2 Theleast 2, (n) = lcm(p-1, q-1) is at most (n) / 2.  The 
size of a maximal possible multiplicative subgroup in 
Z * is therefore no larger than (n)Zn is therefore no larger than (n).

If n = pk, the answer is yes

25

How many elements in Zn
* can generate the maximal 

possible subgroup of Zn
*?

Finding Square Roots mod nFinding Square Roots mod n
For example: find x such that x2  71 (mod 77)For example: find x such that x  71 (mod 77)
Is there any solution?

l i hHow many solutions are there?
How do we solve the above equation systematically?

 In general: find x s.t. x2  b (mod n), 
h b QR d i bwhere b  QRn , n = pꞏq, and p, q are prime numbers

Easier case: find x s.t. x2  b (mod p), ( p)
where p is a prime number, b  QRp

26

Note: QRn is “Quadratic Residue in Zn
*” to be defined later

Finding Square Root mod pFinding Square Root mod p
Gi Z * fi d t 2 ( d ) i iGiven yZp

*, find x, s.t. x2  y (mod p), p is prime
p  1 (mod 4) (i.e. p = 4k + 1) : probabilistic algorithmTwo cases:
p  3 (mod 4) (i.e. p = 4k + 3) : deterministic algorithm

 Is there any solution? (Is y a QR ?)

Two cases:

 Is there any solution? (Is y a QRp?)

check      y  1 (mod p)?
p-1
2

Euler's Criterion
p  3 (mod 4)

( d )
p+1

4

Euler s Criterion

x   y (mod p) 
 (p+1)/4 = (4k+3+1)/4 = k+1 is an integer

4
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 x2 = y(p+1)/2 = y(p-1)/2 ꞏ y  y (mod p)

Finding Square Root mod pFinding Square Root mod p
p  1 (mod 4)p  1 (mod 4)
Peralta, Eurocrypt’86, p = 2s q + 1, both p, q are prime
3 t b bili ti d3-step probabilistic procedure

1. Choose a random number r, if r2  y (mod p), output z = r
2 Calc late ( + )(p-1)/2 + (mod f( )) f( ) 22. Calculate (r + x)(p 1)/2  u + v x (mod f(x)),   f(x) = x2-y
3. If u = 0 then output z  v-1 (mod p), else goto step 1

note:  (b+cx)(d+ex)  (bd+ce x2) + (be+cd) x
 (bd+ce y) + (be+cd) x (mod x2-y)

use square-multiply algorithm to calculate the
polynomial (r + x)(p-1)/2

28
 the probability to successfully find z for each r  1/2



Finding Square Root mod p
ex: find z such that z2  12 (mod 13)

Finding Square Root mod p
ex:   find z such that z  12 (mod 13)

solution:
13  1 (mod 4)    ie. 4k+1
choose  r = 3, 32 = 9  12
 (3 + x)(13-1)/2 = (3 + x)6  12 + 0 x    (mod x2-12)
choose  r = 7, 72  10  12
 (7 + x)(13-1)/2 = (7 + x)6  0 + 8 x (mod x2-12)
 z = 8-1 = 5  (mod 13)

Why does it work???

29

Why is the success probability > ½ ???

Finding Square Roots mod nFinding Square Roots mod n
 Now let's return to the question of solving square roots Now let s return to the question of solving square roots 

in Zn
*, i.e. 
for an integer yQRfor an integer yQRn, 

find xZn
* such that x2  y (mod n)

 We would like to transform the problem into solving 
square roots mod p.

 Question: for  n=pꞏq
Is solving “x2  y (mod n)” equivalent to solvingIs solving x y (mod n)  equivalent to solving 

“x2  y (mod p) and x2  y (mod q)”??? yes
2 k k 2 2
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() x2-y=kn=kpq
() p|x2-y, q|x2-y

 p | x2-y and q | x2-y �
, i.e. x2-y=kp=k'q , i.e. x2-y=k''pq �, q |p  q|k

Finding Square Roots mod p qFinding Square Roots mod pꞏq
 find x such that x2  71 (mod 77)( )

 77 = 7 ꞏ 11 
 “x* satisfies f(x*)  71 (mod 77)”  x* satisfies f(x*)  71 (mod 77)   

“x* satisfies both  f(x*)  1 (mod 7) and f(x*)  5 (mod 11)”
 since 7 and 11 are prime numbers we can solve x2  1 (mod 7) since 7 and 11 are prime numbers, we can solve x2  1 (mod 7) 

and x2  5 (mod 11) far more easily than x2  71 (mod 77)
x2  1 (mod 7) has two solutions: x  1 (mod 7)x  1 (mod 7) has two solutions: x  1 (mod 7) 
x2  5 (mod 11) has two solutions: x  4 (mod 11) 

 put them together and use CRT to calculate the four solutions put them together and use CRT to calculate the four solutions
x  1 (mod 7)  4 (mod 11)  x  15 (mod 77) 
x  1 (mod 7)  7 (mod 11)  x  29 (mod 77) 

31

x  6 (mod 7)  4 (mod 11)  x  48 (mod 77) 
x  6 (mod 7)  7 (mod 11)  x  62 (mod 77) 

Computational Equivalence to FactoringComputational Equivalence to Factoring
 Previous slides show that once you know the factors of nev ous s des s ow t at o ce you ow t e acto s o n

are p and q, you can easily solve the square roots of n
 Indeed if you can solve the square roots for one single Indeed, if you can solve the square roots for one single 

quadratic residue mod n, you can factor n.
 from the four solutions a b on the previous slide from the four solutions a, b on the previous slide

x  c (mod p)  d (mod q)  x  a (mod pꞏq) 
x  c (mod p)  -d (mod q)  x  b (mod pꞏq) 
x  -c (mod p)  d (mod q)  x  -b (mod pꞏq) 
x  -c (mod p)  -d (mod q)  x  -a (mod pꞏq)

we can find out a  b (mod p) and a  -b (mod q)we can find out a b (mod p) and  a b (mod q)
(or equivalently a  -b (mod p) and  a  b (mod q))

 therefore, p | (a-b) i.e. gcd(a-b, n) = p (ex. gcd(15-29, 77)=7)
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q | (a+b) i.e. gcd(a+b, n) = q (ex. gcd(15+29, 77)=11)



Quadratic ResiduesQuadratic Residues
 Consider yZ *, if  x Z *, such that x2  y (mod n), Consider yZn , if  x Zn , such that x y (mod n), 

then y is called a quadratic residue mod n,  i.e. yQRn

 If th d l i i th ( 1)/2 d ti If the modulus p is prime, there are (p-1)/2 quadratic 
residues in Zp

*

 let g be a primitive root in Zp
*, {g, g2, g3, …, gp-1} is a 

permutation of {1,2,…p-1}p { , , p }
 in the above set, {g2, g4,…, gp-1} are quadratic 

residues (QR )residues (QRp)
{g, g3,…, gp-2} are quadratic non-residues (QNRp),  
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out of which there are (p-1) primitive roots

Quadratic Residues in Z *Quadratic Residues in Zp
1st proof:p
For each xZp

*, p-x  x (mod p) (since if x is odd, p-
x is even) it’s clear that x and p x ( x) are bothx is even), it s clear that x and p-x (-x) are both 
square roots of a certain yZp

*

*Because there are only p-1 elements in Zp
*, we know 

that |QRp|  (p-1)/2p

Because | {g2, g4,…, gp-1} | = (p-1)/2, there can be no 
more quadratic residues outside this set Thereforemore quadratic residues outside this set.  Therefore, 
the set {g, g3,…, gp-2} contains only quadratic non-
residues
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residues 

Quadratic Residues in Z *Quadratic Residues in Zp
2nd proof:

 Because the squares of x and p-x are the same, the number of 
quadratic residues must be less than p-1 (i.e. some element in Zp

*
p

must be quadratic non-residue)
 Let g is a primitive, consider this set {g, g3,…, g p-2} directly
 If gQRp, then g cannot be a primitive (because g k must all be 

quadratic residues). Thus, if g is a primitive then gQNRpquadratic residues).  Thus, if g is a primitive then gQNRp

 If g2k+1g2kꞏg  QRp ,  xZp
* such that x2  gkꞏgkꞏg (mod p)

Since gcd(gk p)=1 g  ((gk)-1)2ꞏx2  ((gk)-1ꞏx)2 QR contradictionSince gcd(gk, p)=1, g  ((gk) ) ꞏx2  ((gk) 1ꞏx)2 QRp contradiction

 Thus, g2k+1QNRp
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Quadratic Residues in Z *Quadratic Residues in Zp
 ex. p=143537, p-1=143536=24ꞏ8971, 

(p-1)=24ꞏ8971ꞏ(1-1/2)ꞏ(1-1/8971)=71760 primitives, 
(p-1)/2=71768 QR ’s and 71768 QNR ’s(p-1)/2 71768 QRp s  and 71768 QNRp s

 Note: if g is a primitive, then g3, g5 … are also primitives

except the following 8 numbers g8971, g8971ꞏ3,..., g8971ꞏ15

 Elements in Zp
* can be grouped further according to their orderp g p g

since xZp
*, ordp(x) | p-1, we can list all possible orders

8 4 2 1168971

ordp(x) p-1 p-1
2

p-1
4

p-1
8

p-1
16

p-1
8971

p-1
8971ꞏ2

p-1
8971ꞏ4

p-1
8971ꞏ8

p-1
8971ꞏ16

8 4 2 1168971
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QNRp QNRp

(p-1)

QRp QRpQRpQRp QRp QRp QRp QRp

8# 12



QR for Composite Modulus nQRn for Composite Modulus n
 If y is a quadratic residue modulo n, it must be a If y is a quadratic residue modulo n, it must be a 

quadratic residue modulo all prime factors of n.
 xZ *  s t x2  y (mod n)  x2 = kꞏn + y = kꞏpꞏq + y xZn s.t. x  y (mod n)  x  k n + y  k p q + y

 x2  y (mod p) and x2  y (mod q)

 If i d ti id d l d l d ti If y is a quadratic residue modulo p and also a quadratic 
residue modulo q, then y is a quadratic residue modulo n.

* * r1Zp
* and r2Zq

* such that 
y  r1

2 (mod p)  (r1 mod p)2 (mod p)  
2 ( d ) ( d )2 ( d ) r2
2 (mod q)  (r2 mod q)2 (mod q)

from CRT, ! r Zn
* such that r  r1 (mod p)  r2 (mod q)

2 2
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therefore, y  r2 (mod p)  r2 (mod q)
again from CRT, y  r2 (mod pꞏq)

Legendre SymbolLegendre Symbol
 Legendre symbol L(a, p) is defined when a is any integer, 

p is a prime number greater than 2
 L(a, p) = 0 if p | a
 L( ) 1 if i d ti id d L(a, p) = 1 if a is a quadratic residue mod p
 L(a, p) = -1 if a is a quadratic non-residue mod p

 T th d t t ( / ) Two methods to compute (a/p)
 (a/p) = a(p-1)/2 (mod p)

i l l l b ( b ) ( ) (b ) recursively calculate by L(a ꞏ b, p) = L(a, p) ꞏ L(b, p)
1. If a = 1, L(a, p) = 1

22. If a is even, L(a, p) = L(a/2, p)ꞏ(-1)(p2-1)/8

3. If a is odd prime, L(a, p) = L((p mod a), a)ꞏ(-1)(a-1)(p-1)/4
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 Legendre symbol L(a, p) = -1 if a  QNRp

L(a, p) = 1 if a  QRp

Legendre SymbolLegendre Symbol
yQR  y(p-1)/21 (mod p)yQRp  y(p ) 1 (mod p)

()
 If yQRp

 Then xZ * such that yx2 (mod p) Then xZp such that yx2 (mod p)
 Therefore, y(p-1)/2  (x2)(p-1)/2  x(p-1)  1 (mod p)

()
 If yQR i.e. yQNR ordp(g) = p-1 If yQRp i.e. yQNRp

 Then yg2k+1 (mod p)
Th f ( 1)/2 ( 2k )( 1)/2 k( 1) ( 1)/2 ( 1)/2 1 ( d )
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 Therefore, y(p-1)/2  (g2k ꞏ g)(p-1)/2  gk(p-1) g(p-1)/2 g(p-1)/2 1 (mod p)

Jacobi SymbolJacobi Symbol
 Jacobi symbol J(a, n) is a generalization of the y ( ) g

Legendre symbol to a composite modulus n

 If n is a prime, J(a, n) is equal to the Legendre symbol 
i.e. J(a, n)  a(n-1)/2(mod n)( , ) ( )

 Jacobi symbol cannot be used to determine whether a
is a quadratic residue mod n (unless n is a prime)

ex J(7 143) = J(7 11)ꞏJ(7 13) = (-1)ꞏ(-1) = 1ex. J(7, 143) = J(7, 11) J(7, 13) = (-1) (-1) = 1
however, there is no integer x such that 
x2  7 (mod 143)
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Calculation of Jacobi SymbolCalculation of Jacobi Symbol
 The following algorithm computes the Jacobi symbol J(a, n), for any 

integer and odd integer rec rsi el :integer a and odd integer n, recursively:
 Def  1: J(0, n) = 0 also If n is prime, J(a, n) = 0 if n|a
 Def 2: If n is prime J(a n) = 1 if a QR and J(a n) = -1 if a QR Def  2: If n is prime, J(a, n)  1 if a QRn and  J(a, n)  1 if a QRn

 Def  3: If n is a composite, J(a, n) = J(a, p1ꞏp2…ꞏpm) = J(a,p1)ꞏJ(a,p2)…ꞏJ(a,pm)
 Rule 1: J(1, n) = 1( )
 Rule 2: J(aꞏb, n) = J(a, n) ꞏ J(b, n)
 Rule 3: J(2, n) = 1 if (n2-1)/8 is even and J(2, n) = -1 otherwise
 Rule 4: J(a, n) = J(a mod n, n)
 Rule 5: J(a, b) = J(-a, b) if a <0 and (b-1)/2 is even, 

J(a b) = -J(-a b) if a<0 and (b-1)/2 is oddJ(a, b)  J( a, b) if a<0 and (b 1)/2 is odd
 Rule 6: J(a, b1ꞏb2) = J(a, b1) ꞏ J(a, b2)
 Rule 7: if gcd(a, b)=1, a and b are odd
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 7a: J(a, b) = J(b, a) if (a-1)ꞏ(b-1)/4 is even
 7b: J(a, b) = -J(b, a) if (a-1)ꞏ(b-1)/4 is odd 

QR and Jacobi SymbolQRn and Jacobi Symbol
 Consider n = pꞏq, where p and q are prime numbers

x  QRn

 x  QR and x  QR x  QRp and x  QRq

 J(x, p) = x(p-1)/2  1 (mod p) and  J(x, q) = x(q-1)/2  1 (mod q)
 J(x n) = J(x p) J(x q) = 1 J(x, n) = J(x, p) ꞏ J(x, q) = 1

J(x p) J(x q) J(x n)

1 1Q00 1 xQRn

QNR

J(x, p) J(x, q) J(x, n)

-11
1-1

Q01

Q10

-1
-1

xQNRn

xQNRn
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-1 -1Q11 1 xQNRn


