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Prime Numbers

< Prime number: an integer p>1 that is divisible only by 1
and 1itself, ex. 2, 3,5, 7, 11, 13, 17...

< Composite number: an integer n>1 that is not prime
< Fact: there are infinitely many prime numbers. (by Euclid)

pf: #=on the contrary, assume a, is the largest prime number
% et the finite set of prime numbers be {a, a;, a,, .... a,}
% the number b = ay*a,*a,*...*a, + 1 is not divisible by any a;
i.e. b does not have prime factors <a,

2 cases: »if b has a prime factor d, b>d>a,, then “d is a prime
number that is larger than a,” ... contradiction
> 1f b does not have any prime factor less than b, then “b is a

prime number that is larger than a” ... contradiction
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Prime Number Theorem

< Prime Number Theorem:

* Let (x) be the number of primes less than x
* Then

Tx) ~ In x

in the sense that the ratio n(x) / (x/Inx) > 1 as x —> o

X X

* Also, m(x) > and for x>17, m(x) < 1.10555
In x In x
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Factors

< Every composite number can be expressible as a
product a'b of integers with 1 <a, b<n

< Every positive integer has a unique representation
as a product of prime numbers raised to different

powers.
s Ex. 504=23-32-7 1125=32-53




Factors

< Lemma: p is a prime number andp | a-b=>p|aorp|b,
more generally, p is a prime number and p | a-b-...'z
—> p must divide one of a, b, ..., z
* proof:

wcase l: p|a

wcase2: pfa,
> pfaand p is a prime number = ged(p,a)=1 = 1=ax+py
> multiply both side by b, b=bax+bpy
>plab=plb

% In general: if p | a then we are done, if p{ a then p | be...z, continuing
this way, we eventually find that p divides one of the factors of the
product

Unique Prime Factorization Theorem

< Theorem: Every positive integer is a product of primes.
This factorization into primes is unique, up to
reordering of the factors. « Empty product equals 1.

* Proof: product of primes * Prime is a one factor product.
% assume there exist positivef/@s that are not product of primes

% let n be the smallest suclyinteger

& since n can not be 1 or 8" prime, n must be composite, i.e. n=ab

% since n is the smallest, both a and b must be products of primes.

% n = a'b must also be a product of primes, contradiction

* Proof: uniqueness of factorization

% assume n = 1,1, 2 1k p, Ipy 2 pgs = 1y 2 'rkck%bl(hbz' : 'qut
where p;, q; are all distinct primes.

& letm=n/(r,r, 2 1,%)

% consider p; for example, since p; divide m = q,q;..q;9q;...q;, p; must
divide one of the factors q;, contradict the fact that “p;, q; are distinct
primes”

(“Fair-MAH”)

Fermat’s Little Theorem

< Ifpisaprime, pfa then aP'=1 (mod p)
Proof: #letS={1,2,3,...,p-1} (Zp*), define y(x) =a - x (mod p) be
a mapping y: S—>Z
aVx € S, y(x)#0 (mod p) = Vx € S, y(x) € S, i.e. y: S>S
ify(x)=a-x=0(modp) = x=0 (mod p) since ged(a, p) =1 ‘
aV x,y €S, ifx#y then y(x) # y(y)

ify(x)=y(y)=a-x=a-y=x=ysince gcd(a, p) = 1‘
% from the above two observations, y(1), y(2),... y(p-1) are
distinct elements of S
12 (p-D)=y(1)y(2) ... y(p-1) = (a-1)-(a-2) ...~ (a:(p-1))
=aP! (12 ... “(p-1)) (mod p)
wsince ged(j, p) = 1 for j € S, we can divide both side by 1, 2,
3, ... p-1, and obtain aP'=1 (mod p)

Fermat’s Little Theorem

+ Ex:2'19=1024 =1 (mod 11)
253 = (21923 =1°23 =8 (mod 11)
je. 223 =233mod 10293 -8 (1mod 11)

4 if n is prime, then 2™ = 1 (mod n)
fe. if21=1 (mod n) then n is not prime <—(*)
usually, if 2= (mod n), then n is prime
* exceptions: 2°°!"1 = 1 (mod 561) although 561 =3-11-17
2172912 1 (mod 1729) although 1729 =7-13-19

* (*) is a quick test for eliminating composite number




Euler’s Totient Function ¢(n)
< d(n): the number of integers 1<a<n s.t. gcd(a,n)-1
ex. n=10, ¢(n)-4 the setis Z,," = {1,3,7,9}
< properties of ¢(*)
*d(p) = p-1, if p is prime
*(p") - p'-p"'-p" - (1-1/p), if p is prime
*¢(n'm) = §(n) - §(m) if ged(mm)=1 P
* o(n'm) = $((d,/dy/d3)") ¢(d, ") 0(ds”) d(n/d, /dy)-¢(mid, /d5)
if ged(n,m)=d,, ged(n/d,,d,)=d,, ged(m/d,,d,)=d,
*d(n)=n II (1-1/p)
Vpln
ex. §(10)=(2-1)-(5-1)=4 ¢(120)=120(1-1/2)(1-1/3)(1-1/5)=32

How large 1s ¢(n)?
< d(n) ~ n - 6/ as n goes large
< Probability that a random number r is multiples of a prime
number p? | /p think of 2 (even numbers), 3, & .coq oo kp

| P 2 3p 4p
< Probability that two independent random numbers r, and r,
both have a given prime number p as a factor? 1/p2
< The probability that they do not have p as a common factor
is thus 1 — 1/p?
< The probability that two numbers r, and r, have no common

prime factor? P = (1-1/22)(1-1/32)(1-1/52)(1-1/72)...

0

Pr{ r, and r, relatively prime }

< Equalities: |

T 1-x
1+1/22+1/32+ 1/4> + 1/52 + 1/6> + ... = 1%/6

Tt P = (1-1/22)(1-1/32)(1-1/53)(1-1/72) - ... :
T (1224124 ) (1417324 1/34+.) - L)t
= (122417324 /42 4+1/52+1/6%+..) ! |

= IHx+xHx3+...

~..each positive number has a unique prime number factorization
ex. 452=34-52

How large 1s ¢(n)?
< ¢(n) 1s the number of integers less than n that are relative
prime to n

< ¢(n)/n is the probability that a randomly chosen integer is
relatively prime to n

% Therefore, ¢p(n) ~ n - 6/7?

< P, = Pr { n random numbers have no common factor }

* n independent random numbers all have a given prime p as a
factor is 1/p"

* They do not all have p as a common factor 1 — 1/p"

* P = (1+1/2"+1/3"+1/4"+1/5"+1/6"+...)" is the Riemann zeta
function (n) http://mathworld.wolfram.com/RiemannZetaFunction.html

* Ex. n=4, {(4) =1"90 ~ 0.92




Euler’s Theorem

true when n is prime

¢ If ged(a,n)=1 then a®™ =1 (modn) trueevenwhenn-pt
Proof: % let S be the set of integers 1<x<n, with gcd(x, n) = 1
xdefine y(x) = a - x (mod n) be a mapping y: S—>Z

X:X VX c S and gcd(a’ n) e 1, lf\V(A} 4? A 10 pss lUd u) A : =0 (mOd n)

geata; m=t-and ébu\)& m=t

\|I(X) #0 (mod Il) —vx c ,(1‘149 (}95[1120&[)];111}‘6 factgi\s
ged(w(x), n) =1
aV X,y €S, ‘if x#y then y(x) # y(y) (mod n)’
ify(x)=y(y) >a-x=a-y=x=ysince gcd(a,n) =1

% from the above two observations, VxeS, y(x) are distinct
elements of S (i.e. {y(x) | VxeS} is S)

* [Tx=I1 y(x) = a®™ H X (modn)

xeS  xeS
usince ged(x,n) =1 forx e S, we can cancel one by one
x € S of both sides, and obtain at(M=1 (mod n)

Euler’s Theorem

< Example: What are the last three digits of 7502
i.e. we want to find 75%3 (mod 1000)
1000 =23-53,  $(1000) = 1000(1-1/2)(1-1/5) = 400
7803 = 7803 (mod 400) — 73 = 343 (mod 1000))

< Example: Compute 243210 (mod 101)?
101=1- 101, ¢(101)— 100

A second proof of Euler’s Theorem
Euler’s Theorem: VaeZ *, a®™ =1 (mod n)

< We have proved the above theorem by showing that the function
y(x) =a - x (mod n) is a permutation.

< We can also prove it through Fermat’s Little Theorem & CRT
> considern=p - q, ¢(n) = (p-1)(g-1)
VaeZ), aP! =1 (mod p) = @)% =™ = | (mod p)
vaez," a%!l =1 (mod q) = @@ = 2™ = | (mod q)
ged(p,q)=1 = p-q|a®™-1,i.c. VacZ (pfaand qfa),a®™ =1 (mod n)

> consider n = p’, ¢(n) = p~!(p-1) .
VaeZ,aP!' =1 (mod p) = aP! = 1+2p 2™ = (1+2p)’

a0 = (sapf = 1+C) apre ppe., T 4D

=1+p~! ap +p=l(p™!-1)/2 (Ap)?+...

A second proof (cont'd)
> considern=p" * g5, ¢(n) = p~(p-1) ¢*'(g-1)
Van;r ,aPl=1 (mod p)= (PP o (mod p*)
— (a(p-l)pr'l)(q-l)qs'lE 20— 1 (mod p*) = p' | 20 _q
VancTs, a%! = 1 (mod q) = (aq'l)qS—IE 1 (mod g°)
— @D YEDPL 2902 | (mod ¢f) = ¢f | 291
ged(pr,gd)=1= p'q® | a®™-1, i.e. VaeZ! (pfa and qfa),a®™ = 1 (mod n)

> considern=p,"'p,2-pk, d(n)=n IT (1-1/p) Unique Prime
Vpln Factorization

-1
Van:n, aPil =1 (mod p;) = (ap"l)p‘ =1 (mod p;")

il H(p -Dp;
= (a (-1)P" ) iz et ¥ (mod p) = pfi| adm_1

all p;'i are — o) _
relatively prime HP i[a¥™-1, ie. VaeZ, (Vip; fa),a?" =1 (mod n




Carmichael Theorem
Theorem:
VaeZ * a*™ =1 (modn) and a"*" =1 (mod n?)
where n=p-q, p # q, Mn) = lem(p-1, g-1), A(n) | ¢(n)
< like Euler’s Theorem, we can prove it through Fermat’s
Little Theorem, consider n=p - q, where p#q,
VaeZ/, aP! =1 (mod p) = (aP)@D/eedp-1aD = g0 = | (mod p)
VaeZ/, a%! =1 (mod q) = (a%1)P-D/eede-1aD = g1 = | (mod q)
ged(p,q)=1 = pq | a*V-1, VaeZ *(i.e. pfarqfa), a*™ = 1 (mod n)
therefore, VaeZ ", M =1+k-n

raise both side to the n-th power, we get a" *™ = (1 + k - n)",
=a" W =14nkn+..=VaeZ"(orZ,*),a" =1 (mod n?)
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Basic Speedup 1in Exponentiation

< Let a, n, X, y be integers with n>1, and gcd(a,n)=1
if x =y (mod ¢(n)), then a* = a¥ (mod n).

< If you want to work mod n, you should work mod
d(n) or A(n) in the exponent.

Primitive Roots modulo p

< When p is a prime number, a primitive root
modulo p is a number whose powers yield every
nonzero element mod p. (equivalently, the order of
a primitive root is p-1)
sex: 313, 3%=2, 3°=6, 3%=4, 3°=5, 3°=1 (mod 7)
3 is a primitive root mod 7
<-sometimes called a multiplicative generator

< there are plenty of primitive roots, actually ¢(p-1)

* ex. p=101, d(p-1)=100-(1-1/2)-(1-1/5)=40
p=143537, d(p-1)=143536-(1-1/2)-(1-1/8971)=71760

Primitive Testing Procedure

< How do we test whether h is a primitive root modulo p?
* naive inefficient method:
go through all powers h2, b3, ..., h"?, and make sure
they all # 1 modulo p
* fast method:
let p-1 has prime factors q;, qy, .., q»
for all q;, make sure h®% modulo p is not 1,
then h is a primitive root

Intuition: let h = g* (mod p), gcd(a, p-1)=d = h is not a primitive root
()7 = (@90 = 1 (mod p)
= V prime q,| d, h®D% = (g*) ®D'% = (g¥9)PV = 1 (mod p)
ex. p=29, p-1=2-2.7, h=5, h?¥2=1, h287=16, 5 is not a primitive
h=11, h?%2=28, h?%7=25, 11 is a primitive ~ ,




Primitive Testing Procedure (cont’d)

< Procedure to test if h is a primitive root :
let p-1 has prime factors q, q,, ..., q,, (i-e. §(p)=p-1=q,"...q,")
for all q;, h®19% (mod p) is not 1 = h is a primitive
pf:
(a) by definition, ord,(h) is the smallest positive x s.t. h*=1 (mod p)
Fermat Theorem: h®® = 1 (mod p) therefore implies ord,(h) < é(p)
if ¢(p) = ord,(h) *k +s with 0 <s <ord,(h)

h® = b4 " ps = h* = 1 (mod p), but s < ord (h) = s =0, i.e. ord,(h) | $(p)
(b) assume h is not a primitive root i.e ord (h) < ¢(p)=p-1 Q...
1l
then 3 i such that ordy(h) | (p-1)/q;”  i.e. h®D4i=1 (mod p) for some q_
(c) if for all q,, h®D4i = 1 (mod p)

then ord (h) = ¢(p) and h is a primitive root modulo p ,

Number of Primitive Roots in Zp*

< Why are there ¢(p-1) primitive roots?
* let h be a primitive root (the order of h is p-1) an integer
2 .3 1. . .- less than p-1
* h, h”, h°, ..., i’ is a permutation of 1,2,...p-1 -

et ettt i -

* if ged(a, p-1)=d, then (h?) @14 = (1¥HP-D = | (mod p) which
says that the order of h* is at most (p-1)/d, therefore, h? is not a
primitive root = There are at most ¢(p-1) primitive roots in Zp*

x For any element h” in Z," where ged(a, p-1) = 1, it is guaranteed
that (h")?™% = 1 (mod p) for all q; (q; is prime factors of p-1)
pf. assume that for a certain q, (h)®4 = 1 (mod p)
h is a primitive root = p-1|a - (p-1)/ q;
= Jintegerk s.t. a-(p-1)/q =k (p-1) ie.a=k-q,
=q|a

= q; | ged(a, p-1) contradiction ”

Lucas Primality Test

< An integer n is prime iff the converse of
Ja,s.t. (1.2 = 1 (mod n) Fermat Little Theorem
{2. Vprime factor q of n-1, a»"4 % 1 (mod n)

(=) ifnis prime, catch: inefficient, factors of n-1 are required

Fermat's little theorem ensures that "Vazkn, a™! = 1 (mod n)"

a primitive a ensures "V prime factor q of n-1, a>"4# 1 (mod n)"
(<) ifJa,s.t. 1.a™!' = 1 (mod n) and

2. Vprime factor q of n-1, a>"4# 1 (mod n)

By definition, ord (a) is the smallest positive x s.t. a* =1 (mod n)

the first condition implies that ord (a) <n-1 and ord,(a) | n-1

the second condition then implies that ord (a) =n-1 (*)

Proof:

Euler thm says that a®™ = 1 (mod n), by definition ¢p(n)<n-1 if n is
a composite number, i.e. ord,(a) | ¢(n) <n-1, contradict with (*). ,,

Pratt's Primality Certificate

< Pratt's proved in 1975 that the following polynomial-
size structure can prove that a number is prime and
1s verifiable in polynomial time

< based on the Lucas Primality Test (LPT)

< example:
229 (@a=6,229—-1=22x3x19) verification
2 (known prime) BIP=t] { (b3 12D 9)
3(@=2,3-1=2) BRI H@RHIN29)
2 (known prime) gi;é}%ﬁmgnwm)
19 (a=2,19-1=2x3% By L@Hﬁ@mﬁmﬁ,
2 (known prime) ]%I}IIGBPL?, i1sf 31,5 g,algrgr%eprimes,

3(@=2,3-1=2)

. then 229 is also a prime
2 (known prime)
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Multiplicative Generators in Z_*

< How do we define a multiplicative generator in
Z," if n is a composite number?

* Is there an element in Z* that can generate all elements
of Z,*?

*[fn=p - q, the answer is negative. From Carmichael
theorem, VaeZ ", at™ = (mod n), ged(p-1, g-1) is at
least 2, A(n) = lcm(p-1, g-1) is at most ¢(n) / 2. The
size of a maximal possible multiplicative subgroup in

Z." is therefore no larger than A(n).

* If n = pk, the answer is yes

* How many elements in Z_* can generate the maximal
possible subgroup of Z *? 2

Finding Square Roots mod n

< For example: find x such that x> = 71 (mod 77)
* [s there any solution?
* How many solutions are there?
* How do we solve the above equation systematically?

< In general: find x s.t. x* = b (mod n),

where b € QR, , n =p-q, and p, g are prime numbers
< Easier case: find x s.t. x*> = b (mod p),

where p is a prime number, b € QR,

Note: QR, is “Quadratic Residue in Z_ ™ to be defined later
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Finding Square Root mod p

< GivenyeZ, find x, s.t. x* =y (mod p), p is prime
_ . AR ) e .
Two cases: p=1(mod4) (i.e. p =4k + 1) : probabilistic algorithm
p =3 (mod4) (i.e. p =4k + 3) : deterministic algorithm

< Is there any soluti%r_ll‘? (IsyaQR,?)
check yT 21 (mod p)
$p =3 (mod 4) ptl

4
x=xy ° (modp)
@ (pt1)/4 = (4k+3+1)/4 = k+1 is an integer
5 x2 :y(p+1)/2 :y(p-l)/z .y=y (mod p)

Euler's Criterion
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Finding Square Root mod p

$p=1(mod4)
* Peralta, Eurocrypt’86, p =2° ¢ + 1, both p, ¢ are prime
* 3-step probabilistic procedure

1. Choose a random number 7, if 7 = y (mod p), output z = r
{ 2. Calculate ( + x)@ D2 =y + v x (mod f(x)), f(x)=x2-y
3. If u =0 then output z = v'' (mod p), else goto step 1

note: (b+cx)(d+ex) = (bd+ce x?) + (betcd) x
= (bd+ce y) + (beted) x (mod x2-y)
use square-multiply algorithm to calculate the
polynomial (r + x)@-1/2

* the probability to successfully find z for each » > 1/2




Finding Square Root mod p

<ex: find z such that z2 = 12 (mod 13)

solution:
#13=1(mod4) ie.4k+1
wchoose r=3,32=9%12
5(3+x)BD2=3+x)0=12+0x (modx3-12)
wchoose r=7,72=10# 12
%(7+x)BD2=7+x)0=0+8x (modx?12)
=z=81=5 (mod 13)

Why does it work???
Why is the success probability > 2 77?

29

Finding Square Roots mod n

< Now let's return to the question of solving square roots
inZ5 ie.
for an integer yeQR,,
find xeZ_* such that x> = y (mod n)
< We would like to transform the problem into solving
square roots mod p.

< Question: for n=p-q

Is solving “x?= vy (mod n)” equivalent to solving

“x*=y (mod p) and x* =y (mod ¢)"??? yes
(=) x>y=kn=kpq = p | x*>-y and q | x>-y [

(<) plx*-y, qlx*-y, i.e. x>-y=kp=k'q, qtp = qlk, i.e. x*-y=k"pq 1,

Finding Square Roots mod p-q

< find x such that x* = 71 (mod 77)
*77="7-11
* “x* satisfies f(x*) = 71 (mod 77)” <
“x* satisfies both f(x*) =1 (mod 7) and f(x*) =5 (mod 11)”
* since 7 and 11 are prime numbers, we can solve x> = 1 (mod 7)
and x2 = 5 (mod 11) far more easily than x* = 71 (mod 77)
x2 = 1 (mod 7) has two solutions: x = +1 (mod 7)
x%= 5 (mod 11) has two solutions: x = +4 (mod 11)
* put them together and use CRT to calculate the four solutions
x=1(mod7)= 4 (mod 11)=x= 15 (mod 77)
x= 1(mod7)= 7(mod 11) = x= 29 (mod 77)

x= 6(mod7)= 4 (mod 11) = x= 48 (mod 77)

x= 6(mod7)= 7(mod 11) = x= 62 (mod 77)
31

Computational Equivalence to Factoring

< Previous slides show that once you know the factors of n
are p and ¢, you can easily solve the square roots of n

< Indeed, if you can solve the square roots for one single
quadratic residue mod 7, you can factor .

* from the four solutions *a, +b on the previous slide
x =c (mod p) =d (mod g) = x =a (mod p-q)
x=c (mod p) =-d (mod ¢) = x=b (mod p-q)
x =-¢ (mod p) =d (mod ¢) = x =-b (mod p-q)
x=-c (mod p) =-d (mod q) = x =-a (mod p-q)
we can find out @ = b (mod p) and a = -b (mod q)
(or equivalently a = -b (mod p) and a = b (mod gq))
* therefore, p | (a-b) i.e. gcd(a-b, n) =p (ex. gcd(15-29, 77)=7)
q | (atb) i.e. ged(atb, n) =q (ex. ged(15+29, 77)=11)

32




Quadratic Residues

<+ Consider yeZ *, if 3 x €Z,, such that x> = y (mod n),
then y is called a quadratic residue mod n, 1.e. yeQR,
< If the modulus p is prime, there are (p-1)/2 quadratic
residues in Z,”
*let g be a primitive rootin Z,%, {g, g%, &°, ..., g"'} isa
permutation of {1,2,...p-1}
x in the above set, {g°, g%,..., g"!} are quadratic
residues (QR))
x {g, g, ..., g"*} are quadratic non-residues (QNR)),
out of which there are ¢(p-1) primitive roots

33

Quadratic Residues in Z
15t proof:

* For each erp*, p-x #x (mod p) (since if x is odd, p-
X is even), it’s clear that x and p-x (-x) are both
square roots of a certain yeZp*

* Because there are only p-1 elements in Zp*, we know
that |QR | < (p-1)/2

* Because | {g%, g*,..., "'} | = (p-1)/2, there can be no
more quadratic residues outside this set. Therefore,
the set {g, g°,..., "%} contains only quadratic non-
residues

34

Quadratic Residues in Z
2" proof:

* Because the squares of x and p-x are the same, the number of
quadratic residues must be less than p-1 (i.e. some element in Z*
must be quadratic non-residue)

x Let g is a primitive, consider this set {g, g°,..., g”*} directly
* If geQR,,, then g cannot be a primitive (because g* must all be
quadratic residues). Thus, if g is a primitive then geQNR,
* If g?*l=g?-g € QR,, 3 x€Z," such that x* = gt-g*-g (mod p)
Since ged(gk, p)=1, g = ((g)")*x2 = ((g¥) ! x)? €QR,, contradiction
* Thus, g#*"'eQNR,
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Quadratic Residues in Z

% ex. p=143537, p-1=143536=24-8971,
d(p-1)=24-8971-(1-1/2)-(1-1/8971)=71760 primitives,
(p-1)/2=71768 QR,’s and 71768 QNR’s

* Note: if g is a primitive, then g3 , g5 ... are also primitives
except the following 8 numbers g1, g8713 | 897115

* Elements in Z," can be grouped further according to their order

since VxeZ,, ord,(x) | p-1, we can list all possible orders

8971 16 8 4 2 1
plypliplipl) pl | p-l p-1 p-1 p-1
Ordl’(x) p-1 16 | 8971 | 8971-2 | 8971-4 | 8971-8 | 897116
QNR,| QR,| QR,[ QR QR,| QNR,| QR, QR, QR, QR,
#  |o@-1 8 2 1,




QR,, for Composite Modulus »

< If y 1s a quadratic residue modulo #, it must be a
quadratic residue modulo all prime factors of #.
dxeZ, st X =y (mod n) o =kn +ty=kpqgty
— x* =y (mod p) and x* = y (mod ¢)
< If y 1s a quadratic residue modulo p and also a quadratic
residue modulo ¢, then y is a quadratic residue modulo 7.
3reZ, and r,eZ *such that
y =ry? (mod p) = (ry mod p)* (mod p)
=r,* (mod g) = (r, mod ¢)* (mod q)
from CRT, 3! r €Z," such that » = r; (mod p) = r, (mod q)
therefore, y = 72 (mod p) = r? (mod q)
again from CRT, y = r? (mod p-q)
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Legendre Symbol

< Legendre symbol L(a, p) is defined when a is any integer,
p 1s a prime number greater than 2
*xL(a,p)=0ifp|a
* L(a, p) = 1 if a is a quadratic residue mod p
* L(a, p) = -1 if a is a quadratic non-residue mod p
< Two methods to compute (a/p)
* (a/p) = a?VY2 (mod p)
* recursively calculate by L(a - b, p) = L(a, p) - L(b, p)
l.Ifa=1,L(a,p)=1
2. If a is even, L(a, p) = L(a/2, p)-(-1)?*D
3. If a is odd prime, L(a, p) = L((p mod a), a)-(-1)@D@-D/4
< Legendre symbol L(a, p) =-1 if a € QNR,
L(a,p)=1ifa € QR, 38

Legendre Symbol

yeQR, < y-D2=1 (mod p)
=)
* IfyeQR,
* Then 3xeZ," such that y=x* (mod p)
* Therefore, y?-V2 = (x2)-12 = x-D =1 (mod p)

(<)

* Ify2QR  i.e. yeQNR, ord,(g) = p-1

* Then y=g?*! (mod p) /\/

* Therefore, yr-D2= (g2 - g)0-12 = ghw-D) gl0-1)2= g2 X1 (mod p)
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Jacob1 Symbol

< Jacobi symbol J(a, n) is a generalization of the

Legendre symbol to a composite modulus »

< If n 1s a prime, J(a, n) is equal to the Legendre symbol
i.e. J(a, n) = a"Y2(mod n)
< Jacobi symbol cannot be used to determine whether a
is a quadratic residue mod z (unless 7 is a prime)
ex. J(7,143)=J(7, 11)-J(7, 13) =(-1)-(-1) =1
however, there is no integer x such that
x> =7 (mod 143)
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Calculation of Jacobi Symbol QR, and Jacobi Symbol

< The following algorithm computes the Jacobi symbol J(a, #), for any

. . . < Consider n = p-q, where p and g are prime numbers
integer a and odd integer n, recursively:

* Def 1:J(0, n) = 0 also If n is prime, J(a, 1) = 0 if nla x € QR,

* Def 2: If nis prime, J(a, n) =1 ifa € QR, and J(a,n)=-1ifa e QR, & x e QRp and x € QRq

* Def 3:If nis a composite, J(a, n) = J(a, p,"p,... py) = Wap))Nap,)...-Jap,) < J(x, p) =x®D2 =1 (mod p) and J(x, ¢) =x@2 =1 (mod q)

* Rule 1 m = =306, 1) =16, p) - x, g) = 1

* Rule 2: J(a'b, n) =I(a, n) - I(b, n)

* Rule 3: J(2, n) = 1 if (n>-1)/8 is even and J(2, n) = -1 otherwise

* Rule 4: J(a, n) = J(a mod n, n) I&,p) | 16 q) | I, m)

* Rule 5: J(a, b) = J(-a, b) if a <0 and (b-1)/2 is even, Qoo 1 1 1 xeQR,

I(a, b) = -J(-a, b) if a<0 and (b-1)/2 is odd Qu; | 1 1 xeQNR,

* Rule 6: J(a, b,"b,)=J(a, b)) - J(a, b,)

* Rule 7: if gcd(a, b)=1, a and b are odd Qio -1 1 -1 xeQNR,
w 7a: J(a, b) = I(b, a) if (a-1)-(b-1)/4 is even Q, 1 -1 1 xeQNR,
@ 7b: J(a, b) =-J(b, a) if (a-1)-(b-1)/4 is odd
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