Prime Numbers

密碼學與應用 海洋大學資訊工程系 丁培毅

Prime Number Theorem

♦ Prime Number Theorem:

- * Let $\pi(x)$ be the number of primes less than x
- * Then

$$\pi(x) \approx \frac{x}{\ln x}$$

in the sense that the ratio $\pi(x) / (x/\ln x) \to 1$ as $x \to \infty$

- * Also, $\pi(x) \ge \frac{x}{\ln x}$ and for $x \ge 17$, $\pi(x) \le 1.10555 \frac{x}{\ln x}$
- \$\Rightarrow\$ Ex: number of 100-digit primes $\pi(10^{100}) \pi(10^{99}) \approx \frac{10^{100}}{\ln 10^{100}} \frac{1.2}{1.10^4 \cdot 10^6 \cdot 10^{10} \cdot 10^{10} \cdot 10^{20} \cdot 10^{20}}$

Prime Numbers

- ♦ Prime number: an integer p>1 that is divisible only by 1 and itself, ex. 2, 3,5, 7, 11, 13, 17...
- ♦ Composite number: an integer n>1 that is not prime
- Fact: there are infinitely many prime numbers. (by Euclid)
 pf: ≠ on the contrary, assume an is the largest prime number
 - 1: ψ on the contrary, assume a_n is the largest prime number
 - \Rightarrow let the finite set of prime numbers be $\{a_0, a_1, a_2, \dots, a_n\}$
 - \Rightarrow the number b = $a_0^*a_1^*a_2^*...*a_n + 1$ is not divisible by any a_i i.e. b does not have prime factors ≤ a_n
 - 2 cases: \gt if b has a prime factor d, b \gt d \gt a_n, then "d is a prime number that is larger than a_n" ... contradiction
 - if b does not have any prime factor less than b, then "b is a prime number that is larger than a_n " ... contradiction

2

Factors

- \Rightarrow Every composite number can be expressible as a product a·b of integers with 1 < a, b < n
- ♦ Every positive integer has a unique representation as a product of prime numbers raised to different powers.

$$\Rightarrow$$
 Ex. $504 = 2^3 \cdot 3^2 \cdot 7$, $1125 = 3^2 \cdot 5^3$

Factors

- \diamond Lemma: p is a prime number and p | a·b \Longrightarrow p | a or p | b, more generally, p is a prime number and p | $a \cdot b \cdot ... \cdot z$ \implies p must divide one of a, b, ..., z
 - * proof:
 - ¢ case 1: p | a
 - - \rightarrow p/ a and p is a prime number \Rightarrow gcd(p, a) = 1 \Rightarrow 1 = a x + p y
 - \rightarrow multiply both side by b, b = b a x + b p y
 - $\rightarrow p \mid a b \Rightarrow p \mid b$
 - **‡** In general: if p | a then we are done, if p ∤ a then p | bc...z, continuing this way, we eventually find that p divides one of the factors of the product

("Fair-MAH")

Fermat's Little Theorem

♦ If p is a prime, p∤a then $a^{p-1}\equiv 1 \pmod{p}$

Proof: \Rightarrow let $S = \{1, 2, 3, ..., p-1\}$ (Z_p^*) , define $\psi(x) \equiv a \cdot x \pmod{p}$ be a mapping $\psi: S \rightarrow Z$

> $\Rightarrow \forall x \in S, \psi(x) \neq 0 \pmod{p} \Rightarrow \forall x \in S, \psi(x) \in S, i.e. \psi: S \rightarrow S$ $\inf \psi(x) \equiv a \cdot x \equiv 0 \pmod{p} \implies x \equiv 0 \pmod{p} \text{ since } \gcd(a, p) = 1$

 $\Rightarrow \forall x, y \in S, \text{ if } x \neq y \text{ then } \psi(x) \neq \psi(y)$

if $\psi(x) \equiv \psi(y) \Rightarrow a \cdot x \equiv a \cdot y \Rightarrow x \equiv y$ since gcd(a, p) = 1

 \Rightarrow from the above two observations, $\psi(1)$, $\psi(2)$,... $\psi(p-1)$ are distinct elements of S

- $\Rightarrow 1 \cdot 2 \cdot \dots \cdot (p-1) \equiv \psi(1) \cdot \psi(2) \cdot \dots \cdot \psi(p-1) \equiv (a \cdot 1) \cdot (a \cdot 2) \cdot \dots \cdot (a \cdot (p-1))$ $\equiv a^{p-1} (1 \cdot 2 \cdot \dots \cdot (p-1)) \pmod{p}$
- \Rightarrow since gcd(i, p) = 1 for i \in S, we can divide both side by 1, 2, 3, ... p-1, and obtain $a^{p-1} \equiv 1 \pmod{p}$

Unique Prime Factorization Theorem

- ♦ Theorem: Every positive integer is a product of primes. This factorization into primes is unique, up to reordering of the factors. • Empty product equals 1.
 - Prime is a one factor product. * Proof: product of primes
 - * assume there exist positive integers that are not product of primes

 - \Rightarrow since n can not be 1 or a prime, n must be composite, i.e. $n = a \cdot b$
 - **★** since n is the smallest, both a and b must be products of primes.
 - \Rightarrow n = a·b must also be a product of primes, contradiction
 - * Proof: uniqueness of factorization
 - where p_i , q_i are all distinct primes.
 - $\Rightarrow \text{ let } m = n / (r_1^{c_1} r_2^{c_2} \cdots r_k^{c_k})$
 - \Rightarrow consider p_1 for example, since p_1 divide $m = q_1q_1..q_1q_2...q_t$, p_1 must divide one of the factors q_i, contradict the fact that "p_i, q_i are distinct primes"

Fermat's Little Theorem

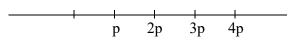
- \Rightarrow if n is prime, then $2^{n-1} \equiv 1 \pmod{n}$ i.e. if $2^{n-1} \neq 1 \pmod{n}$ then n is not prime \leftarrow (*) usually, if $2^{n-1} \equiv 1 \pmod{n}$, then n is prime
 - * exceptions: $2^{561-1} \equiv 1 \pmod{561}$ although $561 = 3 \cdot 11 \cdot 17$ $2^{1729-1} \equiv 1 \pmod{1729}$ although $1729 = 7 \cdot 13 \cdot 19$
 - * (*) is a quick test for eliminating composite number

Euler's Totient Function $\phi(n)$

- ϕ (n): the number of integers $1 \le a < n$ s.t. gcd(a,n)=1ex. n=10, $\phi(n)=4$ the set is $Z_{10}^* = \{1,3,7,9\}$
- \Rightarrow properties of $\phi(\bullet)$
 - $\star \phi(p) = p-1$, if p is prime
 - $*\phi(p^r) = p^r p^{r-1} = p^r \cdot (1-1/p)$, if p is prime
 - multiplicative property $\star \phi(n \cdot m) = \phi(n) \cdot \phi(m)$ if gcd(n,m)=1
 - $\star \phi(n \cdot m) = \phi((d_1/d_2/d_3)^2) \cdot \phi(d_2^3) \cdot \phi(d_3^3) \cdot \phi(n/d_1/d_2) \cdot \phi(m/d_1/d_3)$ if $gcd(n,m)=d_1$, $gcd(n/d_1,d_1)=d_2$, $gcd(m/d_1,d_1)=d_3$
- $\star \phi(n) = n \prod_{\forall p \mid n} (1-1/p)$ ex. $\phi(10)=(2-1)\cdot(5-1)=4$ $\phi(120)=120(1-1/2)(1-1/3)(1-1/5)=32$

How large is $\phi(n)$?

- $\Rightarrow \phi(n) \approx n \cdot 6/\pi^2$ as n goes large
- ♦ Probability that a random number r is multiples of a prime number p? 1/p think of 2 (even numbers), 3, 5 in the form kp



- \diamond Probability that two independent random numbers r_1 and r_2 both have a given prime number p as a factor? $1/p^2$
- ♦ The probability that they do not have p as a common factor is thus $1 - 1/p^2$
- \diamond The probability that two numbers r_1 and r_2 have no common prime factor? $P = (1-1/2^2)(1-1/3^2)(1-1/5^2)(1-1/7^2)...$

$Pr\{r_1 \text{ and } r_2 \text{ relatively prime }\}$

♦ Equalities:

$$\frac{1}{1-x} = 1+x+x^2+x^3+...$$

$$1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+... = \pi^2/6$$

$$\Rightarrow P = (1-1/2^2)(1-1/3^2)(1-1/5^2)(1-1/7^2) \cdot ...$$

$$\stackrel{=}{=} ((1+1/2^2+1/2^4+...)(1+1/3^2+1/3^4+...) \cdot ...)^{-1}$$

$$= (1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+...)^{-1}$$

$$= 6/\pi^2$$

$$\approx 0.61$$

each positive number has a unique prime number factorization ex. $45^2 = 3^4 \cdot 5^2$

How large is $\phi(n)$?

- \Rightarrow $\phi(n)$ is the number of integers less than n that are relative prime to n
- $\phi(n)/n$ is the probability that a randomly chosen integer is relatively prime to n
- ♦ Therefore, ϕ (n) ≈ n · 6/ π ²
- \Rightarrow P_n = Pr { n random numbers have no common factor }
 - * n independent random numbers all have a given prime p as a factor is $1/p^n$
 - * They do not all have p as a common factor $1 1/p^n$
 - $\star P_n = (1+1/2^n+1/3^n+1/4^n+1/5^n+1/6^n+...)^{-1}$ is the Riemann zeta function $\zeta(n)$ http://mathworld.wolfram.com/RiemannZetaFunction.html
 - * Ex. n=4, $\zeta(4) = \pi^4/90 \approx 0.92$

Euler's Theorem

true when n is prime

$$\Rightarrow$$
 If $gcd(a,n)=1$ then $a^{\phi(n)} \equiv 1 \pmod{n}$

true even when $n = p^k$

Proof: \Rightarrow let S be the set of integers $1 \le x \le n$, with gcd(x, n) = 1

- \Leftrightarrow define $\psi(x) \equiv a \cdot x \pmod{n}$ be a mapping $\psi: S \rightarrow Z$
- $\forall x \in S \text{ and } \gcd(a, n) = 1, \quad \text{if } \psi(x) \equiv a \cdot x \equiv 0 \pmod{n} \Rightarrow x \equiv 0 \pmod{n}$ $\psi(x) \neq 0 \pmod{n}$
- $\Leftrightarrow \forall \ x, y \in S, \text{ if } x \neq y \text{ then } \psi(x) \not\equiv \psi(y) \text{ (mod n)'}$ $\text{if } \psi(x) \equiv \psi(y) \Rightarrow a \cdot x \equiv a \cdot y \Rightarrow x \equiv y \text{ since } \gcd(a, n) = 1$
- \Rightarrow from the above two observations, $\forall x \in S$, $\psi(x)$ are distinct elements of S (i.e. $\{\psi(x) \mid \forall x \in S\}$ is S)
- $\stackrel{\Rightarrow}{\prod} x \equiv \prod_{x \in S} \psi(x) \equiv a^{\phi(n)} \prod_{x \in S} x \pmod{n}$
- \Rightarrow since gcd(x, n) = 1 for x \in S, we can cancel one by one x \in S of both sides, and obtain $a^{\phi(n)} \equiv 1 \pmod{n}$

13

A second proof of Euler's Theorem

Euler's Theorem: $\forall a \in \mathbb{Z}_n^*, a^{\phi(n)} \equiv 1 \pmod{n}$

- \Rightarrow We have proved the above theorem by showing that the function $\psi(x) \equiv a \cdot x \pmod{n}$ is a permutation.
- ♦ We can also prove it through Fermat's Little Theorem & CRT

$$\begin{array}{c} \succ \text{ consider } n = p \cdot q, \ \varphi(n) = (p-1)(q-1) \\ \forall a \in Z_p^*, \ a^{p-1} \equiv 1 \pmod{p} \Rightarrow (a^{p-1})^{q-1} \equiv a^{\varphi(n)} \equiv 1 \pmod{p} \\ \forall a \in Z_q^*, \ a^{q-1} \equiv 1 \pmod{q} \Rightarrow (a^{q-1})^{p-1} \equiv a^{\varphi(n)} \equiv 1 \pmod{q} \\ \gcd(p,q) = 1 \Rightarrow p \cdot q \mid a^{\varphi(n)} - 1, \ i.e. \ \forall a \in Z_p^* \ (p \not\mid a \text{ and } q \not\mid a), \ a^{\varphi(n)} \equiv 1 \pmod{n} \end{array}$$

$$\begin{array}{l} \text{\succ consider $n=p^r$, $\phi(n)=p^{r-1}(p-1)$} \\ \forall a \in Z_{p^r}^* \,, \, a^{p-1} \equiv 1 \pmod p \Rightarrow a^{p-1} = 1 + \lambda p \qquad a^{\phi(n)} \equiv \left(1 + \lambda p\right)^{p^{r-1}} \\ a^{\phi(n)} = \left(1 + \lambda p\right)^{p^{r-1}} = 1 + C_1^{p^{r-1}} \lambda p + C_2^{p^{r-1}} (\lambda p)^2 + \dots \\ = 1 + p^{r-1} \lambda p + p^{r-1} (p^{r-1} - 1)/2 \ (\lambda p)^2 + \dots \end{array}$$

Euler's Theorem

 \diamond Example: What are the last three digits of 7^{803} ?

i.e. we want to find
$$7^{803} \pmod{1000}$$

$$1000 = 2^3 \cdot 5^3$$
, $\phi(1000) = 1000(1-1/2)(1-1/5) = 400$
 $7^{803} \equiv 7^{803 \pmod{400}} \equiv 7^3 \equiv 343 \pmod{1000}$

 \Rightarrow Example: Compute 2^{43210} (mod 101)?

$$101 = 1 \cdot 101, \qquad \phi(101) = 100$$

 $2^{43210} \equiv 2^{43210 \pmod{100}} \equiv 2^{10} \equiv 1024 \equiv 14 \pmod{101}$

14

A second proof (cont'd)

Carmichael Theorem

Theorem:

$$\forall a \in Z_n^*, \ a^{\lambda(n)} \equiv 1 \ (mod \ n) \ and \ a^{n \cdot \lambda(n)} \equiv 1 \ (mod \ n^2)$$
 where $n = p \cdot q, \ p \neq q, \ \lambda(n) = lcm(p-1, q-1), \ \lambda(n) \mid \phi(n)$

 \Rightarrow like Euler's Theorem, we can prove it through Fermat's Little Theorem, consider $n = p \cdot q$, where $p \neq q$,

$$\begin{split} \forall a \in Z_p^*, \ a^{p-1} &\equiv 1 \ (\text{mod} \ p) \Rightarrow (a^{p-1})^{(q-1)/\text{gcd}(p-1,q-1)} \equiv a^{\lambda(n)} \equiv 1 \ (\text{mod} \ p) \\ \forall a \in Z_q^*, \ a^{q-1} &\equiv 1 \ (\text{mod} \ q) \Rightarrow (a^{q-1})^{(p-1)/\text{gcd}(p-1,q-1)} \equiv a^{\lambda(n)} \equiv 1 \ (\text{mod} \ q) \\ \text{gcd}(p,q) &= 1 \Rightarrow pq \mid a^{\lambda(n)} - 1, \ \forall a \in Z_n^* \ (\text{i.e.} \ p \not\mid a \land q \not\mid a), \ a^{\lambda(n)} \equiv 1 \ (\text{mod} \ n) \\ \text{therefore,} \ \forall a \in Z_n^*, \ a^{\lambda(n)} = 1 + k \cdot n \\ \text{raise both side to the n-th power, we get } a^{n \cdot \lambda(n)} &= (1 + k \cdot n)^n, \\ \Rightarrow a^{n \cdot \lambda(n)} &= 1 + n \cdot k \cdot n + ... \Rightarrow \forall a \in Z_n^* \ (\text{or} \ Z_{n^2}^*), \ a^{n \cdot \lambda(n)} \equiv 1 \ (\text{mod} \ n^2) \end{split}$$

Primitive Roots modulo p

- ♦ When p is a prime number, a primitive root modulo p is a number whose powers yield every nonzero element mod p. (equivalently, the order of a primitive root is p-1)
- \Rightarrow ex: $3^1 \equiv 3$, $3^2 \equiv 2$, $3^3 \equiv 6$, $3^4 \equiv 4$, $3^5 \equiv 5$, $3^6 \equiv 1 \pmod{7}$ 3 is a primitive root mod 7
- ♦ sometimes called a multiplicative generator
- \diamond there are plenty of primitive roots, actually $\phi(p-1)$

* ex. p=101,
$$\phi(p-1)=100\cdot(1-1/2)\cdot(1-1/5)=40$$

p=143537, $\phi(p-1)=143536\cdot(1-1/2)\cdot(1-1/8971)=71760$

Basic Speedup in Exponentiation

- ♦ Let a, n, x, y be integers with n≥1, and gcd(a,n)=1 if x ≡ y (mod ϕ (n)), then $a^x \equiv a^y$ (mod n).
- \diamond If you want to work mod n, you should work mod $\phi(n)$ or $\lambda(n)$ in the exponent.

18

Primitive Testing Procedure

- ♦ How do we test whether h is a primitive root modulo p?
 - * naïve inefficient method:

go through all powers h^2 , h^3 , ..., h^{p-2} , and make sure they all $\neq 1$ modulo p

* fast method:

19

let p-1 has prime factors $q_1, q_2, ..., q_n$, for all q_i , make sure $h^{(p-1)/q_i}$ modulo p is not 1, then h is a primitive root

Intuition: let $h \equiv g^a \pmod{p}$, $gcd(a, p-1)=d \Rightarrow h$ is not a primitive root $(g^a)^{(p-1)/d} \equiv (g^{a/d})^{(p-1)} \equiv 1 \pmod{p}$ $\Rightarrow \forall \text{ prime } q_i \mid d, h^{(p-1)/q_i} \equiv (g^a)^{(p-1)/q_i} \equiv (g^{a/q_i})^{(p-1)} \equiv 1 \pmod{p}$

ex. p=29, p-1=2·2·7, h=5,
$$h^{28/2}$$
=1, $h^{28/7}$ =16, 5 is not a primitive
h=11, $h^{28/2}$ =28, $h^{28/7}$ =25, 11 is a primitive

Primitive Testing Procedure (cont'd)

♦ Procedure to test if h is a primitive root :

let p-1 has prime factors $q_1, q_2, ..., q_n$, (i.e. $\phi(p)=p-1=q_1^{r_1}...q_n^{r_n}$) for all q_i , $h^{(p-1)/q_i}$ (mod p) is not $1 \Rightarrow h$ is a primitive

pf:

- (a) by definition, ord_p(h) is the smallest positive x s.t. $h^x \equiv 1 \pmod{p}$ Fermat Theorem: $h^{\phi(p)} \equiv 1 \pmod{p}$ therefore implies $\operatorname{ord}_p(h) \leq \phi(p)$ if $\phi(p) = \operatorname{ord}_{p}(h) * k + s \text{ with } 0 \le s < \operatorname{ord}_{p}(h)$ $h^{\phi(p)} \equiv h^{ord_p(h) * k} h^s \equiv h^s \equiv 1 \pmod{p}, \text{ but } s < ord_n(h) \Rightarrow s = 0, \text{ i.e. } ord_n(h) \mid \phi(p)$
- (b) assume h is not a primitive root i.e ord_p(h) $< \overline{\phi(p)} = p-1$ then $\exists \ i \ \text{such that } \text{ord}_p(h) \mid (p\text{-}1)/q_i$ i.e. $h^{(p\text{-}1)/q}i \equiv 1 \pmod p$ for some q_i
- (c) if for all q_i , $h^{(p-1)/q_i} \neq 1 \pmod{p}$ then $\operatorname{ord}_{p}(h) = \phi(p)$ and h is a primitive root modulo p

21

Lucas Primality Test

- the converse of ♦ An integer n is **prime** iff Fermat Little Theorem $\exists a, s.t. \ \cap 1. \ a^{n-1} \equiv 1 \pmod{n}$ ¹2. \forall prime factor q of n-1, $a^{n-1/q} \neq 1 \pmod{n}$ Proof:
- catch: inefficient, factors of n-1 are required (\Rightarrow) if n is prime, Fermat's little theorem ensures that " $\forall a \neq kn$, $a^{n-1} \equiv 1 \pmod{n}$ " a primitive a ensures " \forall prime factor q of n-1, $a^{n-1/q} \neq 1 \pmod{n}$ "
- (\Leftarrow) if $\exists a, s.t. 1$. $a^{n-1} \equiv 1 \pmod{n}$ and 2. \forall prime factor q of n-1, $a^{n-1/q} \neq 1 \pmod{n}$ By definition, ord_n(a) is the smallest positive x s.t. $a^x \equiv 1 \pmod{n}$ the first condition implies that $\operatorname{ord}_n(a) \le n-1$ and $\operatorname{ord}_n(a) \mid n-1$ the second condition then implies that $ord_n(a) = n-1$ (*) Euler thm says that $a^{\phi(n)} \equiv 1 \pmod{n}$, by definition $\phi(n) < n-1$ if n is a composite number, i.e. $\operatorname{ord}_n(a) \mid \phi(n) \le n-1$, contradict with (*).

Number of Primitive Roots in Z_p^*

- \diamond Why are there $\phi(p-1)$ primitive roots?
 - * let h be a primitive root (the order of h is p-1)

- * h, h², h³, ..., h^{p-1} is a permutation of 1,2,...p-1

 * if cod(s-1).
- * if gcd(a, p-1)=d, then $(h^a)^{(p-1)/d} \equiv (h^{a/d})^{(p-1)} \equiv 1 \pmod{p}$ which says that the order of h^a is at most (p-1)/d, therefore, h^a is not a primitive root \Rightarrow There are **at most** $\phi(p-1)$ primitive roots in Z_p^*
- * For any element h^a in Z_p^* where gcd(a, p-1) = 1, it is guaranteed that $(h^a)^{(p-1)/q_i} \neq 1 \pmod{p}$ for all q_i (q_i is prime factors of p-1)

```
pf. assume that for a certain q<sub>i</sub>, (h^a)^{(p-1)/q_i} \equiv 1 \pmod{p}
       h is a primitive root \Rightarrow p-1 | a · (p-1) / q<sub>i</sub>
       \Rightarrow \exists integer k s.t. a \cdot (p-1) / q_i = k \cdot (p-1) i.e. a = k \cdot q_i
       \Rightarrow q_i \mid a
       \Rightarrow q<sub>i</sub> | gcd(a, p-1) contradiction
```

22

Pratt's Primality Certificate

- ♦ Pratt's proved in 1975 that the following polynomialsize structure can prove that a number is prime and is verifiable in polynomial time
- ♦ based on the Lucas Primality Test (LPT)

229 (
$$a = 6$$
, 229 – 1 = $2^2 \times 3 \times 19$) verification

2 (known prime)

3 ($a = 2$, 3 – 1 = 2)
2 (known prime)

19 ($a = 2$, 19 – 1 = 2×3^2)
2 (known prime)
3 ($a = 2$, 3 – 1 = 2)
2 (known prime)
3 ($a = 2$, 3 – 1 = 2)
2 (known prime)
3 ($a = 2$, 3 – 1 = 2)
2 (known prime)
4 Expression (a) verification

2 (known prime)

By LPT, if 2, 3, 19 are primes, then 229 is also a prime

24

Multiplicative Generators in Z_n*

- \Rightarrow How do we define a multiplicative generator in Z_n^* if n is a composite number?
 - * Is there an element in Z_n^* that can generate all elements of Z_n^* ?
 - * If $n = p \cdot q$, the answer is negative. From Carmichael theorem, $\forall a \in Z_n^*$, $a^{\lambda(n)} \equiv 1 \pmod{n}$, $\gcd(p-1, q-1)$ is at least 2, $\lambda(n) = \operatorname{lcm}(p-1, q-1)$ is at most $\phi(n) / 2$. The size of a maximal possible multiplicative subgroup in Z_n^* is therefore no larger than $\lambda(n)$.
 - * If $n = p^k$, the answer is yes
 - * How many elements in Z_n^* can generate the maximal possible subgroup of Z_n^* ?

Finding Square Roots mod n

- \Rightarrow For example: find x such that $x^2 \equiv 71 \pmod{77}$
 - **★** Is there any solution?
 - **★** How many solutions are there?
 - **★** How do we solve the above equation systematically?
- ♦ In general: find x s.t. $x^2 \equiv b \pmod{n}$, where $b \in QR_n$, $n = p \cdot q$, and p, q are prime numbers
- ⇒ Easier case: find x s.t. $x^2 \equiv b \pmod{p}$, where p is a prime number, $b \in QR_n$

Note: QR_n is "Quadratic Residue in Z_n*" to be defined later

26

Finding Square Root mod *p*

 \Leftrightarrow Given $y \in \mathbb{Z}_p^*$, find x, s.t. $x^2 \equiv y \pmod{p}$, p is prime

Two cases: $\begin{cases} p \equiv 1 \pmod{4} \text{ (i.e. } p = 4k+1) : \text{probabilistic algorithm} \\ p \equiv 3 \pmod{4} \text{ (i.e. } p = 4k+3) : \text{deterministic algorithm} \end{cases}$

 \diamond Is there any solution? (Is y a QR_p?)

$$check y^{\frac{p-1}{2}} \stackrel{?}{=} 1 \pmod{p}$$

Euler's Criterio

$$\Rightarrow p \equiv 3 \pmod{4}$$

$$x \equiv \pm y \stackrel{p+1}{\stackrel{4}{=}} \pmod{p}$$

(p+1)/4 = (4k+3+1)/4 = k+1 is an integer

$$\Rightarrow x^2 = y^{(p+1)/2} = y^{(p-1)/2} \cdot y \equiv y \pmod{p}$$

Finding Square Root mod *p*

 $\Leftrightarrow p \equiv 1 \pmod{4}$

- * Peralta, Eurocrypt'86, $p = 2^s q + 1$, both p, q are prime
- * 3-step probabilistic procedure
 - 1. Choose a random number r, if $r^2 \equiv y \pmod{p}$, output z = r
- < 2. Calculate $(r+x)^{(p-1)/2} \equiv u + v x \pmod{f(x)}$, $f(x) = x^2 y$
- 3. If u = 0 then output $z \equiv v^{-1} \pmod{p}$, else goto step 1

note: $(b+cx)(d+ex) \equiv (bd+ce x^2) + (be+cd) x$ $\equiv (bd+ce y) + (be+cd) x \pmod{x^2-y}$ use *square-multiply* algorithm to calculate the polynomial $(r+x)^{(p-1)/2}$

* the probability to successfully find z for each $r \ge 1/2$

Finding Square Root mod p

 \Rightarrow ex: find z such that $z^2 \equiv 12 \pmod{13}$ solution:

$$$\Rightarrow 13 \equiv 1 \pmod{4}$$$
 ie. $4k+1$
 $$\Rightarrow \text{choose } r = 3, 3^2 = 9 \neq 12$$
 $$\Rightarrow (3+x)^{(13-1)/2} = (3+x)^6 \equiv 12+0 x \pmod{x^2-12}$$
 $$\Rightarrow \text{choose } r = 7, 7^2 \equiv 10 \neq 12$$
 $$\Rightarrow (7+x)^{(13-1)/2} = (7+x)^6 \equiv 0+8 x \pmod{x^2-12}$$
 $$\Rightarrow z = 8^{-1} = 5 \pmod{13}$$

Why does it work???

Why is the success probability $> \frac{1}{2}$???

29

Finding Square Roots mod p-q

 \Rightarrow find x such that $x^2 \equiv 71 \pmod{77}$

```
★ 77 = 7 · 11
```

* " x^* satisfies $f(x^*) \equiv 71 \pmod{77}$ " \Leftrightarrow " x^* satisfies both $f(x^*) \equiv 1 \pmod{7}$ and $f(x^*) \equiv 5 \pmod{11}$ "

* since 7 and 11 are prime numbers, we can solve $x^2 \equiv 1 \pmod{7}$ and $x^2 \equiv 5 \pmod{11}$ far more easily than $x^2 \equiv 71 \pmod{77}$ $x^2 \equiv 1 \pmod{7}$ has two solutions: $x \equiv \pm 1 \pmod{7}$ $x^2 \equiv 5 \pmod{11}$ has two solutions: $x \equiv \pm 4 \pmod{11}$

* put them together and use CRT to calculate the four solutions

 $x \equiv 1 \pmod{7} \equiv 4 \pmod{11} \Rightarrow x \equiv 15 \pmod{77}$ $x \equiv 1 \pmod{7} \equiv 7 \pmod{11} \Rightarrow x \equiv 29 \pmod{77}$ $x \equiv 6 \pmod{7} \equiv 4 \pmod{11} \Rightarrow x \equiv 48 \pmod{77}$ $x \equiv 6 \pmod{7} \equiv 7 \pmod{11} \Rightarrow x \equiv 62 \pmod{77}$

Finding Square Roots mod n

♦ Now let's return to the question of solving square roots in Z_n^* , i.e.

for an integer $y \in QR_n$, find $x \in Z_n^*$ such that $x^2 \equiv y \pmod{n}$

- \diamond We would like to transform the problem into solving square roots mod p.
- ♦ Question: for $n=p \cdot q$ Is solving " $x^2 \equiv y \pmod{n}$ " equivalent to solving " $x^2 \equiv y \pmod{p}$ and $x^2 \equiv y \pmod{q}$ "??? **yes**
 - $(\Rightarrow) x^2-y=kn=kpq \Rightarrow p \mid x^2-y \text{ and } q \mid x^2-y \square$
 - (\Leftarrow) $p|x^2-y$, $q|x^2-y$, i.e. $x^2-y=kp=k'q$, $q\nmid p \Rightarrow q|k$, i.e. $x^2-y=k''pq$ \square_{30}

Computational Equivalence to Factoring

- \diamond Previous slides show that once you know the factors of n are p and q, you can easily solve the square roots of n
- \diamond Indeed, if you can solve the square roots for one single quadratic residue mod n, you can factor n.
 - * from the four solutions $\pm a$, $\pm b$ on the previous slide $x \equiv c \pmod{p} \equiv d \pmod{q} \Rightarrow x \equiv a \pmod{p \cdot q}$ $x \equiv c \pmod{p} \equiv -d \pmod{q} \Rightarrow x \equiv b \pmod{p \cdot q}$ $x \equiv -c \pmod{p} \equiv d \pmod{q} \Rightarrow x \equiv -b \pmod{p \cdot q}$ $x \equiv -c \pmod{p} \equiv -d \pmod{q} \Rightarrow x \equiv -a \pmod{p \cdot q}$ we can find out $a \equiv b \pmod{p}$ and $a \equiv -b \pmod{q}$ (or equivalently $a \equiv -b \pmod{p}$ and $a \equiv b \pmod{q}$)
 - * therefore, $p \mid (a-b)$ i.e. gcd(a-b, n) = p (ex. gcd(15-29, 77)=7) $q \mid (a+b)$ i.e. gcd(a+b, n) = q (ex. gcd(15+29, 77)=11)

Quadratic Residues

- ♦ Consider $y \in \mathbb{Z}_n^*$, if $\exists x \in \mathbb{Z}_n^*$, such that $x^2 \equiv y \pmod{n}$, then y is called a quadratic residue mod n, i.e. $y \in \mathbb{QR}_n$
- ♦ If the modulus p is prime, there are (p-1)/2 quadratic residues in \mathbb{Z}_{p}^{*}
 - * let g be a primitive root in Z_p^* , $\{g, g^2, g^3, ..., g^{p-1}\}$ is a permutation of $\{1,2,...p-1\}$
 - * in the above set, $\{g^2, g^4, ..., g^{p-1}\}$ are quadratic residues (QR_p)
 - * $\{g, g^3, ..., g^{p-2}\}$ are quadratic non-residues (QNR_p), out of which there are $\phi(p-1)$ primitive roots

33

Quadratic Residues in Z_p^*

2nd proof:

- * Because the squares of x and p-x are the same, the number of quadratic residues must be less than p-1 (i.e. some element in Z_p^* must be quadratic non-residue)
- * Let g is a primitive, consider this set $\{g, g^3, ..., g^{p-2}\}$ directly
- * If $g \in QR_p$, then g cannot be a primitive (because g^k must all be quadratic residues). Thus, if g is a primitive then $g \in QNR_p$
- * If $g^{2k+1} \equiv g^{2k} \cdot g \in QR_p$, $\exists x \in Z_p^*$ such that $x^2 \equiv g^k \cdot g^k \cdot g \pmod{p}$ Since $gcd(g^k, p) = 1$, $g \equiv ((g^k)^{-1})^2 \cdot x^2 \equiv ((g^k)^{-1} \cdot x)^2 \in QR_p$ contradiction
- * Thus, $g^{2k+1} \in QNR_p$

Quadratic Residues in \mathbb{Z}_p^*

1st proof:

- * For each $x \in \mathbb{Z}_p^*$, $p x \neq x \pmod{p}$ (since if x is odd, p x is even), it's clear that x and $p x \pmod{p}$ are both square roots of a certain $y \in \mathbb{Z}_p^*$
- **★** Because there are only p-1 elements in \mathbb{Z}_p^* , we know that $|\mathbb{QR}_p| \le (p-1)/2$
- ★ Because $|\{g^2, g^4, ..., g^{p-1}\}| = (p-1)/2$, there can be no more quadratic residues outside this set. Therefore, the set $\{g, g^3, ..., g^{p-2}\}$ contains only quadratic non-residues

34

Quadratic Residues in Z_p^*

 \Rightarrow ex. p=143537, $p-1=143536=2^4\cdot8971$,

 $\phi(p-1)=2^4\cdot8971\cdot(1-1/2)\cdot(1-1/8971)=71760$ primitives, (p-1)/2=71768 QR_p's and 71768 QNR_p's

- * Note: if g is a primitive, then g^3 , g^5 ... are also primitives except the following 8 numbers g^{8971} , $g^{8971\cdot 3}$,..., $g^{8971\cdot 15}$
- **★** Elements in Z_p^* can be grouped further according to their order since $\forall x \in Z_p^*$, ord_p(x) | p-1, we can list all possible orders

					8971	16	8	4	2	1
$\operatorname{ord}_p(x)$	<i>p</i> -1	<i>p</i> -1	<i>p</i> -1	<u>p-1</u>	<u>p-1</u>	<i>p</i> -1				
	P 1	2	4	8	16	8971	8971.2	8971.4	8971.8	8971.16
	QNR_p	QR_p	QR_p	QR_p	QR_p	QNR_p	QR_p	QR_p	QR_p	QR_p
#	♦ (<i>p</i> -1)					8			2	1 36

\mathbf{QR}_n for Composite Modulus n

 \diamond If y is a quadratic residue modulo n, it must be a quadratic residue modulo all prime factors of n.

$$\exists x \in \mathbb{Z}_n^* \text{ s.t. } x^2 \equiv y \pmod{n} \Leftrightarrow x^2 = k \cdot n + y = k \cdot p \cdot q + y$$
$$\Rightarrow x^2 \equiv y \pmod{p} \text{ and } x^2 \equiv y \pmod{q}$$

 \diamond If y is a quadratic residue modulo p and also a quadratic residue modulo q, then y is a quadratic residue modulo n.

$$\exists r_1 \in \mathbb{Z}_p^* \text{ and } r_2 \in \mathbb{Z}_q^* \text{ such that}$$

$$y \equiv r_1^2 \pmod{p} \equiv (r_1 \bmod{p})^2 \pmod{p}$$

$$\equiv r_2^2 \pmod{q} \equiv (r_2 \bmod{q})^2 \pmod{q}$$
from CRT, $\exists ! r \in \mathbb{Z}_n^* \text{ such that } r \equiv r_1 \pmod{p} \equiv r_2 \pmod{q}$
therefore, $y \equiv r^2 \pmod{p} \equiv r^2 \pmod{q}$
again from CRT, $y \equiv r^2 \pmod{p \cdot q}$

Legendre Symbol

$$y \in QR_p \Leftrightarrow y^{(p-1)/2} \equiv 1 \pmod{p}$$

 (\Rightarrow)

- * If $y \in QR_p$
- **★** Then $\exists x \in \mathbb{Z}_p^*$ such that $y \equiv x^2 \pmod{p}$
- * Therefore, $y^{(p-1)/2} \equiv (x^2)^{(p-1)/2} \equiv x^{(p-1)} \equiv 1 \pmod{p}$

 (\Leftarrow)

* If $y \notin QR_p$ i.e. $y \in QNR_p$

 $\operatorname{ord}_{p}(g) = p-1$

- * Then $y \equiv g^{2k+1} \pmod{p}$
- * Therefore, $y^{(p-1)/2} \equiv (g^{2k} \cdot g)^{(p-1)/2} \equiv g^{k(p-1)} g^{(p-1)/2} \equiv g^{(p-1)/2} \equiv 1 \pmod{p}$

Legendre Symbol

- \diamond Legendre symbol L(a, p) is defined when a is any integer, p is a prime number greater than 2
 - $\star L(a, p) = 0 \text{ if } p \mid a$
 - * L(a, p) = 1 if a is a quadratic residue mod p
 - * L(a, p) = -1 if a is a quadratic non-residue mod p
- \diamond Two methods to compute (a/p)
 - $\star (a/p) = a^{(p-1)/2} \pmod{p}$
 - * recursively calculate by $L(a \cdot b, p) = L(a, p) \cdot L(b, p)$
 - 1. If a = 1, L(a, p) = 1
 - 2. If a is even, $L(a, p) = L(a/2, p) \cdot (-1)^{(p^2-1)/8}$
 - 3. If a is odd prime, $L(a, p) = L((p \mod a), a) \cdot (-1)^{(a-1)(p-1)/4}$
- ♦ Legendre symbol L(a, p) = -1 if $a \in QNR_p$ L(a, p) = 1 if $a \in QR_p$

38

Jacobi Symbol

- \diamond Jacobi symbol J(a, n) is a generalization of the Legendre symbol to a composite modulus n
- ♦ If *n* is a prime, J(a, n) is equal to the Legendre symbol i.e. $J(a, n) \equiv a^{(n-1)/2} \pmod{n}$
- \diamond Jacobi symbol cannot be used to determine whether a is a quadratic residue mod n (unless n is a prime)

ex.
$$J(7, 143) = J(7, 11) \cdot J(7, 13) = (-1) \cdot (-1) = 1$$

however, there is no integer *x* such that $x^2 \equiv 7 \pmod{143}$

Calculation of Jacobi Symbol

- \diamond The following algorithm computes the Jacobi symbol J(a, n), for any integer a and odd integer n, recursively:
 - * Def 1: J(0, n) = 0 also If n is prime, J(a, n) = 0 if n|a
 - * Def 2: If n is prime, J(a, n) = 1 if $a \in QR_n$ and J(a, n) = -1 if $a \notin QR_n$
 - * Def 3: If n is a composite, $J(a, n) = J(a, p_1 \cdot p_2 \dots \cdot p_m) = J(a, p_1) \cdot J(a, p_2) \dots \cdot J(a, p_m)$
 - * Rule 1: J(1, n) = 1
 - * Rule 2: $J(a \cdot b, n) = J(a, n) \cdot J(b, n)$
 - * Rule 3: J(2, n) = 1 if $(n^2-1)/8$ is even and J(2, n) = -1 otherwise
 - * Rule 4: $J(a, n) = J(a \mod n, n)$
 - * Rule 5: J(a, b) = J(-a, b) if a < 0 and (b-1)/2 is even, J(a, b) = -J(-a, b) if a < 0 and (b-1)/2 is odd
 - * Rule 6: $J(a, b_1 \cdot b_2) = J(a, b_1) \cdot J(a, b_2)$
 - * Rule 7: if gcd(a, b)=1, a and b are odd

$$\Rightarrow$$
 7a: $J(a, b) = J(b, a)$ if $(a-1) \cdot (b-1)/4$ is even

$$\Rightarrow$$
 7b: J(a, b) = -J(b, a) if (a-1)·(b-1)/4 is odd

QR_n and Jacobi Symbol

 \diamond Consider $n = p \cdot q$, where p and q are prime numbers

$$x \in QR_n$$

41

$$\Leftrightarrow x \in QR_p \text{ and } x \in QR_q$$

$$\Leftrightarrow$$
 J(x, p) = $x^{(p-1)/2} \equiv 1 \pmod{p}$ and J(x, q) = $x^{(q-1)/2} \equiv 1 \pmod{q}$

$$\Rightarrow$$
 J(x, n) = J(x, p) · J(x, q) = 1

	J(x, p)	J(x, q)	J(x, n)	
Q_{00}	1	1	1	$x \in QR_n$
Q_{01}	1	-1	-1	$x \in QNR_n$
Q_{10}	-1	1	-1	$x \in QNR_n$
Q_{11}	-1	-1	1	$x \in QNR_n$