RSA Cryptosystem

AL
AEREEN T £
TEE

Naive Public Key System

< Encryption and decryption algorithm are not the same

< Public/private key pair: private key is related to public
key but can not be easily derived from public key

< Illustrating example:
meZ,

m* 1 =m(mod11)
-1
m*8*8 =m(mod11)

encryption 8 is the plljlblic k;:y
m * § is the ciphertext
4 . 8" is the private key (if nobody
ecryption can derive this from the public
key, then this system is secure)

Knapsack (Subset Sum) PKC

<+ Merkel and Hellman, “Hiding Information and Signatures
in Trapdoor Knapsacks,” IT-24, 1978

* a good application of an NP problem on designing public key
cryptosystem no longer secure

% Super-increasing sequence,:1
1_

{a,, a,, ... a,} such that ai>Zé)aj e.g. 1,3,5,10, 20, 40
i

+ Note: 1. Given a number c, finding a subset {a;} s.t. ¢ =X a;
is an easy problem, e.g. 48 =40+ 5+ 3 J

2. Sum of every subset S, >, a; <2 - ay where ay, = max{a }
jesS JE
3. Every possible subset sum is unique

pf: given x, assume x =3, a= Z a;, where S #T, assume max{a }# max{a}
jes’ jeT je je

Knapsack (Subset Sum) PKC

<+ choose a number b in Z %, e.g. p = 101, b = 23, and convert the
super-increasing sequence to a normal knapsack sequence

B={b,, b5, ..., b,} where b,=a; - b (mod p)
e.g. A={1, 3,5, 10, 20, 40} = B={23, 69, 14, 28, 56, 11}
% Since ged(b, p)=1, this conversion is invertible, i.e.
a,=b; " b' (mod p)
e.g. b'=22 (mod 101) such thatd - b' =1 (mod p)

+ Given a number d, finding a subset {b,}cB s.t.
d =2 b; (mod p)
J

is an NP-complete problem, e.g. 94 =11 + 14 + 69

Knapsack (Subset Sum) PKC

< Encryption:
* public key: normal knapsack seq. B={23, 69, 14, 28, 56, 11}
* message m, 0 <m < 2%, e.g. (60),,=(111100),

* sum up the corresponding elements of ‘1’ bits, e.g.
23+ 69+ 14+ 28 =134 is the ciphertext

< Decryption:
x private key: b"'=22, p=101, A={1, 3, 5, 10, 20, 40}
* calculate 134 * 22 mod 101 = 19

* use the corresponding super-increasing knapsack seq. A={1,

3,5, 10, 20, 40} to decrypt as follows:
« 19 <40, mark a ‘0’
& 19 <20, mark a ‘0’
& 19>10, mark a ‘1’ and subtract 10 from 19
« 9>5, mark a ‘1’ and subtract 5 from 9
% 4 >3, marka ‘1’ and subtract 3 from 4

* recovered message is (111100), = (60),,

Knapsack (Subset Sum) PKC

< Why does it work?
let the plaintext be (111100),
ciphertextc = b, + b, + by + b,
=a,b+a,b+ta;b+a,b(modp)
decryption: ¢ b! (mod p) =a, + a, + a; + a, (mod p)
is a subset sum problem of a

super-increasing sequence

RSA and Rabin

< two important cryptosystems based on the
difficulty of integer factoring (an NP problem) are
introduced as follows:

Il
o
Kol

<+ RSA’s underlying problem A1t

Solving e-th root modulo n is difficult
RSA function ™

y = x® (mod n)
< Rabin’s underlying problem
Solving square root modulo n is difficult

y = x2 (mod n)
Rabin function

both functions are candidates for trapdoor one way function

7

RSA and Rabin Function

< Solving e-th root of y modulo n is difficult!!!
y = x° (mod n), where gcd(e, ¢(n)) =1
Why don’t we take (e’!)-th power of y?
where ¢! - e =1 (mod ¢(n))
eg. n=11-13=143,e=7
d(n)=10-12=120,¢'=103

Trouble: How do we
know ¢(n) ?

% Solving square root of y modulo n is difficult!!!
y = x2 (mod n)
Why don’t we take (2-')-th power of y?
where 21 - 2 =1 (mod ¢(n))
eg. n=11-13=143
d(n) =10 - 12 =120, ged(2, ¢p(n)) =2

Trouble: d - 2 = 1 (mod ¢(n)) has no solution

Remember solving square
root of y modulo a prime
number p is very easy

RSA Public Key Cryptosystem

% R. Rivest, A. Shamir and L. Adleman, “A Method for
Obtaining Digital Signatures and Public-Key
Cryptosystems,” Comm. ACM, pp.120-126, 1978

< Based on the Integer Factorization problem
¢ Choose two large prime numbers: p, g (keep them secret!!)
% Calculate the modulus n = p-g
<+ Calculate ®(n) = (p-1)-(g-1) (keep it secret)
< Select a random integer such that e < ® and gcd(e, @) =1
<+ Calculate the unique integer d such that e - d =1 (mod @)
\< Public key: (n, e)

(make it public)

Private key: d

RSA Encryption & Decryption

< Alice wants to encrypt a message M for Bob
% Alice obtains Bob’s authentic public key (7, e)

% Alice represents the message as an integer m in the
interval [0, n -1]

< Alice computes the modular exponentiation
¢ =m° (mod n)

< Alice sends the ciphertext ¢ to Bob

< Bob decrypts ¢ with his private key (n, d)

by computing the modular exponentiation
m = ¢ (mod n)

RSA Encryption & Decryption

<+ Why does RSA work? Is this really a problem???
xFactl:eed=1(mod ®)=ed=1+kD
x Fact 2: Vm, gcd(m,n)=1, m® = 1 (mod n)
(by Euler’s theorem)
* From Fact 2: Vm , gcd(m,n)=1,
Cd = med = ml-i—kd) = ml+k(p-1)(q-l) =m (mod n)

note: 1. This only proves that for all m that are not multiples of p
or ¢ can be recovered after RSA encryption and decryption.
2. For those m that are multiples of p or g, the Euler’s theorem
simply does not hold, e.g. p® =0 (mod p) and
p®=1(mod q)
which means that p® % 1 (mod) from CRT.

RSA Encryption & Decryption

<+ Why does RSA work?
xFactl:eed=1(mod ®)=>ed=1+kD
* Fact 2: Vm, gcd(m,p)=1, mP1 =1 (mod p)
(by Fermat’s Little theorem)
* From Fact 2: Vm , gcd(m,p)=1
nme:ﬁi}i}g{l? mewher > IR 0-D @) =y (mod p)
* From Fact 2: Vm , ged(m,q)=1
Ml m 10D @D = i (mod g)

. From CRT:vm R
@ = med = 1tk @ = 11tk P-1@D 2 gy (mod)

RSA Function 1s a Permutation

<+ RSA function is a permutation: (1-1 and onto, bijective)
+ Goal: “Vx,, X, €Z, if X,° = X,° (mod n) then X, = X,”
Vx#rp, xP! =1 (mod p), Vx=#s-q, x4! = 1 (mod q)
= VKk,Vxzrp, x® = 1 (mod p),Vx#s-q, xX¢® =1 (mod q)
CRT ., vk, vx, xkm+1 = x (mod p), xk¢™*! = x (mod q)
= Vk,Vx, xk™*H = x (mod n)

* gcd(e,p(n))=1 = inverse of e (mod ¢(n)) exists
= let d be the inverse s.t. e-d = 1 (mod ¢(n))

* VX, X, €Z, if X,° = x,° (mod n)
= (%, = (x,9)¢ (mod n
Note: Euler Thm is valid (!) (2) ()
only when x €Z,* = (X1)1+k o(n) — (x2)1+k o(m) (mod n)

= X, =X, (modn) ;

RSA Cryptosystem

<+ Most popular PKC in practice

% Tens of dedicated crypto-processors are specifically designed to

perform modular multiplication in a very efficient way.

<+ Disadvantage: long key length,

complex key generation scheme,
deterministic encryption

<+ For acceptable level of security in commercial applications, 1024-

bit (300 digits) keys are used. For a symmetric key system with
comparable security, about 100 bits keys are used.

% In constrained devices such as smart cards, cellular phones and

PDAs, it is hard to store, communicate keys or handle operations
involving large integers

Matlab examples

< rsatest.m
* maple('p := nextprime(1897345789)")
* maple('q := nextprime(278478934897)")

* maple('n = p*q'); Very likely to be relatively

* maple('x := 101"); / prime with (p-1)(q-1)

* maple('e := nextprime(12345678)")

* maple('d :=e&”(:1) mod ((p-1)*(q-1))")

* maple('y :=x&"(e) mod n')

* maple('xp := y&"(d) mod n') extended Euclidean algo.

Python gmpy?2

from gmpy?2 import mpz, next_prime, invert, powmod

p =next prime(mpz(1897345789)) # 1897345817
q = next_prime(mpz(278478934897)) # 278478934961

n=p*q # 528370842370868408137
phi = (p-1)*(g-1) #528370842090492127360
e = next_prime(mpz(1897345789)) # 1897345817

d = invert(e, phi) # 139387972146660337833

plaintext = 101

ciphertext = powmod(plaintext, e, n) # 479679342785929350234
decrypted = powmod(ciphertext, d, n) # 101

Rabin Cryptosystem (1/3)

<+ M.O. Rabin, “Digitalized Signatures and Public-key
Functions As Intractable As Factorization”, Tech. Rep.
LCS/TR212, MIT, 1979

% Choose two large prime numbers: p, ¢ (keep them secret!!)
% Calculate the modulus n = p-¢g (make it public)

< Public Key n

<+ Private Key p, g

17

Rabin Cryptosystem (2/3)

< Alice want to encrypt a message M (with some fixed
format) for Bob

< Alice obtains Bob’s authentic public key n

< Alice represents the message as an integer m in the
interval [0, n -1]

< Alice computes the modular square

¢ =m? (mod n)

< Alice sends the ciphertext ¢ to Bob

<+ Bob decrypts c using his private key p and q

<~ Bob computes the four square roots +m,, +m, using CRT,
one of them satisfying the fixed message format is the

recovered message

Rabin Cryptosystem (3/3)

< The range of the Rabin function is not the whole
set of Z,* (compare with RSA).

* The range covers all the quadratic residues. (for a prime
modulus, the number of quadratic residues in Zp* is
(p-1)/2; for a composite integer n=p-q, the number of quadratic
residues in Z " is (p-1)(q-1)/4)

* In order to let the Rabin function have inverse, it is necessary
to make the Rabin function a permutation, ie. 1-1 and onto.
Therefore, the number of elements in the domain of the Rabin
function should also be (p-1)(q-1)/4 for n=p-q. There are 4
possible numbers with their square equal to y, and we have to
make 3 of them illegal.

Number of Quadratic Residues

% For a prime modulus p: number of QR ’s in Zp* is (p-1)/2
pf: find a primitive g, at least {g?, g*, ... gP"'} are QR’s
assume there are (p+1)/2 QRs,
since there are exactly two square roots of a QR modulo p
there are p+1 square roots for these (p+1)/2 QRs, i.e. there must
be at least two pairs of square roots are the same (pigeon-hole),
i.e. two out of these (p+1)/2 QRs are the same, contradiction

<+ For a composite modulus p-q: number of QR,’s in Zp_q* is (p-1)(g-1)/4
pf: find a common primitive in Z " and Z " g, at least {g", ", ...,

g, g%, g™} are QR,’s, where A(n) = lem(p-1,g-1) can be
as large as (p-1)(g-1)/2, this set has (p-1)(q-1)/4 distinct elements
assume there are (p-1)(q-1)/4+1 QR,’s in Z ", since there are four
square roots of a QR modulo p-q, these QR ’s have (p-1)(q-1)+4
square roots in total. There must be some repeated elements in
this QR,, therefore, there are at most (p-1)(q-1)/4 QR,’sin Z*

20

Matlab examples

<+ maple("p:= nextprime(189734535789)") % 189734535811 =4k +3
<+ maple("p mod 4")

<+ maple('q:= nextprime(27847815934897)") % 27847815934931 =4k +3
<+ maple('q mod 4")

<+ maple('n:=p*q");

<+ maple("'x:==070411111422141711030000") % text2int(‘helloworld”)

+ maple('c:=x&"2 mod n')

<+ maple('cl:=c mod p")

<+ maple('rl:=cl&*((p+1)/4) mod p") % maple('rl &2 mod p')

<+ maple('c2:=c mod q')

<+ maple('r2:= c2&"((q+1)/4) mod q') % maple('r2&"2 mod q')

maple('m1:= chrem([rl, r2], [p, q])") % 3704440302544264662351219
maple('m2:= chrem([-r1, 2], [p, q])) % 70411111422141711030000

maple('m3:= chrem([r1, -r2], [p, q])) % 5213281318342160554284041
maple('m4:= chrem([-r1, -12], [p, q])") % 1579252127220037602962822

e

21

Security of the RSA Function

< Break RSA means ‘inverting RSA fynction

without knowing the trapdoor’

y=x° (mod n)

< Factor the modulus = Break RSA
* If we can factor the modulus, we can break RSA
x If we can break RSA, we don’t know whether we can factor the
modulus...open problem (with negative evidences)
< Factor the modulus < Calculate private key d

* [f we can factor the modulus, we can calculate the private
exponent d (the trapdoor information).

* If we have the private exponent d, we can factor the modulus.

will be illustrated later after factorization by

Security of Rabin Function
% Security of Rabin function is equivalent to
integer factoring
<+ inverting ‘y = f(x) = x? (mod n)’

without knowing p and q < factoring n

*—=leif you can factor n =p - q in polynomial time

* you can solve y = x,% (mod p) and y = x,? (mod q) easily
« using CRT you can find x which is f "!(y)

* =
* given a quadratic residue y if you can find the four

square roots +x, and x, for y in polynomial time
* you can factor n by trying ged(x,-x,, n) and ged(x,+x,, n)

23

Basic Factoring Principle (1/4)

% Let n be an integer and suppose there exist integers x and y with
x? = y? (mod n), but x # ty (mod n). Then @ n is composite,
® both ged(x-y, n) and ged(x+y, n) are nontrivial factors of n.
Proof:
let d = ged(x-y, n).
Case 1: assume d =n = x =y (mod n) contradiction
Case 2: assume d is 1 (the trivial factor)
x2=y?(modn) = x?-y?=(x-y)(xty) =k ' n
d=1 means gcd(x-y, n)=1 =
n | x+y = x = -y (mod n) contradiction

Case 1 and 2 implies that 1 <d <n
i.e. d must be a nontrivial factor of n

24

Basic Factoring Principle (2/4)
+ x2 =y? (mod p) implies x = +y (mod p) since p | (x+y)(x-y)
implies p | (x+y) or p | (x-y),
1.e. x =-y (mod p) or x =y (mod p)
+ X% =y? (mod n)
pq | (x+y)(x-y) implies the following 4 possibilities
1. pq | (x+y) i.e. x = -y (mod n)
2.pq| (x-y) 1.e. x =y (mod n)
3.p| (xty)and q | (x-y) i.e. x = -y (mod p) and x =y (mod q)
4.q| (xty)and p | (x-y) i.e. x = -y (mod q) and x =y (mod p)
* Case 1 and case 2 are useless for factorization
* Case 3 leads to the factorization of n, i.e. gcd(x+y, n) = p and
ged(x-y, m) =q
* Case 4 leads to the factorization of n, i.e. gcd(x+y, n) = q and
ged(x-y, n) =p 25

Basic Factoring Principle (3/4)

< This principle is used in almost all factoring algorithms.
<+ Why is it working?
x take n = p-q (p and q are prime) for example
* X2 = y? (mod n) implies x> = y? (mod p) and x? = y? (mod q)
* we know ‘x = 1y (mod p) are the only solution to x> = y? (mod p)’
and ‘x = +y (mod q) are the only solution to x?> = y? (mod q)’

x therefore, from CRT we know x? = y? (mod n) has four solutions,

« X =y (mod p) and x =y (mod q) = x =y (mod n)
& X = -y (mod p) and x = -y (mod q) = X = -y (mod n)
« X =y (mod p) and x = -y (mod q) = x =z (mod n)
& X = -y (mod p) and x =y (mod q) = x = -z (mod n)

* as long as we have z (where z ¥ ty), we can factor n into
gcd(y-z, n) and ged(y+z, n)

26

Basic Factoring Principle (4/4)

< Ex: Consider the roots of 4 (mod 35), i.e.
solving x from x? =4 (mod 35)

* try to take square root of both sides,
we find x =+2 or £12

xi.e. 122 =22 (mod 35), but 12 # £2 (mod 35)
* therefore 35 is composite

* gcd(12-2, 35) =5 is a nontrivial factor of 35
* gcd(12+2, 35) = 7 is a nontrivial factor of 35

27

Miller-Rabin Test

Isna comp031te number?
+ Letn> 1 be odd, write n-1 = 2¥ - m with m being odd
< Choose a random integer a with 1 <a <n-1 n will pass Fermat test
Y Compute bO = g" (mod n) n .is called pseudo prime
if by = £1 (mod n), stop, » is probably prime J}t respect to base a
+ Compute b, = b,? (mod n)
if b, = 1 (mod n), stop, ged(b,-1, n) is a factor of n
if b, = -1 (mod n), stop, n is probably prime
+ Compute b, = b, (mod n)
+ Compute b, , = b, ,> (mod n)
if b, = 1 (mod n), stop, ged(b, ,-1, n) is a factor of n
if b, = -1 (mod n), stop, n is probably prime
+ Compute b, = b,_,> (mod n)
if b, =1 (mod n), stop, ged(b,_;-1, n) 1s a factor of n
otherwise # is composite (Fermat Little Thm, b, = a”"! (mod r)) N

Miller-Rabin Test Illustrated
EOI; j (mod n)

i ® ® and @ are not true,
b, =a*™ (mod n) i

b, =-1 (modn), i=1,2,...k

all subsequent b; = 1 (mod n),

there is no chance to use
______________________ Basic Factoring Principle, abort

Consider 4 possible cases: \® @, @, and @ are not true,

@ b, =1 (mod n) ‘\\ b, =a"! (mod n)

all b, - I (modn), i=1,2,...k \ if b, # 1 (mod n) n is composite
there is no chance to use
isince if n is prime, b, = 1 (mod n)

Basic Factoring Principle, abort (b, = 1 (mod n) is covered by @)
@ @ is not true,

b, | # £1 (mod n) and s
b, =1 (modn), i=1,2,...k
Basic Factoring Principle applied, composite 2

Uncoordinated Behaviors

< Speed of light changes as it moves from Fa
one medium to another,

e.g., refraction caused by a prism

& BRIAGHEE: WA=, FJ/L\Tnpjj

< Squaring a number modulo a composite number (product
of different prime numbers)

2? 23 24 23 26 27 28
mod 11 4 8 5 10 9 7 3
mod 13 4 8 3 6 12 11 9

30

When/How does Basic Factoring
Principle work in M-R test?

< When:
* explicitly: b, ; # *1 (mod n) and b, = biz_ ; = 1 (mod n)

If n is not prime, sometimes b, = a™! (mod n) but often
b, =a"®™ (mod n) as in universal exponent factoring

< How:

* implicitly: letp|nand q|n (p, q be two factors of n)
bZ =1 (mod p) and b%, = 1 (mod q)
but either b, ; # 1 (mod p) or b, ; # 1 (mod q)

* catching the moment that b, b,, ... behave differently
while taking square in (mod p) component and (mod q)

component
31

Miller-Rabin Test Example
+e.g n=561 ST e Fomaties tor i bhees
n-1=560=16"35=24-35

leta=2 mod 3 | 11 |17
b, = 2% =263 (mod 561) 2 |10 8
b, =by> =2 = 166 (mod 561) L.
b2_b12_22235_67 (mod 561) 1116
by=by,> =223 = 1 (mod 561) P I s

1
4

561 is composite (3-11-17), ord (2)_23’
17\=)™

ged(b,-1, 561) =33 is a factor

Note: 3-1=2, 11-1=2-5, 17-1=24
d(561)=561(1-1/3)(1-1/11)(1-1/17)=2-10-16
ged(p(561), n-1)=80, ordss,(2) | 80 in this case ,

Pseudo Prime and Strong Pseudo Prime

<+ If n is not a prime but satisfies a™! = 1 (mod n) we
say that n is a pseudo prime number for base a.
x e.g.2°0 =1 (mod 561)

< If n is not a prime but passes the Miller-Rabin test
with base a (without being identified as a
composite), we say that n is a strong pseudo prime
number for base a.

< Up to 1010, there are 455052511 primes, there are
14884 pseudo prime numbers for the base 2, and
3291 strong pseudo prime numbers for the base 2

33

Fermat and Miller-Rabin Test

< Both of these two tests are for identifying subsets of
composite numbers

~ numbers for base a,

SPP,: strong pseudo prime

I integers —— the set of composite n
SPP, where M-T test says
‘probably prime’
. C: composite
[=PUC numbers
C =SPP, U SPP; .
—PP. UPP PP,: pseudo prime
a a numbers for base a,
SPP. — PP the set of composite

ﬁa - Sﬁa cC : mysterious part

n where a"'=1(mod n)

not prime, but cannot be identified as composite

34

Composite Witness

< Note that the M-R test and probably together with the Lucas test
leave the strong pseudo prime number an extremely small set.

< In other words, these tests are very close to a real ‘primality test’
separating prime numbers and composite numbers.

< If you have an RSA modulus n=p-q, you certainly can test it and
find out that it is actually a composite number.

<+ However, these tests do not necessarily give you the factors of n in
order to tell you that n is a composite number. The factors of n, i.e.
p or q, are certainly a kind of witness about the fact that n is
composite.

<+ However, there are other kind of witness that n is composite, e.g.,
“2™! (mod n) does not equal to 1” is also a witness that n is
composite.

%+ A composite number will be factored out by the M-R test only if it

is a pseudo prime but it is not a strong pseudo prime number.
35

Matlab Example

% primetest(n)
* Miller-Rabin test for 30 randomly chosen base a
* output 0 if n is composite
* output 1 if n is prime

* Matlab program can not be used for large n

* use Maple isprime(n), one strong pseudo-primality test and one
Lucas test

< primetest(2563)
ans=0

% factor(2563)
ans =11 233

36

Questions

<~ What is the probability that Miller-Rabin test fails???

* [f n is a prime number, it will not be recognized as a composite
number

x Ifn=p- q, but
b, = a"'=1(modn) meets Fermat test (pseudo prime number)
0<i<k b; =1 (mod n) and b, ; =-1 (mod n)
meets Miller-Rabin test (strong pseudo prime number)
o b,=1(modn) =1 (modp) =1 (modq)
I[bi_l =-1 (modn) =-1 (mod p) =-1 (mod q) J
* Note: a?"! = 1 (mod n)
a®-D@D = q (mod n)
alm®-1.a) = 1 (mod n)

37

Note on Primality Testing

< Primality testing is different from factoring
* Kind of interesting that we can tell something is composite
without being able to actually factor it
<+ Recent result (2002) from IIT trio (Agrawal, Kayal, and
Saxena)

* Recently it was shown that deterministic primality testing could
be done in polynomial time
& Complexity was like O(n'2), though it’s been slightly reduced since then

* Does this meant that RSA was broken?

<+ Randomized algorithms like Rabin-Miller are far more
efficient than the IIT algorithm, so we'll keep using those

38

Finding a Random Prime
< Find a prime of around 100 digits for cryptographic
usage
< Prime number theorem (7(x) ~ X/In(X)) asserts that the
density of primes around x is approximately 1/In(x)
+x =101 1/In(10'%) = 1/230
if we skip even numbers, the density is about 1/115

< pick a random starting point, throw out multiples of 2,
3, 5, 7, and use Miller-Rabin test to eliminate most of
the composites.

< maple('a:=nextprime(189734535789)")

39

Factoring

< General number field sieve (GNFS): fastest
(923+0(1))(In(n))"” (In(In(n)))*”
< Quadratic sieve (QS)
<+ Elliptic curve method (ECM), Lenstra (1985)
< Pollard’s Monte Carlo algorithm
< Continued fraction algorithm
% Trial division, Fermat factorization

< Pollard’s p-1 factoring (1974), Williams’s p+1
factoring (1982)

< Universal exponent factorization, exponent
factorization

40

Simple Factoring Methods

<+ Trial division:
* dividing an integer n by all primes p <Vn ... too slow

< Fermat factorization:

* e.g. n = 295927 calculate n+12, n+22, n+32... until
finding a square, i.e. x> =n + y?, therefore,
n = (x+y) (x-y) ... if n = p-q, it takes on average
Ip-q|/2 steps ... too slow
| assume p>q, n+y? =p-q+((p-9)/2)>=(p> +2pq+q>)/4=((p+q)/2)* |
* in RSA or Rabin, avoid p, q with the same bit length

< By-product of Miller-Rabin primality test:

x if n 1s a pseudoprime and not a strong pseudoprime,

Miller-Rabin test can factor it. about 10-6 chance u

Universal Exponent Factorization

* if we have an exponent 7, s.t. ¢’ =1 (mod ») for all a ged(a,n)=1

* write 7 = 2% - m with m odd r must be even since we can

take a=-1 (-1)" =1 (mod n)

* choose a random a, 1<a<n-1 [boi
. requires » being even
* if gcd(a, n) # 1, we have a factorl

* else ‘ a=t1 do not work |

« let by = @™ (mod n), if b, =t1 stop, choose another a
« compute b,,; = b,2 (mod n) for 0< u <k-1,
w if b, ; = -1, stop, choose another a
w if b, ;=1 then ged(b,-1, n) is a factor (basic factoring principle)
* Question: How do we find a universal exponent I' ??? Hard
* Note: if know ¢(n), then any r =k ¢(n) will do, however, knowing
factors of n is a prerequisite of know ¢(n)
* Note: For RSA, if the private exponent d is recovered, then

¢0(n) | d-e-1, d-e-1 is a universal exponent “

Universal Exponent Factorization

+ E.g.
n=211463707796206571; e=9007; d=116402471153538991
r=e*d-1=1048437057679925691936; powermod(2,r,n)=1
let =2°*r1; r1=32763658052497677873
powermod(2,r1,n)=187568564780117371=%1
powermod(2,2*r1,n)=113493629663725812#+1
powermod(2,4*r1,n)=1 => gcd(2*rl-1,n)=885320963 is a factor
<+ Note: n=211463707796206571 = 238855417 - 885320963
238855417 -1=23-3-73-136333 =2 P
885320963 — 1 =2 -2069 - 213949 = 2" . q
This method works only whenk, does not equal k,.

< Exponent factorization even if r is valid for one a, you can still

try the above procedure “

p-1 factoring (1/2)

< If one of the prime factors of #n has a special property, it is
sometimes easier to factor n.
* e.g. if p-1 has only small prime factors
* Pollard 1974

< Algorithm
* Choose an integer a > 1 (often @ = 2 is used)
* Choose a bound B \f\ have a chance of being larger
. than all the prime factors of p-1
x Compute b = a?' as follows:
% b;=a(modn)and b, = bj_/ (mod n) then b = by (mod n)

*x Let d = ged(b-1, n), if 1 <d <n, we have f01(1nd la_lkfla?‘tor ofn
very likely

If B is larger than all the prime factors of p-/ = ' p-1|B!
therefore b=a?' =(a>'Y=I (mod p), i.e. p|b-1 Fermat Little’s Thm
s modp),re.pio-l

If n=p-q, p-1 and g-1 both have small factors that are less than B, then gcd(b-1,n)=n,
(useless) however, b =a?’ =1 (mod n) and we can use the Universal exponent method 4

p-1 factoring (2/2)

<~ How do we choose B?
* small B will be faster but fails often
* large B will be very slow

<+ In RSA, Rabin, Paillier, or other systems based on
integer factoring, usually n=p-q, we should ensure that
p-1 has at least one large prime factor.
* How do we do this?
e.g. we want to choose p around 100 digits
> choose a prime number p,, around 40 digits
> look at integer k-p,+1 with k around 60 digits and do primality test
< Generalization:
Elliptic curve factorization method, Lenstra, 1985

< Best records: p-1: 34 digits (113 bits), ECM: 47 digits (143 bits)
45

Quadratic Sieve (1/4)

* form the followmg relatlons “individual factors are small
93982 =5 - 19 (mod 3837523)
190952 =2%-5 - 11 - 13 - 19 (mod 3837523)
19642 = 3% - 13 (mod 3837523)

170787 =29 32 11 (mod 3837523) make the number
. of each factors even

(9398 - 19095 - 1964 - 17078) —(24 32 53.11-13%-19)
22303877 = 2586705 . hope they are not equal

* since 2230387 #+2586705 (mod 3837523)
* gcd(2230387-2586705, 3837523) = 1093 is one factor of n
* the other factor is 3837523/1093 = 3511

46

Quadratic Sieve (2/4)

< Quadratic? x? = product of small primes
<+ How do we construct these useful relations systematically?

< Properties of these relations:
* product of small primes called factor base
= make all prime factors appear even times

< Put these relations in a matrix

2 3 5 7 11 13 17 19 add

9398 | 0 0 5 0 0 0 0 17

190952 0 1 0 1 1 0 1

196402 0 0 0 3 0 0

17078 6 2.0 0 1 0 0 off

8077 | 1 00 0000 L e even
33975 0 1 0 0 2 0 0

1422/ 0 0 2 2 0 1 0 0 .

Quadratic Sieve (3/4)

< Look for linear dependencies mod 2 among the rows
* 1st+ 5th+ 6th=(6,0,6,0,0,2,0,2)=0 (mod 2)
* Ist+2nd + 3rd + 4th= (8,4, 6, 0,2, 4, 0,2) = 0 (mod 2)
* 3rd + 7th=(0, 2,2,2,0,4,0,0)=0 (mod 2)

<+ When we have such a dependency, the product of the
numbers yields a square.

* (9398 - 8077 - 3397)>=20-5%-132-192=(23 - 5° - 13 - 19)?
* (9398 - 19095 - 1964 - 17078)> = (2 - 3% - 5% - 11 - 13% - 19)?
* (1964 - 14262)*=(3 - 5+ 7 - 13%)?

+ Looking for those x* = y? but x # ty

48

Quadratic Sieve (4/4)

<+ How do we find numbers x s.t.
x? = product of small primes?

* produce squares that are slightly larger than a multiple of n

e.g. Wi : n+jJ for small j
the square is approximately i-n+2j/i-n+j?
which is approximately 2 j,/i - n + j? (mod n)

8077= [/17n+ 1]

Probably because this number
is small, the factors of it should
not be too large. However, there
are a lot of exceptions. So it
takes time. Also, there are a lot
of other methods to generate
qualified x values.

9398 = | /230 + 4|

49

The RSA Challenge

+ 1977 Rivest, Shamir, Adleman US$100

* given RSA modulus n, public exponent e, ciphertext ¢

n=114381625757888867669235779976146612010218296721242362
562561842935706935245733897830597123563958705058989075
147599290026879543541

e =9007

¢ =968696137546220614771409222543558829057599911245743198
746951209308162982251457083569314766228839896280133919
90551829945157815154

* Find the plaintext message
<+ 1994 Atkins, Lenstra, and Leyland

use 524339 small primes (less than 16333610)
plus up to two large primes (16333610 ~ 230)

*

*
* 1600 computers, 600 people, 7 months
*

found 569466 ‘x*=small products’ equations, out of which only 205 linear
dependencies were found 50

Factorization Records

Year | Number of digits
1964 20
1974 45
1984 71
1994 129 (429 bits)
1999 155 (515 bits)
2003 174 (576 bits)
Next challenge
RSA-640 31074182404900437213507500358885679300373460228427

27545720161948823206440518081504556346829671723286
78243791627283803341547107310850191954852900733772
4822783525742386454014691736602477652346609

51

Security of the RSA Function

<+ Break RSA means ‘inverting RSA function
without knowing the trapdoor’ vl

<+ Factor the modulus = Break RSA

* If we can factor the modulus, we can break RSA

y=x° (mod n)

x If we can break RSA, we don’t know whether we can factor the
modulus...open problem (with negative evidences)

< Factor the modulus < Calculate private key d

* [f we can factor the modulus, we can calculate the private
exponent d (the trapdoor information).

* [f we have the private exponent d, we can factor the modulus.

52

Factoring reduces to RSA key recovery

< DeLaurentis, “A Further Weakness in the Common
Modulus Protocol for the RSA Cryptosystem,”
Cryptologia, Vol. 8, pp. 253-259, 1984

* [f you have a pair of RSA public-key/private-key, you can
factoring n=p-q with a probabilistic algorithm.

* An example of the Universal Exponent Factorization method

< Basic 1dea: find a number b, 0<b<n s.t.

b?>=1(modn)and b=+l (modn) ie. I<b<n-1

* Note: There are four roots to the equation b’=1 (mod n),
+1 are two of them, all satisfy (b+1)(b-1) =k-n=k'p-q,
since 0<b-1<b+1<n, we have either (p | b-1 and q | b+1) or

(q| b-1 and p | b+1), therefore, one of the factor can be found
by gcd(b-1,n) and the other by n/gcd(b-1,n) or ged(b+1,n) 53

Factoring reduces to RSA key recovery

% Algorithm to find b: Pr{success per repetition} = %
1. Randomly choose a, 1<a<n-1, such that gcd(a, n) =1

2. Find minimal j, ath =1 (mod n) (where h satisfiese - d- 1= 2th)

3.b= aZJ_ h ifp=-1 (mod n), then gcd(b-1, n) is the result, else
repeat 1-3

+ Note: If we randomly choose beZ,* and find out that b?> = 1 (mod n),
the probability that b=1, b=-1, b=c(#£1), or b=-c(#£1) would be
equal; Pr{success}=Pr{z2" hz+1}=1/2

+ Ex: p=131, =199, n=p-q=26069, e=7, d=22063
d(n)=(p-1)(g-1) =25740=22%6435 | ed-1=154440 = 23*19305,
choose a=3, try j=1 (32'19305=1), b= 22 'h= 319305 = 5372 (+1)
p = ged(b-1,n) = gcd(5371,26069) = 131, q=n/p =199 54

Factoring reduces to RSA key recovery

< The above result says that “if you can recover a pair of
RSA keys, you can factoring the corresponding n=p - q”
i.e. “once a private key d is compromised, you need to
choose a new pair of (n, e) instead of changing e only”

< The above result suggests that a scheme using (n, €,), (n,
e,), ... (n,) with a common n for each k participants
without giving each one the value of p, q is insecure.
You should not use the same n as some others even
though you are not explicitly told the value of p and q.

55

Factoring reduces to RSA key recovery

< The above result also suggests that if you can recover
arbitrary RSA key pair,.you can solve the problem of
factoring n. Whenever yo
RSA system with some € (assuming gcd(e, ¢(n))=1), then
use your method to solve the prjvate exponent d without
knowing p and q, after that you can factor n.

et an n, you can form an

< Although factoring is believed to bg hard, and factoring
breaks RSA, breaking RSA does not'simplify factoring.
Trivial non-factoring methods-of breaking RSA could

therefore exist. (What does it mean by ing RSA? plaintext
recovery? key recovery?...) different things

56

Deterministic Encryption

<+ RSA Cryptosystem is a deterministic encryption scheme,
1.e. a plaintext message is encrypted to a fixed ciphertext
message

<+ Suffers from chosen plaintext attack

* an attacker compiles a large codebook which contains the
ciphertexts corresponding to all possible plaintext messages

* in a two-message scheme, the attacker can always distinguish
which plaintext was transmitted by observing the ciphertext
(does not satisfy the Semantic Security Notation)

% Add randomness through padding

57

RSA PKCS #1 vl1.5 padding

<+ E.g. k=128 bytes (1024 bits) PKCS#1 v1.5 RSA
* plaintext message M (at most 128-3-8=117 bytes)
* pseudorandom nonzero string PS (at least 8 bytes)
* message to be encrypted m = 00||02||PS||00||M
* encryption: ¢ = m® (mod n)

* decryption: m = ¢4 (mod n)

% ¢ 1s now random corresponding to a fixed m, however,
this only adds difficulties to the compilation of
ciphertexts (a factor of 264 times if PS is 8 bytes)

58

PKCS #1 v2 padding - OAEP

Seed ‘ P ‘ ‘ M ‘ M: message (emLen-1-2hLen bytes)

] P: encoding parameters,

Hash an octet string

MGEF: mask generation function

Hash: selected hash function

‘ Padding Operation ‘ (hLen is the output bytes)
DB=Hash(P)||PS|/01[|M
PS is length emLen-
DB IM]|-2hLen-1 null bytes
Seed: hLen random bytes
MGF é; dbMask: MGF(seed, emLen-hLen)

maskedDB = DB @ dbMask
__D._ MGF |+— seedMask:
q maskedDB MFG(maskedDB, hLen)
maskedSeed maskedSeed = seed @ seedMask

EM: encoded message (emLen bytes)
‘ EM = maskedSeed||makedDB

EM

59

PKCS #1 v2 padding - OAEP

< Optimal Asymmetric Encryption (OAE)

* M. Bellare, “Optimal Asymmetric Encryption - How to
Encrypt with RSA,” Eurocrypt’94

< Optimal Padding in the sense that

* RSA-OAEP is semantically secure against adaptive
chosen ciphertext attackers in the random oracle
model

* the message size in a k-bit RSA block is as large as
possible (make the most advantage of the bandwidth)

< Following by more efficient padding schemes:
x OAEP*, SAEP*, REACT

60

Digital Envelop

< Hybrid system (public key and secret key)
* RSA is about 1000 times slower than AES
* smaller exponent is faster (but more dangerous)

document document document
plaintext ciphertext plaintext
———— AESy AES ! ——
-1]
andom OAEP keZ, RSA Enc() RSA Dec() (OAEP e
128-bit RSA
secret I encrypted
key: K receiver RSA secret key receiver RSA
public key (n, e) private key (n, d)

61

KEM/DEM

<+ Key/Data Encapsulation Mechnism, hybrid scheme
% koél;PK, in a digital envelope scheme, K is a session key,

might get compromized, forward security, requires OAEP

document document document
plaintext ciphertext plaintext

AES AES,"!

secret key: K secret key: K L
[KDF — KDF]
RSA Enc() RSA Dec()

kegZ, RSA k
T encrypted

KEM receiverI RSA secret key material receiver RSA
public key (n, e) private key (n, d) 62

RSA Fast Decryption with CRT
n=p-q, p and q are large prime integers
gcd(e, ¢(n)) =1s.t. 3d, e - d =1 (mod ¢(n))
¢(n) = (p-1)(q-1) 3<e<n-I

e - dp =1 (mod p-1)

e - dq=I (mod g-1)
q - qInv =1 (mod p)

< Public key (n, e)

< Private Key (n, d) or

(n, p, q, dp, dq, qInv)
<+ Encryption c¢=m°(mod n)
+ Decryption m = c4 (mod n) or
m, = ¢ (mod p) m, = (m)% = m* =m (mod p)
m, = ¢4 (mod q) m, = (m°)4 = m®% =m (mod q)
h =qlnv - (m;-m,) (mod p)
CRT *m=m,+h-q(modn) m=m,(modq) and

m =m, +qlny - (m;-m,) - q = m, (mod p)
63

Multi-Prime RSA

<+ RSA PKCS#1 v2.0 Amendment 1
< the modulus n may have more than two prime factors
< only private key operations and representations are
affected (p, q, dp, dq, qInv) (r;, d;, t;)
* N=T1,T,... T, k=2, where r; = p, r,=q
* ¢ -d=l(mod r;-1),1=3,.. .k

*TI I, ... I t=1 (modr)i1=3,.. .k

<+ Decryp;uon. Sm=m,+q-h
1. m; = ¢ (mod p) 6. ifk>2, R=r,, for k=3 to k do
2. m, = c% (mod q) a. R=R -1,
3.ifk>2 m; = ¢’ (mod 1), i=3,..., k b. h=(mem) - t (modr)
4.h = (m, - m,) qlnv (mod p) c. m=m+R-h

<+ advantages: lower computational cost for the decryption
(and signature) primitives if CRT is used (also see 6.8.14) ,

Factoring & RSA Timeline

Alternative PKC’s

<+ ElGamal Cryptosystem (Discrete-log based)

OAEP invented * Also suffers from long keys
Rabin’s variant Montgomery’s Method [M85] CS #1v1 [BR94]
of RSA [Rab79] PK 1v .
atShamicIp published R <+ NTRU (Lattice based)
Chinese Remainder | scheme [FS86] Fast Hardware adopted * Utlll
fici zes short keys
The(;tl’e(l;légzlﬂenc)’ Public Exponent | implementation . Y
resule (€421 3attack [Has88] | of RSA[SVO3] | PSS invented * Proprietary (License issues prevent from wide implementation)
1976 1980 1990 [BR6] 1998 i]
| | | ‘ | * Recently, a weakness found in the signature scheme
| | | ‘ ..
< Elliptic Curve Cryptosystems
RSA Cryptosystem RSA Factoring Related Message . . :
invented [RSATS] ot <ecurity result Challenge started attack [CFPRO6] * Emerging public key cryptography standard for constrained
for RSA [ACGS84] ISO/IEC 9796 devices.
Multiple Polynomial published G.enera'l Number PKCS #1 v2 112 . . .
Quadratic Sieve [SiI87] o B blishea <+ Paillier Cryptosystem (High order composite residue based)
+ Goldwasser-Micali Cryptosystem (QR based)
* very low efficiency
65 66
67 68

69

Miller-Rabin Primality Test

<+ Why does it work?
x if nis prime, a”!' = 1 (mod n) (Fermat Little theorem)

* therefore, if b, = alm=grl] (mod n), n must be composite

| bottom line of Miller-Rabin test |

* however, there are many composite numbers that satisfy
a"!' =1 (mod n), Miller-Rabin test can detect many of them

* by, by, ..., b | (= a2 (mod n)) is a sequence s.t. b, ;> = b, (mod n)
* we consider only b,_;2=a"! =1 (mod n) *~n.is poudo prime]
* if b;=1andb;; %I, then n is composite«————_
* ifb;=1and b, =1, consider b, ; and then b, ,...
if by = 1, could be prime, no guarantee
(: ifb=1landb,,=-1(b,, =l1), could be prime, no guarantee

basic factoring
principle

there is no chance to apply
basic factoring principle

70

Miller-Rabin Primality Test

< In summary:
by, by, by, ... by, by, ... by

i-1> Yi»
there are four cases:

« Case 1: b, #1 nisacomposite number

« Case 2: b, =1, let i be the minimal i, k>i>0 such that b, = 1
and b, ; #+1 nisacomposite number (with
nontrivial factors calculated)
« Case 3: b, = 1, let i be the minimal i, k>1>0 such that b, = 1
and b, | = -1 a pseudo prime number

« Case 4: b, =1 bo a pseudo prime number

4 possible sequences for bo, b,b,, ...b ., by ... b.:

342, 22, 5 1,1,1,1,..., 1 composite, factored
45,5634, 325,213, -1,1, ..., 1 possibly prime
1, 1, 1,..., 1 possibly prime

214,987, ..., 8931, 321, 134 composite

71

M-R Test: Prime Modulus

< consider n being a prime number p
<+ p-1 is an even number, therefore, let p-1=2%-m, m is odd
choose one acpZ,’, letr be the smallest integer s.t.
a"=1(mod p), i.e. r is the order of a modulo p, ord (a)
+ (exercise 3.9) a*' = 1 (mod p) = 1 | p-1
< becauser | p-1 (= 2k ‘m), one of {m, 2:m, 2*m, ... 2k-m}
might be r (probability reduces if m has many factors)
¢ Case 1: if “2"-m (for some 1>O) is 1, a2”''m must be -1
* 1 is the smallest integer s.t. @' = 1 = square root of ¢’ must be —1
* {am,g>m,.. azlm} is{2,7,-1,1,...1}
% Case 2: 1f none_on ‘m is r” or “m is r”, @™ must all be 1,
* {am, a>m,. . g™y is {1,1,1,1,...1}
* try some other aeZ*

72

Miller-Rabin Primality Test

Why does it work??? an inside view

+ b;=1(modn)andb;,; =1 (modn)happens when b; =1 (mod p;)
for all prime factors p; of n and

b, , =1 (mod p,) for some prime factors p; but

b, , = -1 (mod q;) for other prime factors q;

Note: for a prime modulus p, a®%® = 1(mod p)
if ord (a) is even then a” @2 = _1(mod p)

+ egn=561=3x11x17, 560=16x35=2%x35
leta=2
b, =263 (mod 561) =-1 (mod 3) =-1 (mod 11) = 8 (mod 17)
b, =166 (mod 561) =1 (mod 3) = 1 (mod 11) =-4 (mod 17)
b, =67 (mod 561) = 1 (mod3) = 1 (mod 11)=-1 (mod 17)
|b351(m0d561) = 1 (mod3) = 1 (mod 11) =1 (mod 17) |

1.e. inconsistent progress w.r.t each prime factor
73

Subset Sum Problem is NP-Complete
< Subset Sum Problem (SSP)

Given a set B of positive numbers and a number d

* Search SSP: find a subset {b;}cB s.t. d =2 b,

* Decision SSP: decide if there exists a subset {b;jcB s.t. d =2 b,
* Decision SSP is equivalent to Search SSP: (by elimination)

< Subset Sum Problem is NP-complete
* Cook-Levin Thm: Satisfiability Problem (SAT) is NP-Complete
* SAT <,, SSP: there exists a poly-time reduction to convert a
formula ¢ to an instance <B,d> of SSP problem

« [f the formula ¢ is satisfiable, <B,d> € SSP
« If <B,d> € SSP, formula ¢ is satisfiable

Therefore, SSP is also NP-complete

74

SAT <, D-Subset Sum

< Given a formula ¢ with k clauses C,, C,, ..., C,
and n variables

* For each variable x, create 2 integers n,, and n;
* For each clause C; of lengh 7, create /;-1 integers m;,
myp, ...

* Choose t so that T must contain exactly one of each (n,,
or n,) pairs and at least one from each clause

< This construction can be carried out in poly-time
< ¢ 1s satisfiable iff there exists solution to this SSP

75

SAT <, D-Subset Sum (cont’d)

Example: (X vy Vv Z2A(=Xx Vv =a)A(aVv b v -y v —z)

ofte.g. 10

x y z a b C C, G
Ny, I 0 0 0 0 I 0 0
n, 1 0 0 0 0 0 I 0
ny 1 0 0 0 1 0 0
N 1 0 0 0 0 0 1
n, 1 0 0 1 0 0
n 1 0 0 0 0 1
n,, 1 0 0 o0 1
n, 1 0 0 1 0
Ny, 10 0 1
Nyp 1 0 0 0
my, i 8 8 Encode all
mlz .
m,, 0 1 0 numbers with
my, 0 0 1 a base larger
mj, 0 0 1 than all entries
ms;3 0 0 1
3 2 4

76

