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Discrete Log ProblemDiscrete Log Problem
 Given a prime number p  Z *   x (mod p) Given a prime number p,  Zp ,    (mod p)

‘finding x’ is called the discrete logarithm problem
 Not every discrete log problem has solution and not Not every discrete log problem has solution and not 

every discrete log problem is hard
if i h ll i i i h h n 1 if n is the smallest positive integer such that n 1
(mod p) (i.e. n=ordp()) we may assume 0  x < n, and 
h dthen denote

x = L ()
x is the discrete log of  with respect to 

 ex. p = 11,  = 2, 26  9 (mod 11), L2(9) = 6
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Discrete Log ProblemDiscrete Log Problem
 Often  is a primitive root modulo p, which means that every  in 

Z * i f ( d )Zp is a power of  (mod p).
 If  is not a primitive root, then the discrete log will not be defined 

(i.e. no solution) for certain values of  in Zp
*.( )  p

 If  is a primitive root modulo p, then
L(12)  L(1) + L(2) (mod p-1)(12) (1) (2) ( p )

 When p is small, it is easy to compute discrete logs by exhaustive 
search through all possible exponents

h i l d i f i i i l i When p is large and satisfying a certain properties, solving a 
discrete logarithm problem is “believed to be hard”

 The bit length of the largest prime number for which discrete The bit length of the largest prime number for which discrete 
logarithm can be computed is approximately the same size of the 
largest integer that can be factored. (2001: 110-digit (370-bit) prime 
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numbers for discrete logs, 155-digit (512-bit) integers for factoring)



One Way FunctionOne-Way Function
 f(x) is a one way function if f(x) is a one-way function if

 given x, f(x) is easy to compute
 given y it is “computationally infeasible” to find x s t f(x) = y given y, it is computationally infeasible  to find x s.t. f(x) = y

 f(x) is a trapdoor one-way function if 
 it is a one-way function
 given the trapdoor t and y, it is easy to find x s.t. f(x) = y

 candidates:
 modular exponentiation (one-way)
 multiplication of large primes (one-way)
 RSA function (trapdoor one-way)
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 modular square (trapdoor one-way)



Discrete Log Based SystemsDiscrete Log Based Systems

 Diffie-Hellman Key Exchange
 P hli H ll S t K S t Pohlig-Hellman Secret Key System
 ElGamal Cryptosystem / Signature Schemeyp y g
 Cramer-Shoup Cryptosystem

Di i l Si S d d (DSS DSA) Digital Signature Standard (DSS, DSA)
 Schnorr Signature Schemeg
 Paillier Cryptosystem (both Factoring & DL)
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 Boneh-Franklin Identity-based Encryption



Compute Discrete LogCompute Discrete Log
 Pohlig-Hellman, Birthday Attack, Index-Calculus, 

Baby step Giant stepBaby-step Giant-step 
 Preliminary:

 let  be a primitive root modulo p so p-1 is the smallest let  be a primitive root modulo p so p 1 is the smallest 
positive exponent such that  p-1  1 (mod p)

m1  m2 (mod p)  m1  m2 (mod p-1)
 consider the discrete log problem    x (mod p), it is 

difficult to find out the value of x, but it is easy to find out 
whether x is even or odd i e x (mod 2) or the LSB of xwhether x is even or odd i.e. x (mod 2) or the LSB of x

(p-1)/2 is 
if (p-1)/2 is -1 then x is odd; else if (p-1)/2 is 1 then x is even

((p-1)/2)2  (p-1)  1 (mod p)   (p-1)/2  1 (mod p)
because  is a primitive root, (p-1)/2  -1 (mod p)
therefore (p-1)/2  x (p-1)/2  ( 1)x (mod p)

(p )
an integer
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therefore,     (-1) (mod p)
 using the same method, if 2k | p-1, it is easy to calculate the k-

LSB bits of x



Baby step Giant stepBaby-step Giant-step 
 Meet-in-the-middle algorithm for computing discrete logarithm
 D. Shanks, 1971

To solve x   (mod n), 
 write x = i m + j, 0i,j<m=n
 i j test all i,j, for  (-m)i  j (mod n)

 Running time and space complexity is O(n ) (<< O(n) brute-force)
 A generic algorithm, works for every finite cyclic group.
 not necessary to know the order of the group G in advance. It still 

works if n is merely an upper bound on the group order.
ll i d f h d i i hli ll
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 Usually is used for groups whose order is prime. Pohlig-Hellman 
algorithm is more efficient for composite order group.



Pohlig Hellman AlgorithmPohlig-Hellman Algorithm
 compute the discrete logs when p-1 has only small prime p g p y p

factors
 let p-1=q ri be the factorization of p-1 into prime numbers let p 1 qi be the factorization of p 1 into prime numbers 

 Plans: compute L() (mod qi
ri) then use CRT to find L() 

i

i
(mod p-1)

let x = x0 + x1q + x2q2 + … + xr-1qr-1 + ...
where xi  Zq i.e. express x in q-ary representation

p 1 p 1 p 1x = x0
p-1
q + ( p-1) (x1 + x2q + x3q2 + … ) + ( p-1) n= x0

p-1
q

p-1
q
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 (p-1)/q  x(p-1)/q  x0(p-1)/q ((p-1))n  x0(p-1)/q (mod p)



Pohlig Hellman AlgorithmPohlig-Hellman Algorithm
To find x0, we enumerate k(p-1)/q (mod p), k=0,1,2,…q-1, and0 ( p) q
match against with (p-1)/q, there is a unique solution since
k(p-1)/q (mod p-1) are all different for k=0,1,2,…q-1

 extension of the above procedure yields the remaining coefficients
2 | 1   -x q(x + x q+ ) ( d )assume q2 | p-1   1    -x0  q(x1+ x2q+…) (mod p)

1
(p-1)/q2  (p-1)(x1+ x2q+…)/q  x1 (p-1)/q (p-1)

x2+ x3q+ …

to find x1, we enumerate  k(p-1)q (mod p), k=0,1,2,…q-1, and

1
 x1 (p-1)/q (mod p)

to find x1, we enumerate  (mod p), k 0,1,2,…q 1, and
match against with 1

(p-1)/q2

 Why should q be small for Pohlig-Hellman algorithm to work??
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y q g g
 The algorithm needs to enumerate k( p-1)/q (mod p), k=0,1,…q-1



Pohlig Hellman AlgorithmPohlig-Hellman Algorithm
 Note: the above enumerations are the same in computing 

each xi (i.e. can be stored and used several times)
 In a Discrete Log based cryptosystem, we should make sure that 

p-1 has at least a large prime factor.
 If p-1 = t  ꞏ q (i.e. p-1 has a large prime factor q), the algorithm can 

ill d i L () ( d ) if i d f ll istill determine L()  (mod t) if t is composed of small prime 
factors. (still leaks much information, if t = 210, 10-LSB bits of L()
will be known)

 = (t)m  x (mod p)  x  t m (mod p-1)  x  0 (mod t)

will be known)
 Usually  is chosen to be a power of t such that L()  (mod t) 

is zero.  ( ) ( p) ( p ) ( )
 However, the difficulty of this discrete log problem is reduced

no matter what  you choose. It only guarantees that L()  
(mod q) is difficult you should not hide any information in
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(mod q) is difficult, you should not hide any information in 
L()  (mod t) 



Index CalculusIndex Calculus
 Idea is similar to the quadratic sieve method of factoring.q g
 Factor base: prime numbers less than a bound B, {p1, p2, … pm}
 Example: p=131 =2 Let B=10 consider the prime numbers {2 3 5 7} Example: p=131, =2. Let B=10, consider the prime numbers {2, 3, 5, 7}

1    L2(2) (mod 130)
8  3 L2(5) (mod 130)

21  2 (mod 131)
28  53 (mod 131) 8    3 L2(5) (mod 130)

12  L2(5) + L2(7) (mod 130)
14  2L2(3) (mod 130)
34 L (3) + 2L (5) ( d 130)

28  53 (mod 131)
212  5 ꞏ 7 (mod 131)
214  32 (mod 131)
234  3 ꞏ 52 (mod 131) 34  L2(3) + 2L2(5) (mod 130)234  3 ꞏ 52 (mod 131)

L2(2)  1 (mod 130)
L (3)  72 (mod 130)

If we want to compute L2(37) 
try a few random exponents and foundL2(3)  72  (mod 130)

L2(5)  46  (mod 130)
L2(7)  96 (mod 130)

try a few random exponents and found
37 ꞏ 243  3 ꞏ 5 ꞏ 7 (mod 131), therefore,
L2(37)  -43 + L2(3) + L2(5) + L2(7) 
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 41 (mod 130)



Index CalculusIndex Calculus
 Precomputation: 

k
 Compute k (mod p) for several values of k
 Try to write it as a product of the primes less than B.  i.e. 

k aik =  pi
ai (mod p) If this is not the case, try another k. Then

k   ai L(pi) (mod p-1)
h h h h l ti l f L ( )when we have enough such relations, we can solve for L(pi) 

for each i
 For some random r compute  r and try to write it as a product For some random r, compute   and try to write it as a product 

of {p1, p2, … pm} i.e.  r =  pi
bi (mod p)

L ()  r +  b L (p ) (mod p 1)L()  -r +  bi L(pi) (mod p-1)
 This algorithm is effective if p is of moderate size.
 This means that p should be chosen to have at least 200 digits
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 This means that p should be chosen to have at least 200 digits 
(~665 bits), if the discrete log problem is to be hard.



Computing Discrete Log Mod 4Computing Discrete Log Mod 4
 Discrete Log Problem: Given , , p solving x = L() 

such that   x (mod p)
 Using Pohlig-Hellman Algorithm, if p  1 (mod 4), then it g g g p ( )

is easy to compute L() (mod 4)
 For p  3 (mod 4), Pohlig-Hellman Algorithm does not For p 3 (mod 4), Pohlig Hellman Algorithm does not 

show us a way to calculate L() (mod 4) since it is easy to 
raise an integer to the (p-1)/2 power but it is not easy toraise an integer to the (p 1)/2 power but it is not easy to 
raise an integer to the (p-1)/4 power.

 Idea: we can take square root of a QR when p  3 (mod 4) Idea: we can take square root of a QR when p  3 (mod 4)
i.e. Given y, find x, s.t. x2  y (mod p)

p+1
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x   y (mod p)
p 1
4



Computing Discrete Log Mod 4Computing Discrete Log Mod 4
 To find (p-1)/4: Can we find (p-1)/2 first and then take 

square root of it?  In this way, it seems that we can 
calculate L() (mod 4) and even L() (mod 8) …and  
the Discrete Log Problem can be easily solved???

 What’s wrong with the above arguments?W g g
 From the formula on the previous slide, given (p-1)/2 you 

won’t be able to get one single (p-1)/4, instead you get two 
possible values.  Since L() (mod 4) has one bit more 
information than L() (mod 2), you actually do not get any 
more information through the procedure just described

equally
possible more information through the procedure just described.

 On the next slide, we prove this with a ‘reduction argument’. 
“if we have an algorithm that can calculate L () (mod 4)

p
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if we have an algorithm that can calculate L() (mod 4) 
efficiently, we can use it to compute discrete log quickly”



Computing Discrete Log Mod 4Computing Discrete Log Mod 4
Lemma. Let p  3 (mod 4) be prime, let r  2, and let y

be an integer.  Suppose  and  are two elements in Zp
*

such that   2ry (mod p). Then
1

 ( p)
(p+1)/4  2r-1y (mod p)

Proof:Proof:
(p+1)/4  (p+1)2r-2y  (p-1+2)2r-2y  2r-1y (p-1)2r-2y

2r-1y (mod ) 2 y (mod p) 
Note: this is similar to the method of taking square root

( 1)/4

1

the key difference is that (p+1)/4 is equal to a single
value instead of two, since 2r-1y is a quadratic
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residue (QR) which is always positive



Computing Discrete Log Mod 4Computing Discrete Log Mod 4
“if we have an algorithm that can calculate L() (mod 4) 

efficiently, we can use it to compute discrete log quickly”
Proof:  
 h hi th t i i t  t t L () ( d 4) assume we have a machine that, given an input , outputs L() (mod 4)
 assume   x (mod p), let x = x0 + 2x1 + 4x2 + … + 2nxn be the binary 

representation of x, using the L() (mod 4) machine, we determine x0 and x1

 let 2   -(x0+2x1)   22(x2+2x3 +22x4+ ...) (mod p), using the previous lemma,
(2)(p+1)/4   2(x2+2x3 +22x4+ ...) (mod p), using the L() (mod 4) machine, we 
determine xdetermine x2

 repeat the above n-3 times, we can obtain x3, x4, x5,… xn and the discrete log 
L() (mod p-1) is easily solved!!!

 Because we believe that discrete log is hard to compute in general, 
we are comfortable to accept that L() (mod 4)  is difficult to 
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p () ( )
calculate.



Bit CommitmentBit Commitment
 The story

 Alice claims that she has a method to predict the outcome of 
football games

 Alice wants to sell her method to Bob Alice wants to sell her method to Bob
 Bob asks her to prove her method works by predicting the result 

of the game that will be played this weekend.
 “No way!!” says Alice.  “Then you will simply make your bets 

and not pay me.  If you want me to prove my method works, 
why don’t I show you my prediction for last weeks game?”y y y p g

 Alice wants to send a bit b to Bob. The requirements:
 Bob cannot determine the value of the bit without Alice’s helpp
 Alice cannot change the bit once she sends it to Bob.

 Analogy: Sealed Envelop, Locked Safety Box
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gy p, y



Bit Commitment with DLBit Commitment with DL
 Alice and Bob agree on a large prime p  3 (mod 4) and a g g p p ( )

primitive root 
 Commit Commit

 Alice chooses a random number x < p-1 whose second bit x1 is b
 Alice sends   x (mod p) to Bob Alice sends    (mod p) to Bob

 Reveal
 Ali d B b th f ll l f Alice sends Bob the full value of x
 Bob checks   x (mod p) and finds b  x (mod 4).

 We assume that Bob cannot compute discrete logs for p.  
Therefore, he can not compute discrete logs modulo 4 (i.e. 

b)
18

x1 or b).



Bit Commitment with DLBit Commitment with DL

 To avoid Alice denying that she knows x at the 
revealing stage, Bob could ask Alice to make a ZKP of 
knowing x at the commitment stage.

 To avoid Alice denying that she had sent , Bob could y g ,
ask Alice to digitally sign .

19



General Bit Commitment SchemesGeneral Bit Commitment Schemes
 Two stages:

 Commit
 Reveal (Disclosure)

 Formal Requirements:
 Secrecy (hiding)y ( g)
 Unambiguity (binding)

 Various Schemes Various Schemes
 Using Symmetric Cryptography
 Using One Way Functions (eg RSA Discrete logs) Using One Way Functions (eg. RSA, Discrete logs)
 Using Pseudo Random Number Generator (PRNG)
 Using Oblivious Transfer
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 Using Oblivious Transfer



Pohlig Hellman Secret Key SystemPohlig-Hellman Secret Key System
 Secret Key system, Alice and Bob trust each other.
 Alice and Bob share a pair of secret key (x, x-1) where 

x ꞏ x-1  1 (mod p-1), gcd(x, p-1)=1 (i.e. x is odd), p is a 
l i b d ( 1)/2 i l l ilarge prime number and (p-1)/2 is also a large prime 
number
E i Encryption

c  mx (mod p)
 Decryption

m  c x-1 (mod p)( p)
Note: 1. x-1 can be easily derived from x and p

2. ord (m) should be large (since ord (m)|p-1, it
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2. ordp(m) should be large (since ordp(m)|p 1, it
has better be p-1 or (p-1)/2)



Diffie Hellman Key ExchangeDiffie-Hellman Key Exchange
 Diffie and Hellman, 1976, first Public Key System
 Used now in IPSec and SSL for jointly generating 

encryption keys and exchanging symmetric data yp y g g y
encryption keys (DES, 3DES…)

 Protocol:

the length of p is usually 1024 bits,
often the order of  can be constrained 
to a 160-bit (or 256-bit) q, therefore,

d b d d 160 bi Protocol:
 Alice and Bob use a public modulus p and a primitive .
 Ali h i t t i Z * t th bli

xa and xb can be reduced to 160 bit

 Alice chooses a private exponent xa in Zp , computes the public 
value ya  

xa (mod p), and sends ya to Bob.
 B b h i t t i Z * t th bli Bob chooses a private exponent xb in Zp , computes the public 

value yb  
xb (mod p), and sends yb to Alice.

 Ali l l t th h d k x x xb ( d ) d B b
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 Alice calculates the shared key as yb
xa  xaxb (mod p) and Bob 

calculates the shared key as ya
xb  xaxb (mod p)



Diffie Hellman Key ExchangeDiffie-Hellman Key Exchange
 Any commutative one-way function can be used to 

design this type of public key distribution system.  
Other than the modulo exponential function, Lucas 
Function and Elliptic Curve Function are also 
candidates. all operations are modulo p, p is

a prime number and is chosen s.t.

Alice
2. gx

1 choose x

a prime number and is chosen s.t. 
( p-1)/2  also a large prime number

6. k (gy)x
1. choose x

Optional CA
Bob

5. gy
3. choose ygenerate key k jointly 

Optional CA
Alice  gx

Bob    gy
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y
and exchange key

g
4. k  (gx)y



DDH problemDDH problem
 Computational Diffie-Hellman Assumption

 given g x and g y, there is no efficient algorithm that can 
compute g xy

 do not guarantee that partial bits of g xy are hidden the do not guarantee that partial bits of g y are hidden, the 
Legendre symbol of g xy is leaked

 Decision Diffie-Hellman Assumption Decision Diffie Hellman Assumption
 Boneh, 1998, “The decision Diffie-Hellman Problem”
 given g x and g y, there is no efficient algorithm that can g g g , g

distinguish the distribution of < g x, g y, g xy> and < g x, g y, g z> 
 far stronger than the DH assumption
 can be used to construct efficient cryptographic systems with 

strong security properties
 I h DDH d t h ld ElG l C t t
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 In a group where DDH does not hold, ElGamal Cryptosystem 
is not semantically secure (the Legendre symbol of m is leaked)



DDH problem (cont’d)DDH problem (cont d)
 Legendre symbol of z in Zp

*: z(p-1)/2 (mod p)p
if z is a QRp then its Legendre symbol is 1, otherwise –1

 gy is a quadratic residue modulo p iff LSB of y is 0 (i.e. y is even)
 If f i th i d xy i d ti id If one of x or y is even, then xy is even and gxy is a quadratic residue
 The DDH assumption is stronger than the DL assumption:

A i th t d t l di t l t tAssuming that adversary cannot solve discrete log cannot guarantee 
that DH key exchange is safe.  DH key exchange is only safe under 
the DDH assumptionthe DDH assumption.

 break DDH  break CDH  break DL
DDH is secure  CDH is secure  DL is secureDDH is secure  CDH is secure  DL is secure
(intractable)         (intractable)        (intractable)

 break RSA  break FACT
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 break RSA  break FACT
RSA is secure  Fact is secure



DDH in Z *DDH in Zp
 Given gx, gy, gz one can easily test if x is odd, y is odd, and z is 

ddodd.
 Ex. If x is odd, y is odd and z is even, then z can not be xy

ltx      y       z          result
odd   odd   odd      nothing
odd   odd  even        zxy
odd even odd zxyodd  even   odd        zxy
odd  even  even     nothing
even   odd   odd        zxy
even odd even nothingeven   odd  even     nothing
even  even   odd        zxy
even  even  even     nothing

i Z * h l 1/2 b bili h DDH d h ldin Zp
*, there are at least 1/2 probability that DDH does not hold

 Modification: consider the DDH problem in an order-q subgroup 
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generated by hg2 (mod p) in Zp
* where p=2q+1, p and q are 

prime numbers, g is a primitive in Zp
*



Goals of Modern CryptographyGoals of Modern Cryptography

Make the intractability assumption more adequate, 
specific, and clear

Design cryptosystem that depends on less strictDesign cryptosystem that depends on less strict 
assumptions
P itProven security
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Security of Diffie Hellman AlgorithmSecurity of Diffie-Hellman Algorithm
 still an assumption … the ‘DH assumption’ still an assumption … the DH assumption
 DH is secure  DL is secure  (break DH  break DL)

if DL is not secure i e given g x we can solve for x and given g yif DL is not secure, i.e. given g we can solve for x and given g
we can solve for y, then DH is not secure.  Eve can intercept g x

and g y and easily derives x or y and computes the shared key (g x)y

( y)xor (g y)x

 DL is secure  DH is secure
if DH b b k i i x d y h d k k xyif DH can be broken, i.e. given g x and g y, shared key k= g xy can 
be derived.  Since k = (g x )y = (g y)x, not too much information 
about x or y can be derived from the above equation.  y q

 In general, it is believed that DL is secure, but it does not 
provide any assurance about whether DH is secure (Eve 
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p y (
might be able to predict some of the bits of g xy)



Diffie Hellman Key ExchangeDiffie-Hellman Key Exchange
 Three or more parties k Three or more parties 12. k  (gyz)x

1. choose x
7. gzx

Alice2. gx
Alice

3. choose y
8 k ( zx)y

Carol 6. gz

5 h

8. k  (gzx)y
11. gyz

Bob

g

4. gy
5. choose z

10. k  (gxy)z9. gxy

g

29
 Conference Key Distribution System (CKDS)



Diffie Hellman Key ExchangeDiffie-Hellman Key Exchange
Variants:  Hughes Crypto’94

 Allow Alice to generate a key and send it to Bob

AliceAlice

2. k  gx
1. choose x 5. (gy)x

g

Bob4 gy y ꞏ y-1  1  (mod p-1)
ll h i ( d )

Bob
3. choose y

4. g all other operations are (mod p)

6. k  ((gy)x)y-1 gx
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DH sharing secret keys in a groupDH sharing secret keys in a group
 If each pairs in a group (ex. {A, B, C, D, E, F}) want to use 

symmetric encryption system (like AES) to communicatesymmetric encryption system (like AES) to communicate 
frequently. They need to share, in this example, 30 keys. 
Everyone need to share five keys with others.

 Alternative: Each one in the group chooses a secret number {xa, 
xb, xc, xd, xe, xf}. We can have a central database to keep and 
certify all public values {gxa gxb gxc gxd gxe gxf} and use DHcertify all public values {gxa, gxb, gxc, gxd, gxe, gxf}, and use DH 
as follows:

CACA
Alice  gxa

Bob gxb

Alice Bob 

A S 1Bob    g b

Carol  gxc
AES AES-1 mm c
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k  (gxb) k  (gxa)xa xb



Diffie Hellman Protocol and AttackDiffie-Hellman Protocol and Attack

iffi ll h d RFC 2631, Diffie-Hellman Key Agreement Method, E. 
Rescorla, June 1999

 small subgroup attackg p
 L. Law, A. Menezes, M. Qu, J. Solinas and S. Vanstone, "An efficient protocol 

for authenticated key agreement", Technical report CORR 98-05, University of 
Waterloo 1998Waterloo, 1998.

 C.H. Lim and P.J. Lee, "A key recovery attack on discrete log-based schemes 
using a prime order subgroup", Crypto'97, pp. 249-263.
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3 Pass Communication Protocol3-Pass Communication Protocol
 Shamir

Ali d b h Alice wants to send a secret message m to Bob.  They 
use a common large prime number p

 P t l Ali Protocol:
 Alice chooses a secret number xa and 

Bob chooses a secret number xb such 

Alice

1. choose xa
5. (mxa xb )xa-1

6. (m)xb

2. (m)xa
m

b
that xa

-1 and xb
-1 (mod p-1) exist

 Alice sends y1  mxa (mod p) to Bob
 Bob sends y  y xb (mod p) to Alice

5. (m )

 Bob sends y2  y1 b (mod p) to Alice
 Alice sends y3  y2

xa-1 (mod p) to Bob
 Bob computes m  y3

xb-1 (mod p)

Bob
3. choose xb
7. m  (m xb )xb-1

4. (mxa)xb

 Key idea: modulo exponentiation is commutative
 Analogy: a safety box with two locks
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gy y
 Any commutative trapdoor oneway function can be used



ElGamal PKCElGamal PKC
 ElGamal 1985 (9 years after Diffie-Hellman)
 Probabilistic Encryption System: For the same public 

key, the same plaintext could give different ciphertexts 
i di ti t ti i Thi i t lin distinct encryption sessions.  This can resist low-
entropy attack.

Low entropy attack:
Number of messages is small.
Some messages occur much more often.

 low entropy in the source low entropy in the source 
For a deterministic encryption scheme, 
attacker can record the ciphertext frequency

d l hi hpattern and learn something or use chosen
plaintext attack to compile a codebook to 
decipher the following ciphertext.
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 Application of Diffie-Hellman Algorithm
p g p



ElGamal PKCElGamal PKC
 Alice wants to send a message to Bob
 Bob first chooses a large prime n mber 2 + 1 Bob first chooses a large prime number p, p = 2 q + 1, 

q is also prime, a primitive root ', calculate  = '2, a 
secret integer a in Z*

p, and compute   a (mod p) g p, p  ( p)
 Bob’s Private Key: a
 Bob’s Public Key: (p, , ) Alice

m

 Encryption:
 Alice downloads Bob’s public key (p, , )
 Ali h t d i t

Alice
3. choose k

5. r  k4. key   k

 Alice chooses a secret random integer 
kZ*

p and compute r  k (mod p) 
 Alice computes t  k ꞏ m  (mod p) 

6. t   kꞏm 

p  ( p)
 Alice sends the ciphertext (r, t) to Bob

 Decryption Bob

2.   a

1 h
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 Bob computes m  t ꞏ r -a (mod p) 
7. key  r a

1. choose a

8. m  t ꞏ r -a



ElGamal PKCElGamal PKC
 Security

k a
 If Eve knows a, she can calculate the key r a  (k)a and decrypt 

(r, t ) like Bob.  Therefore, Bob has to keep a secret.  By 
l ki t th bli k  a d k E ith llooking at the public key   a and r  k, Eve can either solve 
the DH problem to recover the key ka or solve the DLP to 
recover a directly, and therefore, the key (k)a.recover a directly, and therefore, the key ( ) .

 If Eve knows the random value k, she can calculate the key by 
calculating k  (a)k, and decrypt (r, t) by calculating m  t ꞏ -k g  ( ) , yp ( , ) y g 
(mod p).  Therefore, Alice has to keep k secret. By looking at 
the public value r  k and   a, Eve can either solve the DH 

bl h k ka l h kproblem to recover the key ka or solve the DLP to recover k
directly, and therefore, the key (a)k.

(ElG l PKC i DDH i ) DL i
36

(ElGamal PKC is secure  DDH is secure)  DL is secure




ElGamal PKCElGamal PKC
 Security:Secu y:

 If k is a random integer in Zp
*, and if  is a primitive in Zp

*, 
then k  is a random integer in Zp

* and t  k ꞏ m (mod p) is a  g p  ( p)
random integer in Zp

*. (recall the (x) in proving the 
Fermat’s Little Theorem).  Knowing t and r without knowing 

k d i E i f i ba or k does not give Eve any information about m.
 Different k should be used for each m

If one k is used for two messages m1 and m2 sent to Bob, i.e. 
(r, t1) and (r, t2), then Eve can determine m1 from m2 or m2
from m sincefrom m1 since

t1/m1  t2/m2  k (mod p) 
Therefore, it Eve knows m1
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, 1
m2  t2 m1 / t1 (mod p) 



ElGamal PKCElGamal PKC
 Is ElGamel Encryption commutative? Is ElGamel Encryption commutative?

i.e.  E2(E1(m) = E1(E2(m)) or
D (E (E (m)) = E (m)

?
?D1(E2(E1(m)) = E2(m)

 let’s say E1 is for Alice to encrypt messages for Bob
?

and E2 is for Bob to encrypt messages for Carol
 if both encryption use the same modulus p, then

D1(E2(E1(m)) = (2
k2 ꞏ (1

k1 ꞏ m )) ꞏ r1
-a1  2

k2 ꞏ m = E2(m)

answer is yes if using the same modulus
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Semantic Security of ElGamal PKCSemantic Security of ElGamal PKC
 Is ElGamal encryption semantically secure?

 NOT in arbitrary group: ex In Z * with a primitive  NOT in arbitrary group: ex. In Zp with a primitive 
Public key:  is a primitive root,   a (mod p)
Ciphertext: (r t)=(k k m)Ciphertext: (r,t)=(k, k ꞏ m)
Since  be a primitive root in Zp

*,
Let m   x (mod p) and t   y(mod p)

known 
Let m  (mod p) and t  (mod p)

then y  aꞏk+x (mod p-1) 

a k y deduction a k y deductiona        k       y       deduction
odd   odd   odd x is even 
odd   odd  even x is odd
odd e en odd is odd

a        k       y        deduction
even   odd   odd x is odd
even   odd  even x is even
e en e en odd is odd

 Only in an order-q subgroup generated by g2 (mod p) in Zp
*

odd  even   odd x is odd
odd  even  even x is even

even  even   odd x is odd
even  even  even x is even
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y g g y g p
where p=2q+1, p and q are prime numbers, g is a primitive in Zp

*, 
under the assumption of DDH



Rogue Key AttackRogue Key Attack
 A group insider registers public keys as a function of other’s 

public key without demonstrating the possession of the 
corresponding private keys.  e.g.

Alice

pk : gx

Bob registers two related public keys

pk : g2x pk : g3xpkA: g
skA: x

pkB1
: g pkB2

: g

Assume that sender S wants to broadcast to A, B1, B2 keys KA, K, K 
with the following ElGamal ciphertext (gr, (gx)r KA, (g2x)r K, (g3x)r K)

Bob can obtain KA by calculating (gx)r KA * (g2x)r K * ((g3x)r K)-1

40

The problems are: shared randomness, CA does not verify the 
ownership of the private key.



Discrete Logarithm TimelineDiscrete Logarithm Timeline
DL Number

Bit Security result
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DL Number
Field Sieve
[Gor93]Schnorr ID/signature

scheme [Sch90]
ANSI X9.62 and
X9.63 for EC
d ft dANSI X9 42

Elliptic Curve proposed
by Miller and Koblitz
[Mil86] [K b87]

Montgomery’s Method [M85]
Index Calculus
method [Adl79] 1st ECC

workshop
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DH developed 
[DVW92]

draftedANSI X9.42
drafted

1976 19981980 1990[Mil86] [Kob87]

DSA DSA

Diffie-Hellman
invented [DH76]

DSA, DSA 
proposed

Fast Modular

DH proved equivalent
to DL under certain 
assumptions [Mau94]

Coppersmith 
DL attack on 
GF(2n)[Cop84]

Chaum et al. ZK
proof [CEGP87]

ElGamal cryptosystem
invented [Elg85]

Exponentiation
[BGMW92]

EC reduced to DL 
for certain curves

ANSI X9.42
ballotedANSI X9.30

drafted
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[MOV90]

drafted
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Selection of ElGamal ParametersSelection of ElGamal Parameters
 First scheme:

l t 2 + 1 l i b th 768 bitlet p = 2 q + 1, p, q are large primes, e.g. both 768 bits
 In this way, p-1 = 2 q, Pohlig-Hellman’s method cannot solve the 

complete discrete log problem due to the computation barrier setcomplete discrete log problem due to the computation barrier set 
up by the large prime factor q.

 Consider the order q subgroup G specified as Consider the order q subgroup Gq specified as 
Let  be a primitive in Zp

* and g  2 (mod p)
G = {g g2 g3 g4 gq} where gq  2q  p-1  1 (mod p)Gq = {g, g2, g3, g4, … g } where g      1 (mod p)
Note that in this case Gq = QRp since Gq = {2, 4 …p-1}

 All the ElGamal computations are still modulo p yet many All the ElGamal computations are still modulo p, yet many 
inputs and outputs are in Gq

Private key x Z (Z * is OK too) public key y  gx G

45

Private key xRZq (Zp is OK too), public key y p g RGq

Encryption: kRZq , r p gk RGq , mRGq , c p m ꞏ yk RGq 



ElGamal Parameters (cont’d)ElGamal Parameters (cont d)
Note that if m is chosen randomly in Zp

* then c p m ꞏ yk  is 
l i t i Z * H if QNR thalso an integer in Zp

*.  However, if m  QNRp then c 
QNRp and vice versa.  This means that some information 
is leaking through the property of ciphertexts Thereforeis leaking through the property of ciphertexts.  Therefore, 
we better choose m in Gq with this scheme.

Decryption: m p c ꞏ r-xyp p

Signature: kRZq and gcd(k, p-1)=1, r p gk RGq ,
mRZp

* , s p-1 k-1 ꞏ (m - r ꞏ x)RZp-1R p p 1 ( ) R p 1

Verification: gm p yr ꞏ rs

 Note:
Gq is a cyclic multiplicative subgroup in Zp

* (you can 
easily verify its group characteristics), |Gq| = q = (p-1)/2

46

q

QRp is the only choice, QNRp is not even a group (closure)



ElGamal Parameters (cont’d)ElGamal Parameters (cont d)
 If one want to choose a random element in Gq, he can 

h d l i t k i Z ( Z *) th tchoose randomly an integer k in Zq (or Zp
*) then compute 

gkGq (where g can be any generator in Gq by choosing a 
primitive  in Z * and let g  2 (mod p))primitive  in Zp and let g   (mod p))

One can use Legendre symbol to determine if a number m 
is in Gq (=QRp), i.e. mGq iff m(p-1)/2  1 (mod p)Gq ( Q p), Gq ( p)
Given a message m in Zp

*, one can pad a random number 
to it like in PKCS #1 v1.5 of RSA and test if the padded 
message is in Gq.

 If p = 2 k q + 1, QRp is still a cyclic multiplicative 
b i Z * i h d k H QR isubgroup in Zp

* with order k q.  However, QRp is not 
suited for the cryptosystem in this case since the Pohlig-
Hellman algorithm can derive some partial information
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Hellman algorithm can derive some partial information 
from any discrete log problem under this subgroup.



ElGamal Parameters (cont’d)ElGamal Parameters (cont d)
 Second scheme:

let p = 2 k q + 1, p, q are large primes, 
e.g. p is of 768 bits and q is of 160 bits

 In this way, p-1 = 2 k q, Pohlig-Hellman’s method cannot 
solve the complete discrete log problem due to the 

t ti b i b ht b th l i f tcomputation barrier brought up by the large prime factor q.
 QRp is a cyclic multiplication subgroup in Zp

* with order k q.  
However it is not safe working in this subgroup AHowever, it is not safe working in this subgroup.  A 
ciphertext reveals some partial information about the 
plaintext and the public key reveals some partial information p a te t a d t e pub c ey evea s so e pa t a o at o
about the secret key.
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ElGamal Parameters (cont’d)ElGamal Parameters (cont d)
 The subgroup Gq in Zp

* as defined in the following is safe:
Let  be a primitive in Zp

* then Zp
* = {1, 2, …k, …, 

2k, ..., 2kq}
L 2k ( d )Let g  2k (mod p)

Let Gq = {2k, 4k, ..., 2kq} = {g, g2, g3, g4, … gq} 
h q 2kq p-1 1 ( d ) G i th i liwhere gq  2kq  p 1  1 (mod p).  Gq is the unique cyclic 

multiplicative subgroup in Zp
* with order q

How can one choose uniformly a random element in G ?How can one choose uniformly a random element in Gq?
choose randomly an integer k in Zq (or Zp

*) then compute
gkGq (where g can be any generator in Gq by choosing ag q ( g y g q y g
primitive  in Zp

* and let g  2 (mod p))
How can one determine if a message m is in Gq?
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q

mGq iff m
(p-1)/2k  mq  1 (mod p)



ElGamal Parameters (cont’d)ElGamal Parameters (cont d)
mGq iff m

(p-1)/2k  1 (mod p)
pf:

()  i, m p gi p 2ki

m(p-1)/2k   i (p-1)  ( (p-1))i  1i  1m(p 1)/2k p  i (p 1) p ( (p 1)) p 1i p 1

() if Z * th  j* h th t j*() if mZp then  j such that m p 
j

since m(p-1)/2k p 1   i.e. j*(p-1)/2k p 1
d d ( ) 1 th f 1 | j*( 1)/2kand ordp() = p-1, therefore p-1 | j*(p-1)/2k 

i.e.  i*, j*(p-1)/2k = i*(p-1)
j* ( 1) i* ( 1) 2k j* (p-1) = i* (p-1) 2k

 j* = i*ꞏ2k
j* 2ki* G *

50

 m p 
j* p 

2ki*  Gq
*



GNFSGNFS
brute-force attack on Discrete Logbrute force attack on Discrete Log

fastest: General Number Field Sieve 
exp((c+o(1) n1/3 log2/3 n) c<2exp((c+o(1) n log n)   c 2

attacks slower than GNFS are not interesting
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