Two Dimensional Arrays in C/C++

C++ Object Oriented Programming
Pei-yih Ting
NTOU CS

Version 1. Fixed dimensions 5 by 3

< Both dimensions are fixed Physical layout

< Allocated either in data segment or in stack

< Example
inti, j;
int X[5][3]; X

Conceptual layout

for (i=0; i<5; i++)
for (j=0; j<3; j++)
x[i][] = 0;

Version 2a. Dynamic allocated 5 by n

< The first dimension is fixed as 5, the second dimension is variable
< Allocated on the stack (x[]) and the heap (X[][])

< Example
intl, j, N=3; Conceptual layout
int *x[5]; P y
for (i=0; i<5; i++) X T | | | |

x[i] = new int[n];

for (i=0; i<5; i++)
for (j=0; j<n; j++) N > | | | |
x[i][i] = 0;

for (i=0; i<5; i++)
delete[] x[i];

Version 2b. Dynamic allocated m by n

< Both dimensions are variable
< Both allocated on the heap

<+ Example
inti, j, m=5, n=3;

int e Conceptual layout

X
S
D —’7 | | | |
. e

N

X = new int*[m];
for (i=0; i<m; i++)
x[i] = new int[n]; S e I I

for (i=0; i<m; i++) B > | | |
for (j=0; j<n; j++) -
x[i][i1 = 0; - >| | | |
for (i=0; i<m; i++))
delete[] [i]: T T 1
delete[] x;

Version 3. Dynamic allocated m by 3 Version 4. Dynamic allocated m by n

% The first dimension is variable, the second dimension is fixed as 3 + Both dimensions are variable

+ Allocated on the heap + Allocated on the heap Conceptual layout
+ Example < Example
- .. H 1 :5 n:3.
int i, j, m=5; Conceptual layout Intl, J, M=5, n=3; X
int (*X)[3]; « int **x, *tmp; tmp
X = new int[m][3]; X = new intf[m];) -
'y tmp = new int[m*n]; ERREE e
o for (i=0; i<m; i++) B
for (i=0; i<m; i++) . e
for (j=0: j<3; j++) X[i] = &tmp[i*n]; — i
X0 =0; for (i=0; i<m; i++) >
) for (j=0; j<n; j++) T
delete[] x; A
x[i]0] = 0;
delete[] x[0];
delete[] x;

Version 5. Dynamic allocated m by n

< Both dimensions are variable, emulate with 1-D array syntax

< Allocated on the heap X T
+ Example]

inti, j, m=5, n=3;

int *x; Physical layout

X = new intfm*n;

for (i=0; i<m; i++)
for (j=0; j<n; j++)
x[i*n+j] = 0; // x[i][j] does not work
Il (&x[i*n])[j] is OK

delete[] x;

