3.5 / Priority Queues, Binary Heaps, and Heapsort 133

3.5 Priority Queues, Binary Heaps, and Heapsort

Priority Queues

The abstract data type known as a priority queue allows us to insert an item
with a specified priority (given by a number) and to delete an item having
the highest priority. For example, if we are processing jobs with specified
priorities and there is a single processor available, as the jobs arrive we can
insert them into a priority queue. When the processor becomes available,
we can delete a job from the priority queue—which, by definition, has the
highest priority—and process it.

In the discussion that follows, we list only the priority of an item. In prac-
tice, a data item has other attributes besides its priority (e.g., an identification
number, time started, time stopped).

Example 3.5.1. Suppose that items with the priorities
57,32,100, 56,44

are inserted into an initially empty priority queue. If we delete an item from
the priority queue, 100 will be removed, regardless of the order in which the
items were inserted, because the highest priority is 100. The priority queue
contains

57,32,56,44.

If we delete another item from the priority queue, 57 will be removed since
it now has the highest priority. The priority queue contains

32,56,44.
If we now insert 37, the priority queue contains
32,56,44,37.

If we delete another item from the priority queue, 56 will be removed since
it now has the highest priority. The priority queue contains

32,44,37. a

Consider implementing a priority queue using an array. If an item is
inserted by putting it at the end of the array, insertion takes time ©(1). To
delete an item, we must first locate the item having the greatest priority.
Since the items are in no particular order, we would have to scan all the
items to find one having the largest priority. Scanning an »n-element array
takes time ®(n). After finding an item having the largest priority, we then
have to remove it. This entails shifting all items to its right one cell to the
left, which takes time O(n). Thus, deletion always takes time @(n).

When using a priority queue, we typically perform many insertions and
deletions. Suppose, for example, that we perform » insertions and # dele-
tions in an initially empty priority queue. Since each insertion takes constant

134

Chapter 3 / Data Structures

Heaps

time, the total time for the insertions is ®(n). The time for a deletionis O(n)
and, since we perform 7 deletions, the total time for the deletions is O (n?).
The time for deletions dominates. Thus, the total time to perform #n in-
sertions and # deletions in an initially empty priority queue is O(n?). This
estimate is sharp. In the worst case, performing n insertions and »n deletions
takes time ®(n?) (see Exercise 3).

Suppose that we still implement a priority queue using an array, but we
maintain nondecreasing order. Now, when we insert an item, we first have
to determine where it should be inserted to maintain nondecreasing order.
If the item is to be inserted in the cell at index i, for each j = i we will
have to shift the item in the cell at index j to the cell at index j + 1 to
make room for the inserted item. In the worst case (when the item to be
inserted is smaller than all the others), all items have to move. Moving all
items in an n-element array takes time ®(n). We can determine where to
insert the item by scanning all the items, which takes time ®(n). Thus, in
the worst case, insertion takes time @(n). [Using binary search (see Section
4.1), we can determine where to insert the item in time O(lgn). However,
in the worst case, moving the items still takes time ®(n); so, binary search
does not improve the asymptotic worst-case time of the insertion algorithm.]
Deleting an item takes time @(1), since the item with largest priority is at
the end of the array.

Again, suppose that we perform # insertions and n deletions in an ini-
tially empty priority queue. Since each deletion takes constant time, the total
time for the deletions is ®(#n). The time for an insertion is O(n) and, since
we perform n insertions, the total time for the insertions is 0O(n?). The time
for insertions dominates. Thus, the total time to perform # insertions and
n deletions in an initially empty priority queue is O(n?). This estimate is
sharp. In the worst case, performing » insertions and n deletions takes time
®(n?) (see Exercise 4).

The two proposed ways to implement a priority queue represent the ex-
tremes of data organization and times for inserting and deleting. In the first
implementation, the array is not sorted, insertion takes time ©(1), and dele-
tion takes time O(n). In the second implementation, the array is sorted,
insertion takes time O(n), and deletion takes time ®(1). For both imple-
mentations, in the worst case performing # insertions and » deletions takes
time ©(n?). We can use a heap to maintain a “weak order,” an organization
that is not completely sorted but is not random either. By doing so, we can
perform both insertions and deletions in time O (Ign). Thus, performing n
insertions and » deletions takes time O(nlgn), which, in the worst case, is
better than either of the other implementations.

We begin by defining a heap structure.

Definition 3.5.2. A heap structure is a binary tree in which all levels, except
possibly the last (bottom) level, have as many nodes as possible. On the last
level, all of the nodes are at the left.

3.5 / Priority Queues, Binary Heaps, and Heapsort 135

Example 3.5.3. Figure 3.5.1 shows a heap structure. Levels 0 (the root), 1,
and 2 (the next-to-last level) have as many nodes as possible. On level 3 (the
last level), all of the nodes are at the left.

Level
0

1
2

3

Figure 3.5.1 A heap structure. All levels, except the last level, 3, have
as many nodes as possible. On the last level, all of the nodes are at the left. O

Definition 3.5.4. A binary minheap is a heap structure in which values are
assigned to the nodes so that the value of each node is less than or equal
to the values of its children (if any). A binary maxheap is a heap structure
in which values are assigned to the nodes so that the value of each node is
greater than or equal to the values of its children (if any).

Throughout the remainder of this section, we will discuss binary max-
heaps and abbreviate “binary maxheap” to “heap.” (The algorithms for ma-
nipulating minheaps are similar to those for manipulating maxheaps.)

Example 3.5.5. Figure 3.5.2 shows a heap. The value of each node is greater
than or equal to the values of its children (if any).

104
71 24
27 23 8

AA/

32 25 18 22

Flgure 3.5.2 A heap. The value of each node is greater than or equal to the
values of its children (if any). For example, the value 24 is greater than or
equal to the values of the children, 23 and 8. O

A heap is “weakly sorted” in the sense that the values along a path from
the root to a terminal node are in nonincreasing order. For example, in
Figure 3.5.2 the values 104, 71, 66, 5, along the path from the root to the
terminal node with value 5, are in nonincreasing order. At the same time,

136

Chapter 3 / Data Structures

the values along a level are, in general, in no particular order. For example, in
Figure 3.5.2 the values 5, 32, 25, 18, 22 on level 3 are in neither nonincreasing
nor nondecreasing order. (See also Exercise 21.)

In a heap, the maximum value is at the root. Thus, if we implement a
priority queue using a heap, the item with highest priority is at the root. In
order to use a heap to implement a priority queue, we must represent the
heap. We do so using an arrayl We number the nodes level by level, left to
right, starting at the root. In Figure 3.5.3, we have numbered the nodes in
the heap structure of Figure 3.5.1.

8 910 11 12

Figure 3.5.3 A heap structure with the nodes numbered level by level, left
to right, starting at the root.

To represent a heap, we store the value in node number i in cell i of an
array. In Figure 3.5.4, we represent the heap of Figure 3.5.2 as an array.

104| 71|24 |66 |27 |23 | 8 | 5 |32|25 |18 |22

1 2 3 4 5 6 7 8 9 10 11 12

Figure 3.5.4 The heap of Figure 3.5.2 as an array. The value in node number
i is stored in cell i of the array.

It is apparent from Figure 3.5.3 that the parent of node i, assuming that
the node is not the root, is |i/2]. Also, the left child of node i, assum-
ing that the node has a left child, is 2 * i, and the right child of node i,
assuming that the node has a right child, is 2 % i + 1. We will use these
formulas in our subsequent heap algorithms.

In order to implement a priority queue as a heap, we must write algo-
rithms to return the largest value in the heap, to delete the largest value
from a heap, and to insert an arbitrary value into a heap. Returning the
largest value in the heap is straightforward since the largest value is at the
root.

Algorithm 3.5.6 Largest. This algorithm returns the largest value in a heap.
The array v represents the heap.

Input Parameter: v
Output Parameters: None

3.5 / Priority Queues, Binary Heaps, and Heapsort 137

diy v e ¢ comnale

bl 104 /éz\ 71
S 24 71 24 (22) 24
66 27 23 8 66 27 23 8 66 27 23 8
5 32 25 18 /22) 5 32 2518 5 32 2518
@ "\, b) (©
L3R Y
71 ‘ 71

~
N
~
"]
w
o]
w
~n
[AS]
~
N
w
[}

5 32 2518

d)
Figure 3.5.5 Deleting from a heap. The root, which contains the largest value, 104, is
to be deleted [see (a)]. To maintain a heap structure, we move the value at the bottom
level, farthest right, 22, to the root [see (b)]. The root is not greater than or equal to its
children; so, we swap the root’s value, 22, with the largest child, 71, [see (c)]. The node
with value 22 is not greater than or equal to its children; so, we again swap 22 with the
largest child, 66, [see (d)]. Again, the node with value 22 is not greater than or equal to
its children; so, we again swap 22 with the largest child, 32, [see (e)]. Since 22 now has
no children, the algorithm terminates. The structure shown in (e) is a heap.

v
®
N
w
—
—_—

heap_largest(v) {
return v[1]

}

Algorithm 3.5.6 runs in constant time.

We next discuss the delete algorithm, whose implementation is shown in
Figure 3.5.5. Before writing the delete algorithm, we write a separate algo-
rithm to repeatedly swap a value with the larger child. We allow the operation
to begin at an arbitrary node rather than at the root as in Figure 3.5.5, since
we will need this more general version later. Thus, we assume that v is an
array representing a heap structure indexed from 1 to n. We further assume
that the left subtree of node i is a heap and the right subtree of node i is
also a heap [see Figure 3.5.6(a)l. After siftdown(v,i,n) is called, the sub-
tree rooted at i is a heap [see Figure 3.5.6(b)l. To make the algorithm more
efficient, we do not actually swap values; rather, we copy the value v[i] to
a temporary variable and repeatedly move the larger child up, if necessary.

138

Chapter 3 / Data Structures

(a) (b)

Figure 3.5.6 The siftdown algorithm. Initially, the left and right subtrees of
node i are heaps [see (a)]. After siftdown is called, the subtree rooted at i is
a heap [see (b)].

After locating the cell where v[i] goes, we copy it to that cell.

Algorithm 3.5.7 Siftdown. The array v represents a heap structure indexed
from 1 to n. The left and right subtrees of node i are heaps. After

siftdown(v,i,n)
is called, the subtree rooted at i is a heap.

Input Parameters: v,i,n
Output Parameter: v

siftdown(v,i,n) {
temp = v|[i]
// 2 % i < n tests for a left child
while 2 xi<n) {
child =2 x i
// if there is a right child and it is bigger than the left child, move child
if (child < n && v[child + 1] > v{child])
child = child + 1
// move child up?
if (v[child] > temp)
v[i] = vichild]
else
break // exit while loop
i = child
}
// insert original v[i] in correct spot
v[i] = temp

}

In the worst case, the variable i in Algorithm 3.5.7 travels all the way from
the root to the last level; thus, in the worst-case, the while loop in Algorithm
3.5.7 executes ®(h) times, where h is the height of the subtree rooted at i.
We show that if the subtree rooted at i has m nodes, h = [lgm]; thus, the
worst-case time of Algorithm 3.5.7 is @(Ig m).

Theorem 3.5.8. The height of a heap structure containing m nodes is [1gm|.

3.5 / Priority Queues, Binary Heaps, and Heapsort 139

Proof. Suppose that a heap structure containing m nodes has height h > 0.
Then, level i, i < h, contains the maximum number of nodes 2* (see Figure
3.5.1). Thus, levels 0 through h — 1 contain

20420 4. g2kl ph

nodes. (We have used the formula for the geometric sum; see Example 2.2.2.)
Level h contains 1 to 2" nodes. Thus, m satisfies

Rr-1D+1<sm=<@Rr—1)+2h =21

or
2k < m < 2k,

Notice that the last inequality is also true if 1 = 0. Taking the logarithm to
the base 2 of each expression in the last inequality yields

h=zlgm<h+1.
Therefore,
h=llgm]. []

We now write the delete algorithm.

Algorithm 3.5.9 Delete. This algorithm deletes the root (the item with
largest value) from a heap containing » elements. The array v represents
the heap.

Input Parameters: v,n
Output Parameters: v,n

heap_delete(v,n) {
v[1] =v[n]
n=n-1
siftdown(v,1,n)

}

When the input is a heap structure of size n, siftdown runs in time ©(1g n)
in the worst case; therefore, the worst-case time of heap_delete is O (1gn).

We turn next to the insert algorithm, whose implementation is shown in
Figure 3.5.7. Asin the delete algorithm, we do not actually swap values in the
insert algorithm; rather we repeatedly move the parent down, if necessary.
After locating the cell where the added value goes, we copy it to that cell.

Algorithm 3.5.10 Insert. This algorithm inserts the value val into a heap
containing n elements. The array v represents the heap.

Input Parameters: val,v,n
Output Parameters: v,n

140

Chapter 3 / Data Structures

104 104 104

71

24 71 24 71 507

VA NVANNYVA VA NRVANEAN

G0N

_;)

AAA A A A AAA

5 32 2518 22 50 5 32 2518 22 23 32 2518 22 23

@ R (b) ©

Figure 3.5.7 Inserting the value 50 into the heap in Figure 3.5.2. To maintain a heap
structure, the value added, 50, is inserted in the bottom level, farthestright[see (a)].(If
the bottom level were full, we would begin another level at the left.) Since 50 is larger
than its parent, we swap 50 with its parent [see (b)]. Again 50 is larger than its parent;
S0, we again swap 50 with its parent [see (c)]. This time 50 is not larger than its parent,
so the insert algorithm terminates.

heap_insert(val,v,n) {
i=n=n+l
// i1is the child and i/2 is the parent.
// I i > 1, iis not the root.
while (i > 1 && val > v[i/2]) {
vli] =vli/2]
i=1/2
}
v[i] = val
}

Suppose that we use Algorithm 3.5.10 to insert into a heap containing
n elements. In the worst case, the value added travels all the way from last
level to the root; thus, the worst-case time of Algorithm 3.5.10 is ®@(h), where
h is the height of the tree, which now contains »n + 1 elements. By Theorem
3.5.8, the height of the tree is |1g(n + 1) |. Therefore, the worst-case time of
Algorithm 3.5.10 is ©(Ign).

Suppose that we have an array of n elements that we want to organize
into a heap. We could use Algorithm 3.5.10 to insert the elements one at a
time into an initially empty heap. Since each insertion takes time O(lgn),
the total time is O(nlgn). This estimate is sharp; that is, the worst-case
time to construct a heap in this way is @(nlg n) (see Exercise 25). We can do
better by repeatedly using siftdown (Algorithm 3.5.7).

Example 3.5.11. Consider the problem of organizing the data shown in Fig-
ure 3.5.8(a) into a heap. Notice that the left and right subtrees of the parent
having the largest index 4 are trivially heaps. Thus we may call siftdown on
node 4. The result is shown in Figure 3.5.8(b).

The left and right subtrees of the node having the next largest index, 3,
are heaps. Thus we may call siftdown on node 3. The result is shown in
Figure 3.5.8(c).

3.5 / Priority Queues, Binary Heaps, and Heapsort 141

3

7 25

(©

(d)

Figure 3.5.8 Making a heap. The input is shown in (a). siftdown is first called on the
parent having the largest index, 4. The result is shown in (b). siftdown is next called on
the node having the next largest index, 3. The result is shown in (c). siftdown is next
called on the node having the next largest index, 2. The result is shown in (d). Finally,
siftdown is called on the root. The result, shown in (e), is a heap.

Now the left and right subtrees of the node having the next largest index,
2, are heaps. Thus we may call siftdown on node 2. The result is shown in
Figure 3.5.8(d).

Finally, the left and right subtrees of the root are heaps. Thus we may
call siftdown on node 1. The result, shown in Figure 3.5.8(e),isaheap. O

We state the algorithm to make a heap as Algorithm 3.5.12.

Algorithm 3.5.12 Heapify. This algorithm rearranges the data in the array
v, indexed from 1 to n, so that it represents a heap.

Input Parameters: v,n
Output Parameters: v

heapify(v,n) {
// n/2 is the index of the parent of the last node
fori =n/2 downto 1
siftdown(v,i,n)

We show that Algorithm 3.5.12 runs in linear time.

142 Chapter 3 / Data Structures

Theorem 3.5.13. The time for Algorithm 3.5.12 is ©(n).

Proof. The time for Algorithm 3.5.12 is bounded by the worst-case time of
all of the calls to siftdown.

There is one node on level 0, namely the root. The worst-case time for
this call to siftdown (counting iterations of siftdown’s while loop) is h, where
h = |lgn] is the height of the tree.

There are two nodes on level 1: so, the worst-case time for these two calls
is2(h -1).

In general, on level i, i < h, there are 2t nodes; so, the worst-case time
for these 2! calls is bounded by 2i(h — i). [siftdown may not be called on
all nodes on level h — 1 (see Figure 3.5.8); however, its worst-case time is
bounded by 21 - 1.] It follows that the time of Algorithm 3.5.12 is bounded

by
h-1
> 24h -).
i=0
Now
h-1 h) h i
S 2ih-i) =Y 2" li=2" >0
i=0 i=1 i=1

Taking ¥ = 1/2 in Theorem 2.2.3, we obtain
g i
= 28
Therefore,

h
2h221 <2h.2=2lenl. 2 <0lEn. 5 = 2p,
i-1
and the time for Algorithm 3.5.12 is O (n).
On the other hand, the for loop in Algorithm 3.5.12 executes ©(n) times;
s0, the time for Algorithm 3.5.12 is Q(n). Therefore, the time for Algorithm
3.5.12 is O(n). []

Indirect Heaps

In some applications (see, e.g., Sections 7.3 and 7.4), we need to modify a
value in a heap. To specify which element to modify, we provide its index.
The problem is thatin the current implementation, the indexes of the various
values change. In order to modify a value in a heap efficiently, we maintain
an array of values, key, which does not change unless a value (as opposed
to the index of a value) in the heap is modified. For example, the siftdown
algorithm would not modify key. We then maintain two additional arrays:
into[i], whose value is the index in the heap structure where key[i] is found,;
and outof[j], whose value is the index in key where the value of node j in

3.5 / Priority Queues, Binary Heaps, and Heapsort 143

key
66 | 12 |312(25| 8 {109} 7 | 18
312 1 2 3 4 5 6 7 8
/\ into
/66\ /109\ 218|117 |5|3|[6]4
18 8 7 25 outof
/ 3 (16|85 |7]4]2

12

Figure 3.5.9 An indirect heap. The heap structure is shown at the left. The
key array stores the values contained in the heap structure. The value key[i]
is stored at index into[i] in the heap structure. For example, the value 25 =
key[4] is stored at index into[4] = 7 in the heap structure. The value at index
j in the heap structure is at index outof[j] in the key array. For example,
the value, 18, at index 4 in the heap structure is at index outof[4] = 8 in the
key array. Notice that into and outof are inverses of each other in the sense
that into[outof [j]1] = j for all j, and outof [into[i]] = i for all i.

the heap structure is found (see Figure 3.5.9). Such a structure is sometimes
called an indirect heap.

Example 3.5.14. As an example of manipulating an indirect heap, we show
how to swap the value 66 at index 2 and the value 18 at index 4 in the indirect
heap in Figure 3.5.9.

In Figure 3.5.9, outof[2] = 1 gives the index of 66 in the key array, and
outof[4] = 8 gives the index of 18 in the key array. These values in outof
must be swapped:

temp = outof [2]
outof [2] = outof[4]
outof[4] = temp

The changes are shown in Figure 3.5.10 (next page).
Similarly, the into values must also be swapped:

temp = into[outof [2]]
intoloutof[2]] = intoloutof [4]]
intoloutof[4]] = temp

(see Figure 3.5.10). m]

Consider writing an increase algorithm. The input is an index into the key
array, which specifies the value to be increased, and the replacement value.
The algorithm is illustrated in Figure 3.5.11.

144 Chapter 3 / Data Structures

key
66 | 12 131225 | 8 [109} 7 |18
312 1 2 3 4 5 6 7 8
/\ into
/18\ K 4 (81117 |5]3]|6]2
66 8 7 25 outof
/ 3 8 6 1 5 7 4 2

12

Figure 3.5.10 The heap structure of Figure 3.5.9 after swapping the value
66 at index 2 and the value 18 at index 4. The values outof[2] and
outof[4] are swapped as are the corresponding into values, into[outof[2]]
and into[outof [4]1].

312 312 312
66 109 66 109 89 109
VAN A NYA VYA NYAN
18 8 7 25 89 8 7 25 66 8 7 25
/ / /
89 18 18
(a) (b) (©)

Figure 3.5.11 The increase algorithm. The value 12 in the heap in Figure 3.5.9 is to
be increased to 89 [see (a)]. Since 89 is larger than its parent (18), 18 must move down
[see (b)]. Again, 89 is larger than its parent (66), so 66 must move down [see (c)]. This
time 89 is not larger than its parent (312); thus, the heap is restored and the increase
algorithm terminates.

Algorithm 3.5.15 Increase. This algorithm increases a value in an indirect
heap and then restores the heap. The input is an index i into the key array,
which specifies the value to be increased, and the replacement value newval.

Input Parameters: i, newval
Output Parameters: None

increase(i, newval) {
keyli] = newval
// p is the parent index in the heap structure
// c is the child index in the heap structure
¢ = intoli]

3.5 / Priority Queues, Binary Heaps, and Heapsort 145

p=c/2
while (p = 1) {
if (keyloutof{p]] = newval)
break // exit while loop
// move value at p down to ¢
outofc] = outof [p]
into[outof [c]l] = ¢
// move p and ¢ up
c=p
p=c/2
}
// “put” newval in heap structure at index ¢
outof[cl =1
intoli] = ¢

The worst-case time of Algorithm 3.5.15 occurs when the value to be
increased is at the bottom of the heap and migrates to the root. In this case,
the while loop iterates h times, where h is the height of the heap. By Theorem
3.5.8, h = |lgn]; thus, the worst-case time of Algorithm 3.5.15 is @(lgn),
where n is the number of items in the heap.

We leave the details of implementing other heap algorithms, when the
heap is implemented as an indirect heap, to the exercises (see Exercises
27-32).

Heapsort

Figure 3.5.12 shows how a heap can be used to sort an array. The algorithm
that results is called heapsort. We write it as Algorithm 3.5.16.

Algorithm 3.5.16 Heapsort. This algorithm sorts the array v[1],...,v[n]
in nondecreasing order. It uses the siftdown and heapify algorithms (Algo-
rithms 3.5.7 and 3.5.12).

Input Parameters: v,n
Output Parameter: v

heapsort(v,n) {

// make v into a heap

heapify(v,n)

for i = n downto 2 {
// v[1] is the largest among v[1],...,v[i].
// Put it in the correct cell.
swap(v[1],v[i])
// Heap is now at indexes 1 through i — 1.
// Restore heap.
siftdown(v,1,i—1)

146

Chapter 3 / Data Structures

(a) 4 (1213016 5 |15

(b) 30|16 |15 |12 5 | 4

(c) 4 [16|15]121 5 |30

(d) 161215 | 4 | 5|30

(e) 5112115 | 4 J16 | 30

€ 15|12 51 4 116]30

—
[h%4
i

Figure 3.5.12 The first steps in the heapsort algorithm. The input array is considered
a heap structure [see (a)]. First, heapify is called [see (b)]. The largest element, at index
1, is swapped with the last element; and the elements, except the last, are considered
a heap structure [see (c)]. Next, siftdown is called [see (d)]. The second-largest element,
at index 1, is swapped with the next-to-last element; and the elements, except the last
two, are considered a heap structure [see (e)]. Again, siftdown is called [see (f)]. The
process is repeated until the array is sorted.

3.5 / Priority Queues, Binary Heaps, and Heapsort 147

In the heapsort algorithm, the call to heapify takes time ©(n). Each call
to siftdown takes time O(lgn). Since the calls to siftdown are in a for loop
that runs in time ©(n), the total time for the calls to siftdown is O(nlgmn).
Therefore, heapsort runs in time O(nlgn). Corollary 6.3.3 shows that any
comparison-based sorting algorithm, of which heapsort is an example, has
worst-case time Q(nlgn). Therefore, the worst-case time of heapsort is
O(nlgn). It is also possible to show directly that the worst-case time of
heapsort is @(n1g n) by constructing input that requires time @(nlgn) (see
Exercise 3.12).

Notice that except for the input array, heapsort uses a constant amount
of storage. In practice, heapsort is the fastest general sorting algorithm that,
except for the input array, uses a constant amount of storage and guarantees
worst-case time @(n1g n). [In practice, quicksort (see Section 6.2) is faster on
average than heapsort. However, in addition to the input array, quicksort, if -
properly implemented, uses O (Ig n) storage and has worst-case time 8(n?).]

Exercises

1S. A priority queue is implemented using an array. An item is inserted by
putting it at the end of the array. Write algorithms to initialize a priority
queue to empty, to delete an item with the highest priority, to return
an item with the highest priority, and to insert an item with a specified

priority.

2. A priority queue is implemented using an array. An item is inserted by
putting it in a cell that maintains nondecreasing order. Write algorithms
to initialize a priority queue to empty, to delete an item with the highest
priority, to return an item with the highest priority, and to insert an item
with a specified priority.

3. A priority queue is implemented using an array. An item is inserted by
putting it at the end of the array. Show that, in the worst case, performing
n insertions and n deletions in an initially empty priority queue takes time
e(n?).

4S. A priority queue is implemented using an array. An item is inserted by
putting it in a cell that maintains nondecreasing order. Show that, in the
worst case, performing n insertions and »n deletions in an initially empty
priority queue takes time ©(n?).

5. Show how to implement a stack using a priority queue.
6. Show how to implement a queue using a priority queue.

Unless specified otherwise, all heaps are maxheaps.

