504

Chapter 24 Minimum Spanning Trees

24.1-9

Let T be a minimum spanning tree of a graph G = (V, E), and let VV’ be
a subset of V. Let T’ be the subgraph of 7 induced by V', and let G’ be
the subgraph of G induced by ¥’. Show that if T’ is connected, then 77 is
a minimum spanning tree of G'.

24.2 The algorithms of Kruskal and Prim

The two minimum-spanning-tree algorithms described in this section are
elaborations of the generic algorithm. They each use a specific rule to
determine a safe edge in line 3 of GENERIC-MST. In Kruskal’s algorithm,
the set A is a forest. The safe edge added to A4 is always a least-weight edge
in the graph that connects two distinct components. In Prim’s algorithm,
the set 4 forms a single tree. The safe edge added to A4 is always a least-
weight edge connecting the tree to a vertex not in the tree.

Kruskal’s algorithm

Kruskal’s algorithm is based directly on the generic minimum-spanning-
tree algorithm given in Section 24.1. It finds a safe edge to add to the
growing forest by finding, of all the edges that connect any two trees in the
forest, an edge (u,v) of least weight. Let C; and C, denote the two trees
that are connected by (u,v). Since (#,v) must be a light edge connecting
C to some other tree, Corollary 24.2 implies that (u,v) is a safe edge
for C). Kruskal’s algorithm is a greedy algorithm, because at each step it
adds to the forest an edge of least possible weight.

Our implementation of Kruskal’s algorithm is like the algorithm to com-
pute connected components from Section 22.1. It uses a disjoint-set data
structure to maintain several disjoint sets of elements. Each set contains
the vertices in a tree of the current forest. The operation FIND-SET(u)
returns a representative element from the set that contains . Thus, we
can determine whether two vertices ¥ and v belong to the same tree by
testing whether FIND-SET(«) equals FIND-SET(v). The combining of trees
is accomplished by the UNION procedure.

24.2 The algorithms of Kruskal and Prim 505

MST-KRUSKAL(G, w)
A1
for each vertex v € V[G]

do MAKE-SET(v)
sort the edges of E by nondecreasing weight w
for each edge (u,v) € E, in order by nondecreasing weight

do if FIND-SET(14) # FIND-SET(v)

then 4 — AU {(u,v)}
UNION(u, V)

O 00 NV B W -

return A4

Kruskal’s algorithm works as shown in Figure 24.4. Lines 1-3 initialize
the set 4 to the empty set and create |V/| trees, one containing each vertex.
The edges in E are sorted into order by nondecreasing weight in line 4. The
for loop in lines 5-8 checks, for each edge (u,v), whether the endpoints u
and v belong to the same tree. If they do, then the edge (u,v) cannot be
added to the forest without creating a cycle, and the edge is discarded.
Otherwise, the two vertices belong to different trees, and the edge (u,v) is
added to 4 in line 7, and the vertices in the two trees are merged in line 8.

The running time of Kruskal’s algorithm for a graph G = (V, E') depends
on the implementation of the disjoint-set data structure. We shall assume
the disjoint-set-forest implementation of Section 22.3 with the union-by-
rank and path-compression heuristics, since it is the asymptotically fastest
implementation known. Initialization takes time O(V'), and the time to
sort the edges in line 4 is O(E1gE). There are O(E) operations on the
disjoint-set forest, which in total take O(E «(E,V’)) time, where « is
the functional inverse of Ackermann’s function defined in Section 22.4.
Since a(E, V) = O(lg E), the total running time of Kruskal’s algorithm is
O(EIRE).

Prim’s algorithm

Like Kruskal’s algorithm, Prim’s algorithm is a special case of the generic
minimum-spanning-tree algorithm from Section 24.1. Prim’s algorithm
operates much like Dijkstra’s algorithm for finding shortest paths in a
graph. (See Section 25.2.) Prim’s algorithm has the property that the edges
in the set 4 always form a single tree. As is illustrated in Figure 24.5, the
tree starts from an arbitrary root vertex r and grows until the tree spans
all the vertices in V. At each step, a light edge connecting a vertex in A4 to
a vertex in V' — A is added to the tree. By Corollary 24.2, this rule adds
only edges that are safe for A4; therefore, when the algorithm terminates,
the edges in 4 form a minimum spanning tree. This strategy is “greedy”
since the tree is augmented at each step with an edge that contributes the
minimum amount possible to the tree’s weight.

506 Chapter 24 Minimum Spanning Trees

(a)

Figure 24.4 The execution of Kruskal's algorithm on the graph from Figure 24.1.
Shaded edges belong to the forest 4 being grown. The edges are considered by the
algorithm in sorted order by weight. An arrow points to the edge under considera-
tion at each step of the algorithm. If the edge joins two distinct trees in the forest,
it is added to the forest, thereby merging the two trees.

24.2 The algorithms of Kruskal and Prim 507

The key to implementing Prim’s algorithm efficiently is to make it easy
to select a new edge to be added to the tree formed by the edges in 4. In the
pseudocode below, the connected graph G and the root r of the minimum
spanning tree to be grown are inputs to the algorithm. During execution
of the algorithm, all vertices that are not in the tree reside in a priority
queue Q based on a key field. For each vertex v, key[v] is the minimum
weight of any edge connecting v to a vertex in the tree; by convention,
key[v] = oo if there is no such edge. The field n[v] names the “parent”
of v in the tree. During the algorithm, the set 4 from GENERIC-MST is
kept implicitly as

A={(v,n[v]):veV —-{r} -0} .

When the algorithm terminates, the priority queue Q is empty; the mini-
mum spanning tree A4 for G is thus

A={(v,mv]):veV -{r}}.

508 Chapter 24 Minimum Spanning Trees

(a)

(c)

(e)

(g)

(i)

Figure 24.5 The execution of Prim’s algorithm on the graph from Figure 24.1.
The root vertex is a. Shaded edges are in the tree being grown, and the vertices in
the tree are shown in black. At each step of the algorithm, the vertices in the tree
determine a cut of the graph, and a light edge crossing the cut is added to the tree.
In the second step, for example, the algorithm has a choice of adding either edge
(b, c) or edge (a, h) to the tree since both are light edges crossing the cut.

24.2 The algorithms of Kruskal and Prim 509

MST-PriM(G, w,)
Q — V[G]
foreachue Q

do key[u] «
key[r] — 0O
n[r] — NIL
while Q # 0

do u — EXTRACT-MIN(Q)

for cach v € Adj[u]
do if v € Q and w(u,v) < key[v]
then n[v] — u
key[v] — w(u,v)

—_— O W00 NV B WN—

[y —

Prim’s algorithm works as shown in Figure 24.5. Lines 1-4 initialize the
priority queue Q to contain all the vertices and set the key of each vertex
to oo, except for the root r, whose key is set to 0. Line 5 initializes z[r]
to NIL, since the root r has no parent. Throughout the algorithm, the set
V' — Q contains the vertices in the tree being grown. Line 7 identifies a
vertex # € Q incident on a light edge crossing the cut (V — @, Q) (with the
exception of the first iteration, in which u = r due to line 4). Removing u
from the set Q adds it to the set V' — Q of vertices in the tree. Lines 8-11
update the key and 7 fields of every vertex v adjacent to u but not in the
tree. The updating maintains the invariants that key[v] = w(v, z[v]) and
that (v, m[v]) is a light edge connecting v to some vertex in the tree.

The performance of Prim’s algorithm depends on how we implement the
priority queue Q. If Q is implemented as a binary heap (see Chapter 7), we
can use the BUILD-HEAP procedure to perform the initialization in lines 1-
4 in O(V') time. The loop is executed |V| times, and since each EXTRACT-
MIiN operation takes O(lg V') time, the total time for all calls to EXTRACT-
MIN is O(V'1gV). The for loop in lines 8-11 is executed O(E) times
altogether, since the sum of the lengths of all adjacency lists is 2 |E|. Within
the for loop, the test for membership in Q in line 9 can be implemented
in constant time by keeping a bit for each vertex that tells whether or
not it is in Q, and updating the bit when the vertex is removed from Q.
The assignment in line 11 involves an implicit DECREASE-KEY operation
on the heap, which can be implemented in a binary heap in O(Ig V') time.
Thus, the total time for Prim’s algorithm is O(V 1g V+ElgV) = O(ElgV),
which is asymptotically the same as for our implementation of Kruskal’s
algorithm.

The asymptotic running time of Prim’s algorithm can be improved, how-
ever, by using Fibonacci heaps. Chapter 21 shows that if |V/| elements are
organized into a Fibonacci heap, we can perform an EXTRACT-MIN oper-
ation in O(lg V) amortized time and a DECREASE-KEY operation (to im-
plement line 11) in O(1) amortized time. Therefore, if we use a Fibonacci

510

Chapter 24 Minimum Spanning Trees

heap to implement the priority queue Q, the running time of Prim’s algo-
rithm improves to O(E + VigV).

Exercises

24.2-1

Kruskal’s algorithm can return different spanning trees for the same input
graph G, depending on how ties are broken when the edges are sorted into
order. Show that for each minimum spanning tree T of G, there is a way to
sort the edges of G in Kruskal’s algorithm so that the algorithm returns 7.

24.2-2

Suppose that the graph G = (V, E) is represented as an adjacency matrix.
Give a simple implementation of Prim’s algorithm for this case that runs
in O(V?) time.

24.2-3

Is the Fibonacci-heap implementation of Prim’s algorithm asymptotically
faster than the binary-heap implementation for a sparse graph G = (V, E),
where |E| = ©(V)? What about for a dense graph, where |[E| = ©(V'2)?
How must |E| and |V| be related for the Fibonacci-heap implementation
to be asymptotically faster than the binary-heap implementation?

24.2-4

Suppose that all edge weights in a graph are integers in the range from 1
to |V|. How fast can you make Kruskal’s algorithm run? What if the edge
weights are integers in the range from 1 to W for some constant W?

24.2-5

Suppose that all edge weights in a graph are integers in the range from 1
to |V|. How fast can you make Prim’s algorithm run? What if the edge
weights are integers in the range from 1 to W for some constant W?

24.2-6

Describe an efficient algorithm that, given an undirected graph G, deter-
mines a spanning tree of G whose largest edge weight is minimum over all
spanning trees of G.

24.2-7 x

Suppose that the edge weights in a graph are uniformly distributed over
the half-open interval [0, 1). Which algorithm, Kruskal’s or Prim’s, can
you make run faster?

24.2-8 x

Suppose that a graph G has a minimum spanning tree already computed.
How quickly can the minimum spanning tree be updated if a new vertex
and incident edges are added to G?

