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C++ and the linker

Main

Quite some time ago I found a brillant and extensive article about linkers from Ian Lance Taylor. (see
the appendix for a list of links to all 20 parts.) In part 13 he says: "There are some special challenges
when using C++", and he is definitely right. I would like to elaborate on what theses challenges are
and how the linker can be a serious trap for C++ developers. I learned it the hard way by spending
hours and days on bug-hunting. Maybe this article will help others to avoid the frustration.
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Basics

For those who don't know what a linker does, and who don't have time to read the 20 articles from Ian,
I will give a brief introduction on the topic. I won't go into much detail, though.

How the Linker Works
Ian says that the demand for interoperability with FORTRAN and COBOL was the reason for introducing
linkers. As far as I know there has been at least one other reason. As the compiler has to hold a lot of
meta information about the code it compiles, the amount of available memory limits the maximum code
size of a C program. Back in time, when C was invented, computer systems did not have much memory.
To work around the resulting serious restriction of code size, the ANSI C standard (aka C89) states in
section 5.1.1.1/1:

A C program need not all be translated at the same time. The text of the program is
kept in units called source files, (or preprocessing files) in this International Standard. A
source file together with all the headers and source files included via the preprocessing
directive #include is known as a preprocessing translation unit. After preprocessing, a
preprocessing translation unit is called a translation unit. Previously translated
translation units may be preserved individually or in libraries. The separate translation
units of a program communicate by (for example) calls to functions whose identifiers
have external linkage, manipulation of objects whose identifiers have external linkage,
or manipulation of data files. Translation units may be separately translated and then
later linked to produce an executable program.

The term "linkage" is defined in section 6.2.2/2:

In the set of translation units and libraries that constitutes an entire program, each
declaration of a particular identifier with external linkage denotes the same object or
function. Within one translation unit, each declaration of an identifier with internal
linkage denotes the same object or function. Each declaration of an identifier with no
linkage denotes a unique entity.

So the linkage controls, which equally named identifiers denote the same entity. The linkage of an
identifier is determined by a set of language rules. Long story short, the default is external linkage and
can be overwritten to internal linkage by using the storage specifier static. Objects with automatic
storage duration are an example of identifiers with no linkage.
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Each identifier with external linkage must be defined exactly once in the entire program, as defined in
section 6.9/5:

[...] If an identifier declared with external linkage is used in an expression [...],
somewhere in the entire program there shall be exactly one external definition for the
identifier; [...]

This is the so-called "One Definition Rule". In this context "external definition" simply means that the
definition is at global scope, i.e. outside of any function.

In other words the One Definition Rule demands that every identifier with external linkage is unique
and originates from exactly one translation unit. For other translation units this identifier is foreign and
can only by referenced.

In order to enable one translation unit to reference foreign identifiers, the identifiers must be declared
within the unit. A declaration differs from a definition in such that it only introduces names to the
translation unit without specifying how the object or function of that name looks like. It is sufficient to
copy the required declarations into every translation unit manually. However, it is common practice to
put those declarations into header files and include them in a translation unit whenever needed.

The ANSI C standard does not define how to merge multiple translation units into one executable
program. This is entirely up to the toolchain. However, using a linker is suggested, and to my
knowledge, all common implementations use a similar approach. In this article I will refer to the GNU
Compiler Collection (GCC) version 4.3.2 on the Intel x86 Linux platform.

The GCC turns a translation unit defined by the source file foo.c into a so-called "object file" foo.o. An
object file consists of various parts, only three of which are of interest in the scope of this article. These
are:

machine code: the binary instructions for the CPU, with placeholders for addresses of referenced
identifiers.
symbol table: list of

the names, the file-relative addresses, and the linkage type of all identifiers defined in the
corresponding translation unit,
the names of all identifiers referenced in the corresponding tranlation unit, and
a couple more entries, which are not relevant here.

relocation table: list of addresses of all placeholders in the machine code, together with the name
of the referenced identifier

To be precise the linker does not handle identifiers, but symbols. But, as every definition of an identifier
with linkage is represented by a symbol, the above explanations will suffice.

The linker is supplied with all object files, so it can read all symbol tables and do the relocations, thus
substituting all placeholders with addresses. Finally the machine code of all object files is merged into
one program by translating all addresses into one common address space.

Of course, in reality the whole process is more complex, but for the topic of this article these are the
relevant steps.

Know Your Tools
The binutils are a set of tools for dealing with object files and libraries. One of those tools is objdump,
which displays information from object files. So, how is it used?

First we write a header file, which will enable interoperability between two translation units by
declaring a function use_me:

$ cat use_me.h
void use_me(int);

Next we write a C module which includes the header file and defines a function bar which calls use_me:

$ cat example.c
#include "use_me.h"

void bar()
{
        use_me(23);
}

http://blog.copton.net/articles/linker/#id22
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Now we tell the compiler to process this translation unit. The -c switch prevents the compiler from
linking a program, which it normally would do:

$ gcc -c example.c

Now let's see if we can find the above mentioned three parts. First we dump the code, retranslated
from machine code to assembler code for human readability:

$ objdump --disassemble example.o
[...]
00000000 <bar>:
   0:   55                      push   %ebp
   1:   89 e5                   mov    %esp,%ebp
   3:   83 ec 08                sub    $0x8,%esp
   6:   c7 04 24 17 00 00 00    movl   $0x17,(%esp)
   d:   e8 fc ff ff ff          call   e <bar+0xe>
  12:   c9                      leave
  13:   c3                      ret

All of the above numbers are in hexadecimal notation. The first column shows the address of each
machine instruction. The second one shows the bytes of the instructions while the third and fourth
column show the corresponding mnemonics.

The first three commands create a stack frame for the function call to bar. The command at address
0x06 pushes the the parameter for the call to use_me on the stack. Finally use_me is callled and the stack
frame of bar is destroyed.

The parameters of call may look weird, but remember that this is only a placeholder. The linker will
replace it with the actual address of use_me later on. Let's check the relocation entry responsible for
that:

$ objdump --reloc example.o
[...]
RELOCATION RECORDS FOR [.text]:
OFFSET   TYPE              VALUE
0000000e R_386_PC32        use_me

This relocation entry instructs the linker to insert the address of the symbol use_me at address 0x0e.
Among other things, the relocation type tells the linker the size of the address, which in this case is 32
bits.

Last let's take a look at the symbol table:

$ objdump --syms example.o
[...]
00000000 g     F .text  00000014 bar
[...]

Here we can see that the symbol bar resides in the object file example.o at address 0x0 and has a size
of 0x14 bytes. This information could be used to do relocations, which are needed if bar is referenced
by some other translation unit.

If you have to find out why the linker reports "unresolved symbol" or "multiple definition" errors, nm is
your tool of choice:

nm example.o
00000000 T bar
         U use_me

The output confirms that the symbol bar resides at the address 0x0. T stands for "text section" which is
the code part of the object file. Furthermore the output says that the symbol use_me is used but not
defined. U here stands for "unresolved".
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Hereditary Disease
The ISO C++ language inherits from C90, which is the ISO variant of ANSI C. Therefore there are a lot of
similarities between ANSI C and C++. Obviously most vendors decided to simply adapt their existing C
toolchains to support C++ instead of creating a new one.

Unfortunately C++ has several language features, which can't be handled well by a toolchain designed
with ANSI C principles in mind. Therefore the C++ support of various toolchains is more like a hack than
a clean design. In combination with various gotchas in the language itself this is a constant source of
headaches for developers. From the next section on I will illustrate this with some examples.

To make things worse common C linkers already had major flaws:

$ cat foo.c
struct Broken {
    char c;
    int i;
};

struct Broken broken;

void init()
{
    broken.i = 42;
}

$ cat main.c
#include <stdio.h>

struct Broken {
    int i;
};

struct Broken broken;
void init();

int main()
{
    init();
    printf("%d\n", broken.i);
    return 0;
}

$ gcc -Wall -o main main.c foo.c

$ ./main
0

The above program is ill-formed, because the differing definitions of struct Broken violate the One
Definition Rule. So it doesn't take wonder that the result of the above program is not 42 as one would
expect. But, concerning the GCC toolchain, neither the compiler nor the linker detects the error in the
program. Which is by design, because neither of them can see it. When the compiler processes one
translation unit it does not even know that others exist. And the linker has no access to the type
definitions. It isn't even aware of the existence of different types.

With ANSI C this behaviour is fine, because it is not specified, who is responsible to enforce the One
Definition Rule. C++ is an improvement to C90 in so far that more details are specified. However, at this
point, it just adds that "no diagnostic [is] required" (section 3.2/3), which means according to section
1.4/2:

If a program contains a violation of a rule for which no diagnostic is required, this
International Standard places no requirement on implementations with respect to that
program.

Great!

Still it is important to note, that the linker could enforce the One Defintion Rule with support from the
compiler and the object file format. For every definition the compiler could augment the object file with
additional information that can be used to test for equality. It is the fault of the toolchain that this is not

http://blog.copton.net/articles/linker/#id23
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done. And it is the fault of the language that the checks are optional. This is true for both C and C++.

Name Mangling

Let's see how the C++ toolchain works:

$ cat use_me.h
void use_me(int);

$ cat example.cc
#include "use_me.h"

namespace foo {
    void bar()
    {
        use_me(23);
    }
}

$ g++ -c example.cc

$ nm example.o
         U _Z3use_mei
00000000 T _ZN3foo3barEv
         U __gxx_personality_v0

This looks strange. First, there is an unresolved symbol named "__gxx_personality_v0" for which there
is no identifier in our code. This comes from the fact that the C++ compiler implicitly injects code into the
translation units to enable C++ features like dynamic initialization and exception handling.

Second, the names of the symbols are decorated with additional strings. This is called name mangling.

The decoration before the identifier name is needed because C++ supports namespaces. For example
the same function name can occur multiple times in different namespaces while denoting a different
entity each time. To enable the linker to differentiate between those entities the name of each identifier
is prepended with tokens representing its enclosing namespaces.

The decoration after the identifier name is needed because C++ allows function overloading. Again the
same function name can denote different identifiers, which differ only in their parameter list. To enable
the linker to differentiate between those, tokens representing the parameter list are appended to the
name of the identifier. The return type of a function is disregarded, because two overloaded functions
must not differ only in their return type.

Current GCC version use the specifications of the Itanium C++ ABI for name mangling. The encoding is
straight forward but still cumbersome the decode manually. Fortunately nm provides the -C switch which
demangles the symbol names to provide human readability:

$ nm -C example.o
         U use_me(int)
00000000 T foo::bar()
         U __gxx_personality_v0

In my opinion name mangling is a hack in order to be able to stick with the old C linker. And the ISO
C++ standard does not define how it should be done as it doesn't even require a linker at all, just like
the ANSI C standard. So each toolchain implementation uses its own encoding. If the toolchain or the
object file format limits the size of symbol names, this can limit the maximum nesting depth of
namespaces drastically.

Furthermore it is impossible to write platform-independent C++ code when using dynamic library
loading with dlopen. This is, because the symbol name, which is required by dlsym in order to retrieve
the address of a symbol, is platform dependent. The typical solution for this problem is to use some
interfacing function which is declared with extern "C". The meaning of this so-called "language linkage"
is implementation defined. With GCC the C language linkage enables the usage of the C application
binary interface (ABI), which in turn disables some C++ features like function overloading.

$ cat use_me.h
extern "C" void use_me(int);

http://www.opengroup.org/onlinepubs/009695399/functions/dlopen.html
http://blog.copton.net/articles/linker/#id24
http://www.codesourcery.com/public/cxx-abi/abi.html#mangling
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$ g++ -c example.cc

$ nm example.o
00000000 T _ZN3foo3barEv
         U __gxx_personality_v0
         U use_me

The reason why C++ does not work well with dlopen is that dlopen is a POSIX function, and POSIX and
ISO C++ known nothing about each other. Thus, it takes no wonder that problems show up if both are
used in combination.

Dynamic Initialization

One of the design goals of C++ was to make all user defined types first-class objects [1].
Consequentially an object with static storage may be of an arbitrary type. C only supports so called
Plain Old Data (POD) objects, which can be initialized by constant expressions. C++ also knowns non-
POD objects, and they must be initialized by a call to their constructor instead. This is called dynamic
initialization, in contrast to static initialization, which is done otherwise.

In C, "all objects with static storage duration shall be initialized (set to their initial values) before
program startup." (ANSI C, section 5.1.2/1). In C++ things are a bit different, though. Section 3.6.2/3
states:

It is implementation-defined whether or not the dynamic initialization [...] of an object
[...] is done before the first statement of main. If the initialization is deferred to some
point in time after the first statement of main, it shall occur before the first use of any
function or object defined in the same translation unit as the object to be initialized.

If the constructor accesses other objects with static storage we have dependencies between them, i.e.
they have to be initialized in the right order to avoid accessing uninitialized objects. So who will
guarantee this? Well, the programmer, of course. The compiler can't do it, because the correct
initialization sequence depends on user defined code, which may be arbitrarily complex. Finding the
right initialization sequence in every case is related to the Halting Problem which is undecidable. In fact,
the compiler simply does not care about this problem:

$ cat example.cc
#include <iostream>

class A {
public:
    A();
};

class B {
public:
    B() { std::cout << "B::B" << std::endl; }
    void access() { std::cout << "B::access" << std::endl; }
};

static A a;
static B b;

A::A()
{
    std::cout << "A::A" << std::endl;
    b.access();
}

int main()
{
    std::cout << "main" << std::endl;
    return 0;
}

$ g++ -o example example.cc

http://blog.copton.net/articles/linker/#id25
http://standards.ieee.org/regauth/posix/
http://www.research.att.com/~bs/dne.html
http://en.wikipedia.org/wiki/Halting_problem
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$ ./example
A::A
B::access
B::B
main

We see that b is accessed before it is constructed. This is not good and hard to find as a bug. As long
as access doesn't dereference any invalid pointers, this bug will not cause a segmentation fault, as the
memory is static memory and thus valid. Instead, during access members of b contain arbitrary values,
and write accesses to them will be overwritten by the constructor later.

So what can the programmer do to avoid the problem? The answer is quite simple. First, the standard
guarantees that static initialization is done before any dynamic initialization. Second, the standard
states that dynamic initialization is done in the same order in which the definitions appear in the
translation unit. So the above example could be fixed by switching the two lines which define the
objects a and b.

This works for single translation units. But what if there are dependencies of objects with static storage
across translation units? What is the order of appearance then? The answer is simple. It is
implementation defined.

Some toolchains take the order, in which the object files are passed to the linker, as the primary sort
criterion. Others maybe not. So if your program works for you, it still may show subtle bugs due to
initialization order problems on a different platform. This is called the static initialization order fiasco.

The solution to this problem is a hack which uses another kind of static objects, namely static local
objects. Since objects of this kind are initialized as soon as their definition is passed initially at run time,
they can force an initialization order. To demonstrate how this technique works for dependencies
between translation units, I moved B to a different source file and added a header file of its own:

$ cat b.h
class B {
public:
    B();
    void access();
};

B& getB();

$ cat b.cc
#include <iostream>
#include "b.h"

B& getB()
{
    static B b;
    return b;
}

B::B()
{
    std::cout << "B::B" << std::endl;
}

void B::access()
{
    std::cout << "B::access" << std::endl;
}

$ cat a.cc
#include <iostream>
#include "b.h"

class A {
public:
    A()
    {
        std::cout << "A::A" << std::endl;
        getB().access();

http://www.parashift.com/c++-faq-lite/ctors.html#faq-10.12
http://blog.copton.net/articles/linker/#dynex1
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    }
};

static A a;

int main() { return 0; }

$ g++ -o example a.cc b.cc

$ ./example
A::A
B::B
B::access

The global object of type B is accessed only through the getter function getB. The moment this function
is called the first time, the object is initialized right away.

Linker Dependencies

One of the tasks the GNU linker performs is to leave unneeded code out of the program. If you link
against some huge library only the parts that you actually use in your program are included in the
program, thus keeping it small. But what does "code is needed" actually mean?

In the C world the answer is easy: starting from the translation unit where main is defined every
referenced symbol causes the object file it originates from to be included. The same rule applies
recursively to all symbols referenced in the included object file. Apart from the fact that the object file
granularity is a bit coarse this works fine.

For C++, things are not that easy, because dynamically initialized objects can execute arbitrary code.
Here is a simple example for this:

$ cat setting.h
#include <string>

class Setting {
public:
    Setting(std::string key, std::string value);
    static std::string get(std::string name);
};

$ cat setting.cc
#include "setting.h"
#include <map>

typedef std::map<std::string, std::string> SettingMap;

SettingMap& map()
{
    static SettingMap map;
    return map;
}

Setting::Setting(std::string key, std::string value)
{
    map()[key] = value;
}

std::string Setting::get(std::string key)
{
    return map()[key];
}

With this basic implementation one can have a compile time configuration like this:

$ cat config.cc
#include "setting.h"

http://blog.copton.net/articles/linker/#id26
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static Setting host("host", "localhost");
static Setting port("port", "423");
// ...

And access the configuration like this:

$ cat foo.cc
#include "foo.h"
#include "setting.h"
#include <iostream>

void init()
{
    std::string host = Setting::get("host");
    std::cout << "host is '" << host << "'" << std::endl;
}

Let's test the setup:

$ cat foo.h
void init();

$ cat main.cc
#include "foo.h"

int main()
{
    init();
    return 0;
}

$ g++ -o main main.cc foo.cc config.cc setting.cc

$ ./main
host is 'localhost'

So far, so good. But what if we ship this implemenation as a library?:

$ g++ -c foo.cc config.cc setting.cc

$ ar r libfoo.a foo.o config.o setting.o
ar: creating libfoo.a

$ g++ -o main main.cc libfoo.a

$ ./main
host is ''

Oops! The host is not set. What happened is that config.o is not used by main so it is not linked into
the binary. The linker just doesn't know that its good old rules for dependency tracking are insufficient
for C++. As a consequence the objects hostand port do not exist in the program. Thus the side effects
of the Setting constructor don't come into effect, leaving the settings map empty. In the end the query
results in an empty string.

To understand why it worked first I have to expand on the above explanation. The linker drops unused
object files only if they originate from a library. Object files explicitly passed to the linker are always
linked into the program. So this works, too:

$ g++ -o main main.cc libfoo.a config.o

$ ./main
host is 'localhost'

Alternatively there are linker options to overwrite the default behavior and include all object files from
an archive. But use them with care to keep your programs small.

http://blog.copton.net/articles/linker/#depex1
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Inline Functions

Inline functions are another C++ language feature. The idea behind those is that if a function executes
very few operations, the costs for the function call are very high compared to what the function actually
does. A typical example for this is the intmax(int, int) function, which returns the maximum of the two
parameters.

The traditional C way is to define a preprocessor macro to make occurrences of max look like function
calls, although the preprocessor actually does a text substitution. However, this has a lot of
disadvantages, such as loss of type safety andmultiple execution of side effects of the parameters.

In C++ you can write a max function and tell the compiler that inlining is preferred. In case the compiler
decides to actually do the inlining, it replaces the function call with code that semantically does the
same as the function call would have.

Problems arise when an inline function is used across translation units. In order to do the substitution
the compiler needs the definition of the function at every location where it is used. However, there is no
simple way for the compiler to retrieve the definition from other translation units, because by design it
doesn't know anything about them.

That is why section 7.1.2 of the ISO C++ standard says:

An inline function shall be defined in every translation unit in which it is used and shall
have exactly the same definition in every case (3.2).

The referenced section 3.2 specifies the One Definition Rule. By requiring the same definition in every
translation unit, compliance to the One Definition Rule is somewhat artificially brought about. In order to
follow section 7.1.2 definitions of inline functions are usually put into some header file.

Rules Without Enforcement Mean Nothing
As mentioned in the chapter Hereditary Disease, there is no instance that ensures the One Definition
Rule, which is true for inline functions as well. So, what happens if the assumption "all definitions are
the same" turns out to be false. Let's see:

$ cat foo.cc
#include <iostream>

inline void doSomething() { std::cout << "foo" << std::endl; }
void run_foo() { doSomething(); }

$ cat bar.cc
#include <iostream>

inline void doSomething() { std::cout << "bar" << std::endl; }
void run_bar() { doSomething(); }

$ cat main.cc
void run_foo();
void run_bar();

int main()
{
    run_foo();
    run_bar();
    return 0;
}

$ g++ -o example *.cc

$ ./example
bar
bar

This is not a typo. The output is twice "bar". This means
that run_foo() calls doSomething from bar.cc instead of its own implementation.

Before showing you what happens behind the scenes let me emphasize that the above situation can

http://blog.copton.net/articles/linker/#hereditary-disease
http://blog.copton.net/articles/linker/#id27
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easily occur. It is not a corner case. Here is what happened to a colleague of mine:

He needed multiple handlers for some UI framework, which he chose to implement in different source
files each. Since the name of the handler class did not really matter he just had all handlers have the
same name. In addition to that he defined the handler functions within their class definition to save
typing.:

$ cat keyboard_handler.cc
#include <uihandler.h>

class Handler : public UIHandler {
public:
    void handle(Event*) { /* some implementation */ }
};
static Handler keyboard_handler;

$ cat mouse_handler.cc
#include <uihandler.h>

class Handler : public UIHandler {
public:
    void handle(Event*) { /* some different implementation */ }
};
static Handler mouse_handler;

One would expect that this would lead to a multiple definition error from the linker,
because Handler::handle is defined twice. But it doesn't. The linker is fine with the above code and
produces a broken program.

The reason for this behavior is section 7.1.2.3 of the ISO C++ standard, which states that "a function
defined within a class definition is [implicitly] an inline function". Maybe this is because the above
technique is mostly used for short functions such as getter and setter functions, which are worthwhile
for being inlined.

Anyway, my colleague ended up in the exact same situation as described in the initial example . One
handler implementation was disregarded and mouse events were handled by the keyboard handler
instead.

Optimizing
Now let's see what happens behind the scenes when the One Definition Rule for inline functions is
violated:

$ cat foo.cc
#include <iostream>

inline void doSomething() { std::cout << "foo" << std::endl; }
void run_foo() { doSomething(); }

$ g++ -c foo.cc

$ nm -C foo.o | grep doSomething
00000000 W doSomething()

We can see that the doSomething symbol has the special type W, which stands for "weak symbol". Weak
symbols are subject to special linker rules, which prevent multiple definition errors, which is necessary
to comply to the language rules for inline functions. So, if for some reason symbols for different
identifiers should have the same name, all but one of those symbols are dropped silently.

In case you're wondering why there are symbols for doSomething in the first place, remember that the
keyword inline is only an expression of preferrence. As a matter of fact, GCC refuses to inline functions
when optimization options are disabled. So in the above example doSomething remains a normal
function in the translation unit. Still, the compiler must apply the semantics of inline functions to it, i.e.
multiple definition issues are disregarded. Thus doSomething becomes a weak symbol.

Let's crosscheck:

$ g++ -c -O1 foo.cc

http://blog.copton.net/articles/linker/#id29
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$ nm -C foo.o | grep doSomething

As you can see there is no symbol for doSomething now. The function was actually inlined. Let's recheck
the initial example, this time with optimization options enabled:

$ cat foo.cc
#include <iostream>

inline void doSomething() { std::cout << "foo" << std::endl; }
void run_foo() { doSomething(); }

$ cat bar.cc
#include <iostream>

inline void doSomething() { std::cout << "bar" << std::endl; }
void run_bar() { doSomething(); }

$ cat main.cc
void run_foo();
void run_bar();

int main()
{
    run_foo();
    run_bar();
    return 0;
}

$ g++ -o example -O1 *.cc

$ ./example
foo
bar

Now the doSomething functions are inlined without leaving any symbols the linker could mix up. So
apparently everything works fine. But if you start debugging and thus turn optimization off the bug
shows up. This is an inverted heisenbug. Very nasty beast it is.

One last thing: In some cases the compiler has to create a symbol although it inlines the function. This
can happen for example when a function pointer references the function. So, the above phenomenon
does not always disappear when optimization is enabled.

Unnamed Namespaces
If you want to be safe against accidental overwriting of symbols you must avoid that names of different
identifiers clash with each other. A practical way to do so is using unnamed namespaces. Section
7.3.1.1/1 defines them as follows:

An unnamed-namespace-definition behaves as if it were replaced by:

namespace unique { /* empty body */ }
using namespace unique;
namespace unique { namespace-body }

where all occurrences of unique in a translation unit are replaced by the same identifier
and this identifier differs from all other identifiers in the entire program.

The uniqueness of the assigned names ensures that an identifier in such an unnamed namespace does
not conflict with identifiers from other translation units. Still unnamed namespaces are transparent
within their translation unit.

Let's see what the GCC does:

$ cat foo.cc

http://blog.copton.net/articles/linker/#id30
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namespace {
    void hidden() { }
}

$ g++ -c foo.cc

$ nm foo.o
00000000 t _ZN12_GLOBAL__N_13hiddenEv

$ cat bar.cc
namespace {
    void hidden() { }
}

$ g++ -c bar.cc

$ nm bar.o
00000000 t _ZN12_GLOBAL__N_13hiddenEv

$ nm -C foo.o bar.o
foo.o:
00000000 t (anonymous namespace)::hidden()

bar.o:
00000000 t (anonymous namespace)::hidden()

The GCC is cheating here. Instead of assigning unique names to the unnamed namespaces, it assignes
the same name to all of them. In order to effectively follow the language rules, it creates the symbols
from those namespaces with local linkage, as indicated by the lower case t above. The reason for this
hack is comprehensible. How could the compiler find a program-wide unique name without having a
program-wide overview when processing a single translation unit?

Templates

Templates have been introduced rather late in the evolution of C++ [1]. Thereby their intregration did
not fit smoothly into the language and the existing toolchains. This section shows some issues raising
from this fact.

This won't be a complete documentation on templates. This article would become a book otherwise,
and there already are plenty of books on this topic. So this will be a brief introduction only.

Templates are code generators. First you tell the compiler how something looks in general, by defining
parametrized code. This is called a template definition. Among other things a parameter can be an
arbitrary type. When you actually use the template you assign particular values to the parameters.
When processing the template instantiation the compiler takes the template definition, substitutes the
placeholders for the parameters with the provided values and compiles the resulting code.

Assume you need a stack implementation for two different types A and B. In this case it would be
desirable to be able to provide a generic implementation, which will work for both types. One possible
way to achieve this is to have A and Bimplement a common interface contained, and have the container
handle references to objects of the type contained. This technique is called polymorphy. This approach
has two major disadvantages, though. First, you need to manually type-cast the returned object
references. Second, type checks for the casts are done at run time, although the involved types are
already known at compile time. This is a waste of run time resources.

For the above example a template stack implemenation, which can be instantiated by both A and B,
would provida a way to have the compiler do the casts and type checks at compile time. Such a stack
implementation could look like this:

$ cat stack.hxx
#include <assert.h>
template<typename T>
class Stack {
public:
    Stack(int size) :
        data(new T[size]),
        max_size(size),
        current_size(0)

http://blog.copton.net/articles/linker/#id31
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    { }

    ~Stack() { delete [] data; }

    void push(T element)
    {
        assert(current_size < max_size);
        data[current_size++] = element;
    }

    T pop()
    {
        assert(current_size > 0);
        return data[current_size--];
    }
private:
    T* data;
    const int max_size;
    int current_size;
};

This is the template definition. The template parameter is T, which represents an arbitrary type. More is
not known at this point.

Stack<A> myStack(23);
Stack<B> myStack(42);

This is the template instantiation. At this point the compiler generates the
classes Stack<A> and Stack<B>, and handles them just like any other class from there on.

Aside from class templates, C++ also supports function templates, which differ from the former.
However, for the scope of this article these differences are irrelevant.

A Lame Excuse
The above stack implementation example is already rather advanced. Someone new to C++ would
probably implement something that, besides template specific additions, would look like a normal class
declaration and definition:

$ cat stack.hh
template<typename T>
class Stack {
public:
    Stack(int size);
    ~Stack();
    void push(T element);
    T pop();

private:
    T* data;
    const int max_size;
    int current_size;
};

$ cat stack.cc
#include "stack.hh"
#include <assert.h>

template<typename T> Stack<T>::Stack(int size) :
        data(new T[size]),
        max_size(size),
        current_size(0)
    { }

template<typename T> Stack<T>::~Stack() { delete [] data; }

template<typename T> void Stack<T>::push(T element)
{

http://blog.copton.net/articles/linker/#id32
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    assert(current_size < max_size);
    data[current_size++] = element;
}

template<typename T> T Stack<T>::pop()
{
    assert(current_size > 0);
    return data[current_size--];
}

So let's try to use it:

$ cat main.cc
#include "stack.hh"

int main()
{
    Stack<int> s(23);
    s.push(1);
}

$ g++ -c stack.cc

$ g++ -o main main.cc stack.o
main.cc:(.text+0x22): undefined reference to ̀Stack<int>::Stack(int)'
main.cc:(.text+0x35): undefined reference to ̀Stack<int>::push(int)'
main.cc:(.text+0x40): undefined reference to ̀Stack<int>::~Stack()'
main.cc:(.text+0x63): undefined reference to ̀Stack<int>::~Stack()'

What is wrong? Why is the linker unable to find the implementation in stack.o? Let's find out:

$ nm -C stack.o

Apparently stack.o has no symbols. Why is that?

The answer is again: "different translation units". When the compiler processes stack.cc it can't know
that Stack with T=intwill be needed, because it is not aware of main.cc. And when the compiler
processes main.cc it doesn't see the implementation of Stack in order to do the instantiation. So the
compiler can't do anything but list the unresolved symbols inmain.o in the hope that the instantiation is
done in some other translation unit.

The standard defines the export keyword for such a case. Section 14/8 states:

[...] An exported template need only be declared (and not necessarily defined) in a
translation unit in which it is instantiated.

Obviously the common workflow of C++ toolchains, as described above, can not handle what the export
feature requires. TheComeau C++ toolchain supports export by delaying the instantiation up to the
point when prelinking is done. This means that the compiler leaves a note for the linker, which calls the
compiler back in order to do the instantiation. To my knowledge, every other C++ toolchain is not able
to perform such callbacks. Instead they just ignore the export keyword:

$ cat example.cc
export template <class T> T const& min(T const&, T const&);

int main()
{
    return min(2,3);
}

$ g++ -c  example.cc
example.cc:1: warning: keyword 'export' not implemented, and will be ignored

Formally, the C++ standard is fine, as export provides a clean solution for templates. But in fact you
have to fiddle around to get along with them. This is particularly true when you want to write portable

http://www.comeaucomputing.com/4.0/docs/userman/export.html
http://www.comeaucomputing.com/
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code.

So how to get templates to work? The only translation unit where the template implementation is
available is stack.cc. So we add an explicit template instantiation there:

$ cat stack.cc
[...]
template class Stack<int>;

$ g++ -c stack.cc

$ nm -C stack.o
00000000 W Stack<int>::pop()
00000000 W Stack<int>::push(int)
00000000 W Stack<int>::Stack(int)
00000000 W Stack<int>::~Stack()
[...]

$ g++ -o main main.cc stack.o

This works. But pinning the values for T breaks our initial goal of having a generic implementation. There
must be a better solution.

Déjà-vu
In order to make generic template implementations function properly, you have to use an
implementation like in the exampleof stack.hxx: Definition and implementation go together in a header
file, which is included wherever needed, so that the compiler can do the instantiations. Let's check:

$ cat main.cc
#include "stack.hxx"

int main()
{
    Stack<int> s(23);
    s.push(1);
}

$ g++ -c main.cc

$ nm -C main.o
00000000 W Stack<int>::push(int)
00000000 W Stack<int>::Stack(int)
00000000 W Stack<int>::~Stack()
[...]

$ g++ -o main main.o

Works fine. The required symbols are all in main.o, because this is where the instantiation was done.

But wait, the symbols are marked as "weak symbols". Sure enough the linker should not reject a
program with multiple definition errors, if for some reason two translation units contain the same
instantiation. Therefore weak symbols are the way to go.

But beware: as we already have seen the linker discards all but one weak symbol of the same name,
without checking if they all represent the same identifier. The chapter Inline Functions showed how
much of a trap this is. And actually we face the exact same problems here. This is what happened to me
once:

$ cat types.hh
enum Type {
    A,
    B
};

template<Type SELECT> struct Traits;

template<> struct Traits<A> {

http://blog.copton.net/articles/linker/#inline-functions
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    static const int value=23;
};

template<> struct Traits<B> {
    static const int value=42;
};

As you can see enum types can be template parameters as well. On top of that the above code defines
two template specializations. They tell the compiler to use a different implementation if the template
parameters have some specific value. This is used by a technique called traits. It provides a compile
time mapping, which in this case is between enum and integer constants. It is used like this:

$ cat foo.cc
#include <iostream>
#include "types.hh"

template<Type SELECT>
void map()
{
    std::cout << "foo " << Traits<SELECT>::value << std::endl;
}

void setup_foo()
{
    map<A>();
    map<B>();
}

$ cat foo.hh
void setup_foo();

$ cat main.cc
#include "foo.hh"

int main()
{
    setup_foo();
}

$ g++ -o main main.cc foo.cc

$ ./main
foo 23
foo 42

In addition to foo I had another module bar, which had to do a similar job:

$ cat bar.cc
#include <iostream>
#include "types.hh"

template<Type SELECT>
void map()
{
    std::cout << "bar " << Traits<SELECT>::value << std::endl;
}

void setup_bar()
{
    map<A>();
    map<B>();
}

$ cat bar.hh
void setup_bar();

If we adapt main to call into both modules, we trigger the bug:

http://www.cantrip.org/traits.html
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$ cat main.cc
#include "foo.hh"
#include "bar.hh"

int main()
{
    setup_foo();
    setup_bar();
}

$ g++ -o main main.cc foo.cc bar.cc

$ ./main
foo 23
foo 42
foo 23
foo 42

There it is. setup_bar is calling map from foo.cc instead of its own implementation. Everything is
analogous to the explanations from the chapter Inline Functions. And again this is not a corner case but
happens to C++ developers in the real world.

Conclusion

C++ is the language of pragmatism. It works and it's efficient. Starting from the first pragmatic decision,
namely having "C with classes", that's all ever counted. Whenever I wondered: "WTF? Why is this?", I
found good reasons for every single language decision, with efficiency and compatibility being the most
frequent ones.

In my opinion Bjarne Stroustrup et al. did a good job in meeting their design goals. Yet, I still believe
that C++ is a dead end. The C heritage is a heavy burden. This article has lined out a mere few
examples for this and on my blog there are some others (1, 2, 3, 4, 5). The fact that Bjarne Stroustrup
et al. uncompromisingly pursued the design goals of efficiency and compatibility resulted in a language,
which is very difficult to understand and use (6, 7, 8): Hundreds of special rules for special cases
(9, 10, 11, 12, 13), language features that clash when used in particular combinations (14, 15),
undefined and implementation-defined behavior everywhere (16, 17). Nevertheless the foundations of
C++ have been remaining archaic and defective. C++ 0x will not change this. Instead it is going to add
even more features, more rules and more complexity. In my opinion this is the wrong way to go.

If you are wondering why I still keep myself busy with C++, take a look at The Computer Language
Benchmarks Game. Sad but true, when efficiency matters, there is no alternative to C or C++. At logix-
tt I have implemented a cryptographic communication service in C++, which was designed for
thousands of simultaneous client connections. The customer-facing clients were implemented with Java
Server Pages (JSP). While the server running the communication service was idle most of the time, we
needed more and more server machines to host the tomcat instances for the JSPs. How come?

It appears to be commonly accepted, that comfortable-to-write and efficient-to-run are mutually
exclusive. However, I have never seen proof of this, and I beg to differ. High level programming
languages are so inefficient, because efficiency has never been a design goal for them. I think it's time
for a new approach, which provides a convenient way of writing efficient implementations.

In my opinion, pattern-based programming looks like a promising approach. The idea behind it is that a
program is a collection of instances of patterns. For each of these patterns the compiler knows
decidable algorithms for their translation into efficient target code. The key point is that the compiler
gets to know more about the semantics of the code. This additional information often turns previously
undecidable problems into decidable ones. This way as many decisions as possible can be made at
compile time instead of having to waste runtime resources on them.

Under the lead of Volker Birk we at logix-tt are researching the viability of such an approach. Hopefully
there will be some publications on this topic from me and other developers from logix-tt soon.

Appendix

Thanks to
Ansgar Wiechers
Lars Rohwedder
Andreas Bernauer
Liesa Keizer

http://blog.copton.net/articles/linker/#inline-functions
http://shootout.alioth.debian.org/
http://www.logix-tt.com/
http://blog.copton.net/archives/2007/10/02/diamonds/index.html
http://blog.copton.net/archives/2007/07/20/a_class_is_not_a_namespace/index.html
http://blog.copton.net/archives/2008/05/26/anonymous_classes/index.html
http://blog.copton.net/archives/2007/05/14/reading_c_type_declarations/index.html
http://blogs.msdn.com/vcblog/archive/2008/06/05/some-c-gotchas.aspx
http://java.sun.com/products/jsp/index.jsp
http://www.lysium.de/
http://yosefk.com/c++fqa/defective.html
http://tomcat.apache.org/
http://blog.copton.net/articles/linker/#id35
http://blog.copton.net/archives/2006/12/12/yet_another_c_heritage/index.html
http://blog.copton.net/archives/2006/08/31/unusable_feature/index.html
http://en.wikipedia.org/wiki/C%2B%2B0x
http://www.planetcobalt.net/
http://blog.copton.net/archives/2008/05/26/signed_or_unsigned/index.html
http://blog.copton.net/archives/2008/05/05/tell_me_why/index.html
http://blog.copton.net/articles/linker/#id36
http://roker.dingens.org/
http://blog.copton.net/archives/2006/08/31/special_treatment_of_default_constructors/index.html
http://blog.copton.net/archives/2006/07/21/abstract_destructor_needs_implementation/index.html
http://blog.copton.net/archives/2006/07/21/undefined_bahaviour_trap/index.html
http://blog.copton.net/archives/2007/04/23/raii_vs__exit/index.html
http://blog.copton.net/articles/linker/#id34
http://blog.copton.net/archives/2008/05/05/scope_jumble/index.html
http://blog.copton.net/archives/2007/07/19/enums_c_legacy/index.html
http://blog.copton.net/archives/2008/05/26/aint_a_typedef/index.html
http://blog.copton.net/archives/2008/05/26/template_type_arguments/index.html


6/11/2015 C++ and the linker |  copton.net

data:text/html;charset=utf-8,%3Ch2%20style%3D%22color%3A%20rgb(102%2C%20102%2C%20102)%3B%20margin-bottom%3A%201.5em%3B%20… 19/19

Links to Ian's Linker Articles
part 1
part 2
part 3
part 4
part 5
part 6
part 7
part 8
part 9
part 10
part 11
part 12
part 13
part 14
part 15
part 16
part 17
part 18
part 19
part 20

http://www.airs.com/blog/archives/40
http://www.airs.com/blog/archives/39
http://www.airs.com/blog/archives/38
http://www.airs.com/blog/archives/47
http://www.airs.com/blog/archives/45
http://www.airs.com/blog/archives/53
http://www.airs.com/blog/archives/48
http://www.airs.com/blog/archives/51
http://www.airs.com/blog/archives/55
http://www.airs.com/blog/archives/46
http://www.airs.com/blog/archives/54
http://www.airs.com/blog/archives/43
http://www.airs.com/blog/archives/49
http://www.airs.com/blog/archives/44
http://blog.copton.net/articles/linker/#id37
http://www.airs.com/blog/archives/50
http://www.airs.com/blog/archives/56
http://www.airs.com/blog/archives/52
http://www.airs.com/blog/archives/57
http://www.airs.com/blog/archives/42
http://www.airs.com/blog/archives/41

