
5/14/13 C++: Pointer to class data member - Stack Overflow

stackoverflow.com/questions/670734/c-pointer-to-class-data-member 1/7

Tell me more ×

Ashwin

12.9k 23 81 151

10 Answers

I came across this strange code snippet which compiles fine:

class Car

{

 public:

 int speed;

};

int main()

{

 int Car::*pSpeed = &Car::speed;

 return 0;

}

Why does C++ have this pointer to a non-static data member of a class? What is the use of this strange

pointer in real code?

c++ class pointers

edited Mar 22 '09 at 9:38 asked Mar 22 '09 at 9:03

Here's where I found it, confused me too...but makes sense now: stackoverflow.com/a/982941/211160 –

 HostileFork Jul 12 '12 at 6:03

It's a "pointer to member" - the following code illustrates its use:

#include <iostream>

using namespace std;

class Car

{

 public:

 int speed;

};

int main()

{

 int Car::*pSpeed = &Car::speed;

 Car c1;

 c1.speed = 1; // direct access

 cout << "speed is " << c1.speed << endl;

 c1.*pSpeed = 2; // access via pointer to member

 cout << "speed is " << c1.speed << endl;

 return 0;

}

As to why you would want to do that, well it gives you another level of indirection that can solve some

tricky problems. But to be honest, I've never had to use them in my own code.

Stack Overflow is a question and answer site for professional and enthusiast programmers. It's 100% free, no
registration required.

C++: Pointer to class data member

http://stackoverflow.com/
http://stackoverflow.com/about
http://stackoverflow.com/users/1630/ashwin
http://stackoverflow.com/users/1630/ashwin
http://stackoverflow.com/questions/tagged/c%2b%2b
http://stackoverflow.com/questions/tagged/class
http://stackoverflow.com/questions/tagged/pointers
http://stackoverflow.com/posts/670734/revisions
http://stackoverflow.com/a/982941/211160
http://stackoverflow.com/users/211160/hostilefork
http://stackoverflow.com/questions/670734/c-pointer-to-class-data-member#comment15104045_670734
http://stackoverflow.com/questions/670734/c-pointer-to-class-data-member
http://clk.atdmt.com/go/444861281/direct;wi.728;hi.90;ai.318178307;ct.1/01

5/14/13 C++: Pointer to class data member - Stack Overflow

stackoverflow.com/questions/670734/c-pointer-to-class-data-member 2/7

Krizz

6,304 7 25

anon

Johannes Schaub - litb

202k 27 406 751

Edit: I can't think off-hand of a convincing use for pointers to member data. Pointer to member functions

can be used in pluggable architectures, but once again producing an example in a small space defeats

me. The following is my best (untested) try - an Apply function that would do some pre &post processing

before applying a user-selected member function to an object:

void Apply(SomeClass * c, SomeClass::*func()) {

 // do hefty pre-call processing

 c->*func(); // call user specified function

 // do hefty post-call processing

}

edited Apr 12 at 9:50 answered Mar 22 '09 at 9:13

1 Could you show an example of a tricky situation where this is useful? Thanks. – Ashwin Mar 22 '09 at 9:31

I have an example of using pointer-to-member in a Traits class in another SO answer. – Mike DeSimone Apr

13 '11 at 19:08

An example is writing a "callback"-type class for some event-based system. CEGUI’s UI event subscription

system, for example, takes a templated callback that stores a pointer to a member function of your

choosing, so that you can specify a method to handle the event. – Benji XVI Dec 28 '12 at 21:03

Another application are intrusive lists. The element type can tell the list what its next/prev pointers are.

So the list does not use hard-coded names but can still use existing pointers:

// say this is some existing structure. And we want to use

// a list. We can tell it that the next pointer

// is apple::next.

struct apple {

 int data;

 apple * next;

};

// simple example of a minimal intrusive list. Could specify the

// member pointer as template argument too, if we wanted:

// template<typename E, E *E::*next_ptr>

template<typename E>

struct List {

 List(E *E::*next_ptr):head(0), next_ptr(next_ptr) { }

 void add(E &e) {

 // access its next pointer by the member pointer

 e.*next_ptr = head;

 head = &e;

 }

 E * head;

 E *E::*next_ptr;

};

int main() {

 List<apple> lst(&apple::next);

 apple a;

 lst.add(a);

}

edited Mar 23 '09 at 0:25 answered Mar 23 '09 at 0:19

If this is truly a linked list wouldn't you want something like this: void add(E* e) { e->*next_ptr = head; head = e;

} ?? – eeeeaaii Aug 25 '11 at 16:56

@eee I recommend you to read about reference parameters. What I did is basically equivalent to what you did.

– Johannes Schaub - litb Aug 25 '11 at 18:55

+1 for your code example, but I didn't see any necessity for the use of pointer-to-member, any other example? –

 Alcott Aug 14 '12 at 8:32

http://stackoverflow.com/users/1076305/krizz
http://stackoverflow.com/users/1076305/krizz
http://stackoverflow.com/users/34509/johannes-schaub-litb
http://stackoverflow.com/users/34509/johannes-schaub-litb
http://stackoverflow.com/posts/670744/revisions
http://stackoverflow.com/users/1630/ashwin
http://stackoverflow.com/questions/670734/c-pointer-to-class-data-member#comment484249_670744
http://stackoverflow.com/questions/5650199/using-template-instead-of-switch/5650423#5650423
http://stackoverflow.com/users/207329/mike-desimone
http://stackoverflow.com/questions/670734/c-pointer-to-class-data-member#comment6449229_670744
http://stackoverflow.com/users/196312/benji-xvi
http://stackoverflow.com/questions/670734/c-pointer-to-class-data-member#comment19460471_670744
http://stackoverflow.com/posts/671877/revisions
http://stackoverflow.com/users/128431/eeeeaaii
http://stackoverflow.com/questions/670734/c-pointer-to-class-data-member#comment8640268_671877
http://stackoverflow.com/users/34509/johannes-schaub-litb
http://stackoverflow.com/questions/670734/c-pointer-to-class-data-member#comment8642435_671877
http://stackoverflow.com/users/888051/alcott
http://stackoverflow.com/questions/670734/c-pointer-to-class-data-member#comment15919244_671877
http://engine.adzerk.net/r?e=eyJhdiI6NDE0LCJhdCI6NCwiY20iOjg0NywiY2giOjExNzgsImNyIjo1OTE2LCJkaSI6Ijg5YzNkNmZmNmIxMDRlMTU4ZmEyODcyMjIzYjYyYzA4IiwiZG0iOjEsImZjIjo4ODAyLCJmbCI6MjQ0NCwia3ciOiJjKyssY2xhc3MscG9pbnRlcnMiLCJudyI6MjIsInJ2IjowLCJwciI6MTU2OCwic3QiOjgyNzcsInpuIjo0NCwidXIiOiJodHRwOi8vY2FyZWVycy5zdGFja292ZXJmbG93LmNvbS8ifQ&s=8X330ROg0HDXXxfjPT1KVFAcZlI

5/14/13 C++: Pointer to class data member - Stack Overflow

stackoverflow.com/questions/670734/c-pointer-to-class-data-member 3/7

peterchen

18.6k 6 36 99

AHelps

1,021 5 8

You can later access this member, on any instance:

int main()

{

 int Car::*pSpeed = &Car::speed;

 Car myCar;

 Car yourCar;

 int mySpeed = myCar.*pSpeed;

 int yourSpeed = yourCar.*pSpeed;

 assert(mySpeed > yourSpeed); // ;-)

 return 0;

}

Note that you do need an instance to call it on, so it does not work like a delegate.

It is used rarely, I've needed it maybe once or twice in all my years.

Normally using an interface (i.e. a pure base class in C++) is the better design choice.

answered Mar 22 '09 at 9:10

But surely this is just bad practice? should do something like youcar.setspeed(mycar.getpspeed) –

 thecoshman Oct 6 '10 at 21:08

1 @thecoshman: entirely depends - hiding data members behind set/get methods is not encapsulation and

merely a milkmaids attempt at interface abstraction. In many scenarios, "denormalization" to public

members is a reasonable choice. But that discussion probably exceeds the confines of the comment

functionality. – peterchen Oct 12 '10 at 15:21

IBM has some more documentation on how to use this. Briefly, you're using the pointer as an offset into

the class. You can't use these pointers apart from the class they refer to, so:

 int Car::*pSpeed = &Car::speed;

 Car mycar;

 mycar.*pSpeed = 65;

It seems a little obscure, but one possible application is if you're trying to write code for deserializing

generic data into many different object types, and your code needs to handle object types that it knows

absolutely nothing about (for example, your code is in a library, and the objects into which you

deserialize were created by a user of your library). The member pointers give you a generic, semi-legible

way of referring to the individual data member offsets, without having to resort to typeless void * tricks

the way you might for C structs.

edited Feb 18 at 4:54 answered Mar 22 '09 at 9:13

Could you share a code snippet example where this construct is useful? Thanks. – Ashwin Mar 22 '09 at

9:32

1 +1 for finding a reasonable use case – dmckee Mar 22 '09 at 16:24

I'm currently doing alot of this due to doing some DCOM work and using managed resource classes which

involves doing a bit of work before each call, and using data members for internal representation to send off to

com, plus templating,makes a lot of boiler plate code much smaller – Dan Aug 10 '09 at 21:30

+1 for the key point: "Briefly, you're using the pointer as an offset into the class." – Samaursa Nov 29 '12 at

3:53

It makes it possible to bind member variables and functions in the uniform manner. The following is

example with your Car class. More common usage would be binding std::pair::first and

::second when using in STL algorithms and Boost on a map.

http://stackoverflow.com/users/31317/peterchen
http://stackoverflow.com/users/31317/peterchen
http://stackoverflow.com/users/78006/ahelps
http://stackoverflow.com/users/78006/ahelps
http://stackoverflow.com/users/300797/thecoshman
http://stackoverflow.com/questions/670734/c-pointer-to-class-data-member#comment4125653_670740
http://stackoverflow.com/users/31317/peterchen
http://stackoverflow.com/questions/670734/c-pointer-to-class-data-member#comment4175592_670740
http://publib.boulder.ibm.com/infocenter/lnxpcomp/v8v101/index.jsp?topic=/com.ibm.xlcpp8l.doc/language/ref/cplr034.htm
http://stackoverflow.com/posts/670743/revisions
http://stackoverflow.com/users/1630/ashwin
http://stackoverflow.com/questions/670734/c-pointer-to-class-data-member#comment484251_670743
http://stackoverflow.com/users/2509/dmckee
http://stackoverflow.com/questions/670734/c-pointer-to-class-data-member#comment484737_670743
http://stackoverflow.com/users/27816/dan
http://stackoverflow.com/questions/670734/c-pointer-to-class-data-member#comment1084282_670743
http://stackoverflow.com/users/368599/samaursa
http://stackoverflow.com/questions/670734/c-pointer-to-class-data-member#comment18674935_670743

5/14/13 C++: Pointer to class data member - Stack Overflow

stackoverflow.com/questions/670734/c-pointer-to-class-data-member 4/7

Alex B

26.6k 6 79 157

JMcF

436 6 6

#include <list>

#include <algorithm>

#include <iostream>

#include <iterator>

#include <boost/lambda/lambda.hpp>

#include <boost/lambda/bind.hpp>

class Car {

public:

 Car(int s): speed(s) {}

 void drive() {

 std::cout << "Driving at " << speed << " km/h" << std::endl;

 }

 int speed;

};

int main() {

 using namespace std;

 using namespace boost::lambda;

 list<Car> l;

 l.push_back(Car(10));

 l.push_back(Car(140));

 l.push_back(Car(130));

 l.push_back(Car(60));

 // Speeding cars

 list<Car> s;

 // Binding a value to a member variable.

 // Find all cars with speed over 60 km/h.

 remove_copy_if(l.begin(), l.end(),

 back_inserter(s),

 bind(&Car::speed, _1) <= 60);

 // Binding a value to a member function.

 // Call a function on each car.

 for_each(s.begin(), s.end(), bind(&Car::drive, _1));

 return 0;

}

edited Mar 22 '09 at 13:08 answered Mar 22 '09 at 13:02

This is the simplest example I can think of that conveys the rare cases where this feature is pertinent:

#include <iostream>

class bowl {

public:

 int apples;

 int oranges;

};

int count_fruit(bowl * begin, bowl * end, int bowl::*fruit)

{

 int count = 0;

 for (bowl * iterator = begin; iterator != end; ++ iterator)

 count += iterator->*fruit;

 return count;

}

int main()

{

 bowl bowls[2] = {

 { 1, 2 },

 { 3, 5 }

 };

 std::cout << "I have " << count_fruit(bowls, bowls + 2, & bowl::apples) << " apples\n";

 std::cout << "I have " << count_fruit(bowls, bowls + 2, & bowl::oranges) << " oranges\n";

 return 0;

}

The thing to note here is the pointer passed in to count_fruit. This saves you having to write separate

count_apples and count_oranges functions.

answered Apr 29 '11 at 16:05

http://stackoverflow.com/users/23643/alex-b
http://stackoverflow.com/users/23643/alex-b
http://stackoverflow.com/users/671509/jmcf
http://stackoverflow.com/users/671509/jmcf
http://stackoverflow.com/posts/670975/revisions

5/14/13 C++: Pointer to class data member - Stack Overflow

stackoverflow.com/questions/670734/c-pointer-to-class-data-member 5/7

Tom

453 4 11

Here's a real-world example I am working on right now, from signal processing / control systems:

Suppose you have some structure that represents the data you are collecting:

struct Sample {

 time_t time;

 double value1;

 double value2;

 double value3;

};

Now suppose that you stuff them into a vector:

std::vector<Sample> samples;

... fill the vector ...

Now suppose that you want to calculate some function (say the mean) of one of the variables over a

range of samples, and you want to factor this mean calculation into a function. The pointer-to-member

makes it easy:

double Mean(std::vector<Sample>::const_iterator begin,

 std::vector<Sample>::const_iterator end,

 double Sample::* var)

{

 float mean = 0;

 int samples = 0;

 for(; begin != end; begin++) {

 const Sample& s = *begin;

 mean += s.*var;

 samples++;

 }

 mean /= samples;

 return mean;

}

...

double mean = Mean(samples.begin(), samples.end(), &Sample::value2);

And, of course, you can template it, though it gets a bit messy (I've recast it as a struct to get the

typedefs in; I guess there'd be a way with a template function, but its a bit more readable this way):

template<typename T>

struct Mean {

 typedef std::vector<T> Tvector;

 typedef typename std::vector<T>::const_iterator Titer;

 double operator()(Titer begin, Titer end, double T::* var) {

 float sum = 0;

 int samples = 0;

 for(; begin != end; begin++) {

 const T& s = *begin;

 sum += s.*var;

 samples++;

 }

 return sum / samples;

 }

};

...

Mean<Sample> m;

double mean = m(samples.begin(), samples.end(), &Sample::value2);

answered Nov 2 '10 at 13:17

This is excellent. I'm about to implement something very similar, and now I don't have to figure out the strange

syntax! Thanks! – SchighSchagh Mar 26 at 2:47

You can use an array of pointer to (homogeneous) member data to enable a dual, named-member (i.e.

x.data) and array-subscript (i.e. x[idx]) interface.

http://stackoverflow.com/users/274460/tom
http://stackoverflow.com/users/274460/tom
http://stackoverflow.com/users/1072468/schighschagh
http://stackoverflow.com/questions/670734/c-pointer-to-class-data-member#comment22171313_4078006

5/14/13 C++: Pointer to class data member - Stack Overflow

stackoverflow.com/questions/670734/c-pointer-to-class-data-member 6/7

Functastic

396 1 10

Troubadour

8,467 1 10 21

#include <cassert>

#include <cstddef>

struct vector3 {

 float x;

 float y;

 float z;

 float& operator[](std::size_t idx) {

 static float vector3::*component[3] = {

 &vector3::x, &vector3::y, &vector3::z

 };

 return this->*component[idx];

 }

};

int main()

{

 vector3 v = { 0.0f, 1.0f, 2.0f };

 assert(&v[0] == &v.x);

 assert(&v[1] == &v.y);

 assert(&v[2] == &v.z);

 for (std::size_t i = 0; i < 3; ++i) {

 v[i] += 1.0f;

 }

 assert(v.x == 1.0f);

 assert(v.y == 2.0f);

 assert(v.z == 3.0f);

 return 0;

}

edited Mar 23 '09 at 17:33 answered Mar 23 '09 at 4:24

One way I've used it is if I have two implementations of how to do something in a class and I want to

choose one at run-time without having to continually go through an if statement i.e.

class Algorithm

{

public:

 Algorithm() : m_impFn(&Algorithm::implementationA) {}

 void frequentlyCalled()

 {

 // Avoid if (using A) else if (using B) type of thing

 (this->*m_impFn)();

 }

private:

 void implementationA() { /*...*/ }

 void implementationB() { /*...*/ }

 typedef void (Algorithm::*IMP_FN) ();

 IMP_FN m_impFn;

};

Obviously this is only practically useful if you feel the code is being hammered enough that the if

statement is slowing things done eg. deep in the guts of some intensive algorithm somewhere. I still think

it's more elegant than the if statement even in situations where it has no practical use but that's just my

opnion.

edited Mar 23 '09 at 18:40 answered Mar 22 '09 at 11:57

http://stackoverflow.com/users/48141/functastic
http://stackoverflow.com/users/48141/functastic
http://stackoverflow.com/users/74465/troubadour
http://stackoverflow.com/users/74465/troubadour
http://stackoverflow.com/posts/672231/revisions
http://stackoverflow.com/posts/670893/revisions

5/14/13 C++: Pointer to class data member - Stack Overflow

stackoverflow.com/questions/670734/c-pointer-to-class-data-member 7/7

Andrew Jaffe

6,758 12 22

I think you'd only want to do this if the member data was pretty large (e.g., an object of another pretty

hefty class), and you have some external routine which only works on references to objects of that class.

You don't want to copy the member object, so this lets you pass it around.

answered Mar 22 '09 at 10:47

Not the answer you're looking for? Browse other questions tagged c++ class pointers

or ask your own question.

http://stackoverflow.com/users/12266/andrew-jaffe
http://stackoverflow.com/users/12266/andrew-jaffe
http://stackoverflow.com/questions/tagged/c%2b%2b
http://stackoverflow.com/questions/tagged/class
http://stackoverflow.com/questions/tagged/pointers
http://stackoverflow.com/questions/ask

