
1

A Review of C Language

C++ Object Oriented Programming
Pei-yih Ting
NTOU CS

Modified from www.cse.cuhk.edu.hk/~csc2520/tuto/csc2520_tuto01.ppt

2

Contents
 C Development Environment
 Basic Procedural Programming Concepts
 Functions
 Pointers and Arrays
 Strings
 Basic I/O
 Memory Allocation
 File Operation
 Reading the Command Line

3

Visual C++ 6.0

4

Visual C++ 6.0

5

Visual C++ 6.0

6

Visual C++ 6.0

7

Visual C++ 6.0

8

Visual C++ 6.0

9

Visual C++ 6.0

10

Visual C++ 6.0

11

Visual C++ 6.0

12

Visual C++ 6.0

Double click

13

Visual C++ 6.0

14

Visual C++ 6.0
 Compile a single source file

Warning and error
messages if any

15

Visual C++ 6.0
 Build the whole project

First compile then
link

16

Visual C++ 6.0
 Execute

 .exe file is located in the “Debug” directory in debug configuration
 .exe file is located in the “Release” directory in release configuration

17

Visual C++ Command-Line Compiler
 Download at:

 http://msdn.microsoft.com/visualc/vctoolkit2003/

 Install the toolkit

 Configure environment:
 Set PATH=<the toolkit directory>\bin;%PATH%
 Set INCLUDE=<the toolkit directory>\include;%INCLUDE%
 Set LIB=<the toolkit directory>\lib;%LIB%

18

Visual C++ Command-Line Compiler
 Compile and Build

> cl foo.c
or
> cl foo1.c foo2.c –OUT:foo.exe

 Compile
> cl –c foo.c

 Link
> link foo1.obj foo2.obj –OUT:foo.exe

19

Contents
 C Development Environment
 Basic Procedural Programming Concepts
 Functions
 Pointers and Arrays
 Strings
 Basic I/O
 Memory Allocation
 File Operation
 Reading the Command Line

20

Basic Programming Concepts
 Controlling the CPU+Memory+I/O to obtain your

computational goals
 Memory: provides storages for your data

Constants: 1, 2, 'A', "a string"
Variables: int count;

 CPU: provides operations to data
Data movement: count = 1;
Arithmetic or Boolean expressions: 2 * 4
Testing and control flow: if statement, for loop, while

loop, function
 I/O: FILE, stdin, stdout, printf(), scanf(), getc(), …

21

Programming Concepts (cont’d)
Procedural programming basics
 Step 1: represent your data in terms of variables

basic types: char, int, float, double
user defined types: struct…link lists, trees,…

(Here are what you learned in Data Structure)
 Step 2: figure out how to transform the original

data to the desired result that you want to see
with the primitive operations a computer
provides: ex. search, sort, arithmetic or
logic computations,…

(Here is what you learned in Algorithm) 22

Programming Concepts (cont’d)
 Additional Requirements

 Structural Programming: if statement, switch-case
statement, iteration structure, function, block …
(forbidden commands: goto, break…)

Modularization: function and file
Functional testing / Unit testing: assertion, unit

testing routines, functional testing routines

23

Contents
 C Development Environment
 Basic Procedural Programming Concepts
 Functions
 Pointers and Arrays
 Strings
 Basic I/O
 Memory Allocation
 File Operation
 Reading the Command Line

24

Function Basic
 A simple function compute the value of valpow

25

Function Definition
 The first line of the

function, contains:
 Return data type
 Function name
 Parameter list, for each

Parameter, contains:
 Parameter data type
 Parameter name

26

Function Body
 Function Body is bounded by a set of curly brackets
 Function terminates when:

 “return” statement is reached or
 the final closing curly bracket is reached.

 Function returns value by:
 “return(ret_val);” statement, the ret_val must be of the same type

in function definition;
 Return automatically when reaching the final closing curly

bracket , the return value is meaningless.

27

Function Declaration & Function Call
 Function can be called only after it is declared, a

simple skeletal program:

Semicolon

28

Function Call
 Function can be called at any part of the program

after the declaration:
The return value of a function can be assigned to a

variable of the same type.
Example: result = power(2, 5);

Compute the value of 25 =32 and assign the value to the
variable “result”, equals to “result=32”.

29

Function Parameter
 C is “called by value”

The function receives
copies of values of the
parameters

Example:
 Print “a=10” and

“x=314.159” x is changed

a will not
change

30

Function Variable Scope

 Limited in the
function

 Created each time
when called

 Example,
 pi: whole program
 result, a: main
 x,y: circlearea

Global
variable

Local
variable

Local
variable

31

Contents
 C Development Environment
 Basic Procedural Programming Concepts
 Functions
 Pointers and Arrays
 Strings
 Basic I/O
 Memory Allocation
 File Operation
 Reading the Command Line

32

Basic Pointer Operations
 Declaration: with asterisk *.

 int *ip; (declare a variable of integer address type)

 Generation: with “address-of” operator &.
 int i = 5; ip = &i; (ip points to the address of i)

 Retrieve the value pointed to by a pointer using the
“contents-of” (or “dereference”) operator, *.
 printf("%d\n", *ip); (equals to “printf("%d\n", i); ”)
 *ip=10; (equals to “i=10”)

33

Pointers and Arrays
 Pointers do not have to point to single variables.

They can also point at the cells of an array.
 int *ip; int a[10]; ip = &a[3];

 An array is actually a pointer to the 0-th element of
the array
 int *ip; int a[10]; ip = a; (equals to “ip = &a[0]”)
 a[5]=10; is equivalent to *(a+5)=10;

 Pointers can be manipulated by “+” and “-”.
 int *ip; int a[10]; ip = &a[3];
The pointer “ip-1” points to a[2] and “ip+3” points to

a[6];
34

Pointers and Arrays: Example

35

Additional Information
 Pointer is a variable too, the content of a pointer is

the address of the memory.
 Pointers can also form arrays, and there can be a

pointer of pointer.
int * pt[10];
int ** ppt; (viewed as int * * ppt;)
ppt = &pt[0] (or ppt = pt);

36

Contents
 C Development Environment
 Basic Procedural Programming Concepts
 Functions
 Pointers and Arrays
 Strings
 Basic I/O
 Memory Allocation
 File Operation
 Reading the Command Line

37

String basic
 Strings in C are represented by arrays of characters.
 The end of the string is marked with the null

character, which is simply the character with the
value 0. (Also denoted as '\0');

 The string literals:
 char string[] = "Hello, world!";
we can leave out the dimension of the array, the

compiler can compute it for us based on the size of the
initializer (including the terminating \0).

Note:
char string[]; is illegal
string = "Hello, world!"; is illegal

38

String handling
 Standard library <string.h>
 For details, please refer to manual: such as MSDN

Find character in string strchr,strrchr
Append string strcat,strncat

Find substring strstr
Return string length strlen
Compare stringstrcmp, strncmp
Copy string strcpy,strncpy

39

A Review of C Language
 C Development Environment
 Functions
 Pointers and Arrays
 Strings
 Basic I/O
 Memory Allocation
 File Operation
 Reading the Command Line

40

Contents
 C Development Environment
 Basic Procedural Programming Concepts
 Functions
 Pointers and Arrays
 Strings
 Basic I/O
 Memory Allocation
 File Operation
 Reading the Command Line

41

Char I/O
 “getchar”: getchar

returns the next
character of keyboard
input as an int.

 “putchar”: putchar puts
its character argument
on the standard output
(usually the screen).

42

String I/O
 “printf”: Generates output under the control of a

format string
 “scanf”: Allows formatted reading of data from the

keyboard.

43

Format Specification
 Basic format specifiers for printf and scanf:

%d print an int argument in decimal
%ld print a long int argument in decimal
%c print a character
%s print a string
%f print a float or double argument
%o print an int argument in octal (base 8)
%x print an int argument in hexadecimal (base 16)

44

Contents
 C Development Environment
 Basic Procedural Programming Concepts
 Functions
 Pointers and Arrays
 Strings
 Basic I/O
 Memory Allocation
 File Operation
 Reading the Command Line

45

Allocating Memory with “malloc”
 Is declared in <stdlib.h>

 void *malloc(size_t size);
 Returns a pointer to n bytes of memory

 char *line = (char *)malloc(100);
 Can be of any type;

Assume “date” is a complex structure;
 struct date *today =

(struct date *)malloc(sizeof(struct date));
 Return null if failed

46

Freeing Memory
 Memory allocated with malloc lasts as long as you

want it to.
 It does not automatically disappear when a

function returns, but remain for the entire duration
of your program.

 Dynamically allocated memory is deallocated with
the free function.
 free(line); free(today);
 fail if the pointer is null or invalid value

47

Reallocating Memory Blocks
 Reallocate memory to a pointer which has been

allocated memory before (maybe by malloc)
 void *realloc(void *memblock, size_t size);
 today_and_tomorrow = realloc(today, 2*sizeof(date));

48

Contents
 C Development Environment
 Basic Procedural Programming Concepts
 Functions
 Pointers and Arrays
 Strings
 Basic I/O
 Memory Allocation
 File Operation
 Reading the Command Line

49

File Pointers
 C communicates with files using a extended data

type called a file pointer.
 FILE *output_file;

 Common file descriptors:
 “stdin”: The standard input. The keyboard or a

redirected input file.
 “stdout”: The standard output. The screen or a

redirected output file.
 “stderr”: The standard error. The screen or a redirected

output file.

50

Open and Close
 Using fopen function, which opens a file (if exist)

and returned a file pointer
 fopen("output_file", "w");

 Using fclose function, which disconnect a file
pointer from a file

 Access character:
 “r”: open for reading;
 “w”: open for writing;
 “a”: open for appending.

51

File I/O

Put a string into a filefputs
Get a string from a filefgets

Take data from a string of a file.fscanf
Put formatted string into a file.fprintf
Get a character from a filegetchar, getc
Put a character to a fileputchar, putc

 Standard library <stdio.h>
 For details, please refer to manual: such as

MSDN

52

Contents
 C Development Environment
 Basic Procedural Programming Concepts
 Functions
 Pointers and Arrays
 Strings
 Basic I/O
 Memory Allocation
 File Operation
 Reading the Command Line

53

Input From the Command Line
 C's model of the command line of a sequence of

words, typically separated by whitespace.
 A program with command arguments:

 int main(int argc, char *argv[]) { ... }
 “argc” is a count of the number of command-line

arguments.
 “argv” is an array (“vector”) of the arguments

themselves.

Ex.
sort file1 file2 file3

54

Example

argc = 3

argv[0] = “add”

argv[1] = “4”

argv[2] = “5”

