A Familiar yet Vague Term:
“Abstract Data Type”

ADT & data + operation

C++ Object Oriented Programming
Pei-yih Ting
NTOU CS

Abstract Data Type grRIEIE

< Abstract?! *['E'ﬁ’ﬁi—f‘ﬁ@ﬁdp“l"ﬁji%g%l@
* Disassociated from any specific instance 1541V, 7> 5 Y
* Expressing a quality apart from an object 154 {™~ (PE?’%]’“‘)
* Having only intrinsic form with little attempt at pictorial
representation or narrative content fffel ~ ;’[&ﬁ

< Data type?
characteristics of a set of data,
template for instances of data storage
specifies: { format

ranges
Mmemory resources

Abstract Data Type (cont’d)

< See what people on Internet said
[F?F J'ADT(Abstract data type)
= [l T HADTRE?
g R EIRE(ADT)
25 AERL W {%TEU TR HRE,
(RLANIHE=FIE,
Frl IR - 57
T

T PR (arra LT
(ERLfcfietl " int arra

Any better?!

LR, SRS 2 W .

Abstract Data Type (cont’d)

< http://en.wikipedia.org/wiki/Abstract_data_type

< In computing, an abstract data type (ADT) is a
specification of a set of data and the set of
operations that can be performed on the data.

<+ €.g. container, deque, list, map, multimap, multiset,
priority queue, queue, set, stack, string, tree, heap

+ Such a data type is abstract in the sense that it is
independent of various concrete implementations.

* Question: Are they still abstract without specifying the
set of operations (only the set of data)?? .

Abstract Data Type (cont’d)

< Are you really satisfying with this definition???
x “Data type” is an easy idea: the attributes

* It looks like that “data type” itself could also be
independent of various implementations.

*Why are the additional “operations” related
to the keyword “abstract”???

Minimal Spanning Tree (1/4)

< JohnsonBaugh’s Algorithms, Section 7.3 (page 284) find
Minimal Spanning Tree (MST) with Prim’s algorithm:

Six cities We want to construct a set of
interconnecting roads such
that one can reach any city
from any starting city and
the total construction costs
4 Springfield are minimized.

The estimated costs for some
pairs of cities are as labeled. 5

A tree

1 Foxville 2 Steger

Result:
3

Best

Prim’s MST (2/4)

<+ Prim’s algorithm: starting with vertex 5 (Mystic)

1Foxville 4 2 Steger
O

1 2
2
4 3 4 3 3Ll _o4
5 5/ 2
6

2+3+2+1=8 2+3+4+2+41=12 °

Prim’s MST (3/4)

h: a list of vertices v not in the MST and its minimum weight to MST
(weight of the edge from v to the vertex parent[v])

parent[v]: (v, parent[v]) is the edge with minimum weight

_h _ 1 2
minimum weight

V| from v to MST || Parent[v]

2 4 1 3 4

3 2 1 5

4 6 6 6
MST={1,5,6}

Prim’s MST (4/4)

prim(adj, start, parent) { while (ref 1=nully { ~ W=3 We MST

n = adj.last W = ref ver ref.weight=2
fori=1ton if (h.isin(w) && h.keyval(w)=3

key[i] = o ref.weight < h.keyval(w)) {
key[start] =0 parent[w] =
parent[start] = 0 h. decrease(w ref. Welght)
h.init(key, n) } v1g-togy
fori=1ton{ ref = ref.next

v=hdel) V=1 }

ref=adjlv] ref={532} 4

wt |y

his an abstract data type that supports the following operations
h.init(key, n): initializes h to the values in key
h.del(): deletes the item in h with the smallest weight and returns the vertex
h.isin(w): returns true if vertex wis in h

Abstract Painting

<+ Picasso

Miro - Angel

h.keyval(w): returns the weight corresponding to vertex w LT => FFPY 1—5! fol Elfjﬁ*[iﬁ
h.decrease(w, new_weight): changes the weight of w to new_weight (smaller) 0 1
Abstract Abstraction

< Mathematic formula: Central Limit Theorem,
Stirling formula, Fourier Transform, ...

< Physic formula: Newton’s law, wave equation, ...

It is quite likely that you cannot understand the |
meaning of these formula because they are i
abstracted out from their original application :
environments. |

Thus, you say that these formula are quite abstract.

< Abstraction: the process or result of generalization
by reducing the information content of a concept or
an observable phenomenon
* A method to find general form of an idea
*= A method to find a unified explanation
* A method to simplify the complex exteriors.
A~ R
* ex. LTI, TS | TR, =T I = E By
but E—f[‘ FJJ, P\ g‘ﬁ
S e T -
= fl# ﬁ*lmﬁﬁ‘f'rﬁiﬂ TH — S g R
UERERE RIS S b

12

Data vs. Operation

< Fr= pure data

o] (o] Lo Le]

<+ Data storage can be used
for any imaginable
purpose.

< You want your data
storage to be specific.
You specify its
“operations”
* How do you use this data?

* For what do you use it?
13

Back to ADT

<+ abstract data type (ADT): ?E“%'Jﬁgi%f[ﬁﬁi?
is a specification of A [T
{ a set of data and HG R PSR T

TR BIfE?
the set of operations performed on the data.

<+ It is independent of various implementations

<+ It provides specific descriptions of the
functionalities of a piece of data in terms of
operations abstracted from many similar objects.

14

The C syntax: X.y vs. x.z()

< In C, how do you capture the idea of
h.key and h.decrease(w, weight)
<+ Are these two syntactically correct in C?
<+ Yes.
<+ decrease is called a “function pointer”

< It is a piece of data (attribute), and at the same time,
you can invoke a function via this data.

x e.g. void fun(int x) void (*fp)(int);
{
fp = fun;
} (*fp)(5); /* calling fun(5) */

15

01 // cl testfp.c
02 #include <stdio.h>

03 27 int isEqual(int data,

04 struct MyStruct struct MyStruct *self)
05 { 28{

06 intdata; 29 printf(" calling isEqual() ');
07 int (*fp)(int, struct MyStruct *); 30 if (data == self->data)

08}; 31 return 1;

09 32 else

10 int isEqual(int, struct MyStruct *); 33 return 0;

11 34}

12 void main()

13 {

14 struct MyStruct obj = {123, isEqual};

15 int data;

16 int (*myfp)(int, struct MyStruct *) = isEqual,

17

18 printf("'Please input an integer: ");

19 scanf(""%d", &data);

20 printf("%d\n", obj.fp(data, &obj));
21 printf("%d\n", (*obj.fp)(data, &obj));
22 printf("%d\n"", myfp(data, &obj));

23 printf("%d\n", (*myfp)(data, &obj));
24 printf("%d\n", isEqual(data, &obj));

