Minimal Spanning Tree (1/11)

< JohnsonBaugh’s Algorithms, Section 7.2 (page 275) find
Minimal Spanning Tree (MST) with Kruskal’s algorithm:

Minimal Spanning Tree (1/11)

< JohnsonBaugh’s Algorithms, Section 7.2 (page 275) find
Minimal Spanning Tree (MST) with Kruskal’s algorithm:

Six cities
1 Foxuville 2 Steger
O O

3 Lusk o o 4 Springfield

O O
5 Mystic 6 Del Rio

Minimal Spanning Tree (1/11)

< JohnsonBaugh’s Algorithms, Section 7.2 (page 275) find
Minimal Spanning Tree (MST) with Kruskal’s algorithm:

Six cities We want to construct a set of
: Interconnecting roads such
+ FOXVIe 2 Steger that one can reach any city
from any starting city and
the total construction costs

3 Lusk o o 4 Springfield are minimized.

O O
5 Mystic 6 Del Rio

Minimal Spanning Tree (1/11)

< JohnsonBaugh’s Algorithms, Section 7.2 (page 275) find
Minimal Spanning Tree (MST) with Kruskal’s algorithm:

Six cities We want to construct a set of
Interconnecting roads such
that one can reach any city
from any starting city and
the total construction costs

1 Foxuville 4 2 Steger

4 Springfield are minimized.

The estimated costs for some
pairs of cities are as labeled.

5 Mystic 6 Del Rio

Minimal Spanning Tree (1/11)

< JohnsonBaugh’s Algorithms, Section 7.2 (page 275) find
Minimal Spanning Tree (MST) with Kruskal’s algorithm:

Six cities We want to construct a set of
Interconnecting roads such
that one can reach any city
from any starting city and
the total construction costs

1 Foxuville 4 2 Steger

4 Springfield are minimized.

The estimated costs for some
pairs of cities are as labeled.

5 Mystic

Result:

Minimal Spanning Tree (1/11)

< JohnsonBaugh’s Algorithms, Section 7.2 (page 275) find
Minimal Spanning Tree (MST) with Kruskal’s algorithm:

Six cities We want to construct a set of
Interconnecting roads such
that one can reach any city
from any starting city and
the total construction costs

1 Foxuville 4 2 Steger

4 Springfield are minimized.

The estimated costs for some
pairs of cities are as labeled.

5 Mystic A tree

Result:

Minimal Spanning Tree (1/11)

< JohnsonBaugh’s Algorithms, Section 7.2 (page 275) find
Minimal Spanning Tree (MST) with Kruskal’s algorithm:

Six cities We want to construct a set of
o Interconnecting roads such

4 cger that one can reach any city

from any starting city and

the total construction costs

1 Foxville

4 Springfield are minimized.

The estimated costs for some
pairs of cities are as labeled.

5 Mystic A tree

Result:

Minimal Spanning Tree (1/11)

< JohnsonBaugh’s Algorithms, Section 7.2 (page 275) find
Minimal Spanning Tree (MST) with Kruskal’s algorithm:

Six cities We want to construct a set of
o Interconnecting roads such

4 cger that one can reach any city

from any starting city and

the total construction costs

1 Foxville

4 Springfield are minimized.

The estimated costs for some
pairs of cities are as labeled.

5 Mystic 6 Del Rio A tree
1

Result:

Minimal Spanning Tree (1/11)

< JohnsonBaugh’s Algorithms, Section 7.2 (page 275) find
Minimal Spanning Tree (MST) with Kruskal’s algorithm:

Six cities We want to construct a set of
o Interconnecting roads such

4 cger that one can reach any city

from any starting city and

the total construction costs

1 Foxville

4 Springfield are minimized.

The estimated costs for some
pairs of cities are as labeled.

5 Mystic A tree

Result:

Minimal Spanning Tree (1/11)

< JohnsonBaugh’s Algorithms, Section 7.2 (page 275) find
Minimal Spanning Tree (MST) with Kruskal’s algorithm:

Six cities We want to construct a set of
o Interconnecting roads such

4 cger that one can reach any city

from any starting city and

the total construction costs

1 Foxville

4 Springfield are minimized.

The estimated costs for some
pairs of cities are as labeled.

5 Mystic A tree

Result:

Minimal Spanning Tree (1/11)

< JohnsonBaugh’s Algorithms, Section 7.2 (page 275) find
Minimal Spanning Tree (MST) with Kruskal’s algorithm:

Six cities We want to construct a set of
o Interconnecting roads such

4 cger that one can reach any city

from any starting city and

the total construction costs

1 Foxville

4 Springfield are minimized.

The estimated costs for some
pairs of cities are as labeled.

5 Mystic 6 Del Rio A tree
1

Result:

Minimal Spanning Tree (1/11)

< JohnsonBaugh’s Algorithms, Section 7.2 (page 275) find
Minimal Spanning Tree (MST) with Kruskal’s algorithm:

Six cities We want to construct a set of
o Interconnecting roads such

4 cger that one can reach any city

from any starting city and

the total construction costs

1 Foxville

4 Springfield are minimized.

The estimated costs for some
pairs of cities are as labeled.

5 Mystic A tree

Result:

Minimal Spanning Tree (1/11)

< JohnsonBaugh’s Algorithms, Section 7.2 (page 275) find
Minimal Spanning Tree (MST) with Kruskal’s algorithm:

Six cities We want to construct a set of
o Interconnecting roads such

4 cger that one can reach any city

from any starting city and

the total construction costs

1 Foxville

4 Springfield are minimized.

The estimated costs for some
pairs of cities are as labeled.

5 Mystic A tree

Result:

Minimal Spanning Tree (1/11)

< JohnsonBaugh’s Algorithms, Section 7.2 (page 275) find
Minimal Spanning Tree (MST) with Kruskal’s algorithm:

Six cities We want to construct a set of
Interconnecting roads such

LFoxville £ Sieel that one can reach any city

5 from any starting city and
S the total construction costs
. oL & aspringfield are minimized.
The estimated costs for some
- pairs of cities are as labeled.

5 Mystic 6 Del Rio A tree

Result:

Minimal Spanning Tree (1/11)

< JohnsonBaugh’s Algorithms, Section 7.2 (page 275) find
Minimal Spanning Tree (MST) with Kruskal’s algorithm:

Six cities We want to construct a set of
Interconnecting roads such
that one can reach any city
from any starting city and
the total construction costs

1 Foxuville 2 Steger

& 4 Springfield are minimized.
v The estimated costs for some
pairs of cities are as labeled.

5 Mystic 6 Del Rio A tree

Minimal Spanning Tree (1/11)

< JohnsonBaugh’s Algorithms, Section 7.2 (page 275) find
Minimal Spanning Tree (MST) with Kruskal’s algorithm:

Six cities We want to construct a set of
o Interconnecting roads such

4 cger that one can reach any city

from any starting city and

the total construction costs

1 Foxville

4 Springfield are minimized.

The estimated costs for some
pairs of cities are as labeled.

5 Mystic A tree

Result:

Minimal Spanning Tree (1/11)

< JohnsonBaugh’s Algorithms, Section 7.2 (page 275) find
Minimal Spanning Tree (MST) with Kruskal’s algorithm:

Six cities We want to construct a set of
o Interconnecting roads such

4 cger that one can reach any city

from any starting city and

the total construction costs

1 Foxville

4 Springfield are minimized.

The estimated costs for some
pairs of cities are as labeled.

5 Mystic A tree

Result:

Best

Kruskal’s MST (2/11)

< Kruskal’s algorithm

1 Foxville 2 Steger

Kruskal’s MST (2/11)

< Kruskal’s algorithm

1 Foxville 4 2 Steger

Kruskal’s MST (2/11)

< Kruskal’s algorithm

1 Foxville 4 2 Steger 1

Kruskal’s MST (2/11)

< Kruskal’s algorithm

1 Foxville 4 2 Steger 1

Kruskal’s MST (2/11)

< Kruskal’s algorithm

1 Foxville 4 2 Steger 1

Kruskal’s MST (2/11)

< Kruskal’s algorithm

1 Foxville 4 2 Steger 1

Kruskal’s MST (2/11)

< Kruskal’s algorithm

1 Foxville 4 2 Steger 1

1+2+2+3+4=12

Kruskal’s MST (3/11)

© find the edge with minimal weight
® add to MST if the edge does not
form a cycle

Kruskal’s MST (3/11)

Array of edges:
(1,2,4),(1,3,2),(1,5,3),(2,4,5),(3,4,1),(3,5,6),
(3,6,3),(4,6,6),(5,6,2)

© find the edge with minimal weight
® add to MST if the edge does not
form a cycle

Kruskal’s MST (3/11)

Array of edges:
(1,2,4),(1,3,2),(1,5,3),(2,4,5),(3,4,1),(3,5,6),

(3,6,3),(4,6,6),(5,6,2)

Sorted array of edges:
(3,4,1),(1,3,2),(5,6,2),(1,5,3),(3,6,3),(1,2,4),
(2,4,5),(3,5,6),(4,6,6)

© find the edge with minimal weight
® add to MST if the edge does not
form a cycle

Kruskal’s MST (3/11)

Array of edges:
(1,2,4),(1,3,2),(1,5,3),(2,4,5),(3,4,1),(3,5,6),

(3,6,3),(4,6,6),(5,6,2)

Sorted array of edges:
(3,4,1),(1,3,2),(5,6,2),(1,5,3),(3,6,3),(1,2,4),
(2,4,5),(3,5,6),(4,6,6)

MST:{} O find the edge with minimal weight
® add to MST if the edge does not
form a cycle

Kruskal’s MST (3/11)

Array of edges:
(1,2,4),(1,3,2),(1,5,3),(2,4,5),(3,4,1),(3,5,6),

(3,6,3),(4,6,6),(5,6,2)

Sorted array of edges:
(3,4,1),(1,3,2),(5,6,2),(1,5,3),(3,6,3),(1,2,4),
(2,4,5),(3,5,6),(4,6,6)

MST:{} O find the edge with minimal weight
® add to MST if the edge does not
form a cycle

Kruskal’s MST (3/11)

Array of edges:
(1,2,4),(1,3,2),(1,5,3),(2,4,5),(3,4,1),(3,5,6),

(3,6,3),(4,6,6),(5,6,2)

Sorted array of edges:
(3,4,1),(1,3,2),(5,6,2),(1,5,3),(3,6,3),(1,2,4),
(2,4,5),(3,5,6),(4,6,6)

MST:{} O find the edge with minimal weight
® add to MST if the edge does not
form a cycle

MST:{3,4}

Kruskal’s MST (3/11)

Array of edges:
(1,2,4),(1,3,2),(1,5,3),(2,4,5),(3,4,1),(3,5,6),
(3,6,3),(4,6,6),(5,6,2)

Sorted array of edges:
(3,4,1),(1,3,2),(5,6,2),(1,5,3),(3,6,3),(1,2,4),
(2,4,5),(3,5,6),(4,6,6)

MST:{} O find the edge with minimal weight
® add to MST if the edge does not
form a cycle

MST:{3,4}

Remaining edges:
(3,4,1),(1,3,2),(5,6,2),(1,5,3),(3,6,3),(1,2,4),
(2,4,5),(3,5,6),(4,6,6)

Kruskal’s MST (4/11)

MST:{1,3,4}

Kruskal’s MST (4/11)

MST:{1,3,4}

Remaining edges:
(3,4,1),(1,3,2),(5,6,2),(1,5,3),(3,6,3),(1,2,4),
(2,4,5),(3,5,6),(4,6,6)

Kruskal’s MST (4/11)

MST:{1,3,4}

Remaining edges:
(3,4,1),(1,3,2),(5,6,2),(1,5,3),(3,6,3),(1,2,4),
(2,4,5),(3,5,6),(4,6,6)

MST:{1,3,4},{5,6}

Kruskal’s MST (4/11)

MST:{1,3,4}

Remaining edges:
(3,4,1),(1,3,2),(5,6,2),(1,5,3),(3,6,3),(1,2,4),
(2,4,5),(3,5,6),(4,6,6)

MST:{1,3,4},{5,6}

Remaining edges:
(3,4,1),(1,3,2),(5,6,2),(1,5,3),(3,6,3),(1,2,4),
(2,4,5),(3,5,6),(4,6,6)

Kruskal’s MST (5/11)

MST:{1,3,4,5,6}

Kruskal’s MST (5/11)

MST:{1,3,4,5,6}

Remaining edges:
(3,4,1),(1,3,2),(5,6,2),(1,5,3),(3,6,3),(1,2,4),
(2,4,5),(3,5,6),(4,6,6)

Kruskal’s MST (5/11)

MST:{1,3,4,5,6}

Remaining edges:
(3,4,1),(1,3,2),(5,6,2),(1,5,3),(3,6,3),(1,2,4),
(2,4,5),(3,5,6),(4,6,6)

MST:{1,3,4,5,6}

Kruskal’s MST (5/11)

MST:{1,3,4,5,6}

Remaining edges:
(3,4,1),(1,3,2),(5,6,2),(1,5,3),(3,6,3),(1,2,4),
(2,4,5),(3,5,6),(4,6,6)

MST:{1,3,4,5,6}

Remaining edges:
(3,4,1),(1,3,2),(5,6,2),(1,5,3),(3,6,3),(1,2,4),
(2,4,5),(3,5,6),(4,6,6)

Kruskal’s MST (6/11)

MST:{1,2,3,4,5,6}

Kruskal’s MST (6/11)

MST:{1,2,3,4,5,6}

Remaining edges:
(3,4,1),(1,3,2),(5,6,2),(1,5,3),(3,6,3),(1,2,4),
(2,4,5),(3,5,6),(4,6,6)

Kruskal’s MST (7/11)

Array of edges: (vertex1, vertex2, weight)
(1,2,4),(1,3,2),(1,5,3),(2,4,5),(3,4,1),(3,5,6),(3,6,3),(4,6,6),(5,6,2)

<+ Implementation @: 2-dimensional arrays (or parallel arrays)

Int edges[][3] = {{1,2,4}{1,3,2},{1,5,3}{2,4,5},{3,4,1},

{3,5,6},{3,6,3},{4,6,6},{5,6,2}};
Int nEdges = sizeof(edges) / sizeof(int[3]);

<~ Implementation @: array of struct

struct Edge {
Int vertexl1, vertex2, weight;
¢
struct Edge edges[] = {{1,2,4},{1,3,2},{1,5,3}{2,4,5},{3,4,1},
{31516}1{31613}’{41616}1{51612}};
Int nEdges = sizeof(edges) / sizeof(struct Edge);

Kruskal’s MST (8/11)

Sorted array of edges:
(3,4,1),(5,6,2),(1,3,2),(1,5,3),(3,6,3),(1,2,4),(2,4,5),(3,5,6),(4,6,6)

< Simple selection sort on 01 void selectionSort(int edges[][3], int nEdges) {
2-dimensional arrays 8; :{(‘)tr I(i mO?ﬁ;nEdgeS 5
(shghtly different results 04 max = findMaximum(edges, nEdges-i);
from previous slides) 05 swap(edges[nEdges-i-1], edges[max]);
06 }
071}
void swap(int a[3], int b[3]) { 08
Inttmp, I; 09 int findMaximum(int edges[][3], int nEdges) {
for (1=0; 1<3; i++) { 10 inti, max=nEdges-1;
tmp = a[i]; 11 for (i=nEdges-2; i>=0; i--)
a[i] = bfi]; 12 if (edges[i][2] > edges[max][2])
b[i] = tmp; 13 max = i
} 14 return max;

} 15}

Kruskal’s MST (9/11)

Sorted array of edges:
(3,4,1),(5,6,2),(1,3,2),(1,5,3),(3,6,3),(1,2,4),(2,4,5),(3,5,6),(4,6,6)

<+ stdlib gsort on array of structs

#include <stdlib.h>

Int compare(void *argl, void *arg2) {
return ((struct Edge *)argl)->weight - ((struct Edge *)arg2)->weight;
by

qgsort(edgelist, nEdges, sizeof(struct Edge), compare);

Sorted array of edges:
(3.4,1),(1,3,2),(5,6,2),(1,5,3),(3,6,3),(1,2,4),(2,4,5),(3,5,6),(4,6,6)

< requires a stable sorting algorithm: e.g. bubble, bucket, insertion,
counting, merge, radix, ...

Kruskal’s MST (10/11)

MST:{}—>{3,4}—>{1,3,4}—>{1,3,4}{5,6}—>{1,3,4,5,6}—>{1,2,3,4,5,6}
<~ Require “set processing” tools: union, comparison

ction 3.6 of JohnsonBaugh, pp.150):.
?5

A

< Specially, these are disjoint sets (Se

* Set members are held in the same tree,
root node represents the set

* Use an array parent to implement the
set membership and provide three inte
&« Mmakeset(i): construct the set {i}

rfaces: 3

& findset(i): returns the representative node of the set
& union(l,]): joins the set containing 1 and the set containing j

void makeset(int i, int nNodes, int parent[]) {
If ((i<0)||[(i>=nNodes)) return;
parent[i] =1;

}

int findset(int i, int nNodes, int parent[]) {
If ((i<0)||(i>=nNodes)) return -1;
while (i '= parent[i])
| = parent[i];
return i;

}

Kruskal’s MST (10/11)

MST:{}—>{3,4}—>{1,3,4}—>{1,3,4}{5,6}—>{1,3,4,5,6}—>{1,2,3,4,5,6}
<~ Require “set processing” tools: union, comparison

ction 3.6 of JohnsonBaugh, pp.150):.
?5

A

< Specially, these are disjoint sets (Se

* Set members are held in the same tree,
root node represents the set

* Use an array parent to implement the
set membership and provide three inte
&« Mmakeset(i): construct the set {i}

rfaces: 3

& findset(i): returns the representative node of the set

& union(l,]): joins the set containing 1 and the set containing j

void makeset(int i, int nNodes, int parent[]) {
If ((i<0)||[(i>=nNodes)) return;
parent[i] =1;

}

6

ot 12345
P 5T 11515

int findset(int i, int nNodes, int parent[]) {
If ((i<0)||(i>=nNodes)) return -1;
while (i '= parent[i])
| = parent[i];
return i;

}

Kruskal’s MST (11/11)

void mergetrees(int i, int j, int nNodes, int parent[]) {
if (((i<0)||(i>=nNodes)) || ((j<0)||(j>=nNodes))) return;
parent[i] = j;
¥
void union(int i, int j, int nNodes, int parent[]) {
If (((1<0)||(i>=nNodes)) || ((j<0)||(j>=nNodes))) return;
mergetrees(findset(i, nNodes, parent), findset(j, nNodes, parent), nNodes, parent);

}

© find the edge with minimal weight
® add to MST if the edge does not
form a cycle

for (1IEdge=0,treeSize=0; treeSize<nNodes; IEdge++) {
If (findset(edgelist[iEdge][0], nNodes, nodeSet) !=
findset(edgelist[iEdge][1], nNodes, nodeSet)) {
totalWeight = totalWeight + edgelist[iEdge][2]; treeSize++;
union(edgelist[iEdge][0], edgelist[iEdge][1], nNodes, nodeSet);
¥

