Minimal Spanning Tree

< JohnsonBaugh’s Algorithms, Section 7.3 (page 284) find
Minimal Spanning Tree (MST) with Prim’s algorithm:

Six cities We want to construct a set of
Interconnecting roads such
that one can reach any city
from any starting city and
the total construction costs

1 Foxuville 4 2 Steger

4 Springfield are minimized.

The estimated costs for some
pairs of cities are as labeled.

5 Mystic A tree

Result:

Best

Prim’s MST (1/7)

<~ Prim’s algorithm: starting with vertex 5 (Mystic)

1 Foxville 2 Steger 1

—6 —°6
2+3+2+1=8 2+3+4+2+1=12

Prim’s MST (2/7)

\

Adjacency matrix:

N O OO0 O Wwoul

0
0
3
6
2
0

-

h: a list of vertices v not in the MST and its minimum weight to MST
(weight of the edge from v to the vertex parent[v])

parent|[v]: (v, parent][v]) is an edge of the minimal spanning tree

h

minimum weight ¢
from v to MST || Parent[v]

A~
N~
~~
o
—r
_I
)
>
.,S
-
-
al

< Adjacency list adj:

Prim’s MST (4/7)

minimum weight
from v to MST || Parent[v]

minimum weight

frorgv to I\/IST parent|v]

X 5
E
S X5

Prim’s MST (5/7)

»
MST={5,6}

AT

MST={5,6 1}

h

minimum weight

_ from.vta MIST

parent|v]

1> 5

[

56

X 6

minimum weight
fror@v to I\/IST

parent|v]

X1

L

> K1
6

Prim’s MST (6/7)

MST={5,6,1,3,4

h

minimum weight
fromvto MST

parent[v]

l

1
T E

minimum weight
_ from.v_to MST

parent[v]

—

[> 1

V4
/
/7
|

\
MST={5,6,1,3,4,2}

Prim’s MST (7/7)

prim(adj, start, parent) { , While (ref I=null) { W=3, e I\fST
R 5 ref.weight=2

n = adj.last 1w =ref.ver h K 1(W)=3
fori=1ton i (huisin(w) && keyval(w)=

keyl[i] = o ; ref.weight < h.keyval(w)) {
key([start] = 0 parent[w] = v
parent[start] = 0 h.decrease(w, ref.weight)

vie:

h.init(key, n) }
fori=1ton{ ‘\ ref = ref.next
aV=hdel) }
QO ref = adj[v] V71)
>(5,3)->(3,2) ?(...

ref

his an abstract data type that supports the following operations
h.init(key, n): initializes h to the values in key
h.del(): deletes the item in h with the smallest weight and returns the vertex
h.isin(w): returns true if vertex wis in h
h.keyval(w): returns the weight corresponding to vertex w
h.decrease(w, new_weight): changes the weight of w to new_weight (smaller)

Implementation Hints

. Write a function to read the file to an adjacency matrix
. Write a function to convert the matrix to an adjacency list
a. Define the list node structure (vertex, weight, next)
b. Define a pointer array adj[] for list heads
c. Write an insert() function to insert a node to a specified list
d. Write a freeL.ist() function free all lists
. Define the structure of container h to store all nodes currently not in MST

a. An array vertices[] to store nodes
b. An array keys[] to store the minimal distance of vertices[] to the MST

. Define the array parent[] to store the MST

. Write a C function for the Prim algorithm of previous page

. Write an init() function to initialize the container h from key][]

. Write a del() function to find the node with minimal keyvalue in h and delete that
node/key

. Write an isin() function to test if a node is currently in MST

. Write a keyvalue() function to return the key value of specified node in h

10. Write a decrease() function to modify the keyvalue fields for all neighboring
nodes of the node being deleted from h

