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h: a list of vertices v not in the MST and its minimum weight to MST
(weight of the edge from v to the vertex parent[v])

parent|[v]: (v, parent][v]) is an edge of the minimal spanning tree
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prim(adj, start, parent) { , While (ref I=null) { W=3, e I\fST
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n = adj.last 1w =ref.ver h K 1(W)=3
fori=1ton i (huisin(w) && keyval(w)=

keyl[i] = o ; ref.weight < h.keyval(w)) {
key([start] = 0 parent[w] = v
parent[start] = 0 h.decrease(w, ref.weight)

vie:

h.init(key, n) }
fori=1ton{ ‘\ ref = ref.next
aV=hdel) }
QO ref = adj[v] V71 )
>(5,3)->(3,2) ?( ...

ref

his an abstract data type that supports the following operations
h.init(key, n): initializes h to the values in key
h.del(): deletes the item in h with the smallest weight and returns the vertex
h.isin(w): returns true if vertex wis in h
h.keyval(w): returns the weight corresponding to vertex w
h.decrease(w, new_weight): changes the weight of w to new_weight (smaller)




Implementation Hints

. Write a function to read the file to an adjacency matrix
. Write a function to convert the matrix to an adjacency list
a. Define the list node structure (vertex, weight, next)
b. Define a pointer array adj[] for list heads
c. Write an insert() function to insert a node to a specified list
d. Write a freeL.ist() function free all lists
. Define the structure of container h to store all nodes currently not in MST

a. An array vertices[] to store nodes
b. An array keys[] to store the minimal distance of vertices[] to the MST

. Define the array parent[] to store the MST

. Write a C function for the Prim algorithm of previous page

. Write an init() function to initialize the container h from key][]

. Write a del() function to find the node with minimal keyvalue in h and delete that
node/key

. Write an isin() function to test if a node is currently in MST

. Write a keyvalue() function to return the key value of specified node in h

10. Write a decrease() function to modify the keyvalue fields for all neighboring
nodes of the node being deleted from h




