♦ JohnsonBaugh's *Algorithms*, Section 7.3 (page 284) find Minimal Spanning Tree (MST) with Prim's algorithm:

♦ JohnsonBaugh's *Algorithms*, Section 7.3 (page 284) find Minimal Spanning Tree (MST) with Prim's algorithm: Six cities

```
1 Foxville 2 Steger

0 0

3 Lusk 0 0 4 Springfield

0 0

5 Mystic 6 Del Rio
```

♦ JohnsonBaugh's *Algorithms*, Section 7.3 (page 284) find Minimal Spanning Tree (MST) with Prim's algorithm:

Six cities

1 Foxville 2 Steger

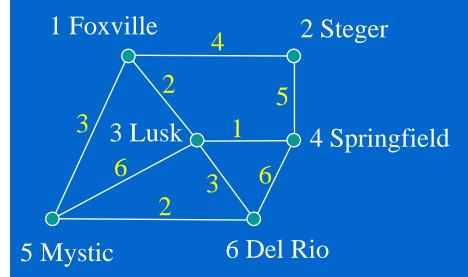
3 Lusk o o 4 Springfield

We want to construct a set of interconnecting roads such that one can reach any city from any starting city and the total construction costs are minimized.

5 Mystic6 Del Rio

♦ JohnsonBaugh's *Algorithms*, Section 7.3 (page 284) find Minimal Spanning Tree (MST) with Prim's algorithm:

Six cities



We want to construct a set of interconnecting roads such that one can reach any city from any starting city and the total construction costs are minimized.

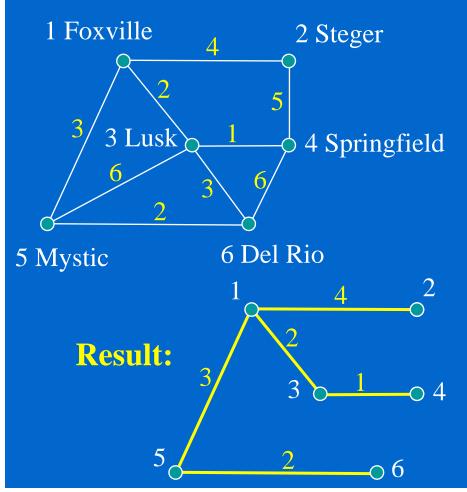
♦ JohnsonBaugh's *Algorithms*, Section 7.3 (page 284) find Minimal Spanning Tree (MST) with Prim's algorithm:

Six cities

We want to construct a set of interconnecting roads such that one can reach any city from any starting city and the total construction costs are minimized.

♦ JohnsonBaugh's *Algorithms*, Section 7.3 (page 284) find Minimal Spanning Tree (MST) with Prim's algorithm:

Six cities

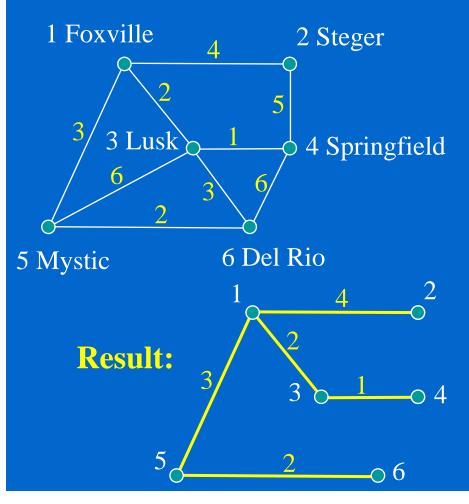


We want to construct a set of interconnecting roads such that one can reach any city from any starting city and the total construction costs are minimized.

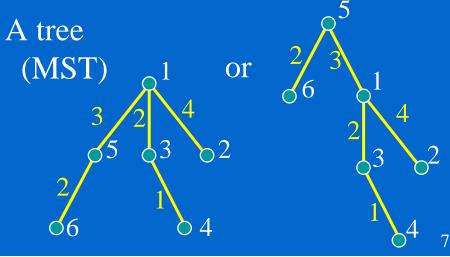


♦ JohnsonBaugh's *Algorithms*, Section 7.3 (page 284) find Minimal Spanning Tree (MST) with Prim's algorithm:

Six cities

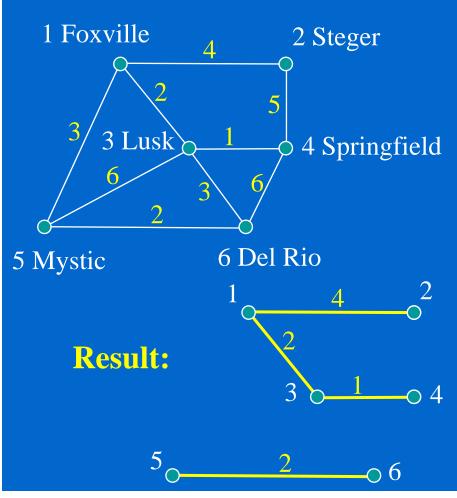


We want to construct a set of interconnecting roads such that one can reach any city from any starting city and the total construction costs are minimized.

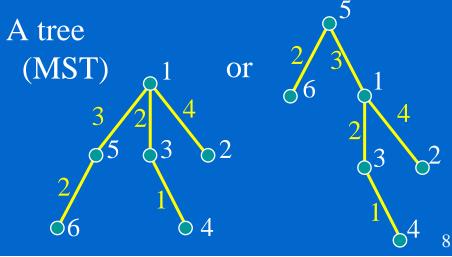


♦ JohnsonBaugh's *Algorithms*, Section 7.3 (page 284) find Minimal Spanning Tree (MST) with Prim's algorithm:

Six cities

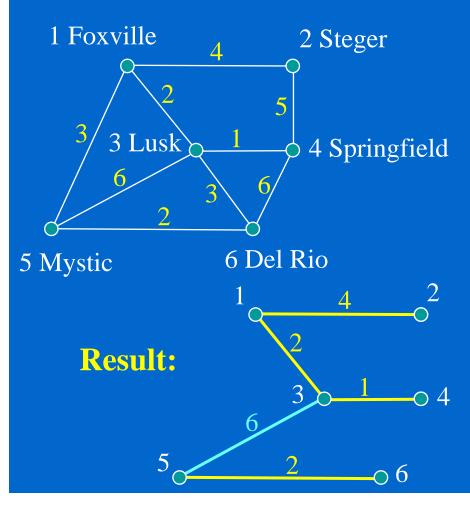


We want to construct a set of interconnecting roads such that one can reach any city from any starting city and the total construction costs are minimized.

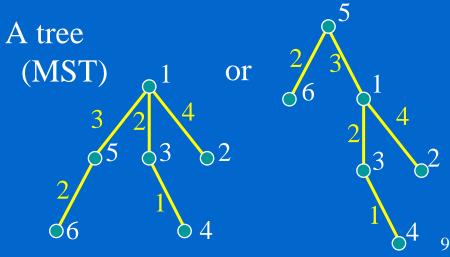


♦ JohnsonBaugh's *Algorithms*, Section 7.3 (page 284) find Minimal Spanning Tree (MST) with Prim's algorithm:

Six cities

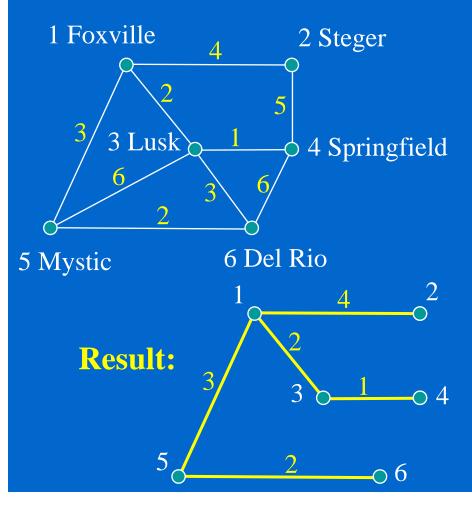


We want to construct a set of interconnecting roads such that one can reach any city from any starting city and the total construction costs are minimized.

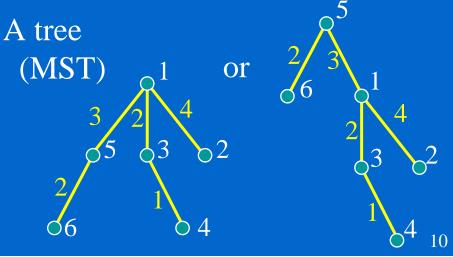


♦ JohnsonBaugh's *Algorithms*, Section 7.3 (page 284) find Minimal Spanning Tree (MST) with Prim's algorithm:

Six cities

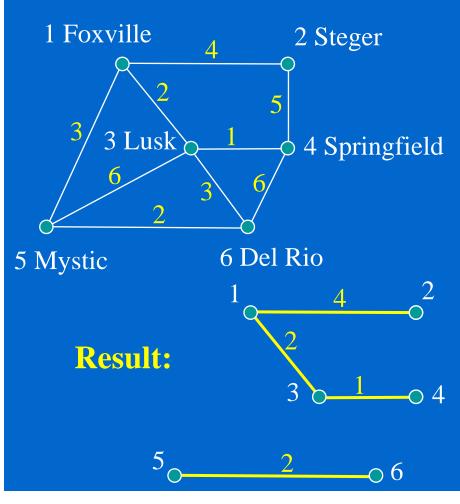


We want to construct a set of interconnecting roads such that one can reach any city from any starting city and the total construction costs are minimized.

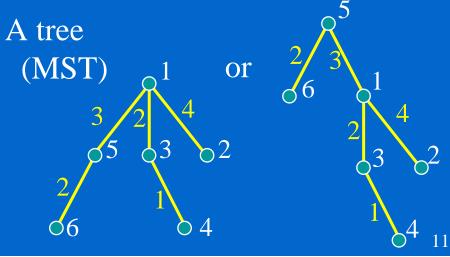


♦ JohnsonBaugh's *Algorithms*, Section 7.3 (page 284) find Minimal Spanning Tree (MST) with Prim's algorithm:

Six cities

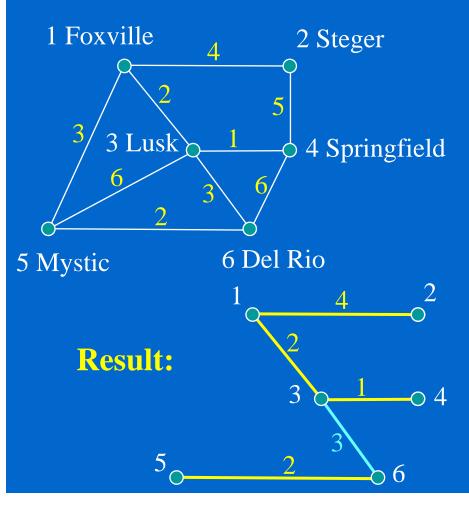


We want to construct a set of interconnecting roads such that one can reach any city from any starting city and the total construction costs are minimized.

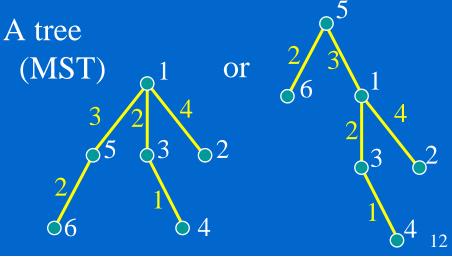


♦ JohnsonBaugh's *Algorithms*, Section 7.3 (page 284) find Minimal Spanning Tree (MST) with Prim's algorithm:

Six cities

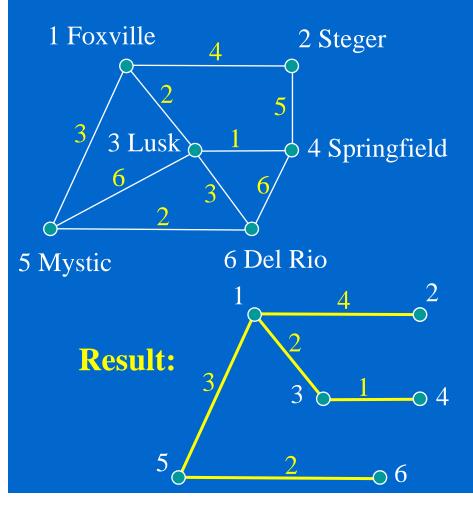


We want to construct a set of interconnecting roads such that one can reach any city from any starting city and the total construction costs are minimized.

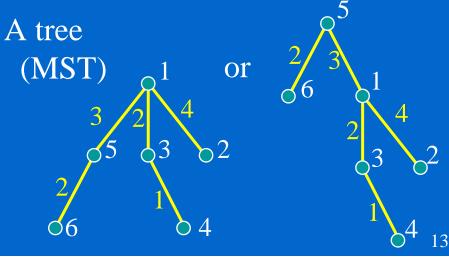


♦ JohnsonBaugh's *Algorithms*, Section 7.3 (page 284) find Minimal Spanning Tree (MST) with Prim's algorithm:

Six cities

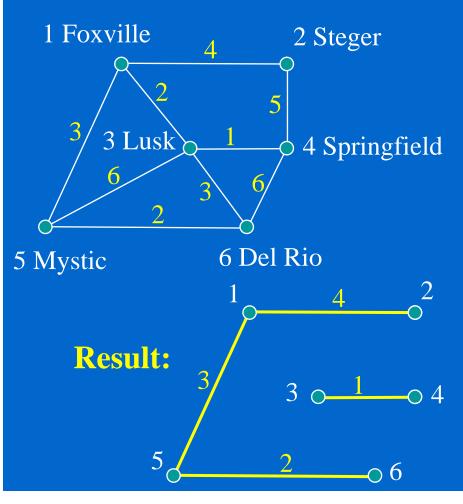


We want to construct a set of interconnecting roads such that one can reach any city from any starting city and the total construction costs are minimized.

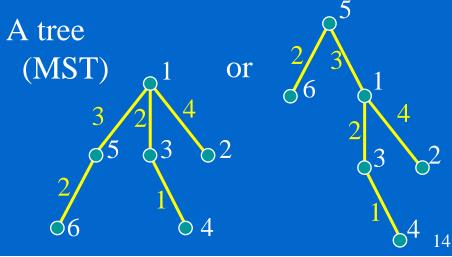


♦ JohnsonBaugh's *Algorithms*, Section 7.3 (page 284) find Minimal Spanning Tree (MST) with Prim's algorithm:

Six cities

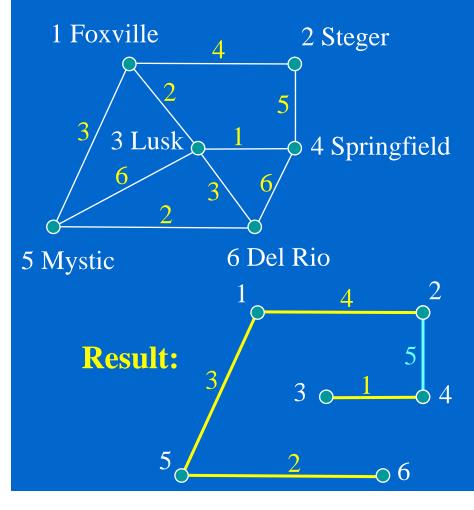


We want to construct a set of interconnecting roads such that one can reach any city from any starting city and the total construction costs are minimized.

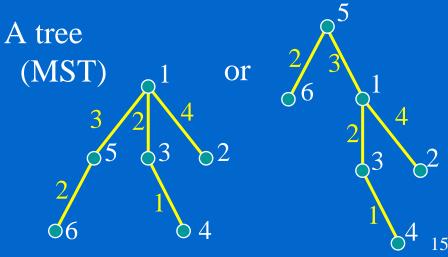


♦ JohnsonBaugh's *Algorithms*, Section 7.3 (page 284) find Minimal Spanning Tree (MST) with Prim's algorithm:

Six cities

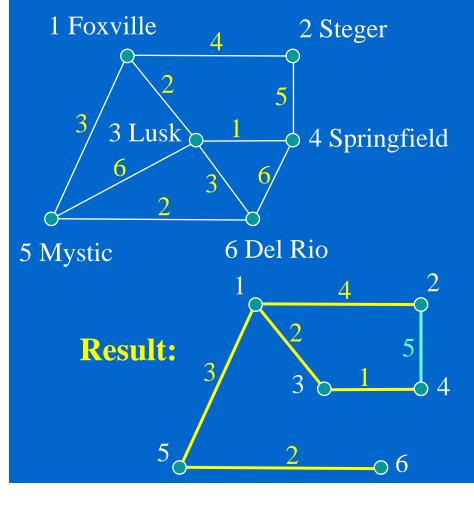


We want to construct a set of interconnecting roads such that one can reach any city from any starting city and the total construction costs are minimized.

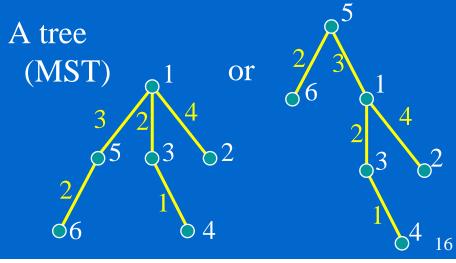


→ JohnsonBaugh's *Algorithms*, Section 7.3 (page 284) find Minimal Spanning Tree (MST) with Prim's algorithm:

Six cities

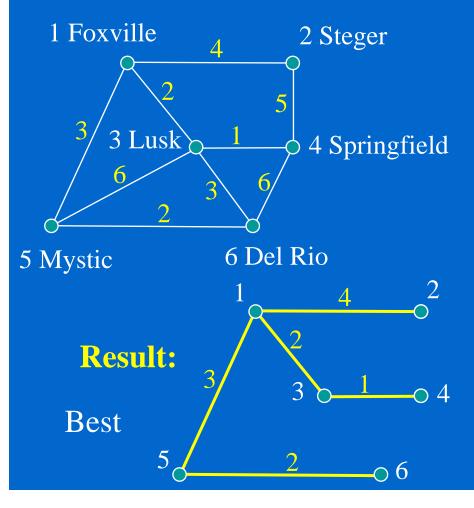


We want to construct a set of interconnecting roads such that one can reach any city from any starting city and the total construction costs are minimized.

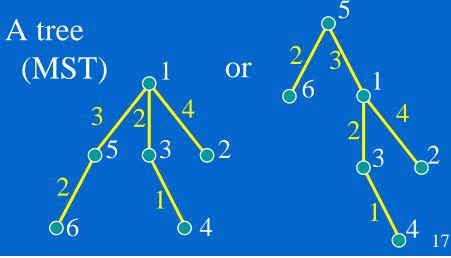


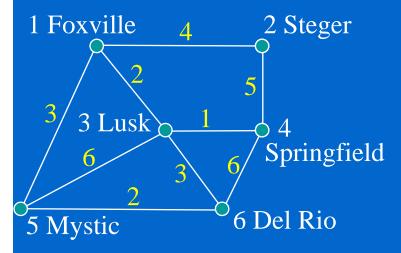
♦ JohnsonBaugh's *Algorithms*, Section 7.3 (page 284) find Minimal Spanning Tree (MST) with Prim's algorithm:

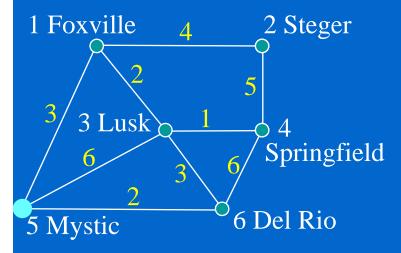
Six cities

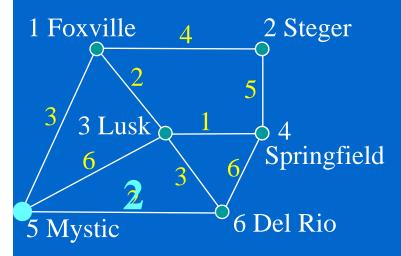


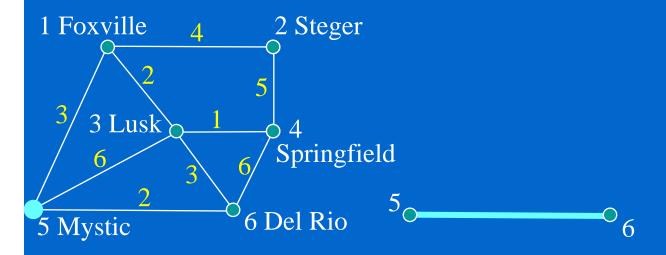
We want to construct a set of interconnecting roads such that one can reach any city from any starting city and the total construction costs are minimized.

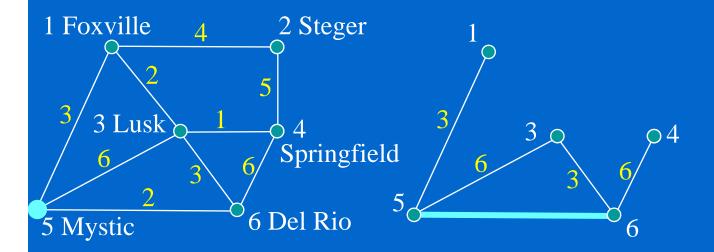


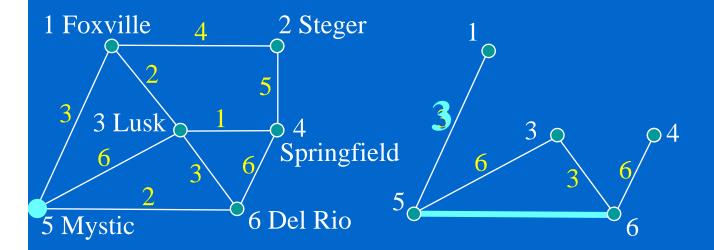


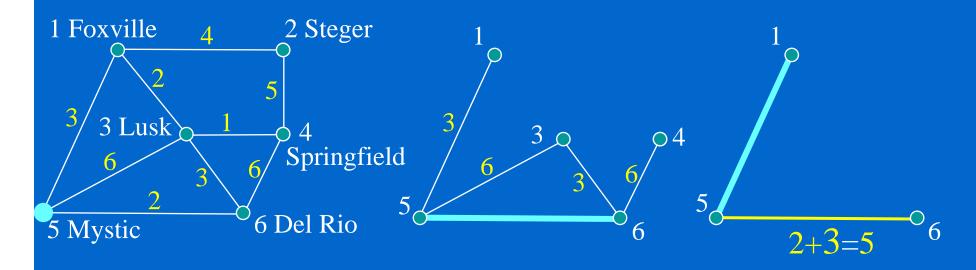


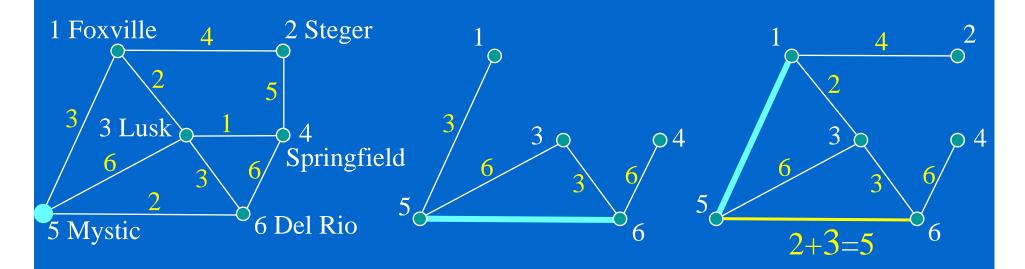


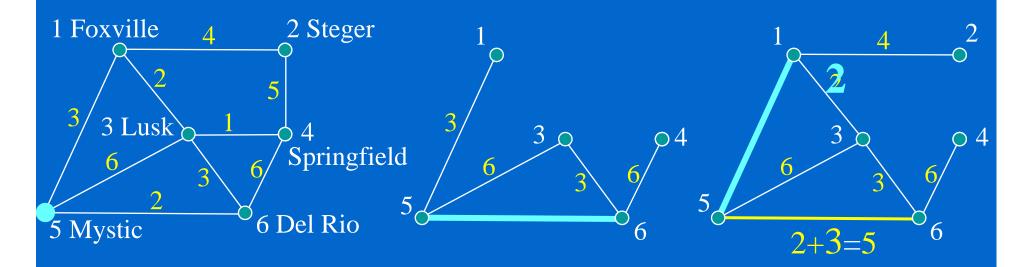


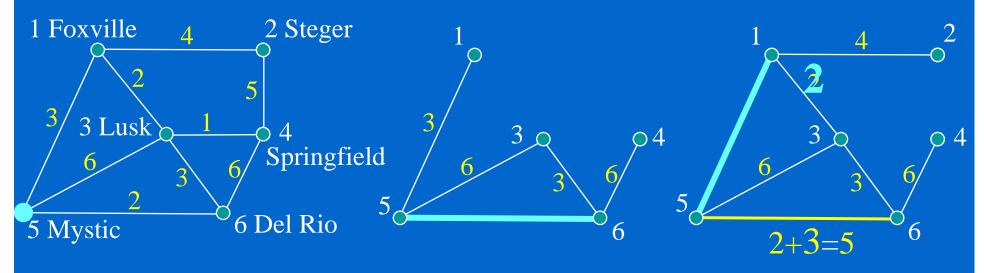


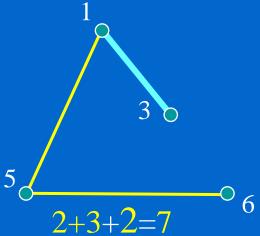


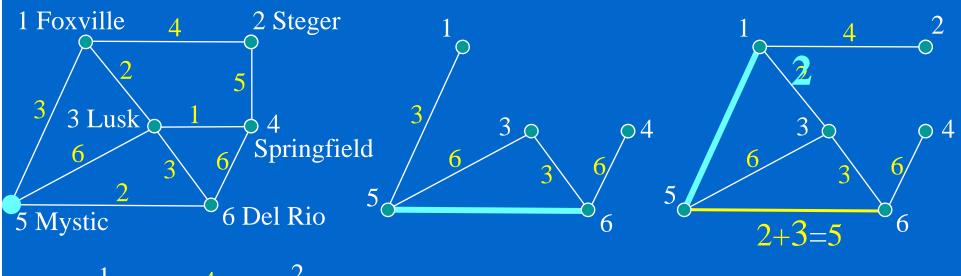


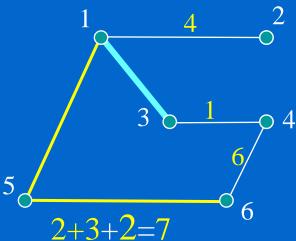


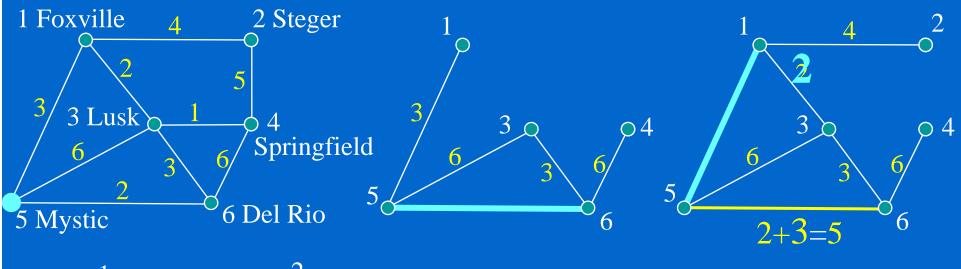


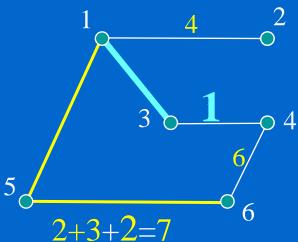


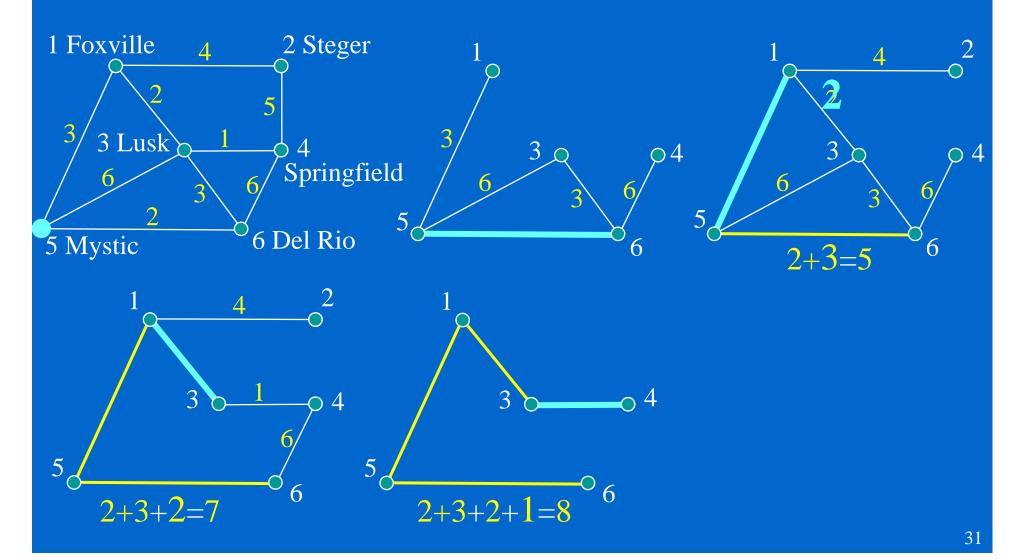


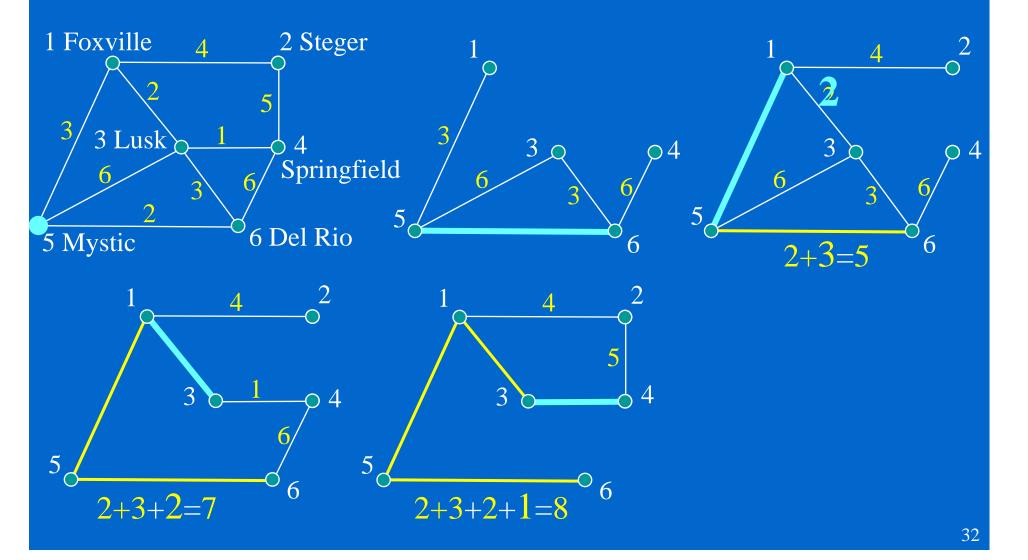


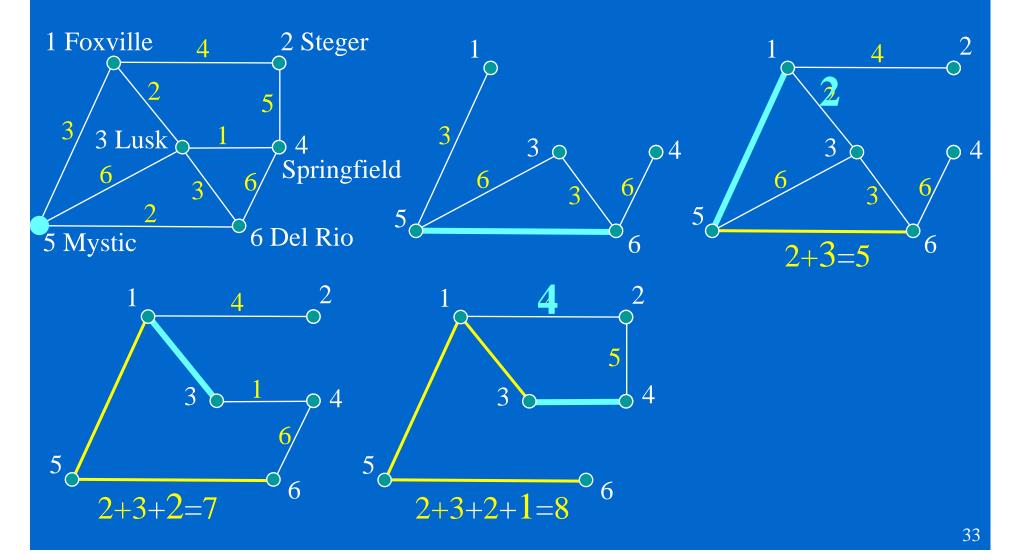


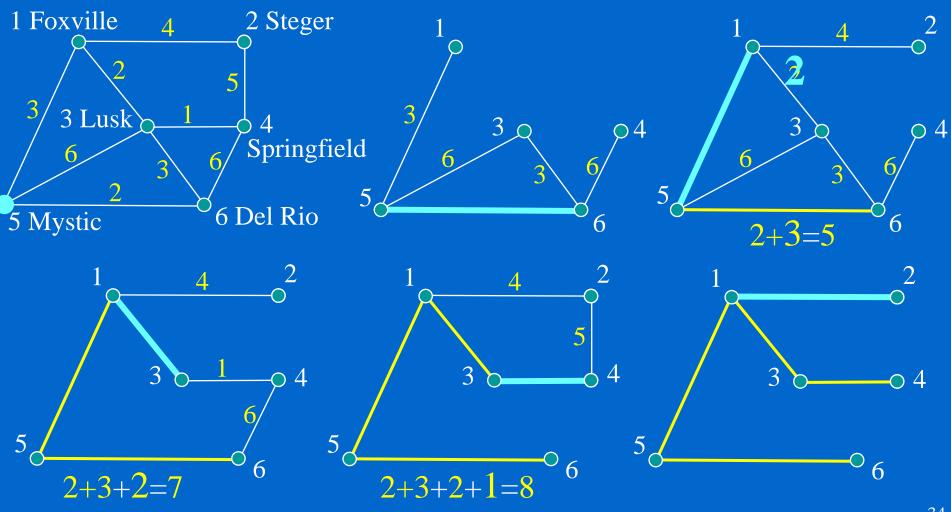


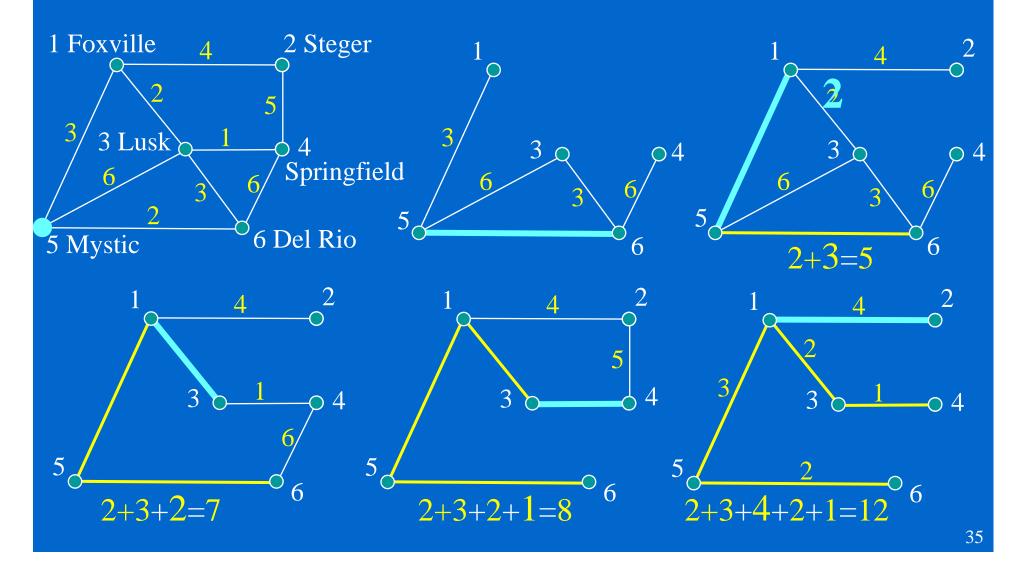


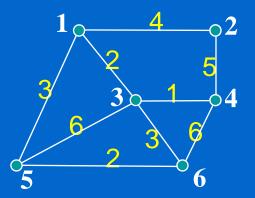




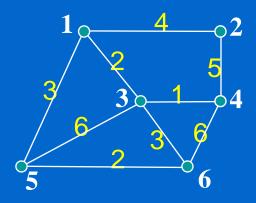




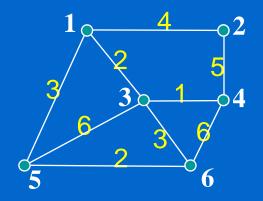


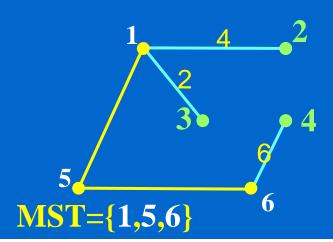


Adjacency matrix:

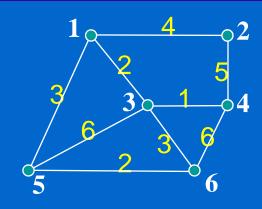


Adjacency matrix:





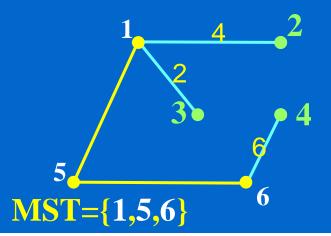
Adjacency matrix:



h: a list of vertices v not in the MST and its minimum weight to MST (weight of the edge from v to the vertex parent[v])

parent[v]: (v, parent[v]) is an edge of the minimal spanning tree

v	minimum weight from <i>v</i> to MST	parent[v]
2	4	1
3	2	1
4	6	6



♦ Adjacency list adj:

```
1 2 3 4 5 6

1 0 4 2 0 3 0

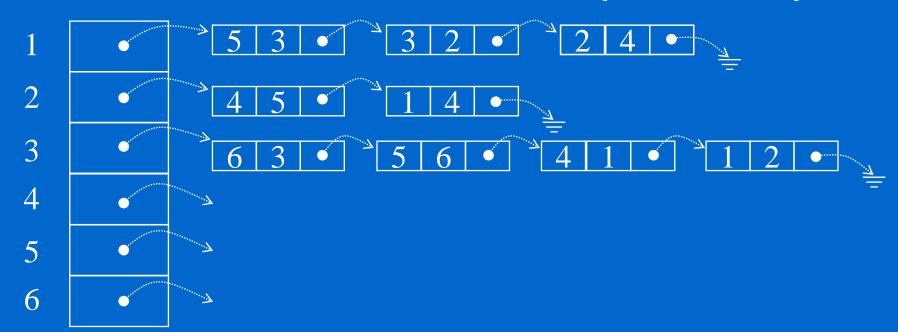
2 4 0 0 5 0 0

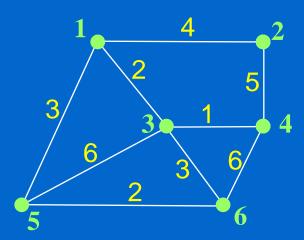
3 2 0 0 1 6 3

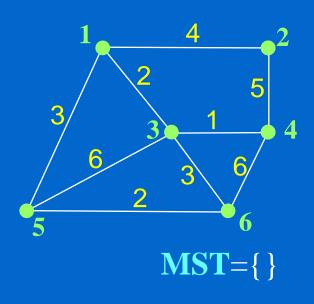
4 0 5 1 0 0 6

5 3 0 6 0 0 2

6 0 0 3 6 2 0
```

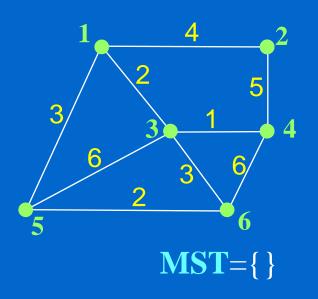






h

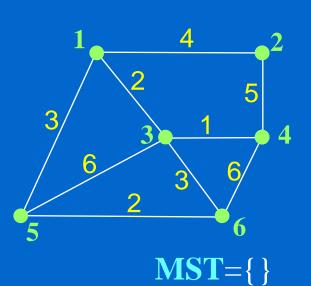
v	minimum weight from v to MST	parent[v]
1	∞	_
2	∞	_
3	∞	_
4	∞	_
5	0	0
6	∞	_



v	minimum weight from v to MST	parent[v]
1	∞	_
2	∞	_
3	∞	_
4		_
5	0	> 0
6	· · · ·	_

•₅

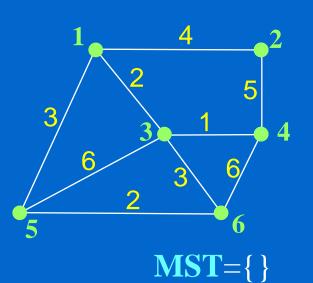
 $\overline{MST}=\{5\}$

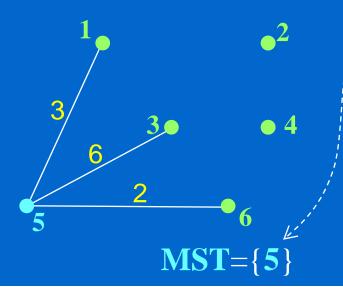


		•4	
	3 •	• 4	
• ₅		·6 E	/
	MS	Γ ={ 5 }	

ν	minimum weight from v to MST	parent[v]
1	∞	_
2	∞	_
3	∞	_
4		_
5	0	> 0
6	<u> </u>	_

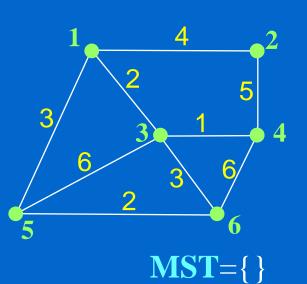
1		<u></u>	
	v	minimum weight from v to MST	parent[v]
	1	∞	_
	2	∞	_
	3	∞	_
	4	∞	_
	6	∞	_

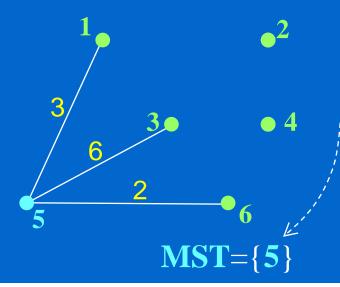




ν	minimum weight from v to MST	parent[v]
1	∞	_
2	∞	_
3	∞	_
4		_
- 5	0	> 0
6	· · · ·	_

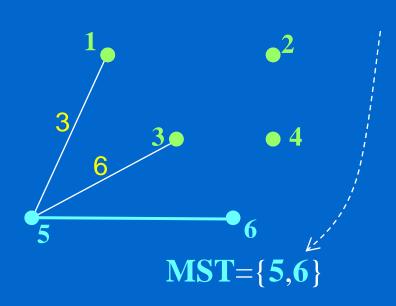
1		<u> </u>	
	v	minimum weight from v to MST	parent[v]
	1	2 ∞ 3	×5
	2	∞	_
	3	⋈ 6	\times 5
	4	∞	_
	6	≥ 2	\times 5



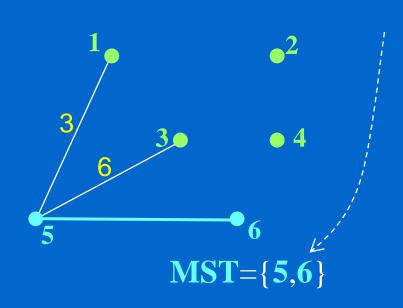


v	minimum weight from v to MST	parent[v]
1	∞	_
2	∞	_
3	∞	_
4		_
5	0	> 0
6	· · · · · · · · · · · · · · · · · · ·	_

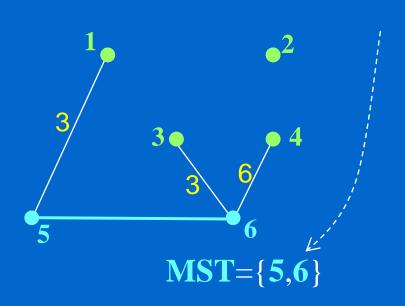
1		h	
	v	minimum weight from v to MST	parent[v]
	1	2 ∞ 3	\times 5
	2	∞	_
	3	⋈ 6	\times 5
	4		_
	. 6	≥ 2	[> ×5

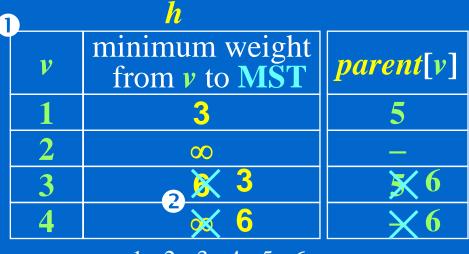


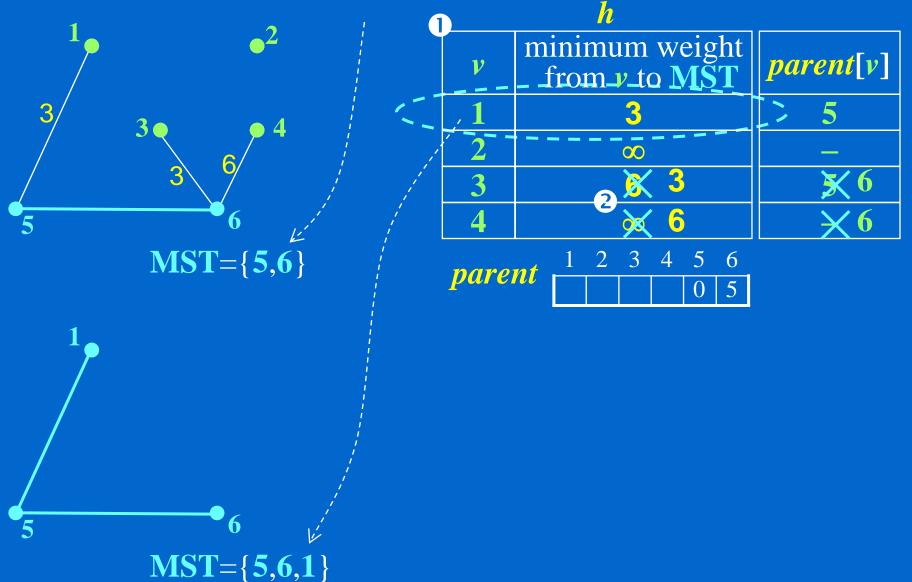
1		<u>h</u>	
	v	minimum weight from v to MST	parent[v]
	1	3	5
	2	∞	_
	3	6	5
	4	∞	_

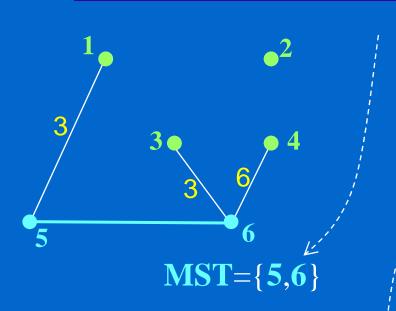


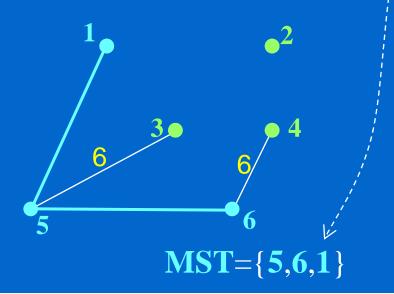
parent 1 2 3 4 5 6 0 5







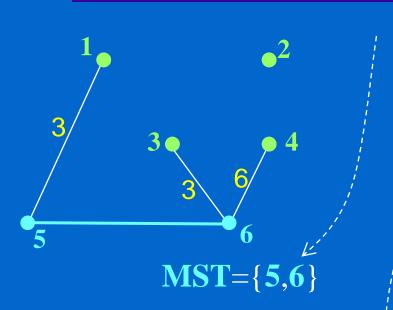


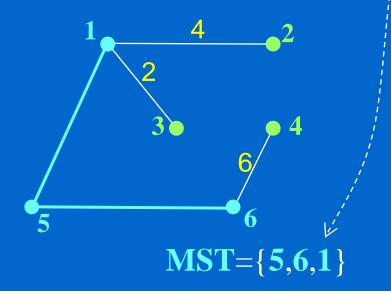


1		h	
	v	minimum weight _ from_v_to MST	parent[v]
	, 1	3	5
1	2	·	_
	3	3	× 6
	4	∑ 6 6	\times 6

navont	1	2	3	4	5	6
parent	5				0	5

G		<u> </u>	
	v	minimum weight from v to MST	parent[v]
	2	∞	_
	3	3	6
	4	6	6

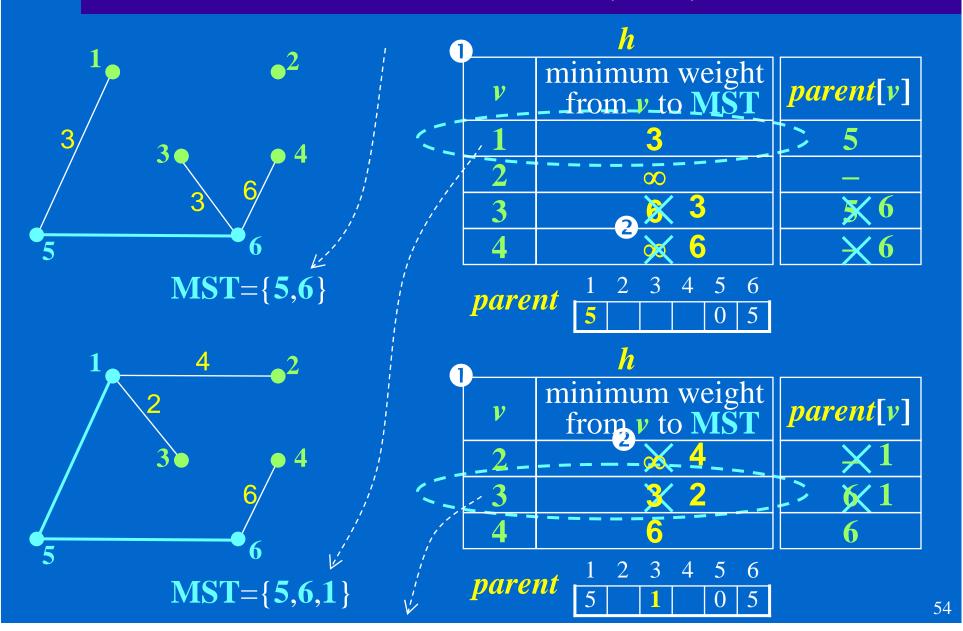


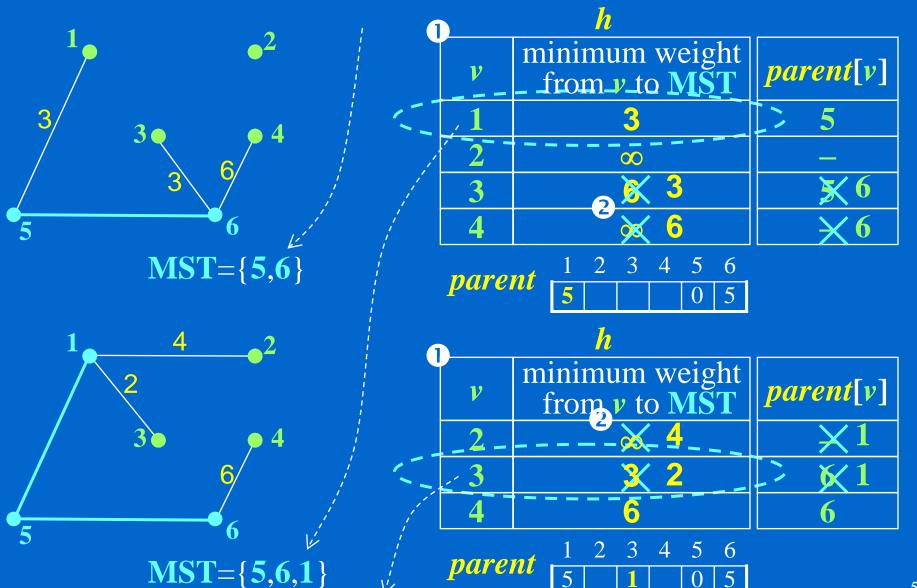


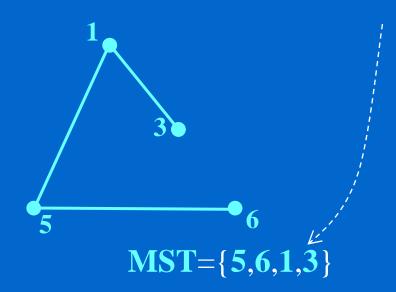
ſ		h	
	v	minimum weight _ from_v_to MST	parent[v]
	, 1	3	5
1	2	·	_
	3	3	× 6
	4	∑ 6	×6

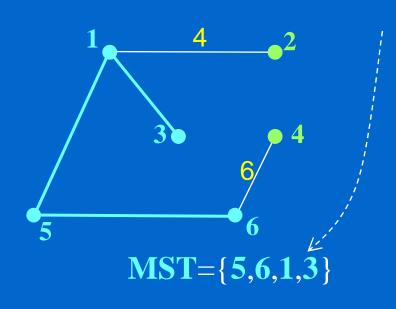
parent	1	2	3	4	5	6
parem	5				0	5

	<u> </u>	
v	minimum weight from to MST	parent[v]
2	2 ★ 4	$\times 1$
3	X 2	X 1
4	6	6

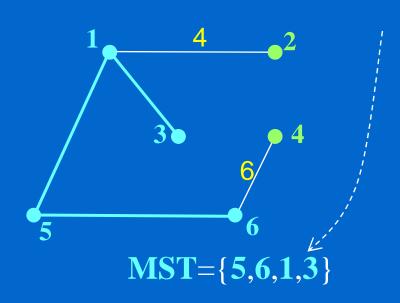




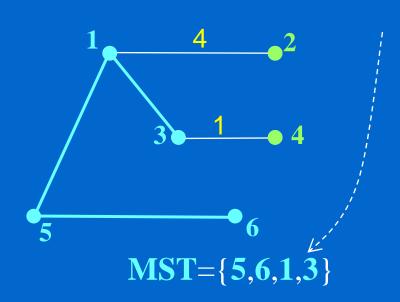


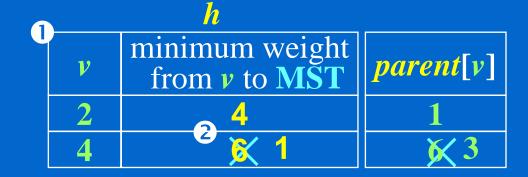


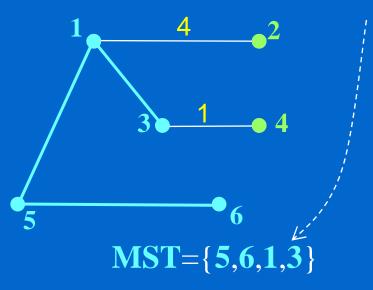
1		<u> </u>	
U	v	minimum weight from v to MST	parent[v]
	2	4	1
	4	6	6

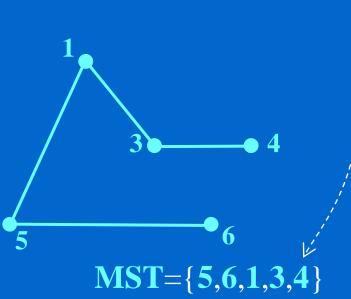


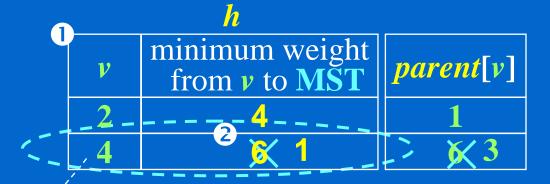
1		<u></u>	
U	v	minimum weight from v to MST	parent[v]
	2	4	1
	4	6	6





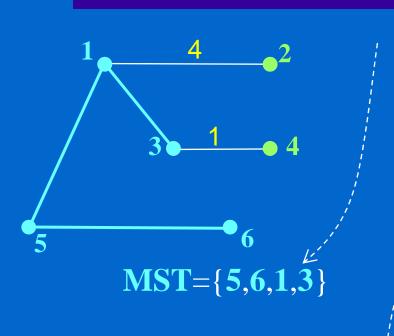


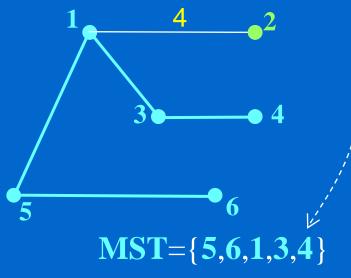


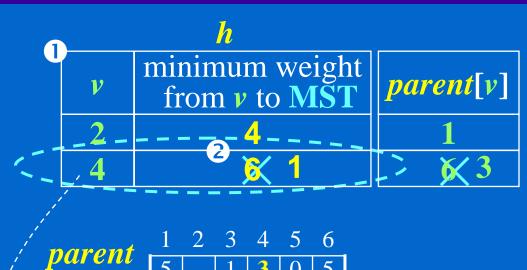


 parent
 1
 2
 3
 4
 5
 6

 5
 1
 3
 0
 5





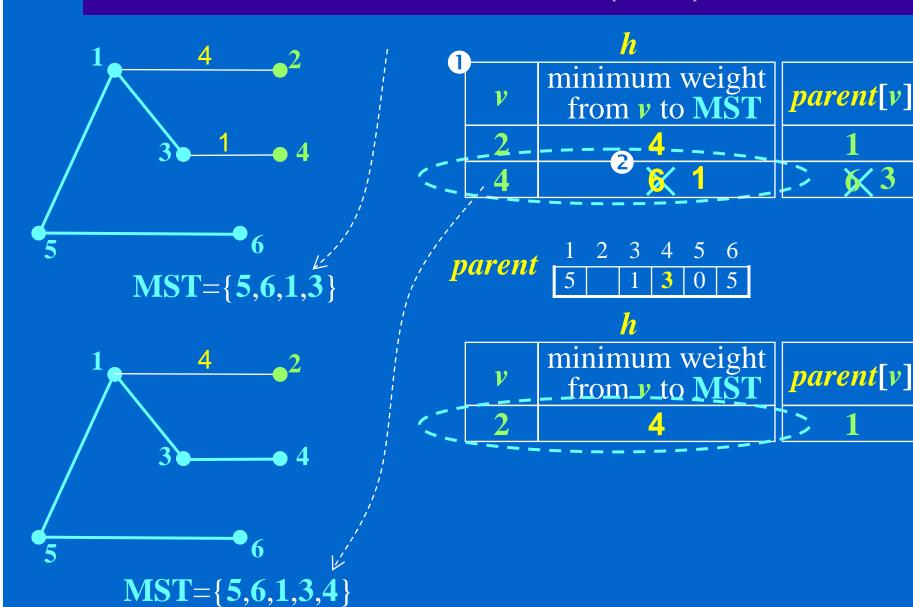


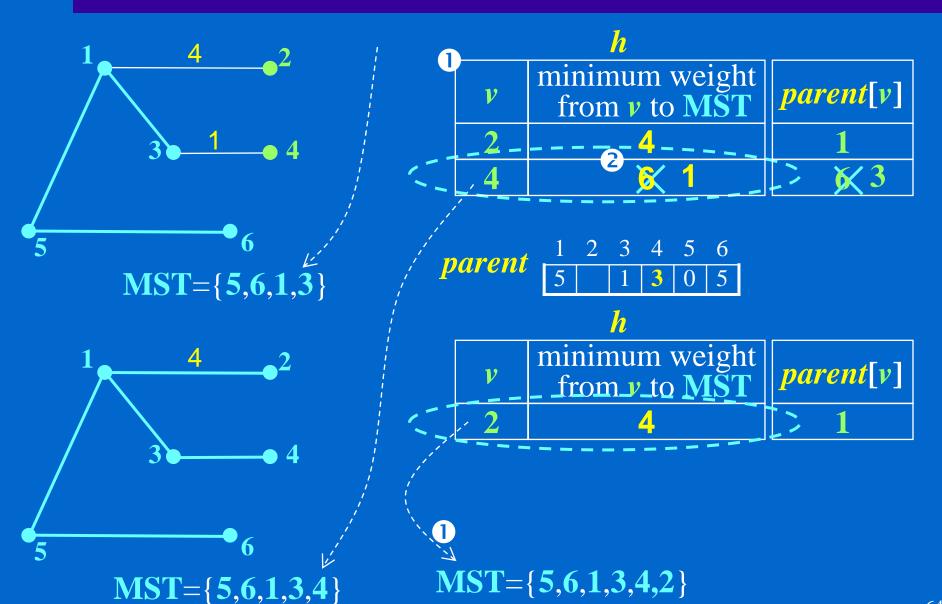
1 3 0 5

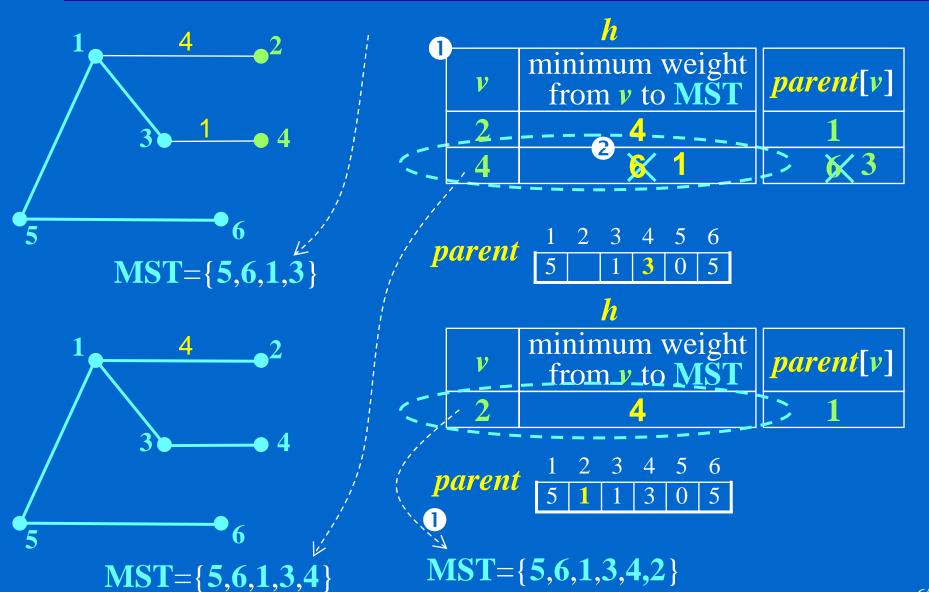
h

ν	minimum weight from v to MST	
2	4	

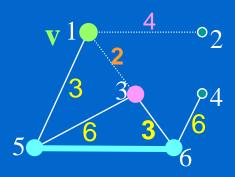
parent[v]







```
prim(adj, start, parent) {
    n = adj.last
    for i = 1 to n
        key[i] = ∞
    key[start] = 0
    parent[start] = 0
    h.init(key, n)
    for i = 1 to n {
        v = h.del()
        ref = adj[v]
```



```
prim(adj, start, parent) {
                                               while (ref!= null) {
   n = adj.last
                                                    w = ref.ver
   for i = 1 to n
                                                   if (h.isin(w) &&
      \text{key}[i] = \infty
                                                       ref.weight < h.keyval(w)) {
   key[start] = 0
                                                       parent[w] = v
   parent[start] = 0
                                                       h.decrease(w, ref.weight)
   h.init(key, n)
   for i = 1 to n {
                                                   ref = ref.next
   \mathbf{v} = \mathbf{h.del}()
      ref = adj[v] v=1
                    \longrightarrow (5,3) \longrightarrow (3,2) \longrightarrow (2,4)
```

```
w=3, w∉ MST
prim(adj, start, parent) {
                                              while (ref!= null) {
                                                                                 ref.weight=2
   n = adj.last
                                                   w = ref.ver
                                                                                 h.keyval(w)=3
   for i = 1 to n
                                                  if (h.isin(w) &&
      \text{key}[i] = \infty
                                                      ref.weight < h.keyval(w)) {
   key[start] = 0
                                                      parent[w] = v
   parent[start] = 0
                                                      h.decrease(w, ref.weight)
   h.init(key, n)
   for i = 1 to n {
                                                  ref = ref.next
   \overline{\mathbf{v}} = \mathbf{h.del}()
     ref = adj[v] v=1
                    \longrightarrow (5,3) \longrightarrow (3,2) \longrightarrow (2,4)
```

```
w=3, w∉ MST
prim(adj, start, parent) {
                                      while (ref!= null) {
                                                                   ref.weight=2
  n = adj.last
                                          w = ref.ver
                                                                   h.keyval(w)=3
  for i = 1 to n
                                          if (h.isin(w) &&
    \text{key}[i] = \infty
                                             ref.weight < h.keyval(w)) {
  key[start] = 0
                                             parent[w] = v
  parent[start] = 0
                                             h.decrease(w, ref.weight)
  h.init(key, n)
  for i = 1 to n {
                                          ref = ref.next
   v = h.del()
     ref = adj[v] v=1
                  (5,3) (3,2)
```

h is an abstract data type that supports the following operations
h.init(key, n): initializes h to the values in key
h.del(): deletes the item in h with the smallest weight and returns the vertex
h.isin(w): returns true if vertex w is in h
h.keyval(w): returns the weight corresponding to vertex w
h.decrease(w, new_weight): changes the weight of w to new_weight (smaller)

Implementation Hints

- 1. Write a function to read the file to an adjacency matrix
- 2. Write a function to convert the matrix to an adjacency list
 - a. Define the list node structure (vertex, weight, next)
 - b. Define a pointer array adj[] for list heads
 - c. Write an insert() function to insert a node to a specified list
 - d. Write a **freeList()** function free all lists
- 3. Define the structure of container h to store all nodes currently not in MST
 - a. An array **vertices**[] to store nodes
 - b. An array keys[] to store the minimal distance of vertices[] to the MST
- 4. Define the array **parent[]** to store the MST
- 5. Write a C function for the Prim algorithm of previous page
- 6. Write an **init()** function to initialize the container h from key[]
- 7. Write a **del()** function to find the node with minimal keyvalue in h and delete that node/key
- 8. Write an isin() function to test if a node is currently in MST
- 9. Write a **keyvalue()** function to return the key value of specified node in h
- 10. Write a decrease() function to modify the keyvalue fields for all neighboring nodes of the node being deleted from h