Minimal Spanning Tree

< JohnsonBaugh’s Algorithms, Section 7.3 (page 284) find
Minimal Spanning Tree (MST) with Prim’s algorithm:




Minimal Spanning Tree

< JohnsonBaugh’s Algorithms, Section 7.3 (page 284) find
Minimal Spanning Tree (MST) with Prim’s algorithm:
Six cities
1 Foxuville 2 Steger
@) O

3 Lusk o o 4 Springfield

O O
5 Mystic 6 Del Rio




Minimal Spanning Tree

< JohnsonBaugh’s Algorithms, Section 7.3 (page 284) find
Minimal Spanning Tree (MST) with Prim’s algorithm:

Six cities We want to construct a set of
: Interconnecting roads such
+ FOXVIe 2 Steger that one can reach any city
from any starting city and
the total construction costs

3 Lusk o o 4 Springfield are minimized.

O O
5 Mystic 6 Del Rio




Minimal Spanning Tree

< JohnsonBaugh’s Algorithms, Section 7.3 (page 284) find
Minimal Spanning Tree (MST) with Prim’s algorithm:

Six cities We want to construct a set of
Interconnecting roads such
that one can reach any city
from any starting city and
the total construction costs

1 Foxuville 4 2 Steger

4 Springfield are minimized.

The estimated costs for some
pairs of cities are as labeled.

5 Mystic 6 Del Rio




Minimal Spanning Tree

< JohnsonBaugh’s Algorithms, Section 7.3 (page 284) find
Minimal Spanning Tree (MST) with Prim’s algorithm:

SIX cities We want to construct a set of
o Interconnecting roads such

4 cger that one can reach any city

from any starting city and

the total construction costs

1 Foxville

4 Springfield are minimized.

The estimated costs for some
pairs of cities are as labeled.

5 Mystic

Result:




Minimal Spanning Tree

< JohnsonBaugh’s Algorithms, Section 7.3 (page 284) find
Minimal Spanning Tree (MST) with Prim’s algorithm:

Six cities We want to construct a set of
Interconnecting roads such
that one can reach any city
from any starting city and
the total construction costs

1 Foxuville 4 2 Steger

4 Springfield are minimized.

The estimated costs for some
pairs of cities are as labeled.

5 Mystic A tree

Result:




Minimal Spanning Tree

< JohnsonBaugh’s Algorithms, Section 7.3 (page 284) find
Minimal Spanning Tree (MST) with Prim’s algorithm:

Six cities We want to construct a set of
Interconnecting roads such
that one can reach any city
from any starting city and
the total construction costs

1 Foxuville 4 2 Steger

4 Springfield are minimized.

The estimated costs for some
pairs of cities are as labeled.

5 Mystic A tree

Result:




Minimal Spanning Tree

< JohnsonBaugh’s Algorithms, Section 7.3 (page 284) find
Minimal Spanning Tree (MST) with Prim’s algorithm:

Six cities We want to construct a set of
Interconnecting roads such
that one can reach any city
from any starting city and
the total construction costs

1 Foxuville 4 2 Steger

4 Springfield are minimized.
The estimated costs for some
pairs of cities are as labeled.

5 Mystic 6 Del Rio A tree
1

Result:




Minimal Spanning Tree

< JohnsonBaugh’s Algorithms, Section 7.3 (page 284) find
Minimal Spanning Tree (MST) with Prim’s algorithm:

Six cities We want to construct a set of
Interconnecting roads such
that one can reach any city
from any starting city and
the total construction costs

1 Foxuville 4 2 Steger

4 Springfield are minimized.

The estimated costs for some
pairs of cities are as labeled.

5 Mystic A tree

Result:




Minimal Spanning Tree

< JohnsonBaugh’s Algorithms, Section 7.3 (page 284) find
Minimal Spanning Tree (MST) with Prim’s algorithm:

Six cities We want to construct a set of
Interconnecting roads such
that one can reach any city
from any starting city and
the total construction costs

1 Foxuville 4 2 Steger

4 Springfield are minimized.

The estimated costs for some
pairs of cities are as labeled.

5 Mystic A tree

Result:




Minimal Spanning Tree

< JohnsonBaugh’s Algorithms, Section 7.3 (page 284) find
Minimal Spanning Tree (MST) with Prim’s algorithm:

Six cities We want to construct a set of
Interconnecting roads such
that one can reach any city
from any starting city and
the total construction costs

1 Foxuville 4 2 Steger

4 Springfield are minimized.
The estimated costs for some
pairs of cities are as labeled.

5 Mystic 6 Del Rio A tree
1

Result:




Minimal Spanning Tree

< JohnsonBaugh’s Algorithms, Section 7.3 (page 284) find
Minimal Spanning Tree (MST) with Prim’s algorithm:

Six cities We want to construct a set of
Interconnecting roads such
that one can reach any city
from any starting city and
the total construction costs

1 Foxuville 4 2 Steger

4 Springfield are minimized.

The estimated costs for some
pairs of cities are as labeled.

5 Mystic A tree

Result:




Minimal Spanning Tree

< JohnsonBaugh’s Algorithms, Section 7.3 (page 284) find
Minimal Spanning Tree (MST) with Prim’s algorithm:

Six cities We want to construct a set of
Interconnecting roads such
that one can reach any city
from any starting city and
the total construction costs

1 Foxuville 4 2 Steger

4 Springfield are minimized.

The estimated costs for some
pairs of cities are as labeled.

5 Mystic A tree

Result:




Minimal Spanning Tree

< JohnsonBaugh’s Algorithms, Section 7.3 (page 284) find
Minimal Spanning Tree (MST) with Prim’s algorithm:

Six cities We want to construct a set of
Interconnecting roads such

1 Foxville £ S that one can reach any city

4

5 from any starting city and
S the total construction costs
. oL & aspringfield  are minimized.
The estimated costs for some
- pairs of cities are as labeled.

5 Mystic 6 Del Rio A tree

Result:




Minimal Spanning Tree

< JohnsonBaugh’s Algorithms, Section 7.3 (page 284) find
Minimal Spanning Tree (MST) with Prim’s algorithm:

Six cities We want to construct a set of
Interconnecting roads such
that one can reach any city
from any starting city and
the total construction costs
are minimized.

1 Foxuville 2 Steger

o 4 Springfield
v The estimated costs for some
pairs of cities are as labeled.

5 Mystic 6 Del Rio A tree




Minimal Spanning Tree

< JohnsonBaugh’s Algorithms, Section 7.3 (page 284) find
Minimal Spanning Tree (MST) with Prim’s algorithm:

Six cities We want to construct a set of
Interconnecting roads such
that one can reach any city
from any starting city and
the total construction costs

1 Foxuville 4 2 Steger

4 Springfield are minimized.

The estimated costs for some
pairs of cities are as labeled.

5 Mystic A tree

Result:




Minimal Spanning Tree

< JohnsonBaugh’s Algorithms, Section 7.3 (page 284) find
Minimal Spanning Tree (MST) with Prim’s algorithm:

Six cities We want to construct a set of
Interconnecting roads such
that one can reach any city
from any starting city and
the total construction costs

1 Foxuville 4 2 Steger

4 Springfield are minimized.

The estimated costs for some
pairs of cities are as labeled.

5 Mystic A tree

Result:

Best




Prim’s MST (1/7)

<~ Prim’s algorithm: starting with vertex 5 (Mystic)

1 Foxville 2 Steger




Prim’s MST (1/7)

<~ Prim’s algorithm: starting with vertex 5 (Mystic)

1 Foxville 4 2 Steger




Prim’s MST (1/7)

<~ Prim’s algorithm: starting with vertex 5 (Mystic)

1 Foxville 2 Steger




Prim’s MST (1/7)

<~ Prim’s algorithm: starting with vertex 5 (Mystic)

1 Foxville 2 Steger




Prim’s MST (1/7)

<~ Prim’s algorithm: starting with vertex 5 (Mystic)

1 Foxville 2 Steger

SM




Prim’s MST (1/7)

<~ Prim’s algorithm: starting with vertex 5 (Mystic)

1 Foxville 2 Steger 1




Prim’s MST (1/7)

<~ Prim’s algorithm: starting with vertex 5 (Mystic)

1 Foxville 2 Steger 1




Prim’s MST (1/7)

<~ Prim’s algorithm: starting with vertex 5 (Mystic)

1 Foxville 2 Steger 1




Prim’s MST (1/7)

<~ Prim’s algorithm: starting with vertex 5 (Mystic)

1 Foxville 2 Steger 1




Prim’s MST (1/7)

<~ Prim’s algorithm: starting with vertex 5 (Mystic)

1 Foxville 2 Steger 1




Prim’s MST (1/7)

<~ Prim’s algorithm: starting with vertex 5 (Mystic)

1 Foxville 2 Steger 1




Prim’s MST (1/7)

<~ Prim’s algorithm: starting with vertex 5 (Mystic)

1 Foxville 2 Steger 1




Prim’s MST (1/7)

<~ Prim’s algorithm: starting with vertex 5 (Mystic)

1 Foxville 2 Steger 1




Prim’s MST (1/7)

<~ Prim’s algorithm: starting with vertex 5 (Mystic)

1 Foxville 2 Steger 1

Og
2+3+2+1=8




Prim’s MST (1/7)

<~ Prim’s algorithm: starting with vertex 5 (Mystic)

1 Foxville 2 Steger 1

2+3+2+1=8




Prim’s MST (1/7)

<~ Prim’s algorithm: starting with vertex 5 (Mystic)

1 Foxville 2 Steger 1

2+3+2+1=8




Prim’s MST (1/7)

<~ Prim’s algorithm: starting with vertex 5 (Mystic)

1 Foxville 2 Steger 1

/\J/t

2+3+2+1=8




Prim’s MST (1/7)

<~ Prim’s algorithm: starting with vertex 5 (Mystic)

1 Foxville 2 Steger 1

—6 —°6
2+3+2+1=8 2+3+4+2+1=12




Prim’s MST (2/7)




A~
N~
~~
Q\
~—
_I
)
>
.,S
-
-
al

Adjacency matrix:




5
MST={1,5,6}

A~
N~
~~
Q\
~—
_I
)
>
.,S
-
-
al

Adjacency matrix:




Prim’s MST (2/7)

\

Adjacency matrix:

N O OO0 O Wwoul

0
0
3
6
2
0

-

h: a list of vertices v not in the MST and its minimum weight to MST
(weight of the edge from v to the vertex parent[v])

parent|[v]: (v, parent][v]) is an edge of the minimal spanning tree

h

minimum weight ¢
from v to MST || Parent[v]

MST={1,5,6}




A~
N~
~~
o
—r
_I
)
>
.,S
-
-
al

< Adjacency list adj:



Prim’s MST (4/7)




Prim’s MST (4/7)
h

minimum weight
from v to MST || Parent[v]

0]




Prim’s MST (4/7)
h

minimum weight
from v to MST || Parent[v]




Prim’s MST (4/7)
h

minimum weight
fromvto MST

parent[v]

minimum weight
fromvto MST




Prim’s MST (4/7)

minimum weight
fromvto MST

parent[v]

minimum weight

parent[v]

frorgv (0 I\/IST

X5

xs

E

X 2

E




Prim’s MST (4/7)

minimum weight
from v to MST || Parent[v]

minimum weight

frorgv to I\/IST parent|v]

X 5
E
S X5




Prim’s MST (5/7)

—95

»
MST={5,6}




Prim’s MST (5/7)

o h
minimum weight
from v to MST || Parent[v]

—95

»
MST={5,6}




Prim’s MST (5/7)

02

e4

—95

»
MST={5,6}

h

o

minimum weight
fromvto MST

parent|v]

3
00
6
00
3

1 2 4




Prim’s MST (5/7)

h

minimum weight
from v to MST || Parent[v]

3 5
S 3 X6
X 6 X6

1 2 3 4

5
0




Prim’s MST (5/7)

h

minimum weight
_ from_v_ta l\/lg_-li JENET

> 5
X 6
X 6

—95

;
MST={5,6,1




Prim’s MST (5/7)

h

minimum weight

_ from.vta MIST

parent|v]

1> 5

[

56

[ny )

X 6

MST={5, 6}

parent

6
S

minimum weight
fromvito MST

parent|v]

)]

MST={5,6 1}




Prim’s MST (5/7)

h

] minimum weight

; " fromov.to l\/lg.T_ parent|[v]

, L> 5
\/ X 6

X 6

MST={5, 6}

6
S

minimum weight
; fror&v to I\/IST pRLE]]
X1
/ Xz
v 6 6

MST={5,6 1}




Prim’s MST (5/7)

Iay)

MST={5, 6}

A

MST={5,6 1}

h

minimum weight

_ from.vta MIST

parent|v]

1> 5

[

56

X 6

minimum weight
fror@v to I\/IST

parent|v]

X1

L

> K1
6




Prim’s MST (5/7)

Iay)

MST={5, 6}

A

MST={5,6 1}

h

minimum weight

_ from.vta MIST

parent|v]

1> 5

[

56

X 6

minimum weight
fror@v to I\/IST

parent|v]

X1

L

> K1
6




Prim’s MST (6/7)




Prim’s MST (6/7)

—95

MST={5,6,1,3}




Prim’s MST (6/7)

h

minimum weight
from v to MIST

parent[v]

4

1

2
A

6

6

Sk

MST= {5613}




Prim’s MST (6/7)

Ay

MST= {5613}

h

minimum weight
from v to MIST

parent[v]

4

1

6

6

parent

4
3




Prim’s MST (6/7)
h

minimum weight
from v to MST || Parent[v]

4 1
@51 5 3

4
3

/;
MST={5,6,1,3}




Prim’s MST (6/7)

h

minimum weight
from v to MST || Parent[v]

1
S X3

—o, y
I
MST={5,6,1,3,4




Prim’s MST (6/7)

MST={5,6,1,3,4

h

minimum weight
fromvto MST

parent[v]

1
S X3

minimum weight
fromvto MST

parent[v]

4

1

V4
/
/7
|




Prim’s MST (6/7)

MST={5,6,1,3,4

h

minimum weight
fromvto MST

parent[v]

l

1
T E

minimum weight
_ from.v_to MST

parent[v]

—

[> 1

V4
/
/7
|




Prim’s MST (6/7)

h

minimum weight
from v to MST || Parent[v]

1
[ %3

/
e

yia
MST={5,6,1,3}

4 minimum weight

o2 :;" V| fromto MST || Parent[v]
,. 1

—

—Q ,
6 /, \A

|

MST={5,6,1,3,4 MST={5,6,1,3,4,2}




Prim’s MST (6/7)

/
e

/;
MST={5,6,1,3}

4 .

—95

MST={5,6,1,3,4

h

minimum weight
fromvto MST

parent[v]

l

1
T E

minimum weight
_ from.v_to MST

parent[v]

—

[> 1

V4
/
/7
|

\
MST={5,6,1,3,4,2}




Prim’s MST (7/7)

prim(adj, start, parent) {
n = adj.last
fori=1ton
key[i] = o
key[start] =0
parent[start] = 0
h.init(key, n)

fori=1ton{
v = h.del()
ref = adj[Vv]




Prim’s MST (7/7)

prim(adj, start, parent) {
n = adj.last
fori=1ton
key[i] = o
key[start] =0
parent[start] = 0
h.init(key, n)

fori=1ton{
4V =h.del()

QO ref =adjjv] V=1L
> (5,3)~>(3,2)
ref




Prim’s MST (7/7)

prim(ad, start, parent) { ,While (ref 1= null) {
n = adj.last I w =ref.ver
fori=1ton [ if (hisin(w) &&
keyl[i] = o ' ref.weight < h.keyval(w)) {
key([start] = 0 ' parent[w] = v
parent[start] = 0 h.decrease(w, ref.weight)
h.init(key, n) } vie

fori=1ton{ '\ ref = ref.next

\

74V = h.del()

: }
@ ' ref=adj[v] V=1 2}
+>(53)->(32)|-4(24)...
]

ref




Prim’s MST (7/7)

prim(ad, start, parent) { ,While (ref 1= null) {
n = adj.last I w =ref.ver
fori=1ton [ if (hisin(w) &&
keyl[i] = o ' ref.weight < h.keyval(w)) {
key([start] = 0 ' parent[w] = v
parent[start] = 0 h.decrease(w, ref.weight)
h.init(key, n) } vie

w=3, wg MST
ref.weight=2
h.keyval(w)=3

fori=1ton{ '\ ref = ref.next

\

74V = h.del()

Q@ ref = adj[v] V71 } )
>(5,3)->(3.2) |-4(24)...
9

ref




Prim’s MST (7/7)

prim(adj, start, parent) { , While (ref I=null) { W=3, e I\fST
R 5 ref.weight=2

n = adj.last 1w =ref.ver h K 1(W)=3
fori=1ton i (huisin(w) && keyval(w)=

keyl[i] = o ; ref.weight < h.keyval(w)) {
key([start] = 0 parent[w] = v
parent[start] = 0 h.decrease(w, ref.weight)

vie:

h.init(key, n) }
fori=1ton{ ‘\ ref = ref.next
aV=hdel) }
QO ref = adj[v] V71 )
>(5,3)->(3,2) ?( ...

ref

his an abstract data type that supports the following operations
h.init(key, n): initializes h to the values in key
h.del(): deletes the item in h with the smallest weight and returns the vertex
h.isin(w): returns true if vertex wis in h
h.keyval(w): returns the weight corresponding to vertex w
h.decrease(w, new_weight): changes the weight of w to new_weight (smaller)




Implementation Hints

. Write a function to read the file to an adjacency matrix
. Write a function to convert the matrix to an adjacency list
a. Define the list node structure (vertex, weight, next)
b. Define a pointer array adj[] for list heads
c. Write an insert() function to insert a node to a specified list
d. Write a freeL.ist() function free all lists
. Define the structure of container h to store all nodes currently not in MST

a. An array vertices[] to store nodes
b. An array keys[] to store the minimal distance of vertices[] to the MST

. Define the array parent[] to store the MST

. Write a C function for the Prim algorithm of previous page

. Write an init() function to initialize the container h from key][]

. Write a del() function to find the node with minimal keyvalue in h and delete that
node/key

. Write an isin() function to test if a node is currently in MST

. Write a keyvalue() function to return the key value of specified node in h

10. Write a decrease() function to modify the keyvalue fields for all neighboring
nodes of the node being deleted from h




