What Is a “Better” Program?

C++ Object Oriented Programming
Pei-yih Ting
NTOU CS

B Al 12

Y8 CESEUE B FRER - B i B
A F PeE AR

*'flﬂ‘/:it@. 55—“’ %=,
L gt Eﬁ‘;j&%&_

x Coding styles
* test-driven

v SRR HEN)

Source Code Is the Primary Document

+ Jack Reeves, C++ Journal, 1992, “What is Software Design?”
“After reviewing the software development life cycle as
| understood it, | concluded that the only software
documentation that actually seems to satisfy the criteria
of an engineering design Is the source code listings.”

< The design of a software project is an abstract concept:

x |t has to do with the overall shape and structure of the program

as well as the detailed shape and structure of each module, class,
and method.

x |t can be represented by many different diagrams and media, but
Its final embodiment is the source code.

< Source code Is the design

Goals

¢ EE- B AR > AT Y E
8l .1 C 47 3¢

N K//Tj 3 Eir'-l—7 <4 if_ T — gLL’)’) #L f”‘}*"‘ g‘!;')')')

+ “4F7? (in terms of test, debug, review, and extension)
L 370 R BHEE G R R8T R RS L
2. Self-explaining
3. frBL A [eiE (TR - K
4 ?%fﬁsi,xg/}ieiﬁ%
L F E A EORE

> TAEM AN TG - By E kS
A o ST S R R ALE A

Version 1

17 while (e<d2)

18 {

19 If (*e<*p) p=e¢;
20 e++;

21 }

22 n=*p;

23 *p = *di;

24 *dl =n;

25 dl++;

26 }

27 printf("Sorted data:\n");
28 dl=d;

29 while (d1<d2)

30 printf(" %d", *d1++);
31 printf("\n");

01 #include <stdio.h>
02
03 void main()
04 {
05 intd[] =412, 3, 37, 8, 24, 15, 5, 33},
06 Intn=28;
07 int*d1, *d2;
08 int *p;
09 iInt *e;
10
11 dl=d;
12 d2 =d+n;
13 while (d1<d2)
14 {
p=di;
e=dl+1;

Execution Results

Sorted data:
358 12 15 24 33 37

d DA R

What Is this program doing?

Initial view
< Input array initialized with unordered integers

< Two layers of while loops
< Some pointers to the elements of the array

< Another while loop for output the results

Don’t like 1t11??

Pointers

Generic while loops

Variable names (identifier means nothing)

Deep control structures

Looks like a snippet of low level assembly instructions

Remove Unnecessary Pointers

< Pointers are sophisticated and sometimes inevitable, but
not always.

< In the case of accessing memory blocks, pointers are
extraneous, use array whenever possible.

< Array has much better semantic meaning than the generic
pointer dereferencing.

Int array[100],
Int *ptr=array,
Int I, sum = 0;

Int array[100];
Int I;
Int sum = 0;

for (1=0; 1<100; 1++)
sum += array[i];

for (i=0; 1<100; I1++)
sum += *ptr++;

Version 2

17 j=]+1;

18 }

19 j = d[K];

20 d[k] = d[i];

21 d[i] =j;

22 I=i+1;

23 }

24 printf("Sorted data:\n");
25 i=0;

26 while (i<n)

27 {

28 printf(" %d", d[i]);
29 1=1+1;

30 }

31 printf("\n");

321}

01 #include <stdio.h>
02
03 void main()
04 {
05 intd[] ={12, 3, 37, 8, 24, 15, 5, 33},
06 intn=S8§;
07 inti,], k;
08
09 1=0;
10 while (i<n)
11 {
12 k=1;

j=1+1;

while (j<n)

{

It (dlj]<d[K]) k =J;

Flowchart of the Program

no

l yes
| stop |

Is this graph tell you more?

Meaningful Identifiers

< A program Is composed with a language. Just like any
language in your daily life, language itself should tell
good stories when used properly.

<~ Why does the version 1 or version 2 program look like
gibberish to a well trained programmer?

< Are the identifiers used meaningful??
e.g.

Hw ds Jhn Ik th stk?

How does John like the steak?

Version 3

01 #include <stdio.h> R
02 (18 if (data[j]<data[min]) min =j;

03 void main() | ég j=i+
04 { | }

: 121 swapTmp = data[min];
05 Int data[] — {12, 3, 37, 8, 24, 15, 5, 33},|22 data[min] — data[l],

06 Int ndata = sizeof(data) / sizeof(int); 193 data[i] = swapTmp:
07 inti,j; avoid magic constants 94 i=i+1:

08 Int min; :25 }

09 intswapTmp; 126

10 127 printf("Sorted data:\n");
11 i=0: 128 1=0;

12 while (i<ndata) 129 while (i<ndata)

130 {
14 min=i 131 gl wal’s CRtE| 1)
5 =i+l 132 1=ird
by 133}
16 while (J<ndata) |34 printf("\n");
35}

13 {

Advanced View of the Codes

Initial view

< Input array initialized with unordered integers
< Two layers of while loops

< Some pointers to the elements of the array

< Another while loop for output the results

Is it changing?
< Input array Initialized with unordered integers

< Two layers of while loops, the outer one prepares ndata sub-arrays,
the inner one goes through each sub-array to find something
minimum

< A snippet of memory swapping code
< Another while loop for output the results

More Meaningful Language Construct

<~ While loop is the most generic repetition construct in C language
Initialize the loop condition (let’s not even think of goto)
while (condition)

{

¥

the condition might change inside the loop

<+ When you see this construct in a program, you expect some sort of job
repetition, maybe an easy one or a complex one.

< For loop iIs a more semantically specific repetition construct in C
language --- repeat for a predetermined number of times
for (1=0; i<count; i++)

1
¥

Version 4

18 swapTmp = data[min];
19 data[min] = data[i];

20 data[i] = swapTmp;

21 }

22

23 printf("Sorted data:\n");
24 for (1=0; i<ndata; 1++)
25 printf(" %d", data[i]);
26 printf("\n");

27 }

01 #include <stdio.h>

02

03 void main()

04 {

05 intdata[] = {12, 3, 37, 8, 24, 15, 5, 33};
06 int ndata = sizeof(data) / sizeof(int);

07 inti,j;

08 Int min;

09 intswapTmp;

10

11 for (i=0; i<ndata; i++)

12 {

13 min = I;

14 for (j=i+1; j<ndata; j++)

15 {

16 If (data[j]<data[min]) min = j;
17 }

Code That Further Illustrates Itself

< Function is a powerful construct to abstract ideas, not
just a utility for saving your typing time or some sacred
code-reuse purpose.

--- Version 5

< Construct of “loop inside a loop” Is somehow beyond the
concrete control of human mind. A single layer of “loop”
IS better for most people to visualize in mind.

--- Version 6

Version 5

01 #include <stdio.h> 116
02 117
I18
119
1 20
05 121
06 void main() 122
123

03 void swap(int *, int *);
04 void printArrayContents(int [], int);

07 {

08 int data[] = {12, 3, 37, 8, 24, 15, 5, 33};, gg }

09 iInt ndata = sizeof(data) / sizeof(int); 1

11 int min; 128
12 129
13 for (i=0; i<ndata; i++) :2(1)
14 {

min =1,

l
I32}

for (j=i+1; j<ndata; j++)
{
If (data[j]<data[min]) min = j;

by
swap(&data[i], &data[min]);

}

printArrayContents(data, ndata);

26 void swap(int *x, int *y)
10 inti, j; :27{

int tmp;
tmp = *X;
*x::*y;
*y = tmp;

Version 5 (cont’d)

33

34 void printArrayContents(int data[], int ndata)
354

36 Inti;

37 printf("Sorted data:\n");

38 for (1=0; i<ndata; i++)

39 printf(" %d", data[i]);

40 printf(*\n");

41}

Version 6

01 #include <stdio.h>

02

03 void selectionSort(int[], int);

04 void findMinimumOfAnArray(int[], int);
05 void swap(int*, int*);

06 void printArrayContents(int[], int);

07

08 void main()

09 {

10 intdata[] = {12, 3, 37, 8, 24, 15, 5, 33};
11 int ndata = sizeof(data) / sizeof(int);
12

13 selectionSort(data, ndata);

14 printArrayContents(data, ndata);
15}

16

Version 6 (cont’d)

17 void selectionSort(int data[], int ndata)
18 { suitable level of details
19 inti

20~ ~for (i=0; i<ndata; i++) =
21, putMinimalElementinPlace(&data[i], ndata-i);

-

36 void swap(int *x, int *y)
374

38 Inttmp;

39 tmp =*X;

40 *x=7y;

41 *y =tmp;

42 }

43

R4

\..

23

24 void putMinimalElementinPlace(int data[], int ndata)
25 {

26 Inti, min;

27

28 min=0;

29 for (1=1; i<ndata; i++)

30 {

31 If (data[i]<data[min]) min =1,
32 }

33 swap(&data[0], &data[min]);
341}

35

1 44 void printArrayContents(int data[], int ndata)
145 {

: 46 iInti;

| 47 printf("Sorted data:\n");

1 48 for (i=0; i<ndata; I++)

149 printf(" %d", data[i]);

150 printf("\n");

"51}

Codes with a Conceptual Model

< Flowchart is no longer needed but definitely requires a
conceptual model for the codes to work with.

In each Iteration,

just pick the minimum
of the sub-array and
move It to the top

unsorted <
data

Who Is responsible of this task?

< The programmer or the program reader?

< When we read the version 1 of this program, there were
little clues In the codes that told us directly what the
program is doing.

< Although we figure out that this is a piece of code that
Implements the selection sort algorithm at last, it should
not take the original programmer too much effort to
produce a code snippet like version 6 and its
corresponding conceptual model which tell directly the
story of what the program is doing.

< A plece of code Is to Implement some engineering design,
simplicity 1s the best engineering principle. Try your best
to think and express ideas In an intuitive way. 22

Recursive Version

< Recursive version Is often the most expressive form of the
underlying algorithm.

void selectionSort(int data[], int ndata)
{
putMinimalElementinPlace(data, ndata);
If (ndata>2)
selectionSort(&data[1], ndata-1);

Efficiency Issues

< Using expressive name for all identifiers makes the
program much lengthier, easier to have typos, slow In
composing the program.
* Harddisk is cheap. Not necessary to think of space.
* |t Is easier for compiler to detect typo than using X, vy, z.
x Typing should not be the bottleneck.
* EXpressive programs are easier to compose, maintain, and extend.

< Excessive function calls take CPU time to transfer
arguments and to branch the control.
x Let the compiler worry about it --- use inline function.
< Using dedicated variables for independent tasks looks like
abusing memories.
* Let the compiler worry about it.
* Lesser bugs is a far bigger concern.

Assignments

< Bubble Sort

< Quick Sort

< Minimum Spanning Tree
< Tree Traversal

> ...

