
1

A C++ Program Example:
Three Bags

C++ Object Oriented Programming
Pei-yih Ting
NTOU CSE

2

A Simple Probabilistic Experiment

 Three paper bags, each bag is given two balls with colors shown in the
above figure

 We perform the following probabilistic experiment:
 Step 1: put balls into each bags
 Step 2: randomly choose a bag
 Step 3: randomly draw one ball out of the bag
 Step 4: if the color is red, then take the second ball out of the bag

otherwise stop the experiment
we want to find out the probability that the second ball is red at step 4

3

A Simple Probabilistic Experiment

Is the remaining ball red or white?

What is the probability of being red again?

Pr { 2nd is red | 1st is red } =
Pr { 1st is red and 2nd is red }

Pr { 1st is red }

=
Pr { 1st bag is picked }

Pr { 1st bag picked and 1st ball is red } + Pr {2nd bag picked and 1st ball is red }

=
1/3

1/3 + 1/3 1/2
= 2/3

4

A Program Written in C (1/3)
 Let’s try simulating this experiment and caculating the

probability by the so called Monte Carlo method
 Converting the problem specification into C

 Let’s do the experiments 10000 times to estimate the probability
 a for loop

 Using a random variable in the range {0, 1, 2} to emulate the
random choice of a bag at step 2 variable draw1

 Using another random variable in the range {0, 1} to emulate the
random selection of a ball from the chosen bag at step 3

 variable draw2
 At each run of experiment, keep the count of those experiments

with the first selected ball being red variable totalCount
 At each run of experiment, keep the count of those experiments

with both balls being red variable redCount
 Take the ratio of redCount and totalCount to be the result

5

A Program Written in C (2/3)
04 #include <stdio.h>
05 #include <stdlib.h>
06 #include <time.h>
07
08 void main()
09 {
10 long i;
11 int draw1, draw2, choice, tmp;
12 long totalCount=0L,

redCount=0L;
13
14 srand(time(NULL));
15 for (i=0; i<100000L; i++)
16 {
17 draw1 = rand() % 3; // pick a bag out of the three
18
19 if (draw1 == 0) // (Red, Red)
20 {
21 totalCount++;
22 redCount++;
23 }

24 else if (draw1 == 1) // (Red, White)
25 {
26 draw2 = rand() % 2;
27 if (draw2 == 0) // the first is Red
28 totalCount++;
29 else // the first is White
30 /* do nothing */;
31 }
32 }
33
34 printf("Pr(2nd is red | 1st is red)=%lf\n",
35 (double)redCount / (double)totalCount);
36 }

Output:
Pr(2nd is red | 1st is red)=0.665299

6

A Program Written in C (3/3)
 Is the conversion process from the problem specification to

a C program direct and trivial? NO
 If you just read the C program alone, can you reconstruct

the problem easily and exactly? NO
 There are many missing pieces of the original problem

specification in the above C program.
 100000 experiments mixed together (without my explanations,

some might have a wrong picture of what the program actually
does) Variables totalCount and redCount are something not in the
original problem specification.

 Meaning of variables draw1 and draw2 are a little bit intriguing.
 There is no bag appearing in the program.
 No codes are associated with the case that the bag with two white

balls is selected.

7

The Same Program Written in C++
 Model the problem in the application domain (the problem

domain) with minimal transformation to the computer
technical domain

 Identify all objects, describe their functionalities and inter-
relationships, categorize them, extract common
characteristics
 Experiment (Game)

 contain three bags
 random selection of a bag

 Bag
 contain zero, one, or two balls
 random selection of a ball inside

 Ball
 color

8

The Same Program Written in C++
 Characterize the usages of the overall system: these usages

would integrate the functionalities of the above designed
set of objects (classes) (Use cases, Scenarios)
 Perform an experiment: requires the participation of three bags,

each bag has two balls with color as specified, select a bag, then
select a ball, check its color, if red, check the color of the second
ball

 Perform the above experiment for 100000 times and keep the
statistics

 Use existing/common OO architecture or components to
implement the designed architecture.

 Move on to customized OO programming.
OOA OOD OOP

bottom-up programming methodology

9

Game Class
041 ---------------- 2:Game.h ----------------
042
043
044 #ifndef game_h
045 #define game_h
046
047 #include "Bag.h"
048
049 class Game
050 {
051 public:
052 Bag *getABag();
053 Game();
054 ~Game();
055 private:
056 Bag *m_bags[3];
057 };
058
059 #endif

062 ---------------- 3:Game.cpp ------------
063
064
065 #include "Game.h"
066 #include "Bag.h"
067 #include <stdlib.h> // rand()
068
069 Game::Game()
070 {
071 m_bags[0] = new Bag(0,0);
072 m_bags[1] = new Bag(0,1);
073 m_bags[2] = new Bag(1,1);
074 }
075
076 Game::~Game()
077 {
078 int i;
079 for (i=0; i<3; i++)
080 delete m_bags[i];
081 }
082
083 Bag *Game::getABag()
084 {
085 return m_bags[rand()%3];
086 }

10

Bag Class
089 ---------------- 4:Bag.h ----------------
090
091
092 #ifndef BAG_H
093 #define BAG_H
094
095 class Ball;
096
097 class Bag
098 {
099 public:
100 Ball *getABall();
101 void putBallsBack();
102 Bag(int color1, int color2);
103 ~Bag();
104 private:
105 Ball *m_balls[2];
106 int m_numberOfBalls;
107 };
108
109 #endif

112 ---------------- 5:Bag.cpp ----------------
113
114
115 #include "Bag.h"
116 #include "Ball.h"
117 #include <stdlib.h> // rand()
118
119 Bag::Bag(int color1, int color2)
120 : m_numberOfBalls(2)
121 {
122 m_balls[0] = new Ball(color1);
123 m_balls[1] = new Ball(color2);
124 }
125
126 Bag::~Bag()
127 {
128 delete m_balls[0];
129 delete m_balls[1];
130 }
131

11

Bag Class (cont’d)
132 Ball *Bag::getABall()
133 {
134 if (m_numberOfBalls == 0)
135 return 0;
136 else if (m_numberOfBalls == 1)
137 {
138 m_numberOfBalls = 0;
139 return m_balls[0];
140 }
141 else
142 {
143 int iPicked = rand()%2;
144 Ball *pickedBall = m_balls[iPicked];
145 if (iPicked == 0)
146 {
147 m_balls[0] = m_balls[1];
148 m_balls[1] = pickedBall;
149 }
150 m_numberOfBalls = 1;
151 return pickedBall;
152 }
153 }

154
155 void Bag::putBallsBack()
156 {
157 m_numberOfBalls = 2;
158 }

This design and implementation are
problematic. When you get a ball
from a bag, the ownership of the
ball is better naturally transferred.

12

Ball Class
161 ---------------- 6:Ball.h ----------------
162
163
164 #ifndef BALL_H
165 #define BALL_H
166
167 class Ball
168 {
169 public:
170 bool IsRed();
171 Ball(int color);
172 private:
173 int m_redWhite;
174 };
175
176 #endif

179 ---------------- 7:Ball.cpp ----------------
180
181
182 #include "Ball.h"
183
184 Ball::Ball(int color)
185 : m_redWhite(color)
186 {
187 }
188
189 bool Ball::IsRed()
190 {
191 if (m_redWhite == 0)
192 return true;
193 else
194 return false;
195 }

13

main()
001
002 ------------- 1:main.cpp -------------
003
004
005 #include "Game.h"
006 #include "Bag.h"
007 #include "Ball.h"
008 #include <stdlib.h> // srand()
009 #include <time.h> // time()
010 #include <iostream.h>
011
012 void main()
013 {
014 int i;
015 Game theGame;
016 Bag *pickedBag;
017 Ball *pickedBall;
018 int totalCount = 0;
019 int secondIsAlsoRed = 0;
020
021 srand(time(0));

022
023 for (i=0; i<100000; i++)
024 {
025 pickedBag = theGame.getABag();
026 pickedBall = pickedBag>getABall();
027 if (pickedBall>IsRed())
028 {
029 totalCount++;
030 if (pickedBag>getABall()>IsRed())
031 secondIsAlsoRed++;
032 }
033 pickedBag>putBallsBack();
034 }
035
036 cout << "The probability that remaining

ball is red = "
037 << ((double)secondIsAlsoRed/totalCount)

<< "\n";
038 }
039
040

14

Some Observations
 Lengthier codes
 More functions
 Slower (maybe)
 There is a clear conceptual architecture for the program:

the static object model

:Game

:Bag :Bag

:Bag

:Ball

:Ball

:Ball

:Ball:Ball :Ball

Game BallBag
1

3

1
0..2

This is not a standard graph.

15

More Observations
 Bottom-up design: some of the functions of an object

might not even be used in this particular application.
Ex. the Complex class in the lab

 The functions and data of each class/object are self-
contained.

 The data coupling and control coupling between an object
and other objects are designed to be minimal. Objects
interact with each other through constrained interface
functions.

 Software operations mimic the physical functions of the
original real world problem.

 The overall program functionalities are provided by a set
of cooperating objects.

16

Even More
 Many consumer products are designed with cooperating parts: e.g.

 Car: engine, fuel system, wheels, transmission, steeling, bucket seats, …
 Computer: CPU, MB, RAM, HD, display interface, keyboard/mouse, screen

 ++ Just a little engineering common sense would tell you how to
maintain or repair a car/computer when it breaks down – find out
which part is not functioning well and replace it with a good one.

 ++ The quality control of manufacturing each part is much easier.
 –– The design of such a product with many replaceable parts are not

trivial. It certainly increases the design/manufacturing cost and thus
the price/competitive capability of the product.

 ++ However, you can see that this is a cost efficient strategy to
make a product work for a few years and your customers satisfied.

 Ask yourself a question: Is the technology not good to glue
everything together as a whole? to make the product more
monolithic, more tasteful, more handy, more style of future

17

Summary
 There are many OOA / OOD methodologies since ’80s.
 After a major unification of Jacobson, Booch, and

Rumbaugh in the ’90s, we have the UML, Unified
Modeling Language for describing the OO design artifacts
and the design process (the methodology) associated with it.

 In this course, we will focus on OOP, especially on how
C++ provides features for implementing your OO design.

 We will try to elaborate those OO concepts provided by the
implementation language: namely, objects, abstraction,
interface, encapsulation, inheritance, polymorphism,
generic programming (the templates), and exceptions.

 You are encouraged to browse the OOA, OOD stuffs.

