Common Memory Errors

C++ Object Oriented Programming
Pei-yih Ting
NTOU CS

Main Categories of Errors

<+ Memory leakage

allocate, allocate, allocate without free
<+ Unallocated memory

use memory without preparation
<~ Memory corruption

underrun / overrun your buffer, runaway pointer

<+ lllegal access
use memory after you free it, runaway (wild) pointer,
null pointer access

Early Versions of Microsoft Windows System/ Tools are
good examples, you blame the M$ company for it, but you
are following suit unconsciously

Your First Memory Trap In C

< Passing an arbitrary integer as the address

< Example:
Int X=0;

scanf(*'%d", x);
x Often cause illegal memory access, fortunately, abort
the program execution on the spot

* Sometimes, unfortunately, this error does not halt the
program right at this line

x Should be scanf("%d", &X);

Where 1Is the address?

< Case 1. address got lost
{

char *leakagel;
leakagel = (char *) malloc(5*sizeof(char));

¥

// There is no way to access that 5-byte memory any more.

< Case 2: address got overwritten

char *leakage2;
leakage2 = (char *) malloc(5*sizeof(char));

leakage2 = "hello";

Cause memory leakages, some of your virtual memory will not be
used by your process anymore? Your program is going to crash
someday for insufficient resources. Don’t blame the system for it!

Use Memory W/O Allocation

<+ Oh! Make sure the chair is in place before you sit down!!

< Case 1. reading something out of the air

char *msg;
printf("%s\n", msg); // printing something, but WHAT is it?

< Case 1"

Int *ptr;
somefun(*ptr);
< Case 2: writing something into the air

char *buffer;
strcpy(buffer, "some data™); // where do you think you copy to

scanf("'%s", buffer); // where do you think you read into
<+ Case 2"

Int *ptr;
*ptr = 10;

Use Memory W/O Allocation

<~ Sometimes CAUSE

* Illegal memory access

& |f the memory address is 0 or pointed to somewhere you have
no right to read/write in the memory

& Turbo C/ Borland C famous error: null pointer assignment

* Unexpected (but legal) memory content changes

& Wild pointers: your code might overwrite some useful data in
the program (maintained by yourself or by your teammate)

< They are all RUN TIME errors. Most troublesome, they
are not necessarily halting on each execution or on a
specific line of code

Overrun The Buffer

< The notorious BUFFER OVERFLOW attacks:

* created daily, casually by numerous naive, benign programmers

* Do NOT think that you ruin at most your program only!!
If your program is privileged, you open your system up!!

< Case 1:

char *buf;
buf = (char *) malloc(5*sizeof(char));
strcpy(buf,"abcde");

< Case 2:

Int data[1000], i;

for (i=0; i<=1000; i++) although still not harmful in
data[i’] = ’ -~ these two example cases.

You must have destroy something useful in the memory!!

CERT Advisories

< http://www.cert.org/advisories

+ Starting from 1988, Buffer Overflow vulnerabilities are the most
common break-1n courses.

< 2003 Jan-Mar: 7/13 advisories are about Buffer Overflow
* CA-2003-12 :Buffer Overflow in Sendmail Mar 29 2003

* CA-2003-10 :Integer overflow in Sun RPC XDR library routines

Mar 19 2003

*x CA-2003-09 :Buffer Overflow in Core Microsoft Windows DLL
Updated Mar 19 2003

* CA-2003-07 :Remote Buffer Overflow in Sendmail Mar. 3, 2003
* CA-2003-04 :MS-SQL Server Worm(SQL Slammer) Jan 25 2003

*x CA-2003-03 :Buffer Overflow in Windows Locator Service
Jan 23 2003

* CA-2003-01 :Buffer Overflows in ISC DHCPD Minires Library
Jan 15 2003

Example: Changing the control flow

< What is the output of the following program? ~ =/>TEM

void function(int a, int b, int ¢) { HIMEM
char buffer[5]; &C
Int *ret; &b
ret = buffer + 28;

(*ret) += 10; “a

STACK

} N tampering statement —
Int main() {

INt X; .
X =0 butter buffer+28

function(1,2,3); int* ret —

Xx=1;

i printf(*'x = %d\n"*,x); // unmodified by x=1;!!
retaddr+10 return O:

} Output: x =0

Example: modified function pointer

void funl() { void fun2() {

} \
typedef void (*FP)();
void main() {

FP fp;

char buffer([8];

fp = funi;

/— tampering statement
*(FP *)(buffer-4) = fun2;
/I or *(char**)(buffer-4) = (char *) fun2;

} (fp)();¥ Which function does it call?

Buffer Overflow Attack

< Cause the program to jump to somewhere?
void function(int a, int b, int ¢) { (l

HIMEM

&C
&b

char buffer[5],

detStentfdyffer + 28; (*ret) +=1

—_—

INt X;
X =0;

function(1,2,3);
Xu: 1.' (1.23) buffer —

retadar+ 10[printf(*'x = %d\n" x); // unmodified by x=1;!!
retaddr+10 return O

}
< What happened if the destination has a segment of

malicious code!!!

‘ 2
oo
i e Problematic statement &a :m

Unsafe functions in C library

< strcpy(char *dest, const char *src);
< strcat(char *dest, const char *src);
<+ getwd(char *buf);

< gets(char *s);

<+ fscanf(FILE *stream, const char *format, ...);
< scanf(const char *format, ...);

<+ sscanf(char *str, const char *format, ...);

< realpath(char *path, char resolved_pathl[]);
< sprintf(char *str, const char *format, ...);

<+ syslog

< getopt

String Operations Without \0'

< Cause buffer overflow
char bufl[5], buf2[5];
bufl[0] ="a’;
bufl[1l] ='b";
strcpy(buf2, bufl); // don’t know what would happen,
// buf2 most probably overwritten

printf(*%s\n",bufl); // don’t know what would happen,
/[the printf statement does not just print
// out “ab” but “ab(*&%M$SNE*N...”

Underrun The Buffer

< Case 1:

char *buf;

buf = (char *) malloc(5*sizeof(char));
... buf-- ... buf-- ...

*pbuf ="\0'";

< Case 2:
char buf[5];

buf ——

buf-2 —

Extraneous pointer usages are evil.

*(buf - 2) = 2"
< Case 3:

Int X;
char y[4];
scanf("%d", &x); scanf("%d", &y[2]);

Probe into the Memory

< Using compiler listing to see the memory layout

// cl [FatestBuf.asm testBuf.c

#include <stdio.h> 10

void main() x=10

{ &x=0012FF7C &y=0012FF78 &y[2]=0012FF7A
: 00 00 00 00 0a 00 00 00

It x; 88 00 14 00 00 00 00 00

char y[4]; = 90

scanf(*'%d", &X);

printf("x=%d\n", x);

printf("&x=%p &y=%p &y[2]=%p\n", &X, Y, &Y[2]);

printf(*%02x %02x %02x %02x %02x %02x %02x %02x\n",

y[01.y[11.y[2].y[3].y[41.y[51.y[61.Y[7D);

scanf("%d", &y[2]);

printf("%02x %02x %02x %02x %02Xx %02x %02x %02x\n",
~y[0Ly[1]yl[2],y[3].y[4].y[5L.y[6].y[7]);

printf("x=%d %d\n", x, *((int *)&y[2]));

@ test - Mic

JEile Edit View Insert Project Build Tocls Window Help
[ER=2 =0 N

[[cctobats) — E[(al

4

(1%
Export Makefile...

Set Active Project
Add To Project

Dependencies...

=&

+-*12 CAboutDlg
#-*% CChildFrame

't: CMainFrame
+£-®5 CTestApp

Insert Project into Workspace...

‘BJect Sertings

Settings For: |win32 Debu ~ |

i L WINDOWS" (D "_AFXDLL"/D"_MBCS™
<.|'FA5 {Fa" Debug iFp" Debugitest pch™ Yu"stdafx.h"

General | Debug | CICH | Link | Resources | MIDL H[

Cahs General LI BReset
General

Warning ley C++ Language tions:
Code Generation

ILeveI 3 Customize . Debug) N

‘ate browse info

L Warningfohtimizations

Precompiled Headers

Debuq info

General | Debug GG+t | Link | Resources | MIDL |$ >

El

Category: |Listing Files Reset |

[T Generate browse info

Intermediate browse info file destination:

I~ Exclude local variab@*n browse info
Listing file type:

Assembly with Source Code

Listing file name:
Debug!

Project Options:
inologo IMDd W3 1Gm IGX IZ110d ID "WIN32" ID

Compiler Assembly Listing

$SG772 DB '%d', OOH
$SG776 DB '%d', OOH yiomm il
X$=-4 A

_y$=-8 78
" E yz

lea eax, DWORD PTR x$[ebp] O

push eax y S |
oush OFFSET FLAT:$SG772 scanf("%d", &x);

call scanf

lea ecx, DWORD PTR _y$[ebp+2] ™

push ecx YR L :
oush OFFSET FLAT:$SG776 - scanf("%d", &y[2]);

call _scanf

Free Buffer Twice

< Cause runtime memory management internal error

char *buf;
buf = (char *) malloc(5*sizeof(char));
free(buf);

free(buf);

char *buf;
buf = new char[200];
delete[] buf;

delete[] buf;

lllegal Free

<+ Free an address not previously allocated:

char *buf, *ptr;

buf = (char *) malloc(5*sizeof(char));
ptr = buf; ... ptr++; ... ptr--; ... ptr++; ...
free(ptr);

< Free an automatic variable, a static variable, or a global
variable:
char *ptr, array[100],

ptr = array;
free(ptr);

[llegal Free (cont’d)

<+ Free null pointer:
char *buf=0;
free(buf);

< Free a character string constant

char *buf;
buf = (char *) malloc(6*sizeof(char));

buf = "hello":

free(buf); // buf now contains the address of the string constant

Assess Freed Memory

< Case 1:

char *buf;
buf = (char *) malloc(5*sizeof(char));

fre.él(buf);
strcpy(buf, "memory bomb");

+ Case 2.
char *fun() { char *dataPtr, buf[20];
char *ptr, buf[10]; dataPtr = func();

ptr = buf; strc.:.p.y(buf, dataPtr);

return ptr;
1 strcpy(dataPtr, buf);

< 1t IS a common practice to forget free(ptr);
any freed pointer contents otr = 0;

Dangling Pointers

< You might think that you would never commit the stupid
errors In the previous slide.

<~ Modified case 1:

char *buf, *buf2;
buf = (char *) malloc(5*sizeof(char));
buf2 = buf; // save the pointer somewhere else

fre.e"(buf);

str(.:.p.y(bufZ, "memory bomb through the dangling pointer"),

Pointer Arithmetic Error

int (*ptr)[10], buf[20][10];

ptr = buf;
*(int *)(ptr + 199*sizeof(int)) = 20; // Is it buf[19][9]?

// should be ptr[19][9] = 20;
/] or *((int *)(ptr + 19) + 9) = 20;
/] or *((int *)ptr + 199) = 20;

Careless pointer arithmetic produces wild pointer

Stack Overrun

+ Case 1: large auto memory blocks
void func()

{
double image[2000][2000];

}

* Compiler would generate the code and hope that your
system have this number of virtual memory allocated as
the runtime stack

2000*2000*8 = 32 M bytes
* Visual C++ uses 1 M bytes stack as default, you can use
/[F2000000 to set the stack size as 2000000 bytes
2

4

Stack Overrun

< Case 2: deep recursive function call
void bizarrePrint(int n, int buf[]){
Int localBuf[1000]; Int I;
Int I, pivot; Int buf[2000];
if (n==1){ for (i=0; 1<2000; i++)
printDigit(n, buf); bufi] = i;

return; bizarrePrint(2000, buf);

¥

else {
for (i=0; i<5; i++) {
pivot = n*i/5;
copyDigit(localbuf, n/5, &buf[pivot]);
bizarrePrint(n-1, localbuf);

}
1 2000 * 1000 * 4 = 8 M bytes

Unchecked Memory Allocation

< Case: malloc() might fall
Int I, *ptr;
Int n = 25000;
ptr = (int *) malloc(n*sizeof(int));
for (1I=0; I<n; I++)
ptr(i] = 1;
x Cause illegal memory access if the allocation failed

Detecting Memory Errors

<+~ MFC DLL

<+ VC++ Runtime Support
< Electric Fence

< Wpr

< stack guard

< gcc (a version of It)

<~ object counts

< Memory checking API
< Valgrind on Ubuntu

Using MFC DLL

< #include <afx.h> in all your source files (at least the file

that contains main())

< Using new/delete instead of malloc/free

< Check out MFC DLL |Prot Seitings

Settings For: WinSZ Debu l General | Debug | CIC++ | Link | Resources

o est - Mlcrosoft Visual C++
JJ Eile Edit View Insert Broject Build Tools Window Help

m i) »

B test classes ,
=2 CAboutDlg Alt+F/
=-®% CChildFrame
= ™2 CMainFrame
= ™2 CTestApp
o %= CTestDo

Microsoft Foundation Classes:

GY e —
I

Not Using MFC

Use MFC in a Shared DLL
— Infermediate files; ___——

Debug

Using MFC DLL

& Source

#include <afx.h>

void main() {
Int *ptr;
ptr = new int[100];
ptr[0] = 1;

h

<~ Sample error messages

Detected memory leaks!

Dumping objects ->

{45} normal block at 0x003426C0, 400 bytes long.

Data: < >0lL000000CDCDCDCDCDCDCDCDCD

Object dump complete.

VC Runtime Leakage Detection (1/5

< memory_leak.h Stepl: Initially set to zero, such that
: the memory manager would
‘ not break at any allocation.
itndef MEMORY LEAK H Step2: set to a desired leakage object
#define MEMORY _LEAK_H number so that the program
/* 1 to test for memory leaks */ breaks at the allocation of that

#define TEST_MEM_LEAKS 1 % object (you can identify which

fitdef TEST_MEM_LEAKS *_ object is leaked in this way)
/* allocation # at which to break */

#define TEST MEM_LEAKS BREAK NUM 0

/* 1 to break at an allocation*/
#define TEST_MEM _ LEAKS BREAK 1

void set_initial_leak_test();
#endif
#endif

VC Runtime Leakage Detection (2/5)
< memory_leak.cpp

#include ""'memory_leak.n"

#include <stdio.h>
#include <crtdbg.h>

void set_initial leak test(){
Int tmpFlag;

[* set flag to automatically report memory leaks at image exit */
printf(*"\n[Leak test being performed]\n™);

tmpFlag = _CrtSetDbgFlag(CRTDBG_REPORT FLAG);

VC Runtime Leakage Detection (3/5)

< In your program:
Step 1: #include "memory_leak.h"
Step 2: call set_initial leak test() at the start of main()
Step 3: #define TEST_MEM_LEAKS BREAK_NUM 0
Step 4: compile your program, run your program

Step 5: observe the leakage report, ex. cl /MLd /Zi ...

Leak test being performed]

Detected memory leaks!

pDumping objects ->

{103} normal block at 0x009C6108, 10 bytes long.
Daia: < >CDCDCDCDCDCDCDCDCDCD
Object dump complete.

Step 6: #define TEST_MEM_LEAKS_BREAK_NUM 103

VC Runtime Leakage Detection (4/5

Step 7. compile your program, run your program again
Step 8: your program should now break at the allocation
of that specified object. If you start the debugger

test memory leak.exe - JEATEF 55 X

Q JE R & 144 unknown software exception (0x80000003) fA-frE& 0x00402080 o

you can use call stack to see where your program
allocates the leaked storage.

VC Runtime Leakage Detection (5/5

Step 9: If you don’t start the debugger, you will observe

the leakage report
[Leak test being performed]
Detected memory leaks!
Dumping objects ->
{102} normal block at 0x009C60D0, 10 bytes long.
Data: < >CDCDCDCDCDCDCDCDCDCD

{64} normal block at 0x009C2C80, 10 bytes long.

Data: < >CDCDCDCDCDCDCDCDCDCD
{63} normal block at 0x009C2C48, 10 bytes long.

Data: < >CDCDCDCDCDCDCDCDCDCD
Object dump complete.

Press any key to continue

Memory Checking Win 32 API

#include <windows.h> // or #include <afx.h>
void mem() {
MEMORYSTATUS stat;
GlobalMemoryStatus(&stat);
printf ("%ld percent of memory is in use.\n",

stat.dwMemorylL oad);
printf("TotalPhys=%d AvailPhys=%d\n",

stat.dwTotalPhys, stat.dwAvailPhys);
printf("TotalVirtual=%d AvailVirtual=%d\n",

stat.dwTotalVirtual, stat.dwAvailVirtual);

DO NOT BE A NUISANCE!

< Naturally you don’t want to be a TROUBLE In a group

< If everybody knows that you are a trouble, everybody can
get used to It through some kinds of accommodation.

<+ Sometime, It Is even worse that you are a trouble but you

don’t know It.

< Having a programmer In a software team that ABUSE the
memory In any of the previously listed ways Is painful.

< The biggest problem is that he Is completely unaware of
his blunder because the errors most likely do not show up
Immediately and he keeps generating bugs and even
accusing others for the bugs.

Some C++ Memory Errors

< Unmatched new/new|[] and delete/delete[]
< Pointer type coercion might change the values of stuct

< Allocating memory for data members without designing
copy constructor, assignment operator, and destructor.

< Missing virtual destructor in the base class.

< Incorrect down cast

Implementing Object Counts

< Sometimes, without the help of tools, you would like to
monitor at run time whether your program has any
unreleased objects and avoid memory leakages from the

ground up.

< Implement with class variable

class MyClass {
public:
MyClass();
~MyClass();
static void printCounts();

private:
static int objectCounts;

3

|nt MyClass::objectCounts=0;

MyClass::MyClass() {
objectCounts++;

s

MyClass::~MyClass() {
objectCounts--;

}

void MyClass::printCounts() {
cout << "Class MyClass "

“active objects: "
<< objectCounts << endl;

38

