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Introduction
 Coding styles are enforced by disciplined programmers to

 enhance better readability
make the codes talk clearly
 promote code sharing 
 promote pair programming (peer review)
 add extensibility

 reduce subconscious coding errors
 Coding styles are not specified by the language syntax and 

therefore are NOT enforced by the compiler
 A software programmer would like to save his time and 

make more money.  He does not want to be trapped by 
repetitions of some common errors.  A compiler sets up 
only the minimal requirements of the codes.  Do not get 
satisfied by fulfilling the requirements of the compiler!!
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Introduction (cont’d)
 Computer programs are generally more difficult to read

than to write (even one's own code is often difficult to read 
after it has been written for a while). 

 Software that is not internally or externally documented
tends to be thrown-away or rewritten after the person that 
has written it leaves the organization (it is often thrown-
away even if it is documented). 

 Programming languages are designed more for 
encouraging people to write code for a compiler to 
understand than for other people to understand

 Some people do write readable C programs, but it is 
definitely a hard-learned skill rather than any widespread 
natural ability 4

Introduction (cont’d)
What I am going to ask you to do in the 

following slides is somewhat still minimal

Write a “self-documented” program
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Introduction (cont’d)
 Is a program “self-documented” sufficient to keep it easy 

to be understood or maintained or just not thrown away? 
 NOT, there is always something that can not be expressed well 

by the program itself.
 Better described with

Natural language
 Examples or Scenarios
 Event flows
 State charts
Data flows
 Static / dynamic relationships of objects
High-level control flows …

 A “self-documented” program is somewhat equivalent to a 
low-level control flowchart (sometime a high-level one)
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Free Format?
 Which one is better understood?

void updateCRC(unsigned long *crc32,unsigned char *
buf,int len){int i,j;unsigned char b;for(i=0;i<len;
i++){b=buf[i];for(j=0;j<8;j++){if((*crc32^b)&1)*crc32
=(*crc32>>1)^0xedb88320L;else *crc32>>=1;b>>=1;}}}
void updateCRC(unsigned long *crc32, 

unsigned char *buf, int len) {
int i, j; unsigned char b;
for (i=0; i<len; i++) {

b = buf[i];
for (j=0; j<8; j++) {

if ((*crc32 ^ b) & 1)
*crc32 = (*crc32 >> 1) ^ 0xedb88320L;

else
*crc32 >>= 1;

b >>= 1;}}}
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Free Format?
 Is this a clear program segment?

for(;P("\n"),R-;P("|"))for(e=C;e-;P("_"+(*u++/8)%2))P("| "+(*u/4)%2); 

 Code alignments (using space and new line to form blocks)

for (i=0; i<10; i++)
{

statement1;
statement2;
….

}
 Literate Programming

 http://www.literateprogramming.com/
 programs should be written to be read by people

for (i=0; i<10; i++) {
statement1;
statement2;
….

}

8

Intern. Obfuscated C Code Contest
/* &R C 1988 entry which calculates pi by looking at its own area */
/* gcc -traditional-cpp -o westley westley.c */
#define _ -F<00||--F-OO--;
int F=00,OO=00;main(){F_OO();printf("%1.3f\n",4.*-F/OO/OO);}F_OO()
{

_-_-_-_
_-_-_-_-_-_-_-_-_

_-_-_-_-_-_-_-_-_-_-_-_
_-_-_-_-_-_-_-_-_-_-_-_-_-_
_-_-_-_-_-_-_-_-_-_-_-_-_-_-_
_-_-_-_-_-_-_-_-_-_-_-_-_-_-_
_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_
_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_
_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_
_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_
_-_-_-_-_-_-_-_-_-_-_-_-_-_-_
_-_-_-_-_-_-_-_-_-_-_-_-_-_-_
_-_-_-_-_-_-_-_-_-_-_-_-_-_

_-_-_-_-_-_-_-_-_-_-_-_
_-_-_-_-_-_-_-_

_-_-_-_
}
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deckmyn.c
#include<stdio.h>
#define c(C) printf("%c",C)
#define C(c) ((int*)(C[1]+6))[c]
main(int c,char
*C[])         {(C[c]=C[
1]+2   )[0]=   c(52*c(\
'C'+  '4'/4)    );for(c
=0;  c<491;++   c)for(*
*C=  C[1]['c'    +c]  =
0;*   C[0]<8;(    **  C
)++    )C[1][c+   'c']=
*(C[  1]+c+'c')+  C[1][
99+    c]+(C[1    ][**C
+8*c  +99]==32    );  (
*C)[4]=*C[2]==    75  ?
*((C[2]+=3)-2    )==70?
1:0:0;C(0)=C(    1)=c=0
;while(*C[2]?   C[2][1]
?*(C[2]+2)?1    :0:0:0)
{if( *C [2      ]>'w'){
C(1)=0;C[1]    [2]++;*C
[2]=0;}else   C(1)+=*C[
2]==58?2+(    C[2][3]&&
*(C[2]+3)<   'x'):*C[2]
=='s'?(C[   2][1]-=48):
*C[2]>=65  ?3-(*C[2]==\
'm'?1:0)  :1;C(0)=C(1)>
C(0)?C(1  ):C(0);c+=3;*
(C+2)+=3;}printf("  %d\

%d\n",        56+8*C(    0),80**(C[3]    ++))
;*C[2]=0       ;C[2]       -=c;*C[3]       =0;
while(C[3]      [1,- 1]--){;   for(  **
C=0     ;*      *C<          80;(**   C)++)  {C

[2]      -=3     **           C[3];   *C[3]   ++
=0;      *C[     3]          =**C>=  51||*   *C<
18       ||*     *C         %8!=2?0  :255   ;c(1
-1       );c     (*C       [3]);for(       (*C)[
1]      =0;(     *C)[    1]<3;(*C)[1]    ++)c(*C
[3      ]|((     *C)[  4]?**C>18&&* *C<42 ?C[1][
42     +*(*      C+1)    +3***C]:0: **C>=  11&&*
*C     <64?      ~C[1 ][   7***C+97 +(*C)[  1]]:
0)   );c(       *C[3 ]++)   ;for(C (1)=0;   (C(
2)   =C(1       ))<C (0);)   {(*C) [2]=C   [2][
1]  -49;        c=(* C[2]<=   63); c=(*   C)[0]
-4  *(C[        3][0 ]=105- C[2][ c]   -7*(*(C
[2]+c)<         'c') -18*(  C[2][c    ]<77)+2*(
*C)[4          ]-7* (C[2] [c]<'C'  ))-6;for(C( 10

Vanb.c
O5(O2,O7,O3)char**O7;{return!(O2+=~01+01)?00:!(O2-=02>01)?printf("\045\157\012"
,O5(012,O7+01,00)):!(O2-=02>>01)?(**O7<=067&&**O7>057?O5(03,O7,*(*O7)++-060+010

*O3):O3                     ):!(O2      -=-O3- ~O3)?       (072>**
O7&&060                     <=**O7      ?O5(04      ,O7,012  *O3-060
+*(*O7                    )++):O3      ):!(O2      -=!O3+      !!O3)?(
**O7>057                  &&**O7       <=071?      O5(05,   O7,*(*
O7)+++                   O3*020       -060):      **O7<=      0106&&
00101<=                 **O7?O5       (05,O7      ,020*O3  +*(*O7)
++-067)               :0140<**       O7&&**      O7<0147     ?O5(05,
O7,-0127              +*(*O7         )+++020     *O3):O3     ):!(
O2-=02- 01)?(**         O7==050     ?050**      ++*O7,
O5(013,             O7,O5(          012,O7      ,00)):*  *O7<056
&&054<*           *O7?055          **++*       O7,-O5(     06,O7,
00):054           >**O7&&          052<**      O7?050*  *(*O7)
++,O5(06        ,O7,00            ):!(**      O7^0170  )||!(
0130^**         O7)?*++           *O7,O5      (05,O7   ,00):*
*O7==0144     ||**O7             ==0104      ?++*O7   ,O5(04,
O7,00):      O5(03              ,O7,00      )):!-- O2?(*
*O7==052    ?O5(07              ,O7,O3*     (*++*O7  ,O5(06
,O7,00)     )):!(               045-**      O7)?O5(     07,O7,
O3%(03+( *O7)++,               O5(06,      O7,00)   )):!(**
O7^057)?O5(07,                O7,O3/(     03-*++      *O7,O5(
06,O7,00))):O3                ):!(O2      +=01-02     )?O5(07
,O7,O5(06,O7,                 00)):!(     O2+=-02/    02)?(!(*

*O7-053)?O5(011,O7,O3+(++*O7,O5(010,O7,00))):!(055^**O7)?O5(011,O7,O3-(03+*(*O7
)++,O5(0010,O7,00))):O3):!(O2-=0563&0215)?O5(011,O7,O5(010,O7,00)):(++*O7,O3);}
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Identifier Naming
 Type vs. variable (object): Type is capitalized, object is not 

class Student {
…

};

 Short vs. expressive names: 
class FE {

…
};
int x, y1, y2, z, zt;

 Global identifiers
gVariable

 Member variable identifiers
m_variable, _memberVariable

Student student;
int numberOfStudents;

class  FactoryEmployee {
…

};
int numberOfClass, number_classes;
FactoryEmployee manager, employees[10]; 
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Hungarian Naming Convention
 1990s’ Microsoft, mostly for C programs

char *pszNameOfStudents;
int iNumberOfClasses;

 Usage of a variable is far away from its declaration
 Avoid checking out the type of every variable frequently
 Reduce type mismatches of variables

 Not really necessary if you carefully restructure your 
program and use new C++ features
 Should a block of program be such long that a variable is far 

separated from its definition??
 Try keep the variable definition as close as possible to its usage.  

Use C++ declaration on-the-fly.
 Carefully examine the type mismatch errors/warnings by your 

compiler
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Variables for Unrelated Purposes
 Two views of a variable

A memory space to store some data temporarily
 usually the variable need only have a distinguishing name like 

x1, x2 …
 any data that need to be memorized can be put into, even the 

type (the data format) can be coerced 
int x;
…
x = calculateDays();
…
usage of x
…
x = obtainTotalAmount();
…
usage of x
…

related

related

unrelated
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Variables for Unrelated Purposes
Each variable represents a certain unique quantity

Usually the name of a variable should be descriptive, ex. 
number_of_pages, classOfHistory…

Only the specific data can be put into, no unrelated data 
should be kept in one single variable

Don’t worry about memory spaces (foot prints of your codes) 
at the design time, there are other language features that can 
help you save the memory spaces when necessary

Heavily overloaded usages of a storage 
 introduce BUGS to the program
 reduce readability of your program
 impede automatic tools to optimize your program
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Length of a Function
 How long should a function extends?  When should 

a function be decomposed into several pieces?

In general
 no more than a page (~50 lines)
 30 lines would be reasonable
 3-5 pieces of jobs in a function would be reasonable
 jobs are better related (coherent)
 5-10 variables are manageable

Goals: a function should be manageable and 
understandable in one brief look 16

Avoid Code Repetitions
 Use functions, MACROS (inline functions better)
 When do you use a function?

There are multiple repetitions of the same code piece 
(easier to keep consistency, to maintain, saving code 
size is not that important actually in early design phase)

The jobs are better grouped (better readability)
The variables are confined, no unrelated variables 

gathered together (safer, lower probability to make 
mistakes)

Goals: better modularity (cohesive functionalities, 
data coupling)
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Avoid Broad Variable Scopes
 The minimal scope principle: 

 Whenever possible, keep the scope of a variable as small as 
possible.  If you don't let those unrelated codes see variables used 
by each other, how can they meddle with the contents of 
variables of each other.

 The reading complexity of a segment of codes is proportional to 
the product of executable statements and the number of variables

 Guidelines:
 Avoid global variables
 Avoid unnecessary member variables
 Declare variable on the fly
 Always start with a variable in the 

closest scope, even create a scope for that variable

{
int localVariable;
func1(&localVariable);
func2(localVariable);

}
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Variable Initialization
 In practice, all variables should be initialized with suitable 

values although the grammar does not enforce it.  
 Do not claim that you always are aware that some 

variables are not initialized yet, and you will do that later!!
 It is this claim that quite often put a segment of codes 

into troubles.
 In C++, the grammars are designed such that all objects 

are suitably initialized.  All experienced programmers 
practice this rule, although compiler does not enforce it.

 Make sure that you know the difference btw initialization 
and assignment

int a = 10, b(20);
a = 30;

MyClass obj1(1,2,3), obj2=2;
obj1 = obj2;
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Pointer Deletion
 It's a good practice to completely forget the contents of a 

pointer variable after you free/delete the pointer. 
 free(ptr); ptr=0;
 In this way your program will never have a way to refer to 

any freed segment of memory.
 There are many related rules for safely using pointers in a 

program.  
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Control Structure: goto
 goto

 Dijkstra's famous maxim "goto statement considered harmful" 
noted that spaghetti-like code was hard to reason about.

 No more unstructured statements
 There is always an assembly program equivalent to whatever 

program you wrote in procedural, object-oriented, or functional 
languages.

 The readability of a procedural program is mostly sacrificed with 
astray interwoven label-goto statements

 Many software house practices a SINGLE goto rule.  Whenever 
a function fails, there is a single outlet that handles exception 
conditions.  In this way, you wouldn’t see interwoven label-goto
statements.  It simplified the error processing and looks good. 
But in C++, you should use throw-try-catch exception handling.  
There are far more benefits you can get from it than using goto.
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Control Structure: nested if
 nested conditions: nested if conditions are buggy

Ex.   if (a && (b || !c))
{

if (b && d) …
else if (c || a) …
else …

}
else if (b && !d || !a)

…
else if …

 Some combinations of condition variables simply do not exist
 You might neglect some important combinations in your design

 Use flowchart to help you design complex controls

 Use state diagram to verify and simplify your design
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Parallel Arrays
 Unstructured data elements

int score1[100], score2[100], score3[100];
char *name[100], *id[100];
…
 name[i], id[i], score1[i], score2[i], score3[i] are designed to be a 

set of data storage that pertain to one single person
 However, in the above parallel array representation, the code did 

not explicitly say so.  The data might be misinterpreted.

 Use struct in C to group data suitably, use class in C++ to 
encapsulate the designed data structure
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Tough Pointer Arithmetic
 Pointer arithmetic is powerful but not quite readable

void strcat(char *s, char *t) {
while (*s) s++;
while (*s++ = *t++) ;

}
//   Another version
void strcat(char s[], char t[]) {

int lens, lent;
for (len_s=0; s[len_s]!=0; len_s++) ;
for (len_t=0; t[len_t]!=0; len_t++) ;
for (i=0; i<len_t; i++) 

s[len_s+i] = t[i];
}

 Use array element access operator [] whenever possible.

Looks stupid but far more expressive
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Assignment vs. Equality Test
 Assignment operator =
 Equality test operator ==
 It is very easy to have a typo in expression like

if (count == 10) …
 if (count = 10) … // syntax correct by always TRUE statement

 Safe comparison
if (10 == count) …
Compiler will identify the following as error
if (10 = count) …
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Replace #define Macro with Function Call
 There are many #define traps, and many are not easily 

identified
#define inverse(x) (1/(x))
double x=5; 
cout << "x=" << inverse(x) << endl;
int y=5;
cout << "y=" << inverse(y) << endl;

#define square(x) (x*x)
void main() {

int x=5, y=6;
cout << square(x+y);

}

 Using inline function as a performance adjustment tool in 
the late performance tuning phase
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Replace #define with const
 Eliminate numeric constants in the program is a good 

practice
int data[1000];   int data[kNumberOfData];

 It is better to keep consistency and improve readability in 
this manner.

 As previously mentioned, #define is tricky and invisible to 
compiler and debugger. Use const instead!
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Avoid Type Coercion
 Type casting: Simply tell the compiler “Forget type 

checking – forget the original type and treat it as the 
specified type instead”
int iData, *iptr;
double dData, *dptr;
void *vptr;
…
iData = (int) dData;
vptr = &dData;
…
dptr = (double *) vptr;
iptr = (int *) vptr;

 Type casting introduces holes in the C/C++ type system.  
It should be used as rarely as possible.

int x;
printf("%c", *(char *) &x);
void *vp = &x;
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Eliminate Downcast
 “Downcasting” is detrimental to OOP as 

the “goto” statement to the procedural programming
class Base {

…
};
class Derived: public Base {

…
};

Base *bp;
…
Derived *dp;
dp = (Derived *) bp;
dp = reinterpret_cast<Derived *>(bp);

dp = dynamic_cast<Derived *>(bp);Safer:
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Avoid K&R C Function Definition
 int func(); // takes indeterminate number of arguments

 Use at least an ANSI C compiler

 Avoid indeterminate number of arguments.  This type of 
flexibility introduces severe errors as usage grows.
int func(int *, …); 

 Default promotion rule: whenever you disable the type 
checking of function arguments, the compiler uses this 
rule to ensure that the data is correctly passed into a 
function
 If argument is less than 4 bytes, promote it to 4 bytes.
 If argument is less than 8 bytes, promote it to 8 bytes.

30

Far Away Allocation and Free
 Dynamic memory allocation and free has better be in the 

same level of structure.  (This is not a universal rule, 
sometimes the functionality of the program prevents this.)
int *data;
data = new int[1000];
…. // statements, function calls
delete[] data;

 Should the dynamic allocated data survive after the 
program logic exit the block of its allocation, be extremely 
careful to design the remote ownership of the data.  If 
possible, design C++ managed pointer to take care the 
ownership of a piece of dynamically allocated data.
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Avoid Functions that Introduce BOF
 strcpy(char *dest, const char *src) ;
 strcat(char *dest, const char *src) ;
 getwd(char *buf) ;
 gets(char *s) ;
 fscanf(FILE *stream, const char *format, ...) ;
 scanf(const char *format, ...) ;
 sscanf(char *str, const char *format, … );
 realpath(char *path, char resolved_path[] ) ;
 sprintf(char *str, const char *format ) ;
 syslog
 getopt
 getpass

Buffer Overflow
(Buffer Overrun)
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Avoid Bulky Error Checks
 A software has to behave nicely when something does not 

occur as expected.  It cannot just say “SORRY”.
int *ptr = (int *) malloc(sizeof(int)*100);
if (ptr==0) {

cout << "Memory allocation failure!\n";
// some other resource management tasks, ex. Freeing some memory
return 0; // return an error code to be handled by the calling program

}
 Traditional error handling method using return codes.  Return codes 

are to be handled by the calling program just like the above example.
 These error handling routines take bulky space in the software 

because they handle various unexpected messy situations.  
 They will be SELDOM executed.  Maybe one out of a hundred.
 They blind the normal program logics. 
 Use C++ exception handling mechanism instead!!
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Code Optimization vs. Readability
 “Code Readability” is always the first priority to be taken 

care of in the development stage of a medium/large scale 
software project.   
 Something cannot be delayed till the prototype finishes.  Coding

styles have to be set up from the ground up.
 Whenever there is a choice between code efficiency / code size 

and readability before the software is fully tested, give 
readability higher weights.

 Artistically crafted codes easily hide functional bugs.  There is 
no point to polish your codes in the early stage of the project 
development.

 Optimization can always be left for the compiler or 
profiler or later-on module replacements.

34

Clear Interface Specification
 Public first and private last: 

 C++ is designed for implementation of the full functionality of 
the software, not for abstract specification.

 Class declaration in C++ includes all information for the 
implementation and interface.  It does not require you to put the 
public session first, however, this is a good practice out of C++’s 
limited grammar.

 There is a better language specific for the task of interface 
description called IDL (Interface Description Language).  
It only contains the interface part and neglecting all 
implementations.
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Unnecessary Exposure of Private Stuffs
 Hide implementation details: member data should be 

considered as private at the first phase of design.  Always 
provide service routines for other objects.

 Leave implementations of member functions out of class 
declaration.  Inline function is only a means for profiling.

 Replace struct with class: avoid incautious data coupling 
between classes.
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Use const as frequently as possible
 Sort of defensive coding (like defensive driving)

 Document exactly the requirements and promises of a 
function through the grammar (instead of comments)
 const variables: promise the contents won’t change
 const function parameters: promise that the contents of 

parameters won’t change
 const member function: promise that the message and 

the corresponding response of the object won’t change 
the state of the object



37

Eliminate Unnecessary Friend Usages
 Friend classes should be considered together as a single 

huge class.
 Friend functions should be considered as though they were 

member functions.

 In other words, the syntax friend (truly good friend) just 
breaks the encapsulation you are trying very hard to obtain 
in your OO programs.
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Superfluous Accessor and Mutator
 Many OOP starters deal with objects in their minds like  

data warehouses for saving important/useful data instead 
of smart service providers (little genie devices that fit into 
the whole program).

class MyClass {
public:

…
int getData();                          // dumb accessor
void setData(int newData);    // dumb mutator
…

private:
int data;
…

};
 Key point: Object should provide meaningful services.
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Eliminate Improper Inheritance
 “Improper Inheritance” introduces design traps for the 

designer himself or his teammates and especially for the 
follow-up software maintainers.
 The inheritance mechanism is used at purely the grammar level 

instead of the semantic design level.
 Ex. Inherit a Cabinet class and trim it into a Table class.

Inherit a UnderGraduateStudent class and trim it into a
GraduateStudent class

 Deprive some unnecessary functionalities in the original class is 
usually a symptom for this.

 Inheritance should be proper, natural, and substitutable in 
a more concrete sense.

 A guideline: require less and promise more in the subclass
40

Using Object Counts
 Sometimes, without the help of tools, you would like to 

monitor at run time whether your program has any 
unreleased objects and avoid memory leakage from the 
ground up.

 Implement with class variable
class MyClass {
…
public:

MyClass();
~MyClass();
static void printCounts();

private:
static int objectCounts;

…
};
…
int MyClass::objectCounts=0;

MyClass::MyClass() {
objectCounts++;

}
MyClass::~MyClass() {

objectCounts--;
}
void MyClass::printCounts() {

cout << "Class MyClass "
“active objects: "

<< objectCounts << endl;
}
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Beware of Function Hiding Effects
 C++ grammar augments C grammar to allow convenient 

OO modeling.  
 It still bears in its mind the objective of efficiency for 

system programming.  
 Therefore, member functions are by default NOT virtual

functions, i.e. no polymorphism supported.  This is in 
contrast to the member functions in JAVA, in which they 
are by default virtual.

 Non-virtual member functions are hided by a function 
with the same name in its derived classes.  Sometimes, this 
causes significant troubles to new C++ programmers.

42

Using Initialization List
 There are several cases where initialization list MUST be used 

 Constant data member
 Reference data member
 Non-default parent class constructor
 Non-default component object constructor

 Coding style: use initialization list as much as possible
 initialization list is inevitable in many cases
 initialization will be performed implicitly in the initialization list whether you 

use it or not.  It saves some computation to do it in the initialization list.

 Caution:
 The order of expressions in the initialization list is not the order of execution, 

the defining order of member variables in the class definition defines the order 
of execution.

Dog::Dog(const char *name, const Breed breed, const int age)
: m_age(age) , m_name(new char[strlen(name)+1]), m_breed(breed){

strcpy(m_name, name);
} first secondthird
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Do Generic Programming Cautiously
 Class/function templates in C++ are mighty tools.
 You can (easily??) use predesigned template libraries (ex. 

iostream, algorithm, vector, list, … STLs) in your 
applications.

 There are obvious tradeoffs both in storage and execution 
time between template programming and dynamic binding 
polymorphism.

 Yet, the compilation errors due to these templates are 
difficult to fix.

 If you are designing your template.  Be aware of those 
cases which simply do not come to your mind at the time 
of designing.  Keep your finger crossed!!
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Code Complexity Metrics (1/3)
 Complexity of code: 

 amount of efforts needed to understand and modify the code 
correctly (i.e. amount of efforts needed to maintain or test code)

 Maintenance metrics (or static metrics)
 Formatting metrics: 

 indentation conventions, 
 comment forms, 

 Logical metrics: 
 number of paths through a program, 
 the depth of conditional statements and blocks,
 the level of parenthesization in expressions, 
 the number of terms and factors in expressions, 
 the number of parameters and arguments used
 …

 whitespace usage, 
 naming conventions
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Code Complexity Metrics (2/3)
 McCabe Cyclomatic Metric: M = E – N + X

 McCabe 1976
 Very useful logical metric
 The number of linearly independent paths through a program
 E: the number edges in the graph of the program (the code executed as a 

result of a decision)
 N: the number of nodes or decision points in the graph of a program
 X: the number of exits from the program (explicit return statements)
 Example: if each decision point has two possible paths, and D is the 

number of decision points in the program then M = D + 1

 R. Charney, Programming Tools: Code Complexity Metrics, 
http://www.linuxjournal.com/node/8035, Jan. 2005

1-10 a simple program, without much risk
11-20 more complex, moderate risk
21-50 complex, high risk
51+ untestable, very high risk

Cyclomatic
Complexity
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Code Complexity Metrics (3/3)
 Eclipse:

 A general purpose IDE environment for Java, C++, …
 www.eclipse.org

 Eclipse supported complexity metrics: for monitoring the health 
of your codebase
 McCabe’s Cyclomatic Complexity
 Efferent Coupling
 Lack of Cohension in Methods
 Lines of Code in Method
 Number of Fields
 Number of Levels
 Number of Parameters
 Number of Statements
 Weighted Method Per Class

 http://www.teaminabox.co.uk/downloads/metrics/index.html


