o 0o o o o o

Basic Object Design

C++ Object Oriented Programming
Pei-yih Ting
NTOUCS

Contents

< Object Oriented Analysis/Design
< Elements of a well-designed class
* Strong Cohesion
* Completeness and Convenience
* Consistency
* Loose Coupling
< Design classes before you code it
* CRC cards
* Class description
* Function description
< Discover your classes
* Object discovery techniques
* Noun-verb analysis example
* Tentative classes

Object Oriented Analysis/Design

< Object-Oriented Analysis (OOA)
* What are the classes in the system?
= What are the operations and attributes?
*= What are the inheritance relationships?

< Object-Oriented Design (OOD)

* How do objects relate to other objects?

= How is the system constructed with the objects?
< Object-Oriented Programming (OOP)

How do you create the system using your particular object-oriented
programming language?

OOA OOD OOP
Identification Integration Implementation
What objects do How do | integrate How do I use the

I need to implement| | the objects to make | |programming lang.
the system? the system work? to create each object?

Object Oriented Analysis/Design

< There are generally four phases to the object-oriented
analysis/design process:

* The identification of objects from the program specification.
= The identification of the attributes and behaviors of these objects.
* The identification of any super-classes.

* The specification of the behaviors of the identified classes.

Basic Object Design

Objects in general have two important properties:
1. State
2. Behaviour

Object States:

An object contains certain information about itself e.g.

> a lecturer “knows” his name, address, age, courses he teach ...
> a student “knows” his name, address, age, ID, courses studied ...
> a lecture theatre “knows” its location, capacity etc.

The information that an object maintains determines its state. The
individual components of information are known as the objects
attributes.

Basic Object Design (cont’d)

Object Behaviour

Apart from maintaining information about itself, an object
is also capable of performing certain actions. e.g.
> a lecturer can teach a class, grade assignments, set an
examination paper

» astudent can attend a lecture, complete an assignment, sit in an
exam etc.

The actions that an object can perform are known as its behaviours.

When applying an object-orientated design to a problem
specification we identify objects, record their states and specify their
behaviours.

Specifying Good Objects

< Strong Cohesion
< Completeness and Convenience
< Consistency

< Loose Coupling

Cohesion

< A good class describes a single abstraction

L] >
DD OOO

< Assume we are writing a networking email program

class Mail {
public:
void sendMessage() const;
void receiveMessage();
void displayMessage() const;
void processCommand();
void getCommand();
private: . .
char *m_message; Why does this class lack cohesion?
char *m_command;

|5
< To achieve good cohesion, you must classify objects into groups
with close functionalities.

Completeness and Convenience

< Every class must contain all necessary features.

class String {
public:
String(char *inputData);
void displayString() const;
char getLetter(int slot) const;
char getLength() const;
private:
char *m_string;

= Why is this class not complete?
* What would be desirable but not essential features?

< The opposite problem is a class that is over-complete in the name of
convenience.

char getLetter(int slot) const;

char getFirstLetter() const;

char getL astLetter() const;

char getPreviousLetter() const;

char getNextLetter() const;

char findLetter(char letter) const; // find first occurrence of letter
char findLetterEnd(char letter) const; // finds last occurrence

* A class stuffed with unnecessary features is not convenient.

Consistency

< Hereis a very inconsistent class.

class Data {

public:
Data(); ~Data();
Data(char *name, int weight, int height);
void setWeight(int weight);
void setHeight(int height);
int returnWeight();
int getSize();

private:
char *m_name;
int m_weight;

int m_length; _ —
: Without these descriptions,
it is hard to guess what

< This class is both inconsistent and unclear | fynctions of this class are about.

class Graphics {
void drawLine(int x, int y); // absolute coordinate
void movePen(int deltaX, int deltaY); // relative offsets

, Commmmmmmm =TT -
* drawLine() draws a line from the current pen position to the new coordinate (x,

y) which is specified in absolute coordinates

* movePen() moves the pen from the current position by the amounts (X, y)
which is specified in relative coordinates 10

Coupling

< Classes with many interconnections are highly coupled.

class Input { // returns data from file at location fileReferenceNum
public:
double readFromFile(long &fileReferenceNum);
b
class Math { // returns sine or cosine of current data in file
public:
double sine(Input source, long &fileReferenceNum);
double cosine(Input source, long &fileReferenceNum);
b
void main() {
Math mathObject;
Input inputObject;
long fileReferenceNum = 0; // do not forget initialization
cout << mathObject.sine(inputObject, fileReferenceNum);

}

11

Reducing Coupling

< Encapsulation reduces coupling

class Input {
public:
Input(); /I will set m_refNum to zero
double readFromFile(); // will take care of m_refNum
private: Cdasmatn{
_ int m_refNum; { public:
. . Math(Input &);
"O'I‘f]gl‘ft“{;]%jwbj ot double sine(); // will handle m_data
Math mathObjectfinputObject)' ; _dmible cosine(); // automatically
: A '/ private:
cout << mathObject.sine(); Input m_data;

}
< Avoid passing a great amount of data across object boundaries.
Object should provide abstract and simple services.

<+ As opposed to the data flow design of application programs, in
which data flow between processing units, object oriented/based
programming tries to design objects that keeps and handles data
intelligently. Put all responsible objects together for accomplishing
a specific work without looking into their detailed processed data. 12

Design Classes Before You Code It

Before writing a large program, decide on your classes, what they
do, and how they relate to other classes.

CRC cards — Classes — Responsibilities, Collaborators
Example

Class Math
Responsibilities Collaborators
Returnsine of filedata______Input
Return cosine of file data Input
Class Input
 Responsibilities Collaborators
Read next data from file -

What about the data members?

These are hashed out after all the CRC cards have been prepared.
13

Class Description

< An alternative approach to the CRC method
Name Array
Purpose Create a fixed-size array which protects against out of
bounds and off by one errors.
Constructors Default set the array to size 0
Non default sets the array to a size specified by the client
Destructors Deletes the memory associated with the array
Operations
Mutators Insert data into a specified slot
Accessors Retrieve data from a specified slot
Fields m_dataSize
m_data
<+ Codes class Array {
public:
Array();
Array(int arraySize);
~Array();

void insertElement(int element, int slot);
int getElement(int slot) const;
private:
int m_dataSize;
int *m_data;
¥ 14

Function Descriptions

Each function should be completely specified before coding.

Prototype int getElement(int slot) const;
Purpose To return the integer in the array at position slot
Receives The slot which the client would like to access.
The first element in the array is slot 0.
Returns The integer if the function succeeds, otherwise returns
an error value specified as KError
Remarks KError is currently set to 0.

Alternatively, write the complete function documentation and
prepare a skeleton function declaration
/*
* function: getElement
* Usage: value = getElement(slot);
*
* Returns the integer in the array corresponding to slot.
* The first element is slot zero. If the slot is out of range
* KError is returned, which is currently zero.
*/
int Array::getElement(int slot) {

15

Discover Your Classes

< Bertrand Meyer in "Object-oriented Software Construction™

""When software design is understood as operational modeling,
object-oriented design is a natural approach: the world being
modeled is made of objects — sensors, devices, airplanes,
employees, paychecks, tax returns —and it is appropriate to
organize the model around computer representations of theses
objects. This is why object-oriented designers usually do not
spend their time in academic discussions of methods to find
objects: in the physical or abstract reality being modeled, the
objects are just there for the picking! The software objects
will simply reflect these external objects."

< How do the experts identify objects?
"It's a Holy Grail. There is no panacea.” by Bjarne Stroustrup

"That's a fundamental question for which there is no easy
answer." by R. Gabriel, designer of Common Lisp Object
System (CLOS) 16

Object Discovery Technigues

Real-world modeling:

x Use objects in the application domain as the basis for objects in
the system.

Behavior modeling:
* Determine the overall behaviors of the system (what it does).

* Components which play significant roles in each behavior are
objects.

Scenario-based analysis:

* Create scenarios of the system.

*= What are the required entities in each scenario?
Grammatical analysis:

* Write a natural language description of the system.

* The nouns are the classes; the verbs are the methods.
17

Noun-Verb Analysis Example

< Program description (specification, highly abbreviated)

""The program allows the user to assign students to sections based on the
available times. Times are input by the teacher. Students rank times by
preference (up to three allowed) using a form. All of the student inputs
are collected into a central database. When the teacher indicates the
database is complete, the final result is optimized so that no section has
more than 12 students and each student has received the highest possible
preference. The results are stored in a file showing which students have
been assigned to which sections."

< Noun analysis: students, sections, times, teacher, preferences, form,
student inputs, database, results, output file
This can be simplified further to just these categories
form, (section) times, database, results (optimization process), output file

< Possible classes: optimization process, student, teacher, form, sections,
database, output

< Verb analysis: assign students, input sections, rank by preference,
collect into database, indicate database is complete,
optimize results, store results in file

18

Tentative Classes

Assign verbs to nouns, that is, assign methods to classes. This is the
usual classification problem.

Ex: class Optimization
optimize data
store in file

Expect change:

Designs always turn out to be wrong or incomplete, but having
no design is worse. In a suitably encapsulated object system, it is
easy to refactor. It is easy to create new objects and to reassign
methods or data from one class to another class.

Checking your design:

Once you have the classes, rewrite the
program description using the new terms
and actions. If the description does not
make sense, you have a bad design. If it design
does, you have a better and cleaner description.

The model extracted will become gradually simpler.

Possible collaborators: Database, File

specification

19

ity

+ SIS TERGTH P A BRI A
PELIE? Y [H'M¥ LI o 25 e ?TF'FJIJ
5931,’{%%Ff:ﬁ59 E Ej Eﬁ%“fﬁﬂ?”“ﬂfﬁ“ Al i iQ?J
o fﬁﬁ’ e fﬁ%&E b BB RIS IR PRS- ?ﬁta’*““ Yo
TS - R JI,EH PIRG 2 % AR ER - [[
~H Jlﬁ?“”;fﬁ?l@z » Bl LR ¢ U e BRSPS 0 Pl
%ﬁﬁﬁ?ﬁ"mﬁﬁli’ FIeLPIEyRe - R (1 e B ?

YRR © G- R o FUFEIpVRLE - RS R P
T'FJT UGS - PO < BN 5 R o

_T FW&@EJ@}.\: piﬁ R NET = fi') I Fiﬁjy 5 o %

LA T SR S B ISR ﬁﬁ*’
PR ? PIRIETIE ¢ 3507 - KTRLFS - Iﬁg\r P55 P985
7% 6507 - N R - 25 RIESRE VR TR S Y

20

<
PN

gd 7] (cont’d)

Pork s R WA (R
IR

s ik

+' '] RS HFiE(): boolean +ﬂ£}ﬁ@§§%ﬁﬂo: String
+HEPEZ (): void +i§'i%f’ﬁié4\ 'I(): int

+ % PER([=HT: int): int +J1] {1 efepv sz #1(): String
+FS & (£ 30 int): int +iTER(EFE int): int

T

]

+HHEEZ(): void

+§g@~ %ﬂﬂ): void

21

e

> PHBRISR STEREFTE | 209 - B - S - cPUSS
¢ EHBEIETRT IWRALH P47 BT
ﬁ °
DI S R R RE 2
S

o TSR | BRI B AR P -
« PP (e |
98 8 S B P SR OISR o T R

¢ BEDIC IS - - EHPGSIE - PIRRET - -
kRS B SIS RV SR -~ O -

22

g 7] (cont’d)

‘ SalarySystemFacade ‘ ‘ TransactionSystemFacade ‘
I 1 I 1
[]]

Customer company
T

o

\
firas
0.t
employee o salary

o*
*
Specialofferltern mark component ba
Eiwﬁw s =2 SR daing]

N " . ES— o.*
0. a. S5 dary(items)

oscourt by

[y | [manBoard | [Memary | [moriter | —
I]]l i] | WorkingHrSalary | | BonusSalary
laney PerHr %Pertemtaqe
| MernberDiscourt: | |NomMemberD\scuunt |
t i 1
[(e% | [Buy TwoWithAnother Cne
I 1 I 1

23

