Introduction to UML

C++ Object Oriented Programming
Pei-yih Ting
NTOU CS

Contents

Software modeling

What i1s UML? What is UML for?

UML history

UML artifacts: Things, Relationships, and Diagrams
Things

Relationships

Diagrams

A simple example

An elaborated example

o
o
o
.
o
o
o
.
o

Introduction to Modeling

< The models we choose have a profound influence
on the solution we provide

<~ Every model may be expressed at different levels
of abstraction

< The best models are connected to reality

< No single model is sufficient, a set of models Is
needed to solve any nontrivial system

Importance of Modeling

<+ Why do we model?

< A model 1s a simplification at some level of
abstraction

< We build models to better understand the systems
we are developing

%

%
%
%

"0 help us visualize

To specify structure or behavior
To provide template for building system

To document decisions we have made

Software Modeling

< Traditionally two approaches to modeling a
software system

* Algorithmically — becomes hard to focus on as the
requirements change

* Object-oriented — models more closely real world
entities

UML Is a visual modeling language

< “A picture is worth a thousand words.” - old saying

< United Modeling Language:

“A language provides a vocabulary and the rules for
combining words [...] for the purpose of communication.

A modeling language Is a language whose vocabulary and
rules focus on the conceptual and physical representation
of a system. A modeling language such as the UML is thus
a standard language for software blueprints.”

< from UML user guide”

Software Invisibility

< Brooks in his famous article ‘No Silver Bullet-Essence
and Accidents of Software Engineering’:

“Invisibility Is an inherent, not accidental, property of
software”

< The multi-dimensional nature of software does not easily
lend itself to a single 2D or 3D diagrammatic form and
thereby deprives us one of our most powerful conceptual
tools: Our visual and spatial perception.

UML History

< UML.: Unified Modeling Language

x Grady Booch: Booch notation 1994
& language design, focus on structural aspects esp. inheritance

* James Rumbaugh et al.: OMT 1991
& packground in database and Entity Relation modeling

x Evar Jacobson: OOSE 1992

& USe cases / requirements

< The Three Amigos joined in 1997
* unified means ”joint effort instead of wars”

Usages of UML

< UML Is used In the course to
* document designs
& design patterns / frameworks

x represent different views/aspects of design — visualize and
construct designs

& static / dynamic / deployment / modular aspects
* provide a next-to-precise, common, language — specify visually
& for the benefit of analysis, discussion, comprehension...

* abstraction takes precedence over precision!
& alm IS overview and comprehension; not execution

Building Blocks of UML

< Things

< Relationships

< Dlagrams

Things

< Structural things

x classes, Interfaces, collaborations, use cases, active
classes, components, nodes.

< Behavioral things

* Interactions, finite state machines.
< Grouping things

* packages.

< Annotational things
* Notes.

Relationships

< Dependency

< Assoclation

& Generalization

& Realization

1
2
3
4
5
6
14
3
9

Diagrams

. Class diagram

. Object diagram

. Use case diagram

. Seguence diagram

. Collaboration diagram
. Statechart diagram

. Activity diagram

. Component diagram

. Deployment diagram

Structural Things

<+ Structural things are the nouns of UML models.
These are the mostly static parts of a model,
representing elements that are either conceptual or
physical.

Structural Things (cont’d)

& Class

A description of a set of objects that share the same
attributes, operations, relationships, and semantics

x Attribute

& An attribute is a named property of a class that describes a
range of values that instances of the property may hold.

* Operation

& An operation Is the implementation of a service that can be
requested from any object to affect behavior.

Class Diagram

Switch

N

Resistor

N

Battery
5V

Structure of system (objects, attributes, associations, operations)

Structural Things (cont’d)

< Use case

specifies the behavior of a system or a part of a
system and Is a description of a set of sequences of
actions, including variants, that a system performs to
yield an observable result of value to an actor

* Actor

An actor represents a coherent set of roles that users of use
cases play when interacting with these use cases.

Use Case Diagram

SimpleCircuit

Q / C_Flipon >

|

AN

User

Functionality from user’s point of view

Structural Things (cont’d)

< Interface

a collection of operations that specify a service of a
class or component

<+ Collaboration

A collaboration defines an interaction and iIs a
society of roles and other elements that work
together to provide some cooperative behavior that's
bigger than the sum of all the elements.

Structural Things (cont’d)

& Active class

An active class Is a class whose objects own one or
more processes or threads and therefore can initiate
control activity.

< Component

A component is a physical and replaceable part of a
system that conforms to and provides the realization
of a set of interfaces.

<~ Node

A node Is a physical element that exists at run time
and represents a computational resource.

Behavioral Things

Behavioral things are the dynamic parts of UML models.
These are the verbs of a model, representing behavior over
time and space.

< Interaction

An Interaction Is a behavior that comprises a set of

messages exchanged among a set of objects within a
particular context to accomplish a specific purpose.

+ State machine

A state machine Is a behavior that specifies the
sequences of states an object or an interaction goes
through during its lifetime In response to events,
together with its response to those events.

Interaction Diagram: Sequence Diagram

X

User Switch | | Resistor | | Battery

FlipOn()>5 HeatUp(L Drain()

. Shine()

Messages between objects

Statechart Diagram (different objects)

flipSwitchOn flipSwitchOn

\[o]
Draining

flipSwitchOff flipSwitchOff

(Resistor) (Battery)

Grouping and Annotational Things
Grouping things are the organizational parts of
UML models.

< Package

A package Is a general purpose mechanism for
organizing elements into groups.

Annotational things are the explanatory parts of
UML models.

< Note

A note Is simply a symbol for rendering constraints
and comments attached to an element or a
collection of elements.

Component Diagram

|Bi||ing.exe /O« = _% |Register.exe
Billing

System !

I
I
I

L4

7/
7/

/ \\
, \\\ v N
. N] -
- — - I
—

class packaging and dependencies

Relationships

< Dependency

A dependency Is a using relationship that states that
a change in specification of one thing may affect
another thing that uses It, but not necessarily the
reverse. (Usually a class depends on some interfaces
or abstract classes instead of another class.)

& Assoclation

An association Is a structural relationship that

specifies that objects of one thing are connected to
objects of another.

Relationships (cont’d)
< Aggregation

An aggregation is a special form of association that
specifies a whole-part relationship between the
aggregate (the whole) and a component (the part).

& Generalization

A generalization is a relationship between a general
thing and a more specific kind of that thing.
Sometimes it is called an “is-a-kind-of”” relationship.

& Realization

A realization Is a semantic relationship between
classifiers, wherein, one classifier specifies a contract
(interface) that another classifier promises to carry out,

Diagrams

< Class diagram

A class diagram shows a set of classes, interfaces,
and collaborations and their relationships.

< ODbject diagram

An object diagram shows a set of objects and their
relationships.

< Use case diagram

A use case diagram shows a set of use cases and
actors and their relationships. A Use case Is a literary
form of describing user goals, as a set of scenarios.
A scenario Is a sequence of steps describing
Interaction between a user and a system.

Diagrams (cont’d)

< Sequence diagram

A sequence diagram Is an interaction diagram that
emphasizes the time-ordering of messages.

<~ Collaboration diagram

A collaboration diagram is an interaction diagram
that emphasizes the structural organization of the
objects that send and receive messages.

< Statechart diagram

A statechart diagram shows a state machine,
consisting of states, transitions, events, and
activities.

Diagrams (cont’d)

< Activity diagram

An activity diagram is a special kind of a statechart
diagram that shows the flow from activity to activity
within a system.

< Component diagram

A component diagram shows the organization and
dependencies among a set of components.

< Deployment diagram

A deployment diagram shows the configuration of
runtime processing nodes and the components that
live on them.

Class Diagrams

< Same diagram — different perspectives

* Conceptual
& focus: domain modeling
& “software independent” — no software specific parts

* Specification
& focus: responsibilities and contracts/interfaces

& We are talking software I.e. we include software related
aspects: design patterns, frameworks, etc.

* Implementation
& close mapping to actual source code

Contracts and Responsibility

+ Classes are too close to implementation.
+ Instead think in terms of contracts and responsibility!
+ UML (and java) approximation is Interfaces

InputStream
{abstract}

AN

dependency

<<interface>>

OrderReader

Datalnput

generalization A 2

DatalnputStream

realization

A Simple Problem

switch\

Use Case Diagram

SimpleCircuit

Q / C_Flipon >

|

AN

User

Functionality from user’s point of view

Class Diagram

Switch

N

Resistor

N

Battery
5V

Structure of system (objects, attributes, associations, operations)

Interaction Diagram: Sequence Diagram

X

User Switch | | Resistor | | Battery

FlipOn()>5 HeatUp(L Drain()

. Shine()

Messages between objects

Interaction Diagram: Collaboration Diagram

X

sequence number

User
1. Flipon() l ;

1.1 HeatU
PO

Switch Resistor
1.2 Shine() l l 1.3 Drain()

Light Battery

Alternative to sequence diagram,
More compact, but harder to interpret

Statechart Diagram

flipSwitchOn

flipSwitchOff

Transitions between states of an object
(Extension of Finite State Machine (FSM) model)

Statechart Diagram (different objects)

flipSwitchOn flipSwitchOn

\[o]
Draining

flipSwitchOff flipSwitchOff

(Resistor) (Battery)

Activity Diagram

@o Switch On Flip Switch Off

» Actions are states
» shows the flow from activity to activity within a system

More Elaborated Example

< The ESU University wants to computerize their
registration system
* The Registrar sets up the curriculum for a semester
& One course may have multiple course offerings
x Students select 4 primary courses and 2 alternate courses

* Once a student registers for a semester, the billing system
IS notified so the student may be billed for the semester

* Students may use the system to add/drop courses for a
period of time after registration

* Professors use the system to receive their course offering
rosters

* Users of the registration system are assigned passwords
which are used at logon validation

41

JAY® (0] £

< An actor I1s someone or some thing that must
Interact with the system under development

%

AT

Registrar AN Q

Professor

AN
Student A

Billing System

Use Cases

< use case IS a pattern of behavior the system exhibits

x Each use case Is a sequence of related transactions
performed by an actor and the system in a dialogue

+ Actors are examined to determine their needs
* Registrar -- maintain the curriculum
* Professor -- request roster
x Student -- maintain schedule

x Billing System -- receive billing information from
registration

O D D

Maintain Curriculum Request Course Roster Maintain Schedule 4

Use Case Diagram

P —
\ Request Course Roster

Student © Professor
A/Maintain Schedule

X

Billing System 9 o == ©

/\ Maintain Curriculum
Registrar

Sequence Diagram

X

- Student registration

registration

form

1: fill in info

2: submit

manager

math 101

3: add course
(joe, math 101)

4. are you open?

math 101

section 1

6: add (joe)

5. are you open?

7. add (joe)

Collaboration Diagram

1: set course Info course form :

2: process CourseForm
/

A

. Regjistrar $3: add course

aCourse : theManager :
Course - CurriculumManager

4: new course

Classes

RegistrationForm

ScheduleAlgorithm

RegistrationManager

Professor

CourseOffering

Classes: Attributes and Operations

RegistrationForm ScheduleAlgorithm

RegistrationManager Course
name :
addStudent(Course, numberCredits

Studentinfo) open()
addStudent(Studentinfo)

Professor _
name CourseOffering

tenureStatus location

open()
addStudent(Studentinfo)

RegistrationForm

Relationships

RegistrationManager

addStudent(Course, Studentinfo

Professor

name
tenureStatus

Student

name
major

ScheduleAlgorithm

Course

name
numberCredits

open()
addStudent(Studentinfo)

CourseOffering

location

open()
addStudent(Studentinfo)

Multiplicity and Navigation

RegistrationForm|g ScheduleAlgorithm

RegistrationManager

addStudent(Course, Studentinfo

Course

name
numberCredits

Student open()

name addStudent(Studentinfo)
major

1

3..10

1.*
Professor 4

name e CourseOffering
tenureStatus | 1 - et -

0.4

open()
81:(1:3":225 addStudent(Studentinfo)

Role name

Inheritance

RegistrationForm ScheduleAlgorithm

RegistrationManager

addStudent(Course, Studentinfo

Course

name

RegistrationUser numberCredits
name Student open()

: addStudent(Studentinfo)
A major

Professor

CourseOffering
tenureStatus location

open()
addStudent(Studentinfo)

State Transition Diagram

.\ Add student [count < 10 |

N . Add Student /
f Initialization Set count =0 e)
L do: Initialize course)

entry: Register student
exit: Increment count

Canceled

Ldo: Notify registered studentsj\-[Closed 1
Cancel do: Finalize course J

: @é

Cancel
Cancel [count =10]

Component Diagram

|Bi||ing.exe /O« = _% |Register.exe
Billing

System !

I
I
I

L4

7/
7/

/ \\
, \\\ v N
. N] -
- — - I
—

class packaging and dependencies

Deployment Diagram

Registration

Database

Main
Building

L

nysical setup

More Graphical Notations

< Class Diagram: abstract, static

abstract class ParentClass { ParentClass
Iint field; :
static char field2; field1
abstract void methodA(); field2

double methodB() {
methodA
\ methodB

AN

}

class ChildClass extends ParentClass {
void methodA() {

ChildClass

}
static void methodC() {

y methodA
) methodC

More Graphical Notations

< Access Control

class SomeClass { SomeClass

private int privateField,; _ privateFieId

protected int protectedField,; :
public int publicField: # protectedField

private void privateMethod() { + publicField
} - privateMethod

protected void protectedMethod() {
1 # protectedMethod

public void publicMethod() { + publicMethod
}

More Graphical Notations

< Sequence diagram: message, return, lifeline, activation

class Server { :
Device device: :Client :Server

void open() { i i

work
, !

¥
void print(String s) {
device.write(s);

void close() {

.
}

class Client {
Server server;

void work() { -
server.open(); :

server.print(*"Hello™); class Dev:ice
server.close(); void write({String s) {

}}

"

d.

References

UML Distilled, Applying the Standard Object Modeling Language,
Martin Fowler, (UML f&& VB [1EYEPIfF j&t—,ﬁ al R,
AWIL: ()

b. YU & J—m&’ﬁwﬂ"ﬁ‘ﬁ%ﬁ {17'] UMLZE C+, T2, 2

C.

=, 92/05, I & R ZHAIH m TS
UML : %ﬁ?*ﬂ [(R %’Eﬁ%’:&“m i, I=ME T, T,

91/02
UML fji= = £, 3=kagne, fifiFl, 90710

