
1

The Biggest Changes in C++11

(and Why You Should Care)

June 20, 2011 by Danny Kalev

http://blog.smartbear.com/c-plus-plus/the-biggest-changes-in-c11-and-why-you-should-care/

It’s been 13 years since the first iteration of the C++ language. Danny Kalev, a former member of

the C++ standards committee, explains how the programming language has been improved and

how it can help you write better code.

Bjarne Stroustrup, the creator of C++, said recently that C++11 “feels

like a new language — the pieces just fit together better.” Indeed, core

C++11 has changed significantly. It now supports lambda expressions,

automatic type deduction of objects, uniform initialization syntax,

delegating constructors, deleted and defaulted function

declarations, nullptr, and most importantly, rvalue references — a

feature that augurs a paradigm shift in how one conceives and handles

objects. And that’s just a sample.

The C++11 Standard Library was also revamped with new algorithms, new container classes,

atomic operations, type traits, regular expressions, new smart pointers, async() facility, and of

course a multithreading library.

A complete list of the new core and library features of C++11 is available here.

After the approval of the C++ standard in 1998, two committee members prophesied that the next

C++ standard would “certainly” include a built-in garbage collector (GC), and that it probably

wouldn’t support multithreading because of the technical complexities involved in defining a

portable threading model. Thirteen years later, the new C++ standard, C++11, is almost complete.

Guess what? It lacks a GC but it does include a state-of–the-art threading library.

In this article I explain the biggest changes in the language, and why they are such a big deal. As

you’ll see, threading libraries are not the only change. The new standard builds on the decades of

expertise and makes C++ even more relevant. As Rogers Cadenhead points out, “That’s pretty

amazing for something as old as disco, Pet Rocks, and Olympic swimmers with chest hair.”

First, let’s look at some of the prominent C++11 core-language features.

Lambda Expressions

2

A lambda expression lets you define functions locally, at the place of the call, thereby eliminating

much of the tedium and security risks that function objects incur. A lambda expression has the

form:

[capture](parameters)->return-type {body}

The [] construct inside a function call’s argument list indicates the beginning of a lambda

expression. Let’s see a lambda example.

Suppose you want to count how many uppercase letters a string contains. Usingfor_each() to

traverses a char array, the following lambda expression determines whether each letter is in

uppercase. For every uppercase letter it finds, the lambda expression increments Uppercase, a

variable defined outside the lambda expression:

int main()

{

 char s[]="Hello World!";

 int Uppercase = 0; //modified by the lambda

 for_each(s, s+sizeof(s), [&Uppercase] (char c) {

 if (isupper(c))

 Uppercase++;

 });

 cout<< Uppercase<<" uppercase letters in: "<< s<<endl;

}

It’s as if you defined a function whose body is placed inside another function call. The ampersand

in [&Uppercase] means that the lambda body gets a reference toUppercase so it can modify it.

Without the ampersand, Uppercase would be passed by value. C++11 lambdas include constructs

for member functions as well.

Automatic Type Deduction and decltype

In C++03, you must specify the type of an object when you declare it. Yet in many cases, an

object’s declaration includes an initializer. C++11 takes advantage of this, letting you declare

objects without specifying their types:

auto x=0; //x has type int because 0 is int

auto c='a'; //char

auto d=0.5; //double

auto national_debt=14400000000000LL;//long long

3

Automatic type deduction is chiefly useful when the type of the object is verbose or when it’s

automatically generated (in templates). Consider:

void func(const vector<int> &vi)

{

vector<int>::const_iterator ci=vi.begin();

}

Instead, you can declare the iterator like this:

auto ci=vi.begin();

The keyword auto isn’t new; it actually dates back the pre-ANSI C era. However, C++11 has

changed its meaning; auto no longer designates an object with automatic storage type. Rather, it

declares an object whose type is deducible from its initializer. The old meaning of auto was

removed from C++11 to avoid confusion.

C++11 offers a similar mechanism for capturing the type of an object or an expression. The new

operator decltype takes an expression and “returns” its type:

const vector<int> vi;

typedef decltype (vi.begin()) CIT;

CIT another_const_iterator;

Uniform Initialization Syntax

C++ has at least four different initialization notations, some of which overlap.

Parenthesized initialization looks like this:

std::string s("hello");

int m=int(); //default initialization

You can also use the = notation for the same purpose in certain cases:

std::string s="hello";

int x=5;

For POD aggregates, you use braces:

int arr[4]={0,1,2,3};

struct tm today={0};

4

Finally, constructors use member initializers:

struct S

{

 int x;

 S(): x(0) {}

};

This proliferation is a fertile source for confusion, not only among novices. Worse yet, in C++03 you

can’t initialize POD array members and POD arrays allocated using new[]. C++11 cleans up this

mess with a uniform brace notation:

class C

{

int a;

int b;

public:

 C(int i, int j);

};

C c {0,0}; //C++11 only. Equivalent to: C c(0,0);

int* a = new int[3] { 1, 2, 0 }; /C++11 only

class X

{

 int a[4];

public:

 X() : a{1,2,3,4} {} //C++11, member array initializer

};

With respect to containers, you can say goodbye to a long list of push_back()calls. In C++11 you

can initialize containers intuitively:

// C++11 container initializer

vector<string> vs={ "first", "second", "third"};

map singers =

 { {"Lady Gaga", "+1 (212) 555-7890"},

 {"Beyonce Knowles", "+1 (212) 555-0987"}};

Similarly, C++11 supports in-class initialization of data members:

5

class C

{

 int a=7; //C++11 only

public:

 C();

};

Deleted and Defaulted Functions

A function in the form:

struct A

{

 A()=default; //C++11

 virtual ~A()=default; //C++11

};

is called a defaulted function. The =default; part instructs the compiler to generate the default

implementation for the function. Defaulted functions have two advantages: They are more efficient

than manual implementations, and they rid the programmer from the chore of defining those

functions manually.

The opposite of a defaulted function is a deleted function:

int func()=delete;

Deleted functions are useful for preventing object copying, among the rest. Recall that C++

automatically declares a copy constructor and an assignment operator for classes. To disable

copying, declare these two special member functions =delete:

struct NoCopy

{

 NoCopy & operator =(const NoCopy &) = delete;

 NoCopy (const NoCopy &) = delete;

};

NoCopy a;

NoCopy b(a); //compilation error, copy ctor is deleted

nullptr

6

At last, C++ has a keyword that designates a null pointer constant. nullptrreplaces the

bug-prone NULL macro and the literal 0 that have been used as null pointer substitutes for many

years. nullptr is strongly-typed:

void f(int); //#1

void f(char *);//#2

//C++03

f(0); //which f is called?

//C++11

f(nullptr) //unambiguous, calls #2

nullptr is applicable to all pointer categories, including function pointers and pointers to members:

const char *pc=str.c_str(); //data pointers

if (pc!=nullptr)

 cout<<pc<<endl;

int (A::*pmf)()=nullptr; //pointer to member function

void (*pmf)()=nullptr; //pointer to function

Delegating Constructors

In C++11 a constructor may call another constructor of the same class:

class M //C++11 delegating constructors

{

 int x, y;

 char *p;

public:

 M(int v) : x(v), y(0), p(new char [MAX]) {} //#1 target

 M(): M(0) {cout<<"delegating ctor"<<endl;} //#2 delegating

};

Constructor #2, the delegating constructor, invokes the target constructor #1.

Rvalue References

Reference types in C++03 can only bind to lvalues. C++11 introduces a new category of reference

types called rvalue references. Rvalue references can bind to rvalues, e.g. temporary objects and

literals.

The primary reason for adding rvalue references is move semantics. Unlike traditional copying,

moving means that a target object pilfers the resources of the source object, leaving the source in

7

an “empty” state. In certain cases where making a copy of an object is both expensive and

unnecessary, a move operation can be used instead. To appreciate the performance gains of move

semantics, consider string swapping. A naive implementation would look like this:

void naiveswap(string &a, string & b)

{

 string temp = a;

 a=b;

 b=temp;

}

This is expensive. Copying a string entails the allocation of raw memory and copying the characters

from the source to the target. In contrast, moving strings merely swaps two data members, without

allocating memory, copying char arrays and deleting memory:

void moveswapstr(string& empty, string & filled)

{

// pseudo code, but you get the idea

 size_t sz=empty.size();

 const char *p= empty.data();

// move filled's resources to empty

 empty.setsize(filled.size());

 empty.setdata(filled.data());

// filled becomes empty

 filled.setsize(sz);

 filled.setdata(p);

}

If you’re implementing a class that supports moving, you can declare a move constructor and a

move assignment operator like this:

class Movable

{

Movable (Movable&&); //move constructor

Movable&& operator=(Movable&&); //move assignment operator

};

The C++11 Standard Library uses move semantics extensively. Many algorithms and containers

are now move-optimized.

C++11 Standard Library

8

C++ underwent a major facelift in 2003 in the form of the Library Technical Report 1 (TR1). TR1

included new container classes (unordered_set, unordered_map,unordered_multiset,

and unordered_multimap) and several new libraries for regular expressions, tuples, function object

wrapper and more. With the approval of C++11, TR1 is officially incorporated into standard C++

standard, along with new libraries that have been added since TR1. Here are some of the C++11

Standard Library features:

Threading Library

Unquestionably, the most important addition to C++11 from a programmer’s perspective is

concurrency. C++11 has a thread class that represents an execution thread, promises and futures,

which are objects that are used for synchronization in a concurrent environment,

the async() function template for launching concurrent tasks, and the thread_local storage type for

declaring thread-unique data. For a quick tour of the C++11 threading library, read Anthony

Williams’ Simpler Multithreading in C++0x.

New Smart Pointer Classes

C++98 defined only one smart pointer class, auto_ptr, which is now deprecated. C++11 includes

new smart pointer classes: shared_ptr and the recently-added unique_ptr. Both are compatible

with other Standard Library components, so you can safely store these smart pointers in standard

containers and manipulate them with standard algorithms.

New C++ Algorithms

The C++11 Standard Library defines new algorithms that mimic the set theory

operations all_of(), any_of() and none_of(). The following listing applies the

predicate ispositive() to the range [first, first+n) and

uses all_of(),any_of() and none_of() to examine the range’s properties:

#include <algorithm>

//C++11 code

//are all of the elements positive?

all_of(first, first+n, ispositive()); //false

//is there at least one positive element?

any_of(first, first+n, ispositive());//true

// are none of the elements positive?

none_of(first, first+n, ispositive()); //false

A new category of copy_n algorithms is also available. Using copy_n(), copying an array of 5

elements to another array is a cinch:

9

#include <algorithm>

int source[5]={0,12,34,50,80};

int target[5];

//copy 5 elements from source to target

copy_n(source,5,target);

The algorithm iota() creates a range of sequentially increasing values, as if by assigning an initial

value to *first, then incrementing that value using prefix ++. In the following

listing, iota() assigns the consecutive values {10,11,12,13,14} to the array arr, and {‘a’, ‘b’, ‘c’} to

the char array c.

#include <numeric>

int a[5]={0};

char c[3]={0};

iota(a, a+5, 10); //changes a to {10,11,12,13,14}

iota(c, c+3, 'a'); //{'a','b','c'}

C++11 still lacks a few useful libraries such as an XML API, sockets, GUI, reflection — and yes, a

proper automated garbage collector. However, it does offer plenty of new features that will make

C++ more secure, efficient (yes, even more efficient than it has been thus far! See

Google’s benchmark tests), and easier to learn and use.

If the changes in C++11 seem overwhelming, don’t be alarmed. Take the time to digest these

changes gradually. At the end of this process you will probably agree with Stroustrup:

C++11 does feel like a new language — a much better one.

10

Get to Know the New C++11 Initialization Forms

By Danny Kalev

Date: Mar 28, 2012

http://www.informit.com/articles/printerfriendly/1852519

Initializing your objects, arrays, and containers is much easier in C++11 than it used to be in C++03.

Danny Kalev explains how to use the new brace-initialization notation, class member initializers,

and initialization lists to write better and shorter code, without compromising code safety or

efficiency.

Initialization in C++03 is tricky, to say the least, with four different initialization notations and far too

many arbitrary restrictions and loopholes:

 No way to initialize a member array

 No convenient form of initializing containers

 No way to initialize dynamically allocated POD types

C++11 fixes these problems with new facilities for initializing objects. In this article, I present the

new C++11 brace-initialization notation, discuss class member initialization, and explain how to

initialize containers by using initializer lists.

C++03 Initialization: A Tale of Four Initialization Notations

To appreciate the new initialization syntax of C++11, let's look at the C++03 initialization Babel first.

C++03 has various categories of initialization:

 Initialization of fundamental types. The initialization of fundamental types uses the equal

sign (=):

int n=0;

void*p=0;

char c='A';

 Initialization of data members in a class and objects. Classes with a

user-defined constructor require a constructor's member initialization list (mem-init for short)

for their data members. An object's initializers are enclosed in parentheses in the object's

declaration:

//C++03 initialization of classes and objects

struct S1

11

{

explicit S1(int n, int m) : x(n), y(m){} //mem-init

private:

 int x, y;

};

S1 s(0,1); //object initializers enclosed in parentheses

S1 s2={0,1}; //compilation error

 Initialization of aggregates. Aggregate initialization requires braces, with the exception of

string literals that may also appear between a pair of double quotes ([dp][dp]):

//C++03: POD arrays and structs are aggregates

int c1[2]={0,2};

char c2[]="message";

//or you can use the more verbose form:

char c3[]={'m','e','s','s','a','g','e','\0'};

struct S

{

 int a,b;

};

S s={0,1};

You can use parentheses to initialize fundamental types as well. The parentheses in this case are

interchangeable with the equal sign notation:

int n(0); //same as int n=0;

double d(0.5);

C++03 Initialization: Arbitrary Restrictions and Loopholes

To add insult to injury, C++03 imposes arbitrary restrictions in some cases, such as the inability to

initialize member arrays:

class C

{

int x[100];

C(); //no proper way to initialize x

};

Similarly, you can't initialize a dynamically allocated POD array:

char *buff=new char[1024]; //no proper way to initialize the elements of buff

12

Finally, there's no easy way to initialize the elements of a Standard Library container. For instance,

if you want to initialize a vector of strings, you'd normally use a sequence of push_back() calls like

this:

vector <string> vs;

vs.push_back("alpha");

vs.push_back("beta");

vs.push_back("gamma");

To conclude, C++03 initialization is a mess. Let's see how C++11 tackles these problems with its

new and uniform initialization notation.

Introducing C++11 Brace-Initialization

C++11 attempts to overcome the problems of C++03 initialization by introducing a universal

initialization notation that applies to every type—whether a POD variable, a class object with a

user-defined constructor, a POD array, a dynamically allocated array, or even a Standard Library

container. The universal initializer is called a brace-init. It looks like this:

//C++11 brace-init

int a{0};

string s{"hello"};

string s2{s}; //copy construction

vector <string> vs{"alpha", "beta", "gamma"};

map<string, string> stars

 { {"Superman", "+1 (212) 545-7890"},

 {"Batman", "+1 (212) 545-0987"}};

double *pd= new double [3] {0.5, 1.2, 12.99};

class C

{

int x[4];

public:

C(): x{0,1,2,3} {}

};

Notice that unlike the traditional aggregate initializer of C and C++03, which uses braces after an

equal sign (={}), the C++11 brace-init consists of a pair of braces (without the equal sign) in which

the initializer(s) will be enclosed. An empty pair of braces indicates default initialization. Default

initialization of POD types usually means initialization to binary zeros, whereas for non-POD types

default initialization means default construction:

13

//C++11: default initialization using {}

int n{}; //zero initialization: n is initialized to 0

int *p{}; //initialized to nullptr

double d{}; //initialized to 0.0

char s[12]{}; //all 12 chars are initialized to '\0'

string s{}; //same as: string s;

char *p=new char [5]{}; // all five chars are initialized to '\0'

Class Member Initialization

C++11 pulls another rabbit out of its hat with class member initializers. Perhaps an example will

best illustrate these:

class C

{

int x=7; //class member initializer

public:

C();

};

The data member x is automatically initialized to 7 in every instance of class C. In former dialects of

C++, you would use the more cumbersome mem-init notation for the same purpose:

class C

{

int x;

public:

C() : x(7) {}

};

C++11 class member initializers are mostly a matter of convenience. They provide an overt and

simplified form of initializing data members. But class member initializers also let you perform a few

tricks that have hitherto been impossible. For example, you can use a class member initializer to

initialize a member array:

class C

{

int y[5] {1,2,3,4};

public:

C();

};

14

Notice that a class member initializer can consist of any valid initialization expression, whether

that's the traditional equal sign, a pair of parentheses, or the new brace-init:

class C

{

string s("abc");

double d=0;

char * p {nullptr};

int y[5] {1,2,3,4};

public:

C();

};

Regardless of the initialization form used, the compiler conceptually transforms every class

member initializer into a corresponding mem-init. Thus, class C above is semantically equivalent to

the following class:

class C2

{

string s;

double d;

char * p;

int y[5];

public:

C() : s("abc"), d(0.0), p(nullptr), y{1,2,3,4} {}

};

Bear in mind that if the same data member has both a class member initializer and a mem-init in the

constructor, the latter takes precedence. In fact, you can take advantage of this behavior by

specifying a default value for a member in the form of a class member initializer that will be used if

the constructor doesn't have an explicit mem-init for that member. Otherwise, the constructor's

mem-init will take effect, overriding the class member initializer. This technique is useful in classes

that have multiple constructors:

class C

{

int x=7; //class member initializer

C(); //x is initialized to 7 when the default ctor is invoked

C(int y) : x(y) {} //overrides the class member initializer

};

C c; //c.x = 7

15

C c2(5); //c.x = 5

Initializer Lists and Sequence Constructors

An initializer list lets you use a sequence of values wherever an initializer can appear. For example,

you can initialize a vector in C++11 like this:

vector<int> vi {1,2,3,4,5,6};

vector<double> vd {0.5, 1.33, 2.66};

You may include as many initializers as you like between the braces. Although superficially this

new syntax seems identical to the brace-init notation we discussed earlier, behind the scenes it's a

different story. C++11 furnishes every STL container with a new constructor type called a sequence

constructor. A sequence constructor intercepts initializers in the form of {x,y...}. To make this

machinery work, C++11 introduced another secret ingredient: an auxiliary class template called

std::initializer_list<T>. When the compiler sees an initializer list, say {0.5, 1.33, 2.66}, it

transforms the values in that list into an array of T with n elements (n is the number of values

enclosed in braces) and uses that array to populate an implicitly generated

initializer_list<T> object. The class template initializer_list has three member functions

that access the array:

template<class E> class initializer_list

{

//implementation (a pair of pointers or a pointer + length)

public:

constexpr initializer_list(const E*, const E*); // [first,last)

constexpr initializer_list(const E*, int); // [first, first+length)

constexpr int size() const; // no. of elements

constexpr const T* begin() const; // first element

constexpr const T* end() const; // one more than the last element

};

To better understand how the compiler handles initializer lists of containers, let's dissect a concrete

example. Suppose your code contains the following declaration of a vector:

vector<double> vd {0.5, 1.33, 2.66};

The compiler detects the initializer list {0.5, 1.33, 2.66} and performs the following steps:

1. Detect the type of the values in the initializer list. In the case of {0.5, 1.33, 2.66}, the type

is double.

16

2. Copy the values from the list into an array of three doubles.

3. Construct an initializer_list<double> object that "wraps" the array created in the

preceding step.

4. Pass the initializer_list<double> object by reference to vd's sequence constructor. The

constructor in turn allocates n elements in the vector object, initializing them with the values

of the array.

It's hard to imagine that so much is going on behind the scenes every time you initialize an STL

container with a pair of braces! The good news is that you don't have to do anything for this magic

to happen—it just works. Of course, you still need a C++11-compliant compiler as well as a

C++11-compliant Standard Library to use initializer lists. Make sure that your target project is built

with the appropriate compilation options, too.

In Conclusion

The C++ standards committee invested a lot of time and effort in finding a solution to the limitations

of C++03 initialization. It looks like they succeeded. Historically, brace-init, class member initializers,

and initializer lists were three independent proposals. Later, they were revised to ensure

compatibility and uniformity. Together, these three initialization-related features make C++11

programming simpler and more intuitive. You will surely appreciate them next time you initialize a

dynamically allocated array—or, indeed, a vector.

17

C++11 Tutorial: Introducing the Move Constructor and

the Move Assignment Operator
August 6, 2012 by Danny Kalev

Copy constructors sounds like a topic for an article from 1989. And yet, the changes in the new C++

standard affect the design of a class’ special member functions fundamentally. Find out more about

the impact of move semantics on objects’ behavior and learn how to implement the move

constructor and the move assignment operator in C++11.

C++11 is the informal name for ISO/IEC 14882:2011, the new C++

standard that was published in September 2011. It includes theTR1

libraries and a large number of new core features (a detailed discussion

about these new C++11 features is available here; also see The

Biggest Changes in C++11 (and Why You Should Care)):

 Initializer lists

 Uniform initialization notation

 Lambda functions and expressions

 Strongly-typed enumerations

 Automatic type deduction in declarations

 __thread_local storage class

 Control and query of object alignment

 Static assertions

 Type long long

 Variadic templates

Important as these features may be, the defining feature of C++11 is rvalue references.

The Right Time for Rvalue References

Rvalue references are a new category of reference variables that can bind torvalues. Rvalues are

slippery entities, such as temporaries and literal values; up until now, you haven’t been able to bind

these safely to reference variables.

Technically, an rvalue is an unnamed value that exists only during the evaluation of an expression.

For example, the following expression produces an rvalue:

x+(y*z); // A C++ expression that produces a temporary

18

C++ creates a temporary (an rvalue) that stores the result of y*z, and then adds it to x.

Conceptually, this rvalue evaporates by the time you reach the semicolon at the end of the full

expression.

A declaration of an rvalue reference looks like this:

std::string&& rrstr; //C++11 rvalue reference variable

The traditional reference variables of C++ e.g.,

std::string& ref;

are now called lvalue references.

Rvalue references occur almost anywhere, even if you don’t use them directly in your code. They

affect the semantics and lifetime of objects in C++11. To see how exactly, it’s time to talk

about move semantics.

Get to Know Move Semantics

Hitherto, copying has been the only means for transferring a state from one object to another (an

object’s state is the collective set of its non-static data members’ values). Formally, copying causes

a target object t to end up with the same state as the source s, without modifying s. For example,

when you copy a string s1 tos2, the result is two identical strings with the same state as s1.

And yet, in many real-world scenarios, you don’t copy objects but move them. When my landlord

cashes my rent check, he moves money from my account into his. Similarly, removing the SIM card

from your mobile phone and installing it in another mobile is a move operation, and so are

cutting-and-pasting icons on your desktop, or borrowing a book from a library.

Notwithstanding the conceptual difference between copying and moving, there’s a practical

difference too: Move operations tend to be faster than copying because they transfer an existing

resource to a new destination, whereas copying requires the creation of a new resource from

scratch. The efficiency of moving can be witnessed among the rest in functions that return objects

by value. Consider:

string func()

{

 string s;

 //do something with s

 return s;

19

}

string mystr=func();

When func() returns, C++ constructs a temporary copy of s on the caller’s stack memory.

Next, s is destroyed and the temporary is used for copy-constructing mystr. After that, the

temporary itself is destroyed. Moving achieves the same effect without so many copies and

destructor calls along the way.

Moving a string is almost free; it merely assigns the values of the source’s data members to the

corresponding data members of the target. In contrast, copying a string requires the allocation of

dynamic memory and copying the characters from the source.

Move Special Member Functions

C++11 introduces two new special member functions: the move constructor and the move

assignment operator. They are an addition to the fabulous four you know so well:

 Default constructor

 Copy constructor

 Copy assignment operator

 Destructor

If a class doesn’t have any user-declared special member functions (save a default constructor),

C++ declares its remaining five (or six) special member functions implicitly, including a move

constructor and a move assignment operator. For example, the following class

class S{};

doesn’t have any user-declared special member functions. Therefore, C++ declares all of its six

special member functions implicitly. Under certain conditions, implicitly declared special member

functions become implicitly defined as well. The implicitly-defined move special member functions

move their sub-objects and data members in a member-wise fashion. Thus, a move constructor

invokes its sub-objects’ move constructors, recursively. Similarly, a move assignment operator

invokes its sub-objects’ move assignment operators, recursively.

What happens to a moved-from object? The state of a moved-from object is unspecified. Therefore,

always assume that a moved-from object no longer owns any resources, and that its state is similar

to that of an empty (as if default-constructed) object. For example, if you move a string s1 to s2,

after the move operation the state of s2 is identical to that of s1 before the move, whereas s1 is now

an empty (though valid) string object.

Designing a Move Constructor

20

A move constructor looks like this:

C::C(C&& other); //C++11 move constructor

It doesn’t allocate new resources. Instead, it pilfers other‘s resources and then sets other to its

default-constructed state.

Let’s look at a concrete example. Suppose you’re designing a MemoryPage class that represents a

memory buffer:

class MemoryPage

{

 size_t size;

 char * buf;

public:

 explicit MemoryPage(int sz=512):

 size(sz), buf(new char [size]) {}

 ~MemoryPage(delete[] buf;}

 //typical C++03 copy ctor and assignment operator

 MemoryPage(const MemoryPage&);

 MemoryPage& operator=(const MemoryPage&);

};

A typical move constructor definition would look like this:

//C++11

MemoryPage(MemoryPage&& other): size(0), buf(nullptr)

{

 // pilfer other’s resource

 size=other.size;

 buf=other.buf;

 // reset other

 other.size=0;

 other.buf=nullptr;

}

The move constructor is much faster than a copy constructor because it doesn’t allocate memory

nor does it copy memory buffers.

Designing a Move Assignment Operator

A move assignment operator has the following signature:

21

C& C::operator=(C&& other);//C++11 move assignment operator

A move assignment operator is similar to a copy constructor except that before pilfering the source

object, it releases any resources that its object may own. The move assignment operator performs

four logical steps:

 Release any resources that *this currently owns.

 Pilfer other‘s resource.

 Set other to a default state.

 Return *this.

Here’s a definition of MemoryPage‘s move assignment operator:

//C++11

MemoryPage& MemoryPage::operator=(MemoryPage&& other)

{

 if (this!=&other)

 {

 // release the current object’s resources

 delete[] buf;

 size=0;

 // pilfer other’s resource

 size=other.size;

 buf=other.buf;

 // reset other

 other.size=0;

 other.buf=nullptr;

 }

 return *this;

}

Overloading Functions

The overload resolution rules of C++11 were modified to support rvalue references. Standard

Library functions such as vector::push_back() now define two overloaded versions: one that

takes const T& for lvalue arguments as before, and a new one that takes a parameter of

type T&& for rvalue arguments. The following program populates a vector with MemoryPage objects

using two push_back() calls:

#include <vector>

using namespace std;

22

int main()

{

 vector<MemoryPage> vm;

 vm.push_back(MemoryPage(1024));

 vm.push_back(MemoryPage(2048));

}

Both push_back() calls resolve as push_back(T&&) because their arguments are

rvalues. push_back(T&&) moves the resources from the argument into vector‘s

internal MemoryPage objects using MemoryPage‘s move constructor. In older versions of C++, the

same program would generate copies of the argument since the copy constructor

of MemoryPage would be called instead.

As I said earlier, push_back(const T&) is called when the argument is an lvalue:

#include <vector>

using namespace std;

int main()

{

 vector<MemoryPage> vm;

 MemoryPage mp1(1024);//lvalue

 vm.push_back(mp); //push_back(const T&)

}

However, you can enforce the selection of push_back(T&&) even in this case by casting an lvalue to

an rvalue reference using static_cast:

//calls push_back(T&&)

vm.push_back(static_cast<MemoryPage&&>(mp));

Alternatively, use the new standard function std::move() for the same purpose:

vm.push_back(std::move(mp));//calls push_back(T&&)

It may seem as if push_back(T&&) is always the best choice because it eliminates unnecessary

copies. However, remember that push_back(T&&) empties its argument. If you want the argument

to retain its state after a push_back() call, stick to copy semantics. Generally speaking, don’t rush

to throw away the copy constructor and the copy assignment operator. In some cases, the same

class could be used in a context that requires pure copy semantics, whereas in other contexts

move semantics would be preferable.

23

In Conclusion

C++11 is a different and better C++. Its rvalue references and move-oriented Standard Library

eliminate many unnecessary copy operations, thereby improving performance significantly, with

minimal, if any, code changes. The move constructor and the move assignment operator are the

vehicles of move operations. It takes a while to internalize the principles of move semantics – and

to design classes accordingly. However, the benefits are substantial. I would dare predicting that

other programming languages will soon find ways to usher-in move semantics too.

24

C++11 Tutorial: New Constructor Features that Make

Object Initialization Faster and Smoother
August 23, 2012 by Danny Kalev

Constructors in C++11 still do what they’ve always done: initialize an

object. However, two new features, namely delegating constructors and

class member initializers, make constructors simpler, easier to maintain,

and generally more efficient. Learn how to combine these new features in

your C++ classes.

C++11 introduced several constructor-related enhancements including:

 Delegating constructors

 Class member initializers

The interaction between these two features enables you to tailor your classes’ constructors to

achieve safer and simpler initialization. In this article, I demonstrate the use of delegating

constructors, explain what class member initializers are, and show how to combine both of them in

your classes.

Constructive Talks

Earlier variants of C++ lack a mechanism for calling a constructor from another constructor of the

same class (constructors of the same class are known as sibling constructors). This limitation is

chiefly noticeable in cases where default arguments aren’t an option. Consequently, the class’s

maintainer has to write multiple constructors that repeat similar initialization code segments.

Thus far, the common workaround has been to define a separate initialization member function,

and call it from every constructor:

class C

{

 void init();//comon initialization tasks

 int s;

 T t; //T has a conversion operator to double

public:

 C(): s(12), t(4.5) {init();}

 C(int i) : s(i), t(4.5) {init();}

 C(T& t1) : s(12), t(t1) {init();}

};

25

This approach has two drawbacks. First, delegating the initialization task to init()is inefficient

because by the time init() executes, the data members of C have already been constructed. In

other words, init() merely reassigns new values to C’s data members. It doesn’t really initialize

them. (By contrast, initialization by means of a member initialization list takes place before the

constructor’s body executes.)

The second problem is obvious: Every constructor repeats identical bits of initialization code. Not

only is it wearisome, it’s also a recipe for future maintenance problems. Every time you modify the

class’s members or its members’ initialization protocol, you’d need to update multiple constructors

accordingly.

Introducing Target Constructors

C++11 solves this problem by allowing a constructor (known as the delegating constructor) to call

another sibling constructor (the target constructor) from the delegating constructor’s member

initialization list. For example:

class C //a C11 class with a target constructor

{

 int s;

 T t; //has a conversion operator to double

public:

//the target constructor

 C(int i, T& t1): s(i), t(t1) {/*more common init code*/}

//three delegating ctors that call the target ctor

 C(): C(12, 4.5) {/*specific post-init code*/}

 C(int i): C(i, 4.5) {/*specific post-init code*/}

 C(T& t1): C(12, t1) {/*specific post-init code*/}

};

The modified class C now defines a fourth constructor: the target constructor. The three delegating

constructors call it from their member initialization list to perform the common initialization

procedure. Once the target constructor returns, the body of the delegating constructor is executed.

Notice that there are no special syntactic markers for target and delegating constructors. A target

constructor is defined as such if another constructor of the same class calls it. Likewise, a

delegating constructor is a constructor that calls a sibling constructor in its member initialization list.

From this you can infer that a target constructor can also be a delegating constructor if it calls

another target constructor. However, if a constructor delegates to itself directly or indirectly, the

26

program is ill-formed. The following example demonstrates a target constructor that calls another

target constructor:

class Z //C++11, a target ctor that’s also a delegating ctor

{

 int j;

 bool flag;

public:

 Z(): Z(5) {} //#1

 explicit Z(int n) :Z(n, false) {} //#2

 Z(int n, bool b): j(n), flag(b) {} //#3

};

Constructor #1 calls the target constructor #2. Constructor #2 is also a delegating constructor since

it calls the target constructor #3.

Technically, the use of default arguments could make two of the three constructors of class Z

redundant:

class Z //using default arguments to minimize ctors

{

 int j;

 bool flag;

public:

 Z(int n=5, bool b=false): j(n), flag(b) {}

};

However, default arguments aren’t always desirable (or even possible) for various reasons.

Therefore, delegating constructors that call a target constructor are a convenient and more efficient

alternative to init().

Class Member Initializers

C++11 introduced another related feature called class member initializers that could make the

design and implementation of your constructors even simpler.

Note: Class member initializers are also called in-class initializers. I use both terms interchangeably

in this article.

In this case too, C++11 follows other programming languages that let you initialize a data member

directly in its declaration:

27

class M //C++11

{

 int j=5; //in-class initializer

 bool flag (false); //another in-class initializer

public:

 M();

};

M m1; //m1.j = 5, m1.flag=false

Under the hood, the compiler transforms every class member initializer (such asint j=5;) into a

constructor’s member initializer. Therefore, the definition of class M above is semantically

equivalent to the following C++03 class definition:

class M2

{

 int j;

 bool flag;

public:

 M2(): j(5), flag(false) {}

};

If the constructor includes an explicit member initializer for a member that also has an in-class

initializer, the constructor’s member initializer takes precedence, effectively overriding the in-class

initializer for that particular constructor. Consider:

class M2

{

 int j=7;

public:

 M2(); //j=7

 M2(int i): j(i){}//overrides j’s in-class initializer

};

M2 m2; //j=7,

M2 m3(5); //j=5

This property of class member initializers makes them useful for defining a “default” value that

constructors may override individually. In other words, a constructor that needs to override the

default value for a certain member can use an explicit member initializer for it. Otherwise, the

in-class initializer takes effect.

Class member initializers can simplify the design of a class’s constructor. You can specify the

initializer for a given member directly with its declaration instead of using a target constructor for

28

other constructors to call. If, however, a certain member requires a more complex initialization

procedure (for example, its value depends on other data members’ values, or if its value depends

on a specific constructor), a combination of traditional constructor member initializers and target

constructors does the trick.

Remember that if a target constructor appears in a constructor’s member initialization list, that list

shall contain nothing else. No other base or member initializers are allowed in this case.

Let’s look again at the constructors of class C to see how to combine class member initializers and

delegating constructors. Recall that the original constructor set of C looks like this:

//a target constructor

C(int i, T& t1): s(i), t(t1) {/*common init code*/}

//three delegating ctors invoke the target

C(): C(12, 4.5) {/*specific post-init code*/}

C(int i): C(i, 4.5) {/*specific post-init code*/}

C(T& t1): C(12, t1) {/*specific post-init code*/}

The member s is initialized to 12 in two out of four constructors. You can therefore use a class

member initializer for it, while leaving constructor-dependent initializers in member initializer lists or

in the single target constructor:

class C //C11, combine in-class init with a target ctor

class C //C11, combine in-class init with a target ctor

{

 int s=12;

 T t;

public:

//a target constructor

 C(int i, T& t1): s(i), t(t1) {}

 C(): t(4.5) {} //s=12, t=4.5

 C(int i): C(i, 4.5) {}//using a target ctor. s=i, t=4.5

 C(T& t1): t(t1) {} //s=12, t=t1

};

Of course, you can use a different combination such as an in-class initializer for the member t

instead of s, or use in-class initializers for both. There is no right or wrong here. Rather, the aim is

to reduce the amount of repeated initialization code and to minimize the complexity of the

constructors while ensuring that data members are initialized properly. Most of all, the aim is to get

rid of the init()hack.

29

Apart from making your code more readable and easier to maintain, delegating constructors and

class member initializers offer a hidden bonus. They also improve your constructors’ performance

because they literally initialize data members, as opposed to reassigning a new value to them

(which is what init()-like member functions actually do).

Therefore, it might be a good idea to go through your existing pre-C++11 code and refactor it with

the following guidelines in mind: Simple initializers that occur frequently should become class

member initializers in general, whereas ad-hoc initializers should be dealt with by target

constructors and member initializer lists.

30

C++11 Tutorial: Let Your Compiler Detect the Types of

Your Objects Automatically
September 27, 2012 by Danny Kalev

Imagine that your compiler could guess the type of the variables you declare as if by magic. In

C++11, it’s possible — well, almost. The new auto and decltype facilities detect the type of an

object automatically, thereby paving the way for cleaner and more intuitive function declaration

syntax, while ridding you of unnecessary verbiage and keystrokes. Find out how auto and decltype

simplify the design of generic code, improve code readability, and reduce maintenance overhead.

Fact #1: Most declarations of C++ variables include an explicit initializer. Fact #2: The majority of

those initializers encode a unique datatype. C++11 took advantage of these facts by introducing

two new closely related keywords: auto and decltype.auto lets you declare objects without

specifying their types explicitly, while decltype captures the type of an object.

Together, auto and decltype make the design of generic code simpler and more robust while

reducing the number of unnecessary keystrokes. Let’s look closely at these new C++11 silver

bullets.

auto Declarations

As stated above, most of the declarations in a C++ program have an explicit initializer (on a related

note, you may find this article about class member initializers useful). Consider the following

examples:

int x=0;

const double PI=3.14;

string curiosity_greeting (“hello universe”);

bool dirty=true;

char *p=new char [1024];

long long distance=10000000000LL;

int (*pf)() = func;

Each of the seven initializers above is associated with a unique datatype. Let’s examine some of

them:

 The literal 0 is int.

 Decimal digits with a decimal point (e.g. 3.14) are taken to be double.

 The initializer new char [] implies char*.

 An integral literal value with the affix LL (or ll) is long long.

31

The compiler can extract this information and automatically assign types to the objects you’re

declaring. For that purpose, C++11 introduced a new syntactic mechanism. A declaration whose

type is omitted begins with the new keyword auto. An auto declaration must include an initializer

with a distinct type (an empty pair of parentheses won’t do). The rest is relegated to the compiler.

How convenient!

Note: C++ actually has two auto keywords: the old auto and the new auto. The old auto dates back

to the late 1960s, serving as a storage class in declarations of variables with automatic storage.

Since automatic storage is always implied from the context in C++, the old auto was seldom used,

which is why most programmers didn’t even know it existed in C++ until recently.C++11 removed

the old auto (though it still exists in C) in favor of the new auto, which is used inauto declarations.

Some implementations may require that you turn on C++11 computability mode to support the

new auto. In this article, I refer exclusively to the new auto.

 Here are the previous seven declarations transformed into auto declarations:

//C++11

auto x=0;

const auto PI=3.14;

auto curiosity_greeting= string (“hello universe”);

auto dirty=true;

auto p=new char [1024];

auto distance=10000000000LL;

auto pf = func;

In the case of class objects such as std::string, you need to include the name of the class in the

initializer to disambiguate the code. Otherwise, the quoted literal string “hello universe” would be

construed as const char[15].

Const, Arrays, and Reference Variables

If you want to declare cv-qualified objects, you have to provide the const and volatile qualifiers in

the auto declaration itself. That’s because the compiler can’t tell whether the initializer 3.14 is plain

double, const double, volatile double, or const volatile double:

volatile auto i=5; //volatile int

auto volatile const flag=true; //const volatile bool

auto const y=’a’; //const char

To declare an auto array, enclose the initializers in braces. The compiler counts the number of

initializers enclosed and uses that information to determine the size (and dimensions) of the array:

32

auto iarr={0,1,2,3}; //int [4]

auto arrarr={{0,1},{0,1}}; //int[2][2]

Tip: Certain implementations insist that you #include the new standard

header <initializer_list> when you declare an auto array. Technically, the C++11 standard

requires that an implementation #include <initializer_list> implicitly whenever that header is

needed, so you’re not supposed to write any#include <initializer_list> directives, ever.

However, not all implementations are fully compliant in this respect. Therefore, if you encounter

compiler errors in array auto declarations, try to #include <initializer_list> manually.

Declaring an auto array of pointers to functions (and pointers to member functions) follows the

same principles:

int func1();

int func2();

auto pf_arr={func1, func2};//array int (*[2])()

int (A::*pmf) (int)=&A::f; //pointer to member

auto pmf_arr={pmf,pmf}; //array int (A::*[2]) (int)

Reference variables are a slightly different case. Unlike with pointers, when the initializer is a

reference type, auto still defaults to value semantics:

int& f();

auto x=f(); //x is int, not int&

To declare a reference variable using auto, add the & to the declaration explicitly:

auto& xref=f(); //xref is int&

Technically, you can declare multiple entities in a single auto expression:

auto x=5, d=0.54, flag=false, arr={1,2,3}, pf=func;

Operator decltype

The new operator decltype captures the type of an expression. You can use decltype to store the

type of an object, expression, or literal value. In this sense, decltype is the complementary

operation of auto – whereas auto instructs the compiler to fill-in the omitted type, decltype

“uncovers” the type of an object:

auto x=0; //int

decltype (x) z=x; //same as auto z=x;

typedef decltype (x) XTYPE; //XTYPE is a synonym for int

33

XTYPE y=5;

How does it work? The expression decltype(x) extracts the type of x, which is int. That type is

assigned to the new typedef name XTYPE. XTYPE is then used in the declaration of a new

variable, y, which has the same type as x.

Let’s look at a more realistic example in which decltype extracts the iterator type from a generic

expression. Suppose you want to capture the iterator type returned from a vector<T>::begin() call.

You can do it like this:

vector<Foo> vf;

typedef decltype(vf.begin()) ITER;

for (ITER it=vf.begin(); it<vf.end(); it++)

 cout<<*it<<endl;

Notice that decltype takes an expression as its argument. Therefore, you can apply decltype not

just to objects and function calls, but also to arithmetic expressions, literal values, and array

objects:

typedef decltype(12) INT; //a literal value

float f;

typedef decltype(f) FLOAT; //a variable

typedef decltype (std::vector<int>()) VI; //a temporary

typedef decltype(4.9*0.357) DOUBLE; //a math expression

auto arr={2,4,8};

typedef decltype(arr) int_array;//an array

int_array table;

table[0]=-10;

C++11 Style Function Declarations

C++11 introduced a new notation for declaring a function using auto and decltype. Recall that a

traditional function declaration looks like this:

return_type name(params,...); //old style function declaration

In the new function declaration notation, the return type appears after the closing parenthesis of the

parameter list and is preceded by a -> sign. For example:

auto newfunc(bool b)->decltype(b)//C++11 style function declaration

{ return b;}

34

newfunc() takes a parameter of type bool and returns bool. This style is useful in template functions

where the return type depends on the template-id (the actual template instance). Thus, template

functions can define a generic return type using the new notation and decltype. The actual return

type is calculated automatically, depending on the type of the decltype expression:

//return type is vector<T>::iterator

template <class T> auto get_end (vector<T>& v) ->decltype(v.end());

{

return v.end();

}

vector<Foo> vf;

get_end(vf); //returns vector<Foo>::iterator

const vector<Foo> cvf;

get_end(cvf); //returns vector<Foo>::const_iterator

The new function declaration notation overcomes parsing ambiguity problems that were associated

with the traditional function declaration notation. Additionally, this notation is easier to maintain

because the actual return type isn’t hardcoded in the source file. As a bonus, it is said to be more

readable.

In Conclusion

auto and decltype fill in a gap that, until recently, forced programmers to use hacks and

non-standard extensions, such as the GCC-specific typeof() operator. auto doesn’t just eliminate

unnecessary keystrokes. Rather, it also simplifies complex declarations and improves the design of

generic code. decltype complements auto by letting you capture the type of complex expressions,

literal values, and function calls without spelling out (or even knowing) their type. Together with the

new function declaration notation, auto and decltype make a C++11 programmer’s job a tad easier.

35

C++11 Tutorial: Lambda Expressions — The Nuts and

Bolts of Functional Programming
November 1, 2012 by Danny Kalev

One highlight of C++11 is lambda expressions:

function-like blocks of executable statements that you can

insert where normally a function call would appear.

Lambdas are more compact, efficient, and secure than

function objects. Danny Kalev shows you how to read

lambda expressions and use them in C++11 applications.

Originally, functional programming in C consisted of defining a full-blown functions and calling them

from other translation units. Pointers to functions and file-scope(i.e., static) functions were

additional means of diversifying function usage in C.

C++ improved matters by adding inline functions, member functions and function objects. However,

these improvements, particularly function objects, proved to be labor intensive.

At last, the final evolutionary stage of functional programming has arrived in the form of lambda

expressions.

Lambda by Example

Note: According to the C++11 standard, implementations #include <initializer_list> implicitly

when necessary. Therefore, you’re not supposed to #include this header in your programs.

However, certain compilers (GCC 4.7 for example) aren’t fully compliant with the C++11 standard

yet. Therefore, if the new initialization notation causes cryptic compilation errors, add the

directive #include <initializer_list> to your code manually.

Before discussing the technicalities, let’s look at a concrete example. The last line in the following

code listing is a lambda expression that screens the elements of a vector according to a certain

computational criterion:

//C++11

vector <accountant> emps {{“Josh”, 2100.0}, {“Kate”, 2900.0},

{“Rose”,1700.0}};

const auto min_wage = 1600.0;

const auto upper_limit = 1.5*min_wage;

//report which accountant has a salary that is within a specific range

std::find_if(emps.begin(), emps.end(),

36

[=](const accountant& a) {return a.salary()>=min_wage && a.salary() <

upper_limit;});

As all lambda expressions, ours begins with the lambda introducer []. Even without knowing the

syntactic rules, you can guess what this lambda expression does: The executable statements

between the braces look like an ordinary function body. That’s the essence of lambdas; they

function (pun unintended) as locally-defined functions. In our example, the lambda expression

reports whether the current accountant object in the vector emps gets a salary that is both lower

than the upper limit and higher than the minimum wage.

Inline computations such as this are ideal candidates for lambda expressions because they consist

of only one statement.

Dissecting a Lambda Expression

Now let’s dissect the syntax. A typical lambda expression looks like this:

[capture clause] (parameters) -> return-type {body}

As said earlier, all lambdas begin with a pair of balanced brackets. What’s inside the brackets is the

optional capture clause. I get to that shortly.

The lambda’s parameters appear between the parentheses. Although you can omit the

parentheses if the lambda takes no parameters, I recommend you leave them, for the sake of

clarity.

Lambda expressions can have an explicit return type that’s preceded by a -> sign after the

parameter list (find out more about this new functionality in Let Your Compiler Detect the Types of

Your Objects Automatically). If the compiler can work out the lambda’s return type (as was the case

in the first example above), or if the lambda doesn’t return anything, you can omit the return type.

Finally, the lambda’s body appears inside a pair of braces. It contains zero or more statements, just

like an ordinary function.

Back to the find_if() call. It includes a lambda expression that takes constaccountant&. Where

did this parameter come from? Recall that find_if() calls its predicate function with an argument

of type *InputIterator. In our example,*InputIterator is accountant. Hence, the lambda’s

parameter is constaccountant&. The find_if() algorithm invokes the lambda expression for every

accountant in emps.

Since our lambda’s body consists of the following Boolean expression:

{return a.salary()>= min_wage && a.salary() < upper_limit;}

37

The compiler figures out that the lambda’s return type is bool. However, you may specify the return

type explicitly, like this:

[=](const accountant& a)->bool

{return a.salary()>= min_wage && a.salary() < upper_limit;});

Capture Lists

Unlike an ordinary function, which can only access its parameters and local variables, a lambda

expression can also access variables from the enclosing scope(s). Such a lambda is said to

have external references. In our example, the lambda accesses, or captures, two variables from its

enclosing scope: min_wageand upper_limit.

There are two ways to capture variables with external references:

 Capture by copy

 Capture by reference

The capture mechanism is important because it affects how the lambda expression manipulates

variables with external references.

At this stage I’m compelled to divulge another behind-the-scenes secret. Conceptually, the

compiler transforms every lambda expression you write into a function object, according to the

following guidelines:

 The lambda’s parameter list becomes the parameter list of the overloadedoperator().

 The lambda’s body morphs into the body of the overloaded operator().

 The captured variables become data members of the said function object.

The compiler-generated function object is called the closure object. The lambda’s capture clause

thus defines which data members the closure will have, and what their types will be. A variable

captured by copy becomes a data member that is a copy of the corresponding variable from the

enclosing scope. Similarly, a variable captured by reference becomes a reference variable that is

bound to the corresponding variable from the enclosing scope.

A default capture specifies the mechanism by which all of the variables from the enclosing scope

are captured. A default capture by copy looks like this:

[=] //capture all of the variables from the enclosing scope by value

A default capture by reference looks like this:

[&]//capture all of the variables from the enclosing scope by reference

38

There is also a third capture form that I will not discuss here for the sake of brevity. It’s used in

lambdas defined inside a member function:

[this]//capture all of the data members of the enclosing class

You can also specify the capture mechanism for individual variables. In the following

example min_wage is captured by copy and upper_limit by reference:

[min_wage, &upper_limit](const accountant& a)->bool

{return a.salary()>= min_wage && a.salary() < upper_limit;});

Finally, a lambda with an empty capture clause is one with no external references. It accesses only

variables that are local to the lambda:

[] (int i, int j) {return i*j;}

Let’s look at a few examples of lambdas with various capture clauses:

vector<int> v1={0,12,4}, v2={10,12,14,16};

//read about the new C++11 initialization notation

[&v1](int k) {vi.push_back(k); }; //capture v1 by reference

[&] (int m) {v1.push_back(m); v2.push_back(m) };//capture vi and vi2 by ref

[v1]() //capture v1 by copy

{for_each(auto y=v1.begin(), y!=v1.end(), y++) {cout<<y<<" ";}};

Name Me a Closure

In most cases, lambda expressions are ad-hoc blocks of statements that execute only once. You

can’t call them later because they have no names. However, C++11 lets you store lambda

expressions in named variables in the same manner you name ordinary variables and functions.

Here’s an example:

auto factorial = [](int i, int j) {return i * j;};

This auto-declaration defines a closure type named factorial that you can call later instead of

typing the entire lambda expression (a closure type is in fact a compiler-generated function class):

int arr{1,2,3,4,5,6,7,8,9,10,11,12};

long res = std::accumulate(arr, arr+12, 1, factorial);

cout<<"12!="<<res<<endl; // 479001600

39

On every iteration, the factorial closure multiplies the current element’s value and the value that it

has accumulated thus far. The result is the factorial of 12. Without a lambda, you’d need to define a

separate function such like this one:

inline int factorial (int n, int m)

{

return n*m;

}

Now try to write a factorial function object and see how many more keystrokes that would require

compared to the lambda expression!

Tip: When you define a named closure, the compiler generates a corresponding function class for it.

Every time you call the lambda through its named variable, the compiler instantiates a closure

object at the place of call. Therefore, named closures are useful for reusable functionality (factorial,

absolute value, etc.), whereas unnamed lambdas are more suitable for inline ad-hoc computations.

In Conclusion

Unquestionably, the rising popularity of functional programming will make lambdas widely-used in

new C++ projects. It’s true that lambdas don’t offer anything you haven’t been able to do before

with function objects. However, lambdas are more convenient than function objects because the

tedium of writing boilerplate code for every function class (a constructor, data members and an

overloaded operator()among the rest) is relegated to compiler. Additionally, lambdas tend to be

more efficient because the compiler is able to optimize them more aggressively than it would a

user-declared function or class. Finally, lambdas provide a higher level of security because they let

you localize (or even hide) functionality from other clients and modules.

With respect to compiler support, Microsoft’s Visual Studion 11 and GCC 4.5 support the most

up-to-date specification of lambdas. EDG, Clang, and Intel’s compilers also support slightly

outdated versions of the lambda proposal.

40

Using constexpr to Improve Security, Performance and

Encapsulation in C++
December 19, 2012 by Danny Kalev

constexpr is a new C++11 keyword that rids you of the need to create

macros and hardcoded literals. It also guarantees, under certain

conditions, that objects undergo static initialization. Danny Kalev

shows how to embed constexpr in C++ applications to define

constant expressions that might not be so constant otherwise.

The new C++11 keyword constexpr controls the evaluation time of an expression. By enforcing

compile-time evaluation of its expression, constexpr lets you define true constant expressions that

are crucial for time-critical applications, system programming, templates, and generally speaking, in

any code that relies on compile-time constants.

NOTE: I use the phrases compile-time evaluation and static initialization in this article

interchangeably, as well as dynamic initialization and runtime evaluation, respectively.

Timing is Everything

Before discussing constexpr, I need to clarify the difference between traditionalconst and the

new constexpr.

As we all know, const guarantees that a program doesn’t change a variable’s value.

However, const doesn’t guarantee which type of initialization the variable undergoes. For instance,

a const variable initialized by a function call requiresdynamic initialization (the function is called at

runtime; consequently, the constant is initialized at runtime). With certain functions, there’s no

justification for this restriction because the compiler can evaluate the function call statically,

effectively replacing the call with a constant value. Consider:

const int mx = numeric_limits<int>::max(); // dynamic initialization

The function max() merely returns a literal value. However, because the initializer is a function

call, mx undergoes dynamic initialization. Therefore, you can’t use it as a constant expression:

int arr[mx]; //compilation error: “constant expression required”

A similar surprise occurs when the initializer of a class’s const static data member comes “too

late”:

41

struct S

{

static const int sz;

};

const int page_sz = 4 * S::sz; //OK, but dynamic initialization

const int S::sz = 256; //OK, but too late

Here the problem is that the initializer of S::sz appears after the initialization of <page_sz.

Consequently, page_sz undergoes dynamic initialization. That isn’t just slower than static

initialization; it also disqualifies S::sz from being used as aconstant integral expression, as the

following example shows:

enum PAGE

{

 Regular=page_sz, //compilation error: “constant expression required”

 Large=page_sz*2 //compilation error: “constant expression required”

};

Problems with Pre-C++11 Workarounds

In pre-C++11 code, the common workaround for the late function call problem is a macro. However,

macros are usually a bad choice for various reasons, including the lack of type-safety and

debugging difficulties. C++ programmers thus far were forced to choose between code safety (i.e.,

calling a function and thereby sacrificing efficiency) and performance (i.e., using type-unsafe

macros).

With respect to a const static class member, the common workaround is to move the initializer

into the class body:

struct S

{

static const int sz=256;

};

const int max_sz = 4 * S::sz; // static initialization

enum PAGE

{

 Regular=page_size, //OK

 Large=page_size*2 //OK

};

However, moving the initializer into the class body isn’t always an option (for example, if S is a

third-party class).

42

Another problem with const is that not all programmers are aware of its subtle rules of static and

dynamic initialization. After all, the compiler usually doesn’t tell you which type of initialization it

uses for a const variable. For example, mx seems to be a constant expression when it isn’t.

The aim of constexpr is to simplify the rules of creating constant expressions by guaranteeing that

expressions declared constexpr undergo static initialization when certain conditions are fulfilled.

Constant Expression Functions

Let’s look at numeric_limits<int>::max() again. My implementation defines this function like this:

#define INT_MAX (2147483647)

class numeric_limits<int>

{

public:

 inline static inline int max () { return INT_MAX; }

};

Technically, a call to max() could make a perfect constant expression because the function consists

of a single return statement that returns a literal value. C++11 lets you do exactly that by

turning max() into a constant expression function. A constant expression function is one that fulfills

the following requirements:

 It returns a value (i.e., it isn’t void).

 Its body consists of a single statement of the form

 return exp;

where exp is a constant expression.

 The function is declared constexpr.

Let’s examine a few examples of constant expression functions:

constexpr int max()

{

return INT_MAX;

} //OK

constexpr long long_max()

{

return 2147483647;

} //OK

43

constexpr bool get_val()

{

 bool res=false;

 return res;

} //error, body isn’t just a return statement

Put differently, a constexpr function is a named constant expression with parameters. It’s meant to

replace macros and hardcoded literals without sacrificing performance or type safety.

constexpr functions guarantee compile-time evaluation so long as their arguments are constant

expressions, too. However, if any of the arguments isn’t a constant expression,

the constexpr function may be evaluated dynamically. Consider:

constexpr int square(int x)

{

return x * x;

} //OK, compile time evaluation only if x is a constant expression

const int res=square(5); //compile-time evaluation of square(5)

int y=getval();

int n=square(y);//dynamic evaluation of square(y)

The automatic defaulting to dynamic initialization lets you define a singleconstexpr function that

accepts both constant expressions and non-constant expressions. You should also note that,

unlike ordinary functions, you can’t call a constant expression function before it’s defined.

Constant Expression Data

A constant-expression value is a variable or data member declared constexpr. It must be initialized

with a constant expression or an rvalue constructed by a constant expression constructor with

constant expression arguments (I discuss constant expression constructors shortly).

A constexpr value behaves as if it was declared const, except that it requires initialization before

use and its initializer must be a constant expression. Consequently, a constexpr variable can

always be used as part of another constant expression. For example:

struct S

{

private:

 static constexpr int sz; // constexpr variable

public:

 constexpr int two(); //constexpr function

};

44

constexpr int S::sz = 256;

enum DataPacket

{

Small=S::two(), //error. S::two() called before it was defined

Big=1024

};

constexpr int S::two() { return sz*2; }

constexptr S s;

int arr[s.two()]; //OK, s.two() called after its definition

Constant Expression Constructors

By default, an object with a nontrivial constructor undergoes dynamic initialization. However, under

certain conditions, C++11 lets you declare a class’s constructorconstexpr. A constexpr constructor

allows the compiler to initialize the object at compile-time, provided that the constructor’s

arguments are all constant expressions.

Formally, a constant expression constructor is one that meets the following criteria:

 It’s declared constexpr explicitly.

 It can have a member initialization list involving only potentially constant expressions (if the

expressions used aren’t constant expressions then the initialization of that object will be

dynamic).

 Its body must be empty.

An object of a user-defined type constructed with a constant expression constructor and constant

expression arguments is called a user-defined literal. Consider the following class complex:

struct complex

{

 //a constant expression constructor

 constexpr complex(double r, double i) : re(r), im(i) { }//empty body

//constant expression functions

 constexpr double real() { return re;}

 constexpr double imag() { return im;}

private:

 double re;

 double im;

};

constexpr complex COMP(0.0, 1.0); // creates a literal complex

45

As you can see, a constant expression constructor is a private case of a constant expression

function except that it doesn’t have a return value (because constructors don’t return values).

Typically, the memory layout of COMP is similar to that of an array of two doubles. One of the

advantages of user-defined literals with a small memory footprint is that an implementation can

store them in the system’sROM. Without a constexpr constructor, the object would require

dynamic initialization and therefore wouldn’t be ROM-able.

As with ordinary constant expression functions, the constexpr constructor may accept arguments

that aren’t constant expressions. In such cases, the initialization is dynamic:

double x = 1.0;

constexpr complex cx1(x, 0); // error: x isn’t a constant expression

const complex cx2(x, 1); //OK, dynamic initialization

constexpr double xx = COMP.real(); // OK

constexpr double imaglval=COMP.imag(); //OK, static init

complex cx3(2, 4.6); //dynamic initialization

Notice that if the initializer is a constant that isn’t declared constexpr, the implementation is free to

choose between static and dynamic initialization. However, if the initializer is declared constexpr,

the object undergoes static initialization.

In Conclusion

constexpr is an effective tool for ensuring compile-time evaluation of function calls, objects and

variables. Compile-time evaluation of expressions often leads to more efficient code and enables

the compiler to store the result in the system’s ROM. Additionally, constexpr can be used wherever

a constant expression is required, such as the size of arrays and bit-fields, as an enumerator’s

initializer, or in the forming of another constant expression. With respect to compiler support, GCC

4.6, Intel’s C++ 13, IBM’s XLC++ 12.1, and Clang 3.1 already supportconstexpr.

46

Closer to Perfection: Get to Know C++11 Scoped and

Based Enum Types
February 6, 2013 by Danny Kalev

C++ enum types pack a set of related constants in an intuitive and efficient user-defined type. Can

you ask for more? With two new C++11 enhancements, namely scoped enums and based enums,

the answer is “yes.” Find out all about the recent facelift that C++11 enums underwent and learn

how to refactor your code to benefit from the new enum features – without sacrificing performance

or backward compatibility.

Enums are one of my favorite C++ features. They exemplify the notion of an efficient user-defined

type without the heavy machinery of virtual functions, constructors, etc. (Compare C++ enums to

other programming languages that still insist on using a full-blown class instead, and you’ll see

what I mean.)

Yet, traditional enum types aren’t flawless. Throughout the past three decades, some of their

limitations have irritated programmers and compilers alike. Three of the most frequently cited

drawbacks of traditional enums are:

 Enumerator names are visible from their enum’s enclosing scope.

 You cannot override the default underlying type of an enum programmatically.

 Enumerators convert to int automatically, no questions asked.

C++11 addresses these issues with revamped enumerations that give you tighter control over the

scope, size, and implicit conversions of enum types. Let’s look at these new features more closely,

and examine how they can improve both our code quality and frustration level.

A Matter of Scope

Programmers often discover the hard way that enumerators in the same scope must all be distinct

from each other and from other variable names. Otherwise, they might clash, as the following

example shows:

enum Color {

Bronze,

Silver,

Gold

};

enum Bullion

{

47

Silver, //conflicts with Color’s Silver

Gold, //conflicts with Color’s Gold Platinum

};

The enumerators Silver and Gold belong to different enum types and have different values.

However, they clash because they’re visible from their enclosing scope (unlike, say, members of a

class). The common workaround, namely appending the enum name to every enumerator, evokes

memories from the pre-namespace era:

enum Color

{

BronzeColor,

SilverColor,

GoldColor

};

enum Bullion

{

SilverBullion,

GoldBullion,

PlatinumBullion

};

However, cumbersome names aren’t to everyone’s taste. Besides, name conflicts could still occur if

you use third-party code.

Declaring enum types in namespaces offers only a partial solution to the problem. A typical project

often declares all of its constants and enum types under the same namespace; and frankly, who

uses namespaces these days anyway?

Enter Scoped Enums

C++11 solves the scoping problem with a new category called scoped enums. A scoped enum

looks exactly as a traditional enum except that the keyword class(or struct – the two keywords are

interchangeable in this context) appears between the keyword enum and the enum name, as shown

in the following example:

enum class Color //C++11 scoped enum

{

Bronze,

Silver,

Gold

48

};

enum struct Bullion //C++11 scoped enum

{

Silver, //doesn’t conflict with Color’s Silver

Gold, //ditto

Platinum

};

Enumerators of a scoped enum require a qualified name when referred to from an enclosing scope:

Color col1=Bronze; //error, Bronze not in scope

Color col2=Color::Bronze; //OK

if ((col2==Color::Silver) || (col2==Color::Gold))//OK

//…

Strong Typing

Traditional enumerators aren’t strongly typed. They automatically convert to int:

int cointype= BronzeColor; //OK, unscoped enum

As opposed to their unscoped counterparts, scoped enums are strongly-typed. Implicit conversions

to int (or any other integral types) are not permitted. To convert a scoped enumerator to int, you

have to use an explicit cast:

int carcolor=Color::Silver; //error, implicit conversion to int not allowed

int carcolor=static_cast<int>(Color::Silver); //OK

One Size Doesn’t Fit All

All enum types are implemented as a built-in integral type known as the underlying type. In C, the

underlying type is always int. In C++03, the underlying type is implementation-defined. An

implementation is free to choose an arbitrary integral type (char, short, int, long, and

their unsigned counterparts) as an enum’s underlying type. Furthermore, a C++ implementation is

allowed to assign a different underlying type to different enum types. The only requirements in the

C++03 standard are that the underlying type is an integral type that can represent all the

enumerator values defined in the enumeration, and that the underlying type is not larger than int,

unless the value of an enumerator cannot fit in an intor unsigned int.

Thus, a typical C++03 implementation may assign different underlying types to the following enum

types:

49

//C++03

enum Bool {False, True}; // fits into char, signed char, unsigned char

enum RecSize {DefaultSize=1000000, LargeSize=2000000}; //underlying type is

int

Of course, an implementation may adhere to int as the sole underlying type regardless of the

values of the enumerators. From my experience, that’s what the majority of C++03 compilers in fact

do.

The under-specification of an enum’s underlying type in C++03 can be a problem if you need

platform-independent sizes, e.g., when sending data across an HTTP connection, or when the data

has to be stored compactly. In C++03, there’s really nothing much that you can do to override the

default underlying type – at least not in a standardized manner.

C++11, however, lets you specify the underlying type of an enum explicitly by using an enum base.

An enum base declaration looks syntactically similar to a base class in a derived class declaration:

enum Bool: char {False, True}; //C++11 based enum

In the example above, the programmer specified char as the underlying type ofBool. Consequently,

every enumerator of Bool occupies only one byte of memory. If the value of an enumerator cannot

be represented by the underlying type, a compilation error occurs.

Selecting char as the underlying type of an enum type ensures among the rest that enumerators

can be transmitted via HTTP without the onerous little-endian versus big endian byte reordering.

Additionally, the compact size of one byte (instead of four) per enumerator implies that a large

number of enum values can be stored efficiently in a smartphone’s memory or a data file.

Of course, this doesn’t mean that you should rush to specify char as the underlying type of your

enum types – quite the contrary. As a rule, let your compiler assign the default underlying type

unless you have a good reason to override it. Usually, the default underlying type is also the most

efficient datatype for the target hardware.

Combining Features

Based enums aren’t scoped by default. They simply have a fixed, user-specified underlying type. If

you want the benefits of both scoped enums and based enums, combine the two features, like this:

enum class Bool: char {False, True}; //C++11 scoped and based enum

int x=sizeof (Bool); //x=1

int y =static_cast<int> (Bool::False); //y=0

++y;

50

Of course, traditional enums are still available in C++11 with the same semantics and scoping rules

as before. Therefore, legacy code will not break when you upgrade your compiler. For example, a

traditional enumerator will still convert toint implicitly even in C++11:

enum Direction (Up, Down};

int dir=Down; //OK in C++11 as well

Recall that you may use qualified enumerator names even with traditional enums (with scoped

enums, you’re obliged to use qualified names exclusively):

int dir=Direction::Down; //OK, unscoped enum

However, it’s advisable to go through existing C++ code and refactor it, possibly replacing legacy

enums with scoped enums; this shouldn’t affect their underlying type. Likewise, if you need a fixed,

platform-independent underlying type, add an enum base to your enum declarations.

In Conclusion

C++11 offers two new categories of enum types: scoped enums and based enums. Enumerators of

a scoped enum require a qualified name such asenumname::enumerator when you refer to them

from an enclosing scope. In addition, scoped enums are strongly-typed, so you must use an explicit

cast to convert them to int if necessary. A based enum lets you specify its underlying type

programmatically. With respect to compiler support, GCC 4.4, Intel’s C++ 12, MSVC 11, IBM’s

XLC++ 12.1, Clang 2.9, Embarcadero C++ Builder, and others support the new C++11 enum

features.

51

Use C++11 Inheritance Control Keywords to Prevent

Inconsistencies in Class Hierarchies
April 11, 2013 by Danny Kalev

For more than 30 years, C++ got along without inheritance control keywords. It wasn’t easy, to say

the least. Disabling further derivation of a class was possible but tricky. To prevent users from

overriding a virtual function in a derived class you had to lean over backwards. But not any more:

Two new context-sensitive keywords make your job a lot easier. Here’s how they work.

C++11 adds two inheritance control keywords: override and final. overrideensures that an

overriding virtual function declared in a derived class has the same signature as that of the base

class. final blocks further derivation of a class and further overriding of a virtual function. Let’s see

how these watchdogs can eliminate design and implementation bugs in your class hierarchies.

Virtual Functions and override

A derived class can override a member function that was declared virtual in a base class. This is a

fundamental aspect of object-oriented design. However, things can go wrong even with such a

trivial operation as overriding a function. Two common bugs related to overriding virtual functions

are:

 Inadvertent overriding.

 Signature mismatch.

First, let’s analyze the inadvertent overriding syndrome. You might inadvertently override a virtual

function simply by declaring a member function that accidentally has the same name and signature

as a base class’s virtual member function. Compilers and human readers rarely detect this bug

because they usually assume that the new function is meant to override the base class’s function:

struct A

{

virtual void func();

};

struct B: A{};

struct F{};

struct D: A, F

{

 void func();//meant to declare a new function but

 //accidentally overrides A::func

52

};

Reading the code listing above, you can’t tell for sure whether the member

functionD::func() overrides A::func() deliberately. It could be an accidental overriding that

occurred because the parameter lists and the names of both functions are identical by chance.

A signature mismatch is a more commonplace scenario. It leads to the accidental creation of a new

virtual function (instead of overriding an existing virtual function), as demonstrated in the following

example:

struct G

{

 virtual void func(int);

};

struct H: G

{

 virtual void func(double); //accidentally creates a new virtual function

};

In this case, the programmer intended to override G::func() in class H. However,

because H::func() has a different signature, the result is a new virtual function, not an override of

a base class function. Not all compilers issue a warning in such cases, and those that do are

sometimes configured to suppress this warning.

In C++11, you can eliminate these two bugs by using the new

keyword override.override explicitly states that a function is meant to override a base class’s

virtual function. More importantly, it checks for signature mismatches between the base class

virtual function and the overriding function in the derived classes. If the signatures don’t match, the

compiler issues an error message.

Let’s see how override can eliminate the signature mismatch bug:

struct G

{

 virtual void func(int);

};

struct H: G

{

 virtual void func(double) override; //compilation error

};

53

When the compiler processes the declaration of H::func() it looks for a matching virtual function in

a base class. Recall that “matching” in this context means:

 Identical function names.

 A virtual specifier in the first base class that declares the function.

 Identical parameter lists, return types (with one exception), cv qualifications etc., in both the

base class’s function and the derived class’s overriding function.

If any of these three conditions isn’t met, you get a compilation error. In our example, the parameter

lists of the two functions don’t match: G::func() takesint whereas H::func() takes double.

Without the override keyword, the compiler would simply assume that the programmer meant to

create a new virtual function in H.

Preventing the inadvertent overriding bug is trickier. In this case, it’s the lack of the

keyword override that should raise your suspicion. If the derived class function is truly meant to

override a base class function, it should include an explicit overridespecifier. Otherwise, assume

that either D::func() is a new virtual function (a comment would be most appreciated in this case!),

or that this may well be a bug.

final Functions and Classes

The C++11 keyword final has two purposes. It prevents inheriting from classes, and it disables the

overriding of a virtual function. Let’s look at final classes first.

Certain classes that implement system services, infrastructure utilities, encryption etc., are often

meant to be non-subclassable: The implementers don’t want clients to modify those classes by

means of deriving new classes from them. Standard Library containers such

as std::vector and std::list are another good example of non-subclassable types. These

container classes don’t have a virtual destructor or indeed, any virtual member functions.

And yet, every now and then, programmers insist on deriving from std::vectorwithout realizing

the risks involved. In C++11, non-subclassable types should be declared final like this:

class TaskManager final{/*..*/};

class PrioritizedTaskManager: public TaskManager {

}; //compilation error: base class TaskManager is final

In a similar vein, you can disable further overriding of a virtual function by declaring it final. If a

derived class attempts to override a final function, the compiler issues an error message:

struct A

{

54

 virtual void func() const;

};

struct B: A

{

 void func() const override final; //OK

};

struct C: B

{

 void func()const; //error, B::func is final

};

It doesn’t matter whether C::func() is declared override. Once a virtual function is declared final,

derived classes cannot override it.

Syntax and Terminology

I have thus far avoided two side issues pertaining to override and final. The first one is their

unique location. Unlike virtual, inline, explicit extern, and similar function specifiers, these two

keywords appear after the closing parenthesis of a function’s parameter list, or (in the case of

non-subclassable classes) after the class name in a class declaration.

The peculiar location of these keywords is a consequence of another unusual

property: override and final aren’t ordinary keywords. In fact officially, they aren’t keywords at all.

C++11 considers them as identifiers that gain special meaning only when used in the specific

contexts and locations as I have shown. In any other location or context, they are treated as

identifiers. Consequently, the following listing makes perfectly valid C++11 code:

//valid C++11 code

int final=0;

bool override=false;

if (override==true)

 cout<<”override is: “<<override<<endl;

struct D{} final;

struct A

{

virtual bool func();

};

struct B:A

{

bool func() override final;

};

55

It may seem surprising that final and override behave exactly like PL/1’s context sensitive

keywords (CSK). Since 1972, C and later C++ always avoided CSK, adhering instead to

the reserved keywords approach.

So why did the committee make final and override an exception? The CSK choice was a

compromise. Adding override and final as reserved keywords might have caused existing C++

code to break. If the committee had introduced new reserved keywords, they probably would have

chosen funky strings such asfinal_decl or _Override, tokens that were less likely to clash with

user-declared identifiers in legacy C++ code. However, no one likes such ugly keywords (ask C

users what they think of C99’s _Bool for example). That is why the CSK approach won eventually.

override and final become keywords in C++11, but only when used in specific contexts.

Otherwise, they are treated as plain identifiers. The committee was reluctant to

call override and final “context sensitive keywords” (which is what they truly are) though. Instead,

they are formally referred to as “identifiers with special meaning.” Special indeed!

In Conclusion

The two new context-sensitive keywords override and final give you tighter control over hierarchies

of classes, ridding you of some irritating inheritance-related bugs and design

gaffes. override guarantees that an overriding virtual function matches its base class

counterpart. final blocks further derivation of a class or further overriding of a virtual function. With

respect to compiler support, GCC 4.7, Intel’s C++ 12, MSVC 11, and Clang 2.9 support these new

keywords.

Danny Kalev is a certified system analyst and software engineer specializing in C, C++ Objective‐C and other

programming languages. He was a member of the C++ standards committee until 2000 and has since been

involved informally in the C++ standardization process. Danny is the author of ANSI/ISO Professional

Programmer's Handbook (1999) and The Informit C++ Reference Guide: Techniques, Insight, and Practical

Advice on C++ (2005). He was also the Informit C++ Reference Guide. Danny earned an M.A. in linguistics,

graduating summa cum laude, and is now pursuing his Ph.D. in applied linguistics.

