

Chapter 13: Functors

Consider a simple task. Suppose you have a vector<string> and you'd like to count the number of
strings that have length less than five. You stumble upon the STL count_if algorithm, which accepts a range of iterators and a predicate function, then returns the number of elements in the range for which the function returns true. For example, you could use count_if as follows to count the number of even in-tegers in a vector:
 bool IsEven(int val) {
 return val % 2 == 0;
 }

 vector<int> myVector = /* ... */
 int numEvens = count_if(myVector.begin(), myVector.end(), IsEven);In our case, since we want to count the number of strings with length less than five, we could write a func -tion like this one:
 bool LengthIsLessThanFive(const string& str) {
 return str.length() < 5;
 }And then call count_if(myVector.begin(), myVector.end(), LengthIsLessThanFive) to get the number of short strings in the vector. Similarly, if we want to count the number of strings with length less than ten, we could write a LengthIsLessThanTen function like this one:
 bool LengthIsLessThanTen(const string& str) {
 return str.length() < 10;
 }and then call count_if(myVector.begin(), myVector.end(), LengthIsLessThanTen). In general, if we know in advance what length we want to compare the string lengths against, we can write a function that returns whether a particular string's length is less than that value, then pass it into count_if to get our result. This approach is legal C++, but is not particularly elegant. Every time we want to compare the string length against a particular value, we have to write an entirely new function to perform the compar-ison. Good programming practice suggests that we should instead just write one function that looks like this:
 bool LengthIsLessThan(const string& str, size_t length) {
 return str.length() < length;
 }This more generic function takes in a string and a length, then returns whether the string's length is less than the requested length. This way, we can specify the maximum length as the second parameter rather than writing multiple instances of similar functions.While this new function is more generic than the previous version, unfortunately we can't use it in con-junction with count_if. count_if requires a unary function (a function taking only one argument) as its final parameter, and the new LengthIsLessThan is a binary function. Our new LengthIsLessThan func-tion, while more generic than the original version, is actually less useful in this context. There must be some way to compromise between the two approaches. We need a way to construct a function that takes

- 382 - Chapter 13: Functorsin only one parameter (the string to test), but which can be customized to accept an arbitrary maximum length. How can we do this? This problem boils down to a question of data flow. To construct this hybrid function, we need to some-how communicate the upper bound into the function so that it can perform the comparison. So how can we give this data to the function? Recall that a function has access the following information:
• Its local variables.
• Its parameters.
• Global variables.Is there some way that we can store the maximum length of the string in one of these locations? We can't store it in a local variable, since local variables don't persist between function calls and aren't accessible to callers. As mentioned above, we also can't store it in a parameter, since count_if is hardcoded to accept a unary function. That leaves global variables. We could solve this problem using global variables: we would store the maximum length in a global variable, then compare the string parameter length against the glob-al. For example:

 size_t gMaxLength; // Value to compare against
 bool LengthIsLessThan(const string& str) {
 return str.length() < gMaxLength;
 }This approach works: if our vector<string> is called v, then we can count the number of elements less than some value by writing
 gMaxLength = /* ... some value ... */
 int numShort = count_if(v.begin(), v.end(), LengthIsLessThan);But just because this approach works does not mean that it is optimal. This approach is deeply flawed for several reasons, a handful of which are listed here:

• It is error-prone. Before we use LengthIsLessThan, we must take care to set gMaxLength to the maximum desired length. If we forget to do so, then LengthIsLessThan will use the wrong value in the comparison and we will get the wrong answer. Moreover, because there is no formal relationship between the gMaxLength variable and the LengthIsLessThan function, the compiler can't verify that we correctly set gMaxLength before calling LengthIsLessThan, putting an extra burden on the programmer
• It is not scalable. If every time we encounter a problem like this one we create a new global vari -able, programs we write will begin to fill up with global variables that are used only in the context of a single function. This leads to namespace pollution, where too many variables are in scope and it is easy to accidentally use one when another is expected.
• It uses global variables. Any use of global variables should send a shiver running down your spine. Global variables should be avoided at all costs, and the fact that we're using them here sug-gests that something is wrong with this setup.None of the options we've considered are feasible or attractive. There has to be a better way to solve this, but how?

Chapter 13: Functors - 383 -
Functors to the RescueThe fundamental issue at heart here is that a unary function does not have access to enough information to answer the question we're asking. Essentially, we want a unary function to act like a binary function without taking an extra parameter. Using only the tools we've seen so far, this simply isn't possible. To solve this problem, we'll turn to a more powerful C++ entity: a functor. A functor (or function object) is an C++ class that acts like a function. Functors can be called using the familiar function call syntax, and can yield values and accept parameters just like regular functions. For example, suppose we create a functor class called MyClass imitating a function accepting an int and returning a double. Then we could “call” an object of type MyClass as follows:
 MyClass myFunctor;
 cout << myFunctor(137) << endl; // "Call" myFunctor with parameter 137Although myFunctor is an object, in the second line of code we treat it as though it were a function by in-voking it with the parameter 137.At this point, functors might seem utterly baffling: why would you ever want to create an object that be-haves like a function? Don't worry, we'll answer that question in a short while. In the meantime, we'll dis -cuss the syntax for functors and give a few motivating examples.To create a functor, we create an object that overloads the function call operator, operator (). The name of this function is a bit misleading – it is a function called operator (), not a function called operator that takes no parameters. Despite the fact that the name looks like “operator parentheses,” we're not rede-fining what it means to parenthesize the object. Instead, we're defining a function that gets called if we in-voke the object like a function. Thus in the above code,
 cout << myFunctor(137) << endl;is equivalent to
 cout << myFunctor.operator()(137) << endl;Unlike other operators we've seen so far, when overloading the function call operator, you're free to return an object of any type (or even void) and can accept any number of parameters. Remember that the point of operator overloading is to allow objects to act like built-in types, and since a regular function can have arbitrarily many parameters and any return type, functors are allowed the same freedom. For example, here's a sample functor that overloads the function call operator to print out a string:
 class MyFunctor {
 public:
 void operator() (const string& str) const {
 cout << str << endl;
 }
 };Note that in the function definition there are two sets of parentheses. The first group is for the function name – operator () – and the second for the parameters to operator (). If we separated the imple-mentation of operator () from the class definition, it would look like this:

- 384 - Chapter 13: Functors

 class MyFunctor {
 public:
 void operator() (const string& str) const;
 };

 void MyFunctor::operator() (const string& str) const {
 cout << str << endl;
 }Now that we've written MyFunctor, we can use it as follows:
 MyFunctor functor;
 functor("Functor power!");This code calls the functor and prints out “Functor power!”At this point functors might seem like little more than a curiosity. “Sure,” you might say, “I can make an ob -ject that can be called like a function. But what does it buy me?” A lot more than you might initially sus -pect, it turns out. The key difference between a function and a functor is that a functor's function call op-erator is a member function whereas a raw C++ function is a free function. This means that a functor can access the following information when being called:

• Its local variables.
• Its parameters.
• Global variables.
• Class data members.This last point is extremely important and is the key difference between a regular function and a functor. If a functor's operator() member function requires access to data beyond what can be communicated by its parameters, we can store that information as a data member inside the functor class. Since

operator() is a member of the functor class, it can then access that data freely. For example, consider the following functor class:
 class StringAppender {
 public:
 /* Constructor takes and stores a string. */
 explicit StringAppender(const string& str) : toAppend(str) {}

 /* operator() prints out a string, plus the stored suffix. */
 void operator() (const string& str) const {
 cout << str << ' ' << toAppend << endl;
 }

 private:
 const string toAppend;
 };
 This functor's constructor takes in a string and stores it for later use. Its operator () function accepts a string, then prints that string suffixed with the string stored by the constructor. We can then use the
StringAppender functor like this:
 StringAppender myFunctor("is awesome");
 myFunctor("C++");

Chapter 13: Functors - 385 -This code will print out “C++ is awesome,” since the constructor stored the string “is awesome” and we passed “C++” as a parameter to the function. If you'll notice, though, in the actual function call we only passed in one piece of information – the string “C++.” This is precisely why functors are so useful. Like regular functions, functors are invoked with a fixed number of parameters. Unlike raw functions, however, functors can be constructed to store as much information is necessary to solve the task at hand.Let's return to the above example with count_if. Somehow we need to provide a unary function that can return whether a string is less than an arbitrary length. To solve this problem, instead of writing a unary function, we'll create a unary functor whose constructor stores the maximum length and whose operat-
or () accepts a string and returns whether it's of the correct length. Here's one possible implementation:
 class ShorterThan {
 public:
 /* Accept and store an int parameter */
 explicit ShorterThan(size_t maxLength) : length(maxLength) {}

 /* Return whether the string length is less than the stored int. */
 bool operator() (const string& str) const {
 return str.length() < length;
 }

 private:
 const size_t length;
 };In this code, the constructor accepts a single size_t, then stores it as the length data member. From that point forward, whenever the functor is invoked on a particular string, the functor's operator() function can compare the length of that string against length data member. This is exactly what we want – a unary function that knows what value to compare the parameter's length against. To tie everything together, here's the code we'd use to count the number of strings in the vector that are shorter than the specified value:
 ShorterThan st(length);
 count_if(myVector.begin(), myVector.end(), st);Functors are incredible when combined with STL algorithms for this very reason – they look and act like regular functions, but have access to extra information. This is just our first taste of functors, as we contin -ue our exploration of C++ you will recognize exactly how much they will influence your program design.Look back to the above code with count_if. If you'll notice, we created a new ShorterThan object, then fed it to count_if. After the call to count_if, odds are we'll never use that particular ShorterThan ob-ject again. This is an excellent spot to use temporary objects, since we need a new ShorterThan for the function call but don't plan on using it afterwards. Thus, we can convert this code:
 ShorterThan st(length)
 count_if(myVector.begin(), myVector.end(), st);Into this code:
 count_if(myVector.begin(), myVector.end(), ShorterThan(length));Here, ShorterThan(length) constructs a temporary ShorterThan functor with parameter length, then passes it to the count_if algorithm. Don't get tripped up by the syntax – ShorterThan(length) does
not call the ShorterThan's operator () function. Instead, it invokes the ShorterThan constructor with the parameter length to create a temporary object. Even if we had written the operator() function to

- 386 - Chapter 13: Functorstake in an int, C++ would realize that the parentheses here means “construct an object” instead of “invoke
operator()” from context.
Writing Functor-Compatible CodeIn previous chapters, you've seen how to write code that accepts a function pointer as a parameter. For ex-ample, the following code accepts a function that takes and returns a double, then prints a table of some values of that function:
 const double kLowerBound = 0.0;
 const double kUpperBound = 1.0;
 const int kNumSteps = 25;
 const double kStepSize = (kUpperBound – kLowerBound) / kNumSteps;

 void TabulateFunctionValues(double function(double)) {
 for(double i = kLowerBound; i <= kUpperBound; i += kStepSize)
 cout << "f(" << i << ") = " << function(i) << endl;
 }For any function accepting and returning a double, we can call TabulateFunctionValues with that function as an argument. But what about functors? Can we pass them to TabulateFunctionValues as well? As an example, consider the following implementation of a Reciprocal functor, whose operator() takes in a double and returns the reciprocal of that double:
 class Reciprocal {
 public:
 double operator() (double val) const {
 return 1.0 / val;
 }
 };Given this class implementation, is the following code legal?
 TabulateFunctionValues(Reciprocal());(Recall that Reciprocal() constructs a temporary Reciprocal object for use as the parameter to Tabu-
lateFunctionValues.)At a high level, this code seems perfectly fine. After all, Reciprocal objects can be called as though they were unary functions taking and returning doubles, so it seems perfectly reasonable to pass a Reciproc-
al into TabulateFunctionValues. But despite the similarities, Reciprocal is not a function – it's a functor – and so the above code will not compile. The problem is that C++'s static type system prevents function pointers from pointing to functors, even if the functor has the same parameter and return type as the function pointer. This is not without reason – the machine code for calling a function is very different from machine code for calling a functor, and if C++ were to conflate the two it would result either in slower function calls or undefined runtime behavior.Given that this code doesn't compile, how can we fix it? Let's begin with some observations, then general-ize to the optimal solution. The above code does not compile because we're trying to provide a Recip-
rocal object to a function expecting a function pointer. This suggests one option – could we rewrite the
TabulateFunctionValues function such that it accepts a Reciprocal as a parameter instead of a func-tion pointer? For example, we could write the following:

Chapter 13: Functors - 387 -
 void TabulateFunctionValues(Reciprocal function) {
 for(double i = kLowerBound; i <= kUpperBound; i += kStepSize)
 cout << "f(" << i << ") = " << function(i) << endl;
 }Now, if we call the function as
 TabulateFunctionValues(Reciprocal());The code is perfectly legal because the argument has type Reciprocal and the TabulateFunctionVal-
ues function is specifically written to take in objects of type Reciprocal. But what if we have another functor we want to use in TabulateFunctionValues? For example, we might write a functor called Arc-
cos that computes the inverse cosine of its parameter, as seen here:
 class Arccos {
 public:
 double operator() (double val) const {
 return acos(val); // Using the acos function from <cmath>
 }
 };Unfortunately, if we try to call TabulateFunctionValues passing in an Arccos object, as shown here:
 TabulateFunctionValues(Arccos());we'll get yet another compile-time error, this time because the TabulateFunctionValues function is hardcoded to accept a Reciprocal, but we've tried to provide it an object of type Arccos. Again, if we re-write TabulateFunctionValues to only accept objects of type Arccos, we could alleviate this problem. Of course, in doing so, we would break all code that accepted objects of type Reciprocal. How can we re-solve this problem? Fortunately, the answer is yes, thanks to a particularly ingenious trick. Below are three versions of TabulateFunctionValues, each of which take in a parameter of a different type:
 void TabulateFunctionValues(double function(double)) {
 for(double i = kLowerBound; i <= kUpperBound; i += kStepSize)
 cout << "f(" << i << ") = " << function(i) << endl;
 }
 void TabulateFunctionValues(Reciprocal function) {
 for(double i = kLowerBound; i <= kUpperBound; i += kStepSize)
 cout << "f(" << i << ") = " << function(i) << endl;
 }
 void TabulateFunctionValues(Arccos function) {
 for(double i = kLowerBound; i <= kUpperBound; i += kStepSize)
 cout << "f(" << i << ") = " << function(i) << endl;
 }Notice that the only difference between the three implementations of TabulateFunctionValues is the type of the parameter to the function. The rest of the code is identical. This suggests a rather elegant solu -tion using templates. Instead of providing multiple different versions of TabulateFunctionValues, each specialized for a particular type of function or functors, we'll write a single template version of Tabulate-
FunctionValues parameterized over the type of the argument. This is shown here:

- 388 - Chapter 13: Functors

 template <typename UnaryFunction>
 void TabulateFunctionValues(UnaryFunction function) {
 for(double i = kLowerBound; i <= kUpperBound; i += kStepSize)
 cout << "f(" << i << ") = " << function(i) << endl;
 }Now, we can pass any type of object to TabulateFunctionValues that we want, provided that the argu-ment can be called with a single double as a parameter to produce a value. This means that we can pass in raw functions, Reciprocal objects, Arccos objects, and any other functor classes that happen to mimic functions from doubles to doubles. This hearkens back to our discussion of concepts in the previous chapter. By writing TabulateFunctionValues as a template function parameterized over an arbitrary type, we let clients provide objects of whatever type they see fit, as long as it can be called as a function taking a double and returning a double.When writing functions that require a user-specified callback, you may want to consider parameterizing the function over the type of the callback instead of using function pointers. The resulting code will be more flexible and future generations of programmers will be much the better for your extra effort.
STL Algorithms RevisitedNow that you're armed with the full power of C++ functors, let's revisit some of the STL algorithms we've covered and discuss how to maximize their firepower.The very first algorithm we covered was accumulate, defined in the <numeric> header. If you'll recall,
accumulate sums up the elements in a range and returns the result. For example, given a vector<int>, the following code returns the sum of all of the vector's elements:
 accumulate(myVector.begin(), myVector.end(), 0);The first two parameters should be self-explanatory, and the third parameter (zero) represents the initial value of the sum.However, this view of accumulate is limited, and to treat accumulate as simply a way to sum container elements would be an error. Rather, accumulate is a general-purpose function for transforming a collec-
tion of elements into a single value.There is a second version of the accumulate algorithm that takes a binary function as a fourth parameter. This version of accumulate is implemented like this:
 template <typename InputIterator, typename Type, typename BinaryFn>
 inline Type accumulate(InputIterator start,
 InputIterator stop,
 Type accumulator,
 BinaryFn fn) {
 while(start != stop) {
 accumulator = fn(accumulator, *start);
 ++start;
 }
 return initial;
 }This accumulate iterates over the elements of a container, calling the binary function on the accumulator and the current element of the container and storing the result back in the accumulator. In other words,
accumulate continuously updates the value of the accumulator based on its initial value and the values

Chapter 13: Functors - 389 -contained in the input range. Finally, accumulate returns the accumulator. Note that the version of ac-
cumulate we encountered earlier is actually a special case of the above version where the provided call -back function computes the sum of its parameters.To see accumulate in action, let's consider an example. Recall that the STL algorithm lower_bound re-turns an iterator to the first element in a range that compares greater than or equal to some value. How -ever, lower_bound requires the elements in the iterator range to be in sorted order, so if you have an un-sorted vector, you cannot use lower_bound. Let's write a function UnsortedLowerBound that accepts a range of iterators and a lower bound, then returns the value of the least element in the range greater than or equal to the lower bound. For simplicity, let's assume we're working with a vector<int> so that we don't get bogged down in template syntax, though this approach can easily be generalized.Although this function can be implemented using loops, we can leverage off of accumulate to come up with a considerably more concise solution. Thus, we'll define a functor class to pass to accumulate, then write UnsortedLowerBound as a wrapper call to accumulate with the proper parameters.Consider the following functor:
 class LowerBoundHelper {
 public:
 explicit LowerBoundHelper(int lower) : lowestValue(lower) {}
 int operator() (int bestSoFar, int current) {
 return current >= lowestValue && current < bestSoFar?
 current : bestSoFar;
 }

 private:
 const int lowestValue;
 };This functor's constructor accepts the value that we want to lower-bound. Its operator () function ac-cepts two ints, the first representing the lowest known value greater than lowestValue and the second the current value. If the value of the current element is greater than or equal to the lower bound and also less than the best value so far, operator () returns the value of the current element. Otherwise, it simply returns the best value we've found so far. Thus if we call this functor on every element in the vector and keep track of the return value, we should end up with the lowest value in the vector greater than or equal to the lower bound. We can now write the UnsortedLowerBound function like this:
 int UnsortedLowerBound(const vector<int>& input, int lowerBound) {
 return accumulate(input.begin(), input.end(),
 numeric_limits<int>::max(),
 LowerBoundHelper(lowerBound));
 }Our entire function is simply a wrapped call to accumulate, passing a specially-constructed LowerBound-
Helper object as a parameter. Note that we've used the value numeric_limits<int>::max() as the ini-
tial value for the accumulator. numeric_limits, defined in the <limits> header, is a traits class that ex-ports useful information about the bounds and behavior of numeric types, and its max static member func-tion returns the maximum possible value for an element of the specified type. We use this value as the ini -tial value for the accumulator since any integer is less than it, so if the range contains no elements greater than the lower bound we will get numeric_limits<int>::max() back as a sentinel.If you need to transform a range of values into a single result (of any type you wish), use accumulate. To transform a range of values into another range of values, use transform. We discussed transform briefly in the chapter on STL algorithms in the context of ConvertToUpperCase and ConvertToLowerCase, but

- 390 - Chapter 13: Functorssuch examples are just the tip of the iceberg. transform is nothing short of a miracle function, and it arises a whole host of circumstances.*
Higher-Order ProgrammingThis discussion of functors was initially motivated by counting the number of short strings inside of an STL vector. We demonstrated that by using count_if with a custom functor as the final parameter, we were able to write code that counted the number of elements in a vector<string> whose length was less than a certain value. But while this code solved the problem efficiently, we ended up writing so much code that any potential benefits of the STL algorithms were dwarfed by the time spent writing the functor. For reference, here was the code we used:
 class ShorterThan {
 public:
 explicit ShorterThan(size_t maxLength) : length(maxLength) {}
 bool operator() (const string& str) const {
 return str.length() < length;
 }

 private:
 size_t length;
 };

 const size_t myValue = GetInteger();
 count_if(myVector.begin(), myVector.end(), ShorterThan(myValue));Consider the following code which also solves the problem, but by using a simple for loop:
 const int myValue = GetInteger();
 int total = 0;
 for(int i = 0; i < myVector.size(); ++i)
 if(myVector[i].length() < myValue) ++total;This code is considerably more readable than the functor version and is approximately a third as long. By almost any metric, this code is superior to the earlier version.If you'll recall, we were motivated to write this ShorterThan functor because we were unable to use
count_if in conjunction with a traditional C++ function. Because count_if accepts as a parameter a un-ary function, we could not write a C++ function that could accept both the current container element and the value to compare its length against. However, we did note that were count_if to accept a binary func-tion and extra client data, then we could have written a simple C++ function like this one:
 bool LengthIsLessThan(const string& str, int threshold) {
 return str.length() < threshold;
 }And then passed it in, along with the cutoff length, to the count_if function.The fundamental problem is that the STL count_if algorithm requires a single-parameter function, but the function we want to use requires two pieces of data. We want the STL algorithms to use our two-para-meter function LengthIsLessThan, but with the second parameter always having the same value. What if
* Those of you familiar with functional programming might recognize accumulate and transform as the classic higher-order functions Map and Reduce.

Chapter 13: Functors - 391 -somehow we could modify LengthIsLessThan by “locking in” the second parameter? In other words, we'd like to take a function that looks like this:
bool LengthIsLessThan

string str
(parameter)

int length
(parameter)

And transform it into another function that looks like this:
Modified LengthIsLessThan

string str
(parameter)

int length

5

Now, if we call this special version of LengthIsLessThan with a single parameter (call it str), it would be as though we had called the initial version of LengthIsLessThan, passing as parameters the value of str and the stored value 5. This then returns whether the length of the str string is less than 5. Essentially, by binding the second parameter of the two-parameter LengthIsLessThan function, we end up with a one-parameter function that describes exactly the predicate function we want to provide to count_if. Thus, at a high level, the code we want to be able to write should look like this:
 count_if(v.begin(), v.end(),
 the function formed by locking 5 as the second parameter of LengthIsLessThan);This sort of programming, where functions can be created and modified just like regular objects, is known as higher-order programming. While by default C++ does not support higher-order programming, using functors and the STL functional programming libraries, in many cases it is possible to write higher-order code in C++. In the remainder of this chapter, we'll explore the STL functional programming libraries and see how to use higher-order programming to supercharge STL algorithms.
Adaptable FunctionsTo provide higher-order programming support, standard C++ provides the <functional> library.
<functional> exports several useful functions that can transform and modify functions on-the-fly to yield new functions more suitable to the task at hand. However, because of several language limitations, the <functional> library can only modify specially constructed functions called “adaptable functions,” functors (not regular C++ functions) that export information about their parameter and return types. For-tunately, any one- or two-parameter function can easily be converted into an equivalent adaptable func-tion. For example, suppose you want to make an adaptable function called MyFunction that takes a
string by reference-to-const as a parameter and returns a bool, as shown below:

- 392 - Chapter 13: Functors

 class MyFunction {
 public:
 bool operator() (const string& str) const {
 /* Function that manipulates a string */
 }
 };Now, to make this function an adaptable function, we need to specify some additional information about the parameter and return types of this functor's operator () function. To assist in this process, the func-tional library defines a helper template class called unary_function, which is prototyped below:
 template <typename ParameterType, typename ReturnType>
 class unary_function;The first template argument represents the type of the parameter to the function; the second, the func-tion's return type.Unlike the other classes you have seen before, the unary_function class contains no data members and no member functions. Instead, it performs some behind-the-scenes magic with the typedef keyword to export the information expressed in the template types to the rest of the functional programming library. Since we want our above functor to also export this information, we'll inheritance to import all of the in-formation from unary_function into our MyFunction functor. Because MyFunction accepts as a para-meter an object of type string and returns a variable of type bool, we will have MyFunction inherit from the type unary_function<string, bool>. The syntax to accomplish this is shown below:
 class MyFunction : public unary_function<string, bool> {
 public:
 bool operator() (const string& str) const {
 /* Function that manipulates a string */
 }
 };We'll explore inheritance in more detail later, but for now just think of it as a way for importing informa-tion from class into another. Note that although the function accepts as its parameter a const string&, we chose to use a unary_function specialized for the type string. The reason is somewhat technical and has to do with how unary_function interacts with other functional library components, so for now just remember that you should not specify reference-to-const types inside the unary_function template parametrization. The syntax for converting a binary functor into an adaptable binary function works similarly to the above code for unary functions. Suppose that we'd like to make an adaptable binary function that accepts a
string and an int and returns a bool. We begin by writing the basic functor code, as shown here:
 class MyOtherFunction {
 public:
 bool operator() (const string& str, int val) const {
 /* Do something, return a bool. */
 }
 };To convert this functor into an adaptable function, we'll have it inherit from binary_function. Like un-
ary_function, binary_function is a template class that's defined as

Chapter 13: Functors - 393 -
 template <typename Param1Type, typename Param2Type, typename ResultType>
 class binary_function;Thus the adaptable version of MyOtherFunction would be
 class MyOtherFunction: public binary_function<string, int, bool> {
 public:
 bool operator() (const string& str, int val) const {
 /* Do something, return a bool. */
 }
 };While the above approach for generating adaptable functions is perfectly legal, it's a bit clunky and we still have a high ratio of boilerplate code to actual logic. Fortunately, the STL functional library provides the powerful but cryptically named ptr_fun* function that transforms a regular C++ function into an adapt-able function. ptr_fun can convert both unary and binary C++ functions into adaptable functions with the correct parameter types, meaning that you can skip the hassle of the above code by simply writing nor-mal functions and then using ptr_fun to transform them into adaptable functions. For example, given the following C++ function:
 bool LengthIsLessThan(string myStr, int threshold) {
 return myStr.length() < threshold;
 }If we need to get an adaptable version of that function, we can write ptr_fun(LengthIsLessThan) in the spot where the adaptable function is needed.
ptr_fun is a useful but imperfect tool. Most notably, you cannot use ptr_fun on functions that accept parameters as reference-to-const. ptr_fun returns a unary_function object, and as mentioned above, you cannot specify reference-to-const as template arguments to unary_function. Also, because of the way that the C++ compiler generates code for functors, code that uses ptr_fun can be a bit slower than code using functors.For situations where you'd like to convert a member function into an adaptable function, you can use the
mem_fun or mem_fun_ref functions. These functions convert member functions into unary functions that accept as input a receiver object, then invoke that member function on the receiver. The difference between mem_fun and mem_fun_ref is how they accept their parameters – mem_fun accepts a pointer to the receiver object, while mem_fun_ref accepts a reference to the receiver. For example, given a
vector<string>, the following code will print out the lengths of all of the strings in the vector:
 transform(myVector.begin(), myVector.end(), ostream_iterator<int>(cout, "\n"),
 mem_fun_ref(&string::length));

Let's dissect this call to transform, since there's a lot going on. The first two parameters delineate the input
range, in this case the full contents of myVector. The third parameter specifies where to put the output, and
since here it's an ostream_iterator the output will be printed directly to the console instead of stored in some
other location. The final parameter is mem_fun_ref(&string::length), a function that accepts as input a
string and then returns the value of the length member function called on that string.

mem_fun_ref can also be used to convert unary (one-parameter) member functions into adaptable binary functions that take as a first parameter the object to apply the function to and as a second parameter the
* ptr_fun is short for “pointer function”, not “fun with pointers.”

- 394 - Chapter 13: Functorsparameter to the function. When we cover binders in the next section, you should get a better feel for ex -actly how useful this is.
Binding ParametersNow that we've covered how the STL functional library handles adaptable functions, let's consider how we can use them in practice.At the beginning of this chapter, we introduced the notion of parameter binding, converting a two-para-meter function into a one-parameter function by locking in the value of one of its parameters. To allow you to bind parameters to functions, the STL functional programming library exports two functions,
bind1st and bind2nd, which accept as parameters an adaptable function and a value to bind and return new functions that are equal to the old functions with the specified values bound in place. For example, given the following implementation of LengthIsLessThan:
 bool LengthIsLessThan(string str, int threshold) {
 return str.length() < threshold;
 }We could use the following syntax to construct a function that's LengthIsLessThan with the value five bound to the second parameter:
 bind2nd(ptr_fun(LengthIsLessThan), 5)The line bind2nd(ptr_fun(LengthIsLessThan), 5) first uses ptr_fun to generate an adaptable ver-sion of the LengthIsLessThan function, then uses bind2nd to lock the parameter 5 in place. The result is a new unary function that accepts a string parameter and returns if that string's length is less than 5, the value we bound to the second parameter. Since bind2nd is a function that accepts a function as a para-meter and returns a function as a result, bind2nd is a function that is sometimes referred to as a higher-
order function.Because the result of the above call to bind2nd is a unary function that determines if a string has length less than five, we can use the count_if algorithm to count the number of values less than five by using the following code:
 count_if(container.begin(), container.end(),
 bind2nd(ptr_fun(LengthIsLessThan), 5));Compare this code to the functor-based approach illustrated at the start of this chapter. This version of the code is much, much shorter than the previous version. If you aren't beginning to appreciate exactly how much power and flexibility the <functional> library provides, skip ahead and take a look at the practice problems.The bind1st function acts similarly to bind2nd, except that (as its name suggests) it binds the first para-meter of a function. Returning to the above example, given a vector<int>, we could count the number of elements in that vector smaller than the length of string “C++!” by writing
 count_if(myVector.begin(), myVector.end(),
 bind1st(ptr_fun(LengthIsLessThan), "C++!"));(Admittedly, this isn't the most practical use case for bind1st, but it does get the point across).

Chapter 13: Functors - 395 -In the STL functional programming library, parameter binding is restricted only to binary functions. Thus you cannot bind a parameter in a three-parameter function to yield a new binary function, nor can you bind the parameter of a unary function to yield a zero-parameter (“nullary”) function. For these opera -tions, you'll need to create your own custom functors, as shown in the practice problems at the end of this chapter.
Negating ResultsSuppose that given a function LengthIsLessThan, we want to find the number of strings in a container that are not less than a certain length. While we could simply write another function LengthIsNot-
LessThan, it would be much more convenient if we could somehow tell C++ to take whatever value
LengthIsLessThan returns and to use the opposite result. That is, given a function that looks like this:

We'd like to change it into a function that looks like this:

This operation is negation – constructing a new function whose return value has the opposite value of the input function. There are two STL negator functions – not1 and not2 – that return the negated result of a unary or binary predicate function, respectively. Thus, the above function that's a negation of LengthIs-
LessThan could be written as not2(ptr_fun(LengthIsLessThan)). Since not2 returns an adaptable function, we can then pass the result of this function to bind2nd to generate a unary function that returns whether a string's length is at least a certain threshold value. For example, here's code that returns the number of strings in a container with length at least 5:
count_if(container.begin(), container.end(),
 bind2nd(not2(ptr_fun(LengthIsLessThan)), 5));While this line is dense, it elegantly solves the problem at hand by combining and modifying existing code to create entirely different functions. Such is the beauty and simplicity of higher-order programming – why rewrite code from scratch when you already have all the pieces individually assembled?

LengthIsLessThanInput

NO

YES

inverter

LengthIsLessThanInput

YES

NO

- 396 - Chapter 13: Functors

Operator FunctionsLet's suppose that you have a container of ints and you'd like to add 137 to each of them. Recall that you can use the STL transform algorithm to apply a function to each element in a container and then store the result. Because we're adding 137 to each element, we might consider writing a function like this one:
 int Add137(int param) {
 return param + 137;
 }And then writing
 transform(container.begin(), container.end(), container.begin(), Add137);While this code works correctly, this approach is not particularly robust. What if later on we needed to in -crement all elements in a container by 42, or perhaps by an arbitrary value? Thus, we might want to con-sider replacing Add137 by a function like this one:
 int AddTwoInts(int one, int two) {
 return one + two;
 }And then using binders to lock the second parameter in place. For example, here's code that's equivalent to what we've written above:
 transform(container.begin(), container.end(), container.begin(),
 bind2nd(ptr_fun(AddTwoInts), 137));At this point, our code is correct, but it can get a bit annoying to have to write a function AddTwoInts that simply adds two integers. Moreover, if we then need code to increment all doubles in a container by 1.37, we would need to write another function AddTwoDoubles to avoid problems from typecasts and trunca-tions. Fortunately, the designers of the STL functional library recognized how tedious it is to write out this sort of code, and so the STL functional library provides a large number of template adaptable function classes that simply apply the basic C++ operators to two values. For example, in the above code, we can use the adaptable function class plus<int> instead of our AddTwoInts function, resulting in code that looks like this:
 transform(container.begin(), container.end(), container.begin(),
 bind2nd(plus<int>(), 137));Note that we need to write plus<int>() instead of simply plus<int>, since we're using the temporary object syntax to construct a plus<int> object for bind2nd. Forgetting the parentheses can cause a major compiler error headache that can take a while to track down. Also notice that we don't need to use
ptr_fun here, since plus<int> is already an adaptable function.For reference, here's a list of the “operator functions” exported by <functional>:
plus minus multiplies divides modulus negate
equal_to not_equal_to greater less greater_equal less_equal
logical_and logical_or logical_notTo see an example that combines the techniques from the previous few sections, let's consider a function that accepts a vector<double> and converts each element in the vector to its reciprocal (one divided by

Chapter 13: Functors - 397 -the value). Because we want to convert each element with value x to the value 1/x, we can use a combina-tion of binders and operator functions to solve this problem by binding the value 1.0 to the first parameter of the divides<double> functor. The result is a unary function that accepts a parameter of type double and returns the element's reciprocal. The resulting code looks like this:
 transform(v.begin(), v.end(), v.begin(), bind1st(divides<double>(), 1.0));This code is concise and elegant, solving the problem in a small space and making explicit what operations are being performed on the data.
Unifying Functions and FunctorsThere are a huge number of ways to define a function or function-like object in C++, each of which has slightly different syntax and behavior. For example, suppose that we want to write a function that accepts as input a function that can accept an int and return a double. While of course we could accept a
double (*) (int) – a pointer to a function accepting an int and returning a double – this is overly re-strictive. For example, all of the following functions can be used as though they were functions taking in an int and returning a double:
 double Fn1(const int&); /* Accept by reference-to-const, yield double. */
 int Fn2(int); /* Accept parameter as a int, return int. */
 int Fn3(const int&); /* Accept reference-to-const int, return int. */In addition, if we just accept a double (*) (int), we also can't accept functors as input, meaning that neither of these objects below – both of which can accept an int and return a double – could be used:
 /* Functor accepting an int and returning a double. */
 class MyFunctor {
 public:
 double operator() (int);
 };

 /* Adaptable function accepting double and returning a double. */
 bind2nd(multiplies<int>(), 137);Earlier in this chapter, we saw how we can write functions that accept any of the above functions using templates, as shown here:
 template <typename UnaryFunction> void DoSomething(UnaryFunction fn) {
 /* ... */
 }If we want to write a function that accepts a function as input we can rely on templates, but what if we want to write a class that needs to store a function of any arbitrary type? To give a concrete example, sup-pose that we're designing a class representing a graphical window and we want the client to be able to control the window's size and position. The window object, which we'll assume is of type Window, thus al-lows the user to provide a function that will be invoked whenever the window is about to change size. The user's function then takes in an int representing the potential new width of the window and returns an
int representing what the user wants the new window size to be. For example, if we want to create a win -dow that can't be more than 100 pixels wide, we could pass in this function:
 int ClampTo100Pixels(int size) {
 return min(size, 100);
 }

- 398 - Chapter 13: FunctorsAlternatively, if we want the window size to always be 100 pixels, we could pass in this function:
 int Always100Pixels(int) {
 return 100; // Ignore parameter
 }Given that we need to store a function of an arbitrary type inside the Window class, how might we design
Window? Using the approach outlined above, we could parameterize the Window class over the type of the function it stores, as shown here:
 template <typename WidthFunction> class Window {
 public:
 Window(WidthFunction fn, /* ... */);

 /* ... */

 private:
 WidthFunction width;

 /* ... */
 };Given this implementation of Window, we could then specify that a window should be no more than 100 pixels wide by writing
 Window<int (*)(int)> myWindow(ClampTo100Pixels);This Window class lets us use any reasonable function to determine the window size, but has several seri -ous drawbacks. First, it requires the Window client to explicitly parameterize Window over the type of call-back being stored. When working with function pointers this results in long and convoluted variable de-clarations (look above for an example), and when working with library functors such as those in the STL
<functional> library (e.g. bind2nd (ptr_fun(MyFunction), 137))*, we could end up with a Window of such a complicated type that it would be infeasible to use with without the aid of typedef. But a more serious problem is that this approach causes two Windows that don't use the same type of function to com-pute width to have completely different types. That is, a Window using a raw C++ function to compute its size would have a different type from a Window that computed its size with a functor. Consequently, we couldn't make a vector<Window>, but instead would have to make a vector<Window<int (*)(int)> > or a vector<Window<MyFunctorType> >. Similarly, if we want to write a function that accepts a Window, we can't just write the following:
 void DoSomething(const Window& w) { // Error – Window is a template, not a type
 /* ... */
 }We instead would have to write
 template <typename WindowType>
 void DoSomething(const WindowType& w) { // Legal but awkward
 /* ... */
 }* As an FYI, the type of bind2nd(ptr_fun(MyFunction), 137) is

 binder2nd<pointer_to_binary_function<Arg1, Arg2, Ret> >where Arg1, Arg2, and Ret are the argument and return types of the MyFunction function.

Chapter 13: Functors - 399 -It should be clear that templatizing the Window class over the type of the callback function does not work well. How can we resolve this problem? In the remainder of this chapter, see a beautiful solution to this problem that will unify our treatment of functors, inheritance, templates, operator overloading, copy func-tions, and conversion constructors. The result is amazingly elegant and hopefully will impress upon you exactly how powerful functors are as a technique.
Inheritance to the RescueLet's take a few minutes to think about the problem we're facing. We have a collection of different objects that each have similar functionality (they can be called as functions), but we don't know exactly which ob -ject the user will provide. This sounds exactly like the sort of problem we can solve using inheritance and virtual functions. But we have a problem – inheritance only applies to objects, but some of the values we might want to store are simple function pointers, which are primitives. Fortunately, we can apply a tech-nique called the Fundamental Theorem of Software Engineering (or FTSE) to solve this problem:
Theorem (The Fundamental Theorem of Software Engineering): Any problem can be solved by adding enough layers of indirection.This is a very useful programming concept that will prove relevant time and time again – make sure you remember it!In this particular application, the FTSE says that we need to distance ourselves by one level from raw func-tion pointers and functor classes. This leads to the following observation: while we might not be able to treat functors and function pointers polymorphically, we certainly can create a new class hierarchy and then treat that class polymorphically. The idea goes something like this – rather than having the user provide us a functor or function pointer which could be of any type, instead we'll define an abstract class exporting the callback function, then will have the user provide a subclass which implements the callback.One possible base class in this hierarchy is shown below:
 class IntFunction {
 public:
 /* Polymorphic classes need virtual destructors. */
 virtual ~IntFunction() {}

 /* execute() actually calls the proper function and returns the value. */
 virtual int execute(int value) const = 0;
 };

IntFunction exports a single function called execute which accepts an int and returns an int. This func-
tion is marked purely virtual since it's unclear exactly what this function should do. After all, we're trying to
store an arbitrary function, so there's no clearly-defined default behavior for execute.

We can now modify the implementation of Window to hold a pointer to an IntFunction instead of being tem-
platized over the type of the function, as shown here:

 class Window {
 public:
 Window(IntFunction* sizeFunction, /* ... */);

 /* ... */
 private:
 IntFunction* fn;
 };

- 400 - Chapter 13: FunctorsNow, if we wanted to clamp the window to 100 pixels, we can do the following:
 class ClampTo100PixelsFunction: public IntFunction {
 public:
 virtual int execute(int size) const {
 return min(size, 100);
 }
 };

 Window myWindow(new ClampTo100PixelsFunction, /* ... */);Similarly, if we want to have a window that's always 100 pixels wide, we could write
 class FixedSizeFunction: public IntFunction {
 public:
 virtual int execute(int size) const {
 return 100;
 }
 };

 Window myWindow(new FixedSizeFunction, /* ... */);It seems as though we've solved the problem – we now have a Window class that allows us to fully custom-ize its resizing behavior – what more could we possibly want?The main problem with our solution is the sheer amount of boilerplate code clients of Window have to write if they want to change the window's resizing behavior. Our initial goal was to let class clients pass raw C++ functions and functors to the Window class, but now clients have to subclass IntFunction to get the job done. Both of the above subclasses are lengthy even though they only export a single function. Is there a simpler way to do this?The answer, of course, is yes. Suppose we have a pure C++ function that accepts an int by value and re-turns an int that we want to use for our resizing function in the Window class; perhaps it's the Clamp-
To100Pixels function we defined earlier, or perhaps it's Always100Pixels. Rather than defining a new subclass of IntFunction for every single one of these functions, instead we'll build a single class that's designed to wrap up a function pointer in a package that's compatible with the IntFunction interface. That is, we can define a subclass of IntFunction whose constructor accepts a function pointer and whose execute calls this function. This is the Fundamental Theorem of Software Engineering in action – we couldn't directly treat the raw C++ function polymorphically, but by abstracting by a level we can directly apply inheritance.Here's one possible implementation of the subclass:
 class ActualFunction: public IntFunction {
 public:
 explicit ActualFunction(int (*fn)(int)) : function(fn) {}

 virtual int execute(int value) const {
 return function(value);
 }

 private:
 int (*function)(int);
 };Now, if we want to use ClampTo100Pixels inside of Window, we can write:

Chapter 13: Functors - 401 -
 Window myWindow(new ActualFunction(ClampTo100Pixels), /* ... */);There is a bit of extra code for creating the ActualFunction object, but this is a one-time cost. We can now use ActualFunction to wrap any raw C++ function accepting an int and returning an int and will save a lot of time typing out new subclasses of IntFunction for every callback.Now, suppose that we have a functor class, which we'll call MyFunctor, that we want to use inside the
Window class. Then we could define a subclass that looks like this:
 class MyFunctorFunction: public IntFunction {
 public:
 explicit MyFunctorFunction(MyFunctor fn) : function(fn) {}

 virtual int execute(int value) const {
 return function(value);
 }

 private:
 MyFunctor function;
 };And could then use it like this:
 Window myWindow(new MyFunctorFunction(MyFunctor(137)), /* ... */);

Where we assume for simplicity that the MyFunctor class has a unary constructor.We're getting much closer to an ideal solution. Hang in there; the next step is pretty exciting.
Templates to the RescueAt this point we again could just call it quits – we've solved the problem we set out to solve and using the above pattern our Window class can use any C++ function or functor we want. However, we are close to an observation that will greatly simplify the implementation of Window and will yield a much more general solution.Let's reprint the two subclasses of IntFunction we just defined above which wrap function pointers and functors:

- 402 - Chapter 13: Functors

 class ActualFunction: public IntFunction {
 public:
 explicit ActualFunction(int (*fn)(int)) : function(fn) {}

 virtual int execute(int value) const {
 return function(value);
 }

 private:
 int (*const function)(int);
 };

 class MyFunctorFunction: public IntFunction {
 public:
 explicit MyFunctorFunction(MyFunctor fn) : function(fn) {}

 virtual int execute(int value) const {
 return function(value);
 }

 private:
 MyFunctor function;
 };

If you'll notice, besides the name of the classes, the only difference between these two classes is what type of ob-
ject is being stored. This similarity is no coincidence – any callable function or functor would require a subclass
with exactly this structure. Rather than requiring the client of Window to reimplement this subclass from scratch
each time, we can instead create a template class that's a subclass of IntFunction. It's rare in practice to see
templates and inheritance mixed this way, but here it works out beautifully. Here's one implementation:

 template <typename UnaryFunction> class SpecificFunction: public IntFunction {
 public:
 explicit SpecificFunction(UnaryFunction fn) : function(fn) {}

 virtual int execute(int value) const {
 return function(value);
 }

 private:
 UnaryFunction function;
 };

We now can use the Window class as follows:

 Window myWindow(new SpecificFunction<int(*)(int)>(ClampTo100Pixels), /*...*/);
 Window myWindow(new SpecificFunction<MyFunctor>(MyFunctor(137)), /*...*/);

The syntax here might be a bit tricky, but we've greatly reduced the complexity associated with the Window class
since clients no longer have to implement their own subclasses of IntFunction.

Chapter 13: Functors - 403 -
One More AbstractionThis design process has consisted primarily of adding more and more abstractions on top of the system we're designing, and it's time for one final leap. Let's think about what we've constructed so far. We've built a class hierarchy with a single base class and a template for creating as many subclasses as we need. However, everything we've written has been hardcoded with the assumption that the Window class is the only class that might want this sort of functionality. Having the ability to store and call a function of any conceivable type is enormously useful, and if we can somehow encapsulate all of the necessary machinery to get this working into a single class, we will be able to reuse what we've just built time and time again. In this next section, that's exactly what we'll begin doing.We'll begin by moving the code from Window that manages the stored function into a dedicated class called
Function. The basic interface for Function is shown below:
 class Function {
 public:
 /* Constructor and destructor. We'll implement copying in a bit. */
 Function(IntFunction* fn);
 ~Function();

 /* Function is a functor that calls into the stored resource. */
 int operator() (int value) const;

 private:
 IntFunction* function;
 };We'll leave the Function constructor left as an implicit conversion constructor, since that way we can im-plicitly convert between a callable IntFunction pointer and a Function functor. We can then implement the above functions as follows:
 /* Constructor accepts an IntFunction and stores it. */
 Function::Function(IntFunction* fn) : function(fn) {
 // Handled in initializer list
 }

 /* Destructor deallocates the stored function. */
 Function::~Function() {
 delete function;
 }

 /* Function call just calls through to the pointer and returns the result. */
 int Function::operator() (int value) const {
 return function->execute(value);
 }Nothing here should be too out-of-the-ordinary – after all, this is pretty much the same code that we had inside the Window class.Given this version of Function, we can write code that looks like this:

- 404 - Chapter 13: Functors

 Function myFunction = new SpecificFunction<int (*)(int)>(ClampTo100Pixels);
 cout << myFunction(137) << endl; // Prints 100
 cout << myFunction(42) << endl; // Prints 42If you're a bit worried that the syntax new SpecificFunction<int (*)(int)>(ClampTo100Pixels) is unnecessarily bulky, that's absolutely correct. Don't worry, in a bit we'll see how to eliminate it. In the meantime, however, let's implement the copy behavior for the Function class. After all, there's no reason that we shouldn't be able to copy Function objects, and defining copy behavior like this will lead to some very impressive results in a bit.We'll begin by defining the proper functions inside the Function class, as seen here:
 class Function {
 public:
 /* Constructor and destructor. */
 Function(IntFunction* fn);
 ~Function();

 /* Copy support. */
 Function(const Function& other);
 Function& operator= (const Function& other);

 /* Function is a functor that calls into the stored resource. */
 int operator() (int value) const;

 private:
 IntFunction* function;

 void clear();
 void copyOther(const Function& other);
 };Now, since the Function class contains only a single data member (the IntFunction pointer), to make a deep-copy of a Function we simply need to make a deep copy of its requisite IntFunction. But here we run into a problem. IntFunction is an abstract class and we can't tell at compile-time what type of object is actually being pointed at by the function pointer. How, then, can we make a deep-copy of the IntFunc-
tion? The answer is surprisingly straightforward – we'll just introduce a new virtual function to the Int-
Function class that returns a deep copy of the receiver object. Since this function duplicates an existing object, we'll call it clone. The interface for IntFunction now looks like this:
 class IntFunction {
 public:
 /* Polymorphic classes should have virtual destructors. */
 virtual ~IntFunction() { }

 /* execute() actually calls the proper function and returns the value. */
 virtual int execute(int value) const = 0;

 /* clone() returns a deep-copy of the receiver object. */
 virtual IntFunction* clone() const = 0;
 };We can then update the template class SpecificFunction to implement clone as follows:

Chapter 13: Functors - 405 -
 template <typename UnaryFunction> class SpecificFunction: public IntFunction {
 public:
 explicit SpecificFunction(UnaryFunction fn) : function(fn) {}

 virtual int execute(int value) const {
 return function(value);
 }

 virtual IntFunction* clone() const {
 return new SpecificFunction(*this);
 }

 private:
 UnaryFunction function;
 };Here, the implementation of clone returns a new SpecificFunction initialized via the copy constructor as a copy of the receiver object. Note that we haven't explicitly defined a copy constructor for Specific-
Function and are relying here on C++'s automatically-generated copy function to do the trick for us. This assumes, of course, that the UnaryFunction type correctly supports deep-copying, but this isn't a prob-lem since raw function pointers can trivially be deep-copied as can all primitive types and it's rare to find functor classes with no copy support.We can then implement the copy constructor, assignment operator, destructor, and helper functions for Function as follows:
 Function::~Function() {
 clear();
 }

 Function::Function(const Function& other) {
 copyOther(other);
 }

 Function& Function::operator= (const Function& other) {
 if(this != &other) {
 clear();
 copyOther(other);
 }
 return *this;
 }

 void Function::clear() {
 delete function;
 }

 void Function::copyOther(const Function& other) {
 /* Have the stored function tell us how to copy itself. */
 function = other.function->clone();
 }Our Function class is now starting to take shape!
Hiding SpecificFunctionRight now our Function class has full deep-copy support and using SpecificFunction<T> can store any type of callable function. However, clients of Function have to explicitly wrap any function they want to

- 406 - Chapter 13: Functorsstore inside Function in the SpecificFunction class. This has several problems. First and foremost, this breaks encapsulation. SpecificFunction is only used internally to the Function class, never ex-ternally, so requiring clients of Function to have explicit knowledge of its existence violates encapsula-tion. Second, it requires the user to know the type of every function they want to store inside the Function class. In the case of ClampTo100Pixels this is rather simple, but suppose we want to store
bind2nd(multiplies<int>(), 137) inside of Function. What is the type of the object returned by
bind2nd(multiplies<int>(), 137)? For reference, it's binder2nd<multiplies<int> >, so if we wanted to store this in a Function we'd have to write
 Function myFunction =
 new SpecificFunction<binder2nd<multiplies<int> > >(bind2nd(multiplies<int>(),137));This is a syntactic nightmare and makes the Function class terribly unattractive.Fortunately, however, this problem has a quick fix – we can rewrite the Function constructor as a tem-plate function parameterized over the type of argument passed into it, then construct the relevant Spe-
cificFunction for the Function client. Since C++ automatically infers the parameter types of template functions, this means that clients of Function never need to know the type of what they're storing – the compiler will do the work for them. Excellent!If we do end up making the Function constructor a template, we should also move the IntFunction and
SpecificFunction classes so that they're inner classes of Function. After all, they're specific to the im-plementation of Function and the outside world has no business using them.The updated interface for the Function class is shown here:
 class Function {
 public:
 /* Constructor and destructor. */
 template <typename UnaryFunction> Function(UnaryFunction fn);
 ~Function();

 /* Copy support. */
 Function(const Function& other);
 Function& operator= (const Function& other);

 /* Function is a functor that calls into the stored resource. */
 int operator() (int value) const;

 private:
 class IntFunction { /* ... */ };
 template <typename UnaryFunction> class SpecificFunction { /* ... */ };

 IntFunction* function;

 void clear();
 void copyOther(const Function& other);
 };

Chapter 13: Functors - 407 -We can then implement the constructor as follows:
 template <typename UnaryFunction> Function::Function(UnaryFunction fn) {
 function = new SpecificFunction<UnaryFunction>(fn);
 }Since we've left the Function constructor not marked explicit, this template constructor is a conversion constructor. Coupled with the assignment operator, this means that we can use Function as follows:
 Function fn = ClampTo100Pixels;
 cout << fn(137) << endl; // Prints 100
 cout << fn(42) << endl; // Prints 42

 fn = bind2nd(multiplies<int>(), 2);
 cout << fn(137) << endl; // Prints 274
 cout << fn(42) << endl; // Prints 84This is exactly what we're looking for – a class that can store any callable function that takes in an int and returns an int. If this doesn't strike you as a particularly elegant piece of code, take some time to look over it again.There's one final step we should take, and that's to relax the restriction that Function always acts as a function from ints to ints. There's nothing special about int, and by giving Function clients the ability to specify their own parameter and return types we'll increase the scope of what Function is capable of handling. We'll thus templatize Function as Function<ArgType, ReturnType>. We also need to make some minor edits to IntFunction (which we'll rename to ArbitraryFunction since IntFunction is no longer applicable), but in the interest of brevity we won't reprint them here.The final interface for Function thus looks like this:
 template <typename ArgType, typename ReturnType> class Function {
 public:
 /* Constructor and destructor. */
 template <typename UnaryFunction> Function(UnaryFunction);
 ~Function();

 /* Copy support. */
 Function(const Function& other);
 Function& operator= (const Function& other);

 /* Function is a functor that calls into the stored resource. */
 ReturnType operator() (ArgType value) const;

 private:
 class ArbitraryFunction { /* ... */ };
 template <typename UnaryFunction> class SpecificFunction { /* ... */ }

 ArbitraryFunction* function;

 void clear();
 void copyOther(const Function& other);
 };

- 408 - Chapter 13: FunctorsTo conclude our discussion of Window, using the new Function type we could rewrite the Window class using Function as follows:
 class Window {
 public:
 Window(const Function<int, int>& widthFn, /* ... */
 /* ... other member functions ... */

 private:
 Function<int, int> widthFunction;
 };Now, clients can pass any unary function (or functor) that maps from ints to ints as a parameter to Win-
dow and the code will compile correctly.
External PolymorphismThe Function type we've just developed is subtle in its cleverness. Because we can convert any callable unary function into a Function, when writing code that needs to work with some sort of unary function, we can have that code use Function instead of any specific function type. This technique of abstracting away from the particular types that provide a behavior into an object representing that behavior is some-times known as external polymorphism. As opposed to internal polymorphism, where we explicitly define a set of classes containing virtual functions, external polymorphism “grafts” a set of virtual functions onto any type that supports the requisite behavior.Virtual functions can be slightly more expensive than regular functions because of the virtual function table lookup required. External polymorphism is implemented using inheritance and thus also incurs an overhead, but the overhead is slightly greater than regular inheritance. Think for a minute how the Func-
tion class we just implemented is designed. Calling Function::operator() requires the following:

1. Following the ArbitraryFunction pointer in the Function class to its virtual function table.
2. Calling the function indicated by the virtual function table, which corresponds to the particular

SpecificFunction being pointed at.
3. Calling the actual function object stored inside the SpecificFunction.This is slightly more complex than a regular virtual function call, and illustrates the cost associated with external polymorphism. That said, in some cases (such as the Function case outlined here) the cost is over-whelming offset by the flexibility afforded by external polymorphism.

Implementing the <functional> LibraryNow what we've seen how the <functional> library works from a client perspective, let's discuss how the library is put together. What's so special about adaptable functions? How does ptr_fun convert a regular function into an adaptable one? How do functions like bind2nd and not1 work? This discussion will be highly technical and will push the limits of your knowledge of templates, but by the time you're done you should have an excellent grasp of how template libraries are put together. Moreover, the tech-niques used here are applicable beyond just the <functional> library and will almost certainly come in handy later in your programming career.

Chapter 13: Functors - 409 -Let's begin by looking at exactly what an adaptable function is. Recall that adaptable functions are func-tors that inherit from either unary_function or binary_function. Neither of these template classes are particularly complicated; here's the complete definition of unary_function:*
 template <typename ArgType, typename RetType> class unary_function {
 public:
 typedef ArgType argument_type;
 typedef RetType result_type;
 };This class contains no data members and no member functions. Instead, it exports two typedefs – one renaming ArgType to argument_type and one renaming RetType to result_type. When you create an adaptable function that inherits from unary_function, your class acquires these typedefs. For example, if we write the following adaptable function:
 class IsPositive: public unary_function<double, bool> {
 public:
 bool operator() (double value) const {
 return value > 0.0;
 }
 };The statement public unary_function<double, double> imports two typedefs into IsPositive:
argument_type and return_type, equal to double and bool, respectively. Right now it might not be ap-parent how these types are useful, but as we begin implementing the other pieces of the <functional> library it will become more apparent.
Implementing not1To begin our behind-the-scenes tour of the <functional> library, let's see how to implement the not1 function. Recall that not1 accepts as a parameter a unary adaptable predicate function, then returns a new adaptable function that yields opposite values as the original function. For example, not1(IsPosit-
ive()) would return a function that returns whether a value is not positive.Implementing not1 requires two steps. First, we'll create a template functor class parameterized over the type of the adaptable function to negate. This functor's constructor will take as a parameter an adaptable function of the proper type and store it for later use. We'll then implement its operator() function such that it calls the stored function and returns the negation of the result. Graphically, this is shown here:

Negation Functor

Stored function Inverter

Input Output

Once we have designed this functor, we'll have not1 accept an adaptable function, wrap it in our negating functor, then return the resulting object to the caller. This means that the return value of not1 is an adapt-able unary predicate function that returns the opposite value of its parameter, which is exactly what we want.
* Technically speaking unary_function and binary_function are structs, but this is irrelevant here.

- 410 - Chapter 13: FunctorsLet's begin by writing the template functor class, which we'll call unary_negate (this is the name of the functor class generated by the <functional> library's not1 function). We know that this functor should be parameterized over the type of the adaptable function it negates, so we can begin by writing the follow-ing:
 template <typename UnaryPredicate> class unary_negate {
 public:
 explicit unary_negate(const UnaryPredicate& pred) : p(pred) {}

 /* ... */
 private:
 UnaryPredicate p;
 };Here, the constructor accepts an object of type UnaryPredicate, then stores it in the data member p.Now, let's implement the operator() function, which, as you'll recall, should take in a parameter, feed it into the stored function p, then return the inverse result. The code for this function looks like this:
 template <typename UnaryPredicate> class unary_negate {
 public:
 explicit unary_negate(const UnaryPredicate& pred) : p(pred) {}

 bool operator() (const /* what goes here? */& param) const {
 return !p(param); // Call function and return the opposite result.
 }
 private:
 UnaryPredicate p;
 };We've almost finished writing our unary_negate class, but we have a slight problem – what is the type of the parameter to operator()? This is where adaptable functions come in. Because UnaryPredicate is adaptable, it must export a type called argument_type corresponding to the type of its argument. We can thus define our operator() function to accept a parameter of type typename UnaryPredicate::ar-
gume nt_type to guarantee that it has the same parameter type as the UnaryPredicate class.* The up-dated code for unary_negate looks like this:
 template <typename UnaryPredicate> class unary_negate {
 public:
 explicit unary_negate(const UnaryPredicate& pred) : p(pred) {}

 bool
 operator() (const typename UnaryPredicate::argument_type& param) const {
 return !p(param); // Call stored function and return opposite result.
 }
 private:
 UnaryPredicate p;
 };That's quite a mouthful, but it's exactly the solution we're looking for. If it weren't for the fact that Un-
aryPredicate is an adaptable function, we would not have been able to determine the parameter type for the operator() member function, and code like this would not have been possible.
* Remember that the type is typename UnaryPredicate::argument_type, not UnaryPredicate::argument_type. ar-

gument_type is nested inside UnaryPredicate, and since UnaryPredicate is a template argument we have to expli-citly use typename to indicate that argument_type is a type.

Chapter 13: Functors - 411 -There's one step left to finalize this functor class, and that's to make the functor into an adaptable function by having it inherit from the proper unary_function. Since the functor's argument type is typename
UnaryPredicate::argument_type and its return type is bool, we'll inherit from unary_function
<typename UnaryPredicate:: argument_type, bool>. The final code for unary_negate is shown here:
 template <typename UnaryPredicate>
 class unary_negate:
 public unary_function<typename UnaryPredicate::argument_type, bool>
 {
 public:
 explicit unary_negate(const UnaryPredicate& pred) : p(pred) {}

 bool
 operator() (const typename UnaryPredicate::argument_type& param) const {
 return !p(param); // Call stored function and return opposite result.
 }
 private:
 UnaryPredicate p;
 };We've now finished writing our functor class to perform the negation, and all that's left to do is write not1.
not1 is much simpler than unary_negate, since it simply has to take in a parameter and wrap it in a un-
ary_negate functor. This is shown here:
 template <typename UnaryPredicate>
 unary_negate<UnaryPredicate> not1(const UnaryPredicate& pred) {
 return unary_negate<UnaryPredicate>(pred);
 }That's all there is to it – we've successfully implemented not1!You might be wondering why there are two steps involved in writing not1. After all, once we have the functor that performs negation, why do we need to write an additional function to create it? The answer is
simplicity. We don't need not1, but having it available reduces complexity. For example, using the IsPos-
itive adaptable function from above, let's suppose that we want to write code to find the first nonposit-ive element in a vector. Using the find_if algorithm and not1, we'd write this as follows:
 vector<double>::iterator itr =
 find_if(v.begin(), v.end(), not1(IsPositive()));If instead of using not1 we were to explicitly create a unary_negate object, the code would look like this:
 vector<double>::iterator itr =
 find_if(v.begin(), v.end(), unary_negate<IsPositive>(IsPositive()));That's quite a mouthful. When calling the template function not1, the compiler automatically infers the type of the argument and constructs an appropriately parameterized unary_negate object. If we directly use unary_negate, C++ will not perform type inference and we'll have to spell out the template argu-ments ourselves. The pattern illustrated here – having a template class and a template function to create it – is common in library code because it lets library clients use complex classes without ever having to know how they're implemented behind-the-scenes.

- 412 - Chapter 13: Functors

Implementing ptr_funNow that we've seen how not1 works, let's see if we can construct the ptr_fun function. At a high level
ptr_fun and not1 work the same way – they each accept a parameter, construct a special functor class based on the parameter, then return it to the caller. The difference between not1 and ptr_fun, however, is that there are two different versions of ptr_fun – one for unary functions and one for binary functions. The two versions work almost identically and we'll see how to implement them both, but for simplicity we'll begin with the unary case.To convert a raw C++ unary function into an adaptable unary function, we need to wrap it in a functor that inherits from the proper unary_function base class. We'll make this functor's operator() function simply call the stored function and return its value. To be consistent with the naming convention of the
<functional> library, we'll call the functor pointer_to_unary_function and will parameterize it over the argument and return types of the function. This is shown here:
 template <typename ArgType, typename RetType>
 class pointer_to_unary_function: public unary_function<ArgType, RetType>
 {
 public:
 explicit pointer_to_unary_function(ArgType fn(RetType)) : function(fn) {}

 RetType operator() (const ArgType& param) const {
 return function(param);
 }
 private:
 ArgType (*function)(RetType);
 };There isn't that much code here, but it's fairly dense. Notice that we inherit from unary_function<Arg-
Type, RetType> so that the resulting functor is adaptable. Also note that the argument and return types of operator() are considerably easier to determine than in the unary_negate case because they're spe-cified as template arguments.Now, how can we implement ptr_fun to return a correctly-constructed pointer_to_unary_function? Simple – we just write a template function parameterized over argument and return types, accept a func-tion pointer of the appropriate type, then wrap it in a pointer_to_unary_function object. This is shown here:
 template <typename ArgType, typename RetType>
 pointer_to_unary_function<ArgType, RetType>
 ptr_fun(RetType function(ArgType)) {
 return pointer_to_unary_function<ArgType, RetType>(function);
 }This code is fairly dense, but gets the job done.The implementation of ptr_fun for binary functions is similar to the implementation for unary functions. We'll create a template functor called pointer_to_binary_function parameterized over its argument and return types, then provide an implementation of ptr_fun that constructs and returns an object of this type. This is shown here:

Chapter 13: Functors - 413 -
 template <typename Arg1, typename Arg2, typename Ret>
 class pointer_to_binary_function: public binary_function<Arg1, Arg2, Ret> {
 public:
 explicit pointer_to_binary_function(Ret fn(Arg1, Arg2)) : function(fn) {}

 Ret operator() (const Arg1& arg1, const Arg2& arg2) const {
 return function(arg1, arg2);
 }
 private:
 Ret (*function)(Arg1, Arg2);
 };

 template <typename Arg1, typename Arg2, typename Ret>
 pointer_to_binary_function<Arg1, Arg2, Ret> ptr_fun(Ret function(Arg1, Arg2)) {
 return pointer_to_binary_function<Arg1, Arg2, Ret>(function);
 }Note that we now have two versions of ptr_fun – one that takes in a unary function and one that takes in a binary function. Fortunately, C++ overloading rules allow for the two functions to coexist, since they have different signatures.
Implementing bind1stTo wrap up our tour of the <functional> library, let's see how to implement bind1st. If you'll recall,
bind1st takes in a binary adaptable function and a value, then returns a new unary function equal to the input function with the first parameter locked in place. We'll follow the pattern of not1 and ptr_fun by writing a template functor class called binder1st that actually does the binding, then having bind1st construct and return an object of the proper type.Before proceeding with our implementation of binder1st, we need to take a quick detour into the inner workings of the binary_function class. Like unary_function, binary_function exports typedefs so that other parts of the <functional> library can recover the argument and return types of adaptable functions. However, since a binary function has two arguments, the names of the exported types are slightly different. binary_function provides the following three typedefs:

• first_argument_type, the type of the first argument,
• second_argument_type, the type of the second argument, and
• result_type, the function's return type.We will need to reference each of these type names when writing bind1st.Now, how do we implement the binder1st functor? Here is one possible implementation. The binder-

1st constructor will accept and store an adaptable binary function and the value for its first argument.
binder1st then provides an implementation of operator() that takes a single parameter, then invokes the stored function passing in the function parameter and the saved value. This is shown here:

- 414 - Chapter 13: Functors

Let's begin implementing binder1st. The functor has to be a template, since we'll be storing an arbitrary adaptable function and value. However, we only need to parameterize the functor over the type of the bin-ary adaptable function, since we can determine the type of the first argument from the adaptable func -tion's first_argument_type. We'll thus begin with the following implementation:
 template <typename BinaryFunction> class binder1st {
 /* ... */
 };Now, let's implement the constructor. It should take in two parameters – one representing the binary function and the other the value to lock into place. The first will have type BinaryFunction; the second,
typename BinaryFunction::first_argument_type. This is shown here:
 template <typename BinaryFunction> class binder1st {
 public:
 binder1st(const BinaryFunction& fn,
 const typename BinaryFunction::first_argument_type& arg) :
 function(fn), first(arg) {}

 /* ... */

 private:
 BinaryFunction function;
 typename BinaryFunction::first_argument_type first;
 };Phew! That's quite a mouthful, but is the reality of much library template code. Look at the declaration of
the first data member. Though it may seem strange, this is the correct way to declare a data member whose
type is a type nested inside a template argument.We now have the constructor written and all that's left to take care of is operator(). Conceptually, this function isn't very difficult, and if we ignore the parameter and return types have the following imple -mentation:

Binding Functor

Stored
Function

Param 1

Param 2

Stored
Value

 Input
Output

Chapter 13: Functors - 415 -
 template <typename BinaryFunction> class binder1st {
 public:
 binder1st(const BinaryFunction& fn,
 const typename BinaryFunction::first_argument_type& arg) :
 function(fn), first(arg) {}

 /* ret */ operator() (const /* arg */& param) const {
 return function(first, param);
 }

 private:
 BinaryFunction function;
 typename BinaryFunction::first_argument_type first;
 };What are the argument and return types for this function? Well, the function returns whatever object is produced by the stored function, which has type typename BinaryFunction::result_type. The func-tion accepts a value for use as the second parameter to the stored function, so it must have type typename
BinaryFunction:: second_argument_type. This results in the following code:
 template <typename BinaryFunction> class binder1st {
 public:
 binder1st(const BinaryFunction& fn,
 const typename BinaryFunction::first_argument_type& arg) :
 function(fn), first(arg) {}

 typename BinaryFunction::result_type
 operator() (const typename BinaryFunction::second_argument_type& param) const {
 return function(first, param);
 }
 private:
 BinaryFunction function;
 typename BinaryFunction::first_argument_type first;
 };We're almost finished, and all that's left for binder1st is to make it adaptable. Using the logic from above, we'll have it inherit from the proper instantiation of unary_function, as shown here:
 template <typename BinaryFunction> class binder1st :
 public unary_function<typename BinaryFunction::second_argument_type,
 typename BinaryFunction::result_type> {
 public:
 binder1st(const BinaryFunction& fn,
 const typename BinaryFunction::first_argument_type& arg) :
 function(fn), first(arg) {}

 typename BinaryFunction::result_type
 operator() (const typename BinaryFunction::second_argument_type& param) const {
 return function(first, param);
 }
 private:
 BinaryFunction function;
 typename BinaryFunction::first_argument_type first;
 };That's it for the binder1st class. As you can see, the code is dense and does a lot of magic with typename and nested types. Without adaptable functions, code like this would not be possible.To finish up our discussion, let's implement bind1st. This function isn't particularly tricky, though we do need to do a bit of work to extract the type of the value to lock in place:

- 416 - Chapter 13: Functors

 template <typename BinaryFunction>
 binder1st<BinaryFunction>
 bind1st(const BinaryFunction& fn,
 const typename BinaryFunction::first_argument_type& arg) {
 return binder1st<BinaryFunction>(fn, arg);
 }We now have a complete working implementation of bind1st. If you actually open up the <functional> header and peek around inside, the code you'll find will probably bear a strong resemblance to what we've written here.
Limitations of the Functional LibraryWhile the STL functional library is useful in a wide number of cases, the library is unfortunately quite lim -ited. <functional> only provides support for adaptable unary and binary functions, but commonly you'll encounter situations where you will need to bind and negate functions with more than two parameters. In these cases, one of your only options is to construct functor classes that accept the extra parameters in their constructors. Similarly, there is no support for function composition, so we could not create a func-tion that computes 2x + 1 by calling the appropriate combination of the plus and multiplies functors. How-ever, the next version of C++, nicknamed “C++0x,” promises to have more support for functional program-ming of this sort. For example, it will provide a general function called bind that lets you bind as many values as you'd like to a function of arbitrary arity. Keep your eyes peeled for the next release of C++ – it will be far more functional than the current version!
Practice ProblemsWe've covered a lot of programming techniques in this chapter and there are no shortage of applications for the material. Here are some problems to get you thinking about how functors and adaptable functions can influence your programming style:

1. What is a functor?
2. What restrictions, if any, exist on the parameter or return types of operator()?
3. Why are functors more powerful than regular functions?
4. How do you define a function that can accept both functions and functors as parameters?
5. What is an adaptable function?
6. How do you convert a regular C++ function into an adaptable function?
7. What does the bind1st function do?
8. What does the not2 function do?
9. The STL algorithm for_each accepts as parameters a range of iterators and a unary function, then calls the function on each argument. Unusually, the return value of for_each is the unary function passed in as a parameter. Why might this be?

Chapter 13: Functors - 417 -
10. Using the fact that for_each returns the unary function passed as a parameter, write a function

MyAccumulate that accepts as parameters a range of vector<int>::iterators and an initial value, then returns the sum of all of the values in the range, starting at the specified value. Do not use any loops – instead, use for_each and a custom functor class that performs the addition.
11. Write a function AdvancedBiasedSort that accepts as parameters a vector<string> and a

string “winner” value, then sorts the range, except that all strings equal to the winner are at the front of the vector. Do not use any loops. (Hint: Use the STL sort algorithm and functor that
stores the “winner” parameter.)

12. Modify the above implementation of AdvancedBiasedSort so that it works over an arbitrary range of iterators over strings, not just a vector<string>. Then modify it once more so that the iterators can iterate over any type of value.
13. The STL generate algorithm is defined as void generate(ForwardIterator start, For-

wardIterator end, NullaryFunction fn) and iterates over the specified range storing the return value of the zero-parameter function fn as it goes. For example, calling generate(v.be-
gin(), v.end(), rand) would fill the range [v.begin() to v.end()) with random values. Write a function FillAscending that accepts an iterator range, then sets the first element in the range to zero, the second to one, etc. Do not use any loops.

14. Write a function ExpungeLetter that accepts four parameters – two iterators delineating an input range of strings, one iterator delineating the start of an output range, and a character – then cop-ies the strings in the input range that do not contain the specified character into the output range. The function should then return an iterator one past the last location written. Do not use loops.
(Hint: Use the remove_copy_if algorithm and a custom functor).

15. The standard deviation of a set of data is a measure of how much the data varies from its average value. Data with a small standard deviation tends to cluster around a point, while data with large standard deviation will be more spread out. The formula for the standard deviation of a set of data {x1, x2, ..., xn} is
 1

n∑i=1

n

x i−x2 Here, x is the average of the data points. To give a feeling for this formula, given the data points 1, 2, 3, the average of the data points is 2, so the standard deviation is given by 1
n∑i=1

n

x i−x2= 1
3∑i=1

3

x i−22= 1
3 1−222−223−22= 1

3 101= 2
3 Write a function StandardDeviation that accepts an input range of iterators over doubles (or values implicitly convertible to doubles) and returns its standard deviation. Do not use any loops – instead use the accumulate function to compute the average, then use accumulate once more to compute the sum. (Hint: To get the number of elements in the range, you can use the distance

function)

- 418 - Chapter 13: Functors

16. Write a function ClearAllStrings that accepts as input a range of iterators over strings that sets each string to be the empty string. If you harness the <functional> library correctly here, the function body will be only a single line of code.
17. The ROT128 cipher is a weak encryption cipher that works by adding 128 to the value of each character in a string to produce a garbled string. Since char can only hold 256 different values, two successive applications of ROT128 will produce the original string. Write a function Ap-

plyROT128 that accepts a string and returns the string's ROT128 cipher equivalent.
18. Write a template function CapAtValue that accepts a range of iterators and a value by refer-ence-to-const and replaces all elements in the range that compare greater than the parameter with a copy of the parameter. (Hint: use the replace_if algorithm)

19. One piece of functionality missing from the <functional> library is the ability to bind the first parameter of a unary function to form a nullary function. In this practice problem, we'll implement a function called BindOnly that transforms a unary adaptable function into a nullary function.

a. Write a template functor class BinderOnly parameterized whose constructor accepts an ad-aptable function and a value to bind and whose operator() function calls the stored function passing in the stored value as a parameter. Your class should have this interface:
 template <typename UnaryFunction> class BinderOnly {
 public:
 BinderOnly(const UnaryFunction& fn,
 const typename UnaryFunction::argument_type& value);
 RetType operator() () const;
 };

b. Write a template function BindOnly that accepts the same parameters as the BinderOnly constructor and returns a BinderOnly of the proper type. The signature for this function should be
template <typename UnaryFunction>
 BinderOnly<UnaryFunction>
 BindOnly(const UnaryFunction &fn,
 const typename UnaryFunction::argument_type& value);

20. Another operation not supported by the <functional> library is function composition. For example, given two functions f and g, the composition g ○ f is a function such that g ○ f(x) = g(f(x)). In this example, we'll write a function Compose that lets us compose two unary functions of compatible types.

a. Write a template functor UnaryCompose parameterized over two adaptable function types whose constructor accepts and stores two unary adaptable functions and whose operator() accepts a single parameter and returns the composition of the two functions applied to that ar-gument. Make sure that UnaryCompose is an adaptable unary function.
b. Write a wrapper function Compose that takes in the same parameters as UnaryCompose and returns a properly-constructed UnaryCompose object.
c. Explain how to implement not1 using Compose and logical_not, a unary adaptable function exported by <functional> that returns the logical inverse of its argument.

	Chapter 13: Functors

