
Chapter 7: STL Algorithms

Consider the following problem: suppose that we want to write a program that reads in a list of integers from a file (perhaps representing grades on an assignment), then prints out the average of those values. For simplicity, let's assume that this data is stored in a file called data.txt with one integer per line. For example:
File: data.txt
100
95
92
98
87
88
100
...Here is one simple program that reads in the contents of the file, stores them in an STL multiset, com-putes the average, then prints it out:
 #include <iostream>
 #include <fstream>
 #include <set>
 using namespace std;

 int main() {
 ifstream input("data.txt");
 multiset<int> values;

 /* Read the data from the file. */
 int currValue;
 while (input >> currValue)
 values.insert(currValue);

 /* Compute the average. */
 double total = 0.0;
 for (multiset<int>::iterator itr = values.begin();
 itr != values.end(); ++itr)
 total += *itr;
 cout << "Average is: " << total / values.size() << endl;
 }As written, this code is perfectly legal and will work as intended. However, there's something slightly odd about it. If you were to describe what this program needs to do in plain English, it would probably be something like this:

1. Read the contents of the file.
2. Add the values together.
3. Divide by the number of elements.

- 166 - Chapter 7: STL AlgorithmsIn some sense, the above code matches this template. The first loop of the program reads in the contents of the file, the second loop sums together the values, and the last line divides by the number of elements. However, the code we've written is somewhat unsatisfactory. Consider this first loop:
 int currValue;
 while (input >> currValue)
 values.insert(currValue);Although the intuition behind this loop is “read the contents of the file into the multiset,” the way the code is actually written is “create an integer, and then while it's possible to read another element out of the file, do so and insert it into the multiset.” This is a very mechanical means for inserting the values into the multiset. Our English description of this process is “read the file contents into the multiset,” but the actual code is a step-by-step process for extracting data from the file one step at a time and inserting it into the multiset.Similarly, consider this second loop, which sums together the elements of the multiset:
 double total = 0.0;
 for (multiset<int>::iterator itr = values.begin(); itr != values.end(); ++itr)
 total += *itr;Again, we find ourselves taking a very mechanical view of the operation. Our English description “sum the elements together” is realized here as “initialize the total to zero, then iterate over the elements of the
multiset, increasing the total by the value of the current element at each step.”The reason that we must issue commands to the computer in this mechanical fashion is precisely because the computer is mechanical – it's a machine for efficiently computing functions. The challenge of program-ming is finding a way to translate a high-level set of commands into a series of low-level instructions that control the machine. This is often a chore, as the basic operations exported by the computer are fairly lim-ited. But programming doesn't have to be this difficult. As you've seen, we can define new functions in terms of old ones, and can build complex programs out of these increasingly more powerful subroutines. In theory, you could compile an enormous library containing solutions to all nontrivial programming prob-lems. With this library in tow, you could easily write programs by just stitching together these prewritten components.Unfortunately, there is no one library with the solutions to every programming problem. However, this hasn't stopped the designers of the STL from trying their best to build one. These are the STL algorithms, a library of incredibly powerful routines for processing data. The STL algorithms can't do everything, but what they can do they do fantastically. In fact, using the STL algorithms, it will be possible to rewrite the program that averages numbers in four lines of code. This chapter details many common STL algorithms, along with applications. Once you've finished this chapter, you'll have one of the most powerful standard libraries of any programming language at your disposal, and you'll be ready to take on increasingly bigger and more impressive software projects.
Your First Algorithm: accumulateLet's begin our tour of the STL algorithms by jumping in head-first. If you'll recall, the second loop from the averaging program looks like this:
 double total = 0.0;
 for (multiset<int>::iterator itr = values.begin(); itr != values.end(); ++itr)
 total += *itr;
 cout << "Average is: " << total / values.size() << endl;

Chapter 7: STL Algorithms - 167 -This code is entirely equivalent to the following:
 cout << accumulate(values.begin(), values.end(), 0.0) / values.size() << endl;We've replaced the entire for loop with a single call to accumulate, eliminating about a third of the code from our original program.The accumulate function, defined in the <numeric> header, takes three parameters – two iterators that define a range of elements, and an initial value to use in the summation. It then computes the sum of all of the elements contained in the range of iterators, plus the base value.* What's beautiful about accumulate (and the STL algorithms in general) is that accumulate can take in iterators of any type. That is, we can sum up iterators from a multiset, a vector, or deque. This means that if you ever find yourself needing to compute the sum of the elements contained in a container, you can pass the begin() and end() iterat-ors of that container into accumulate to get the sum. Moreover, accumulate can accept any valid iterator range, not just an iterator range spanning an entire container. For example, if we want to compute the sum of the elements of the multiset that are between 42 and 137, inclusive, we could write
 accumulate(values.lower_bound(42), values.upper_bound(137), 0);Behind the scenes, accumulate is implemented as a template function that accepts two iterators and simply uses a loop to sum together the values. Here's one possible implementation of accumulate:
 template <typename InputIterator, typename Type> inline
 Type accumulate(InputIterator start, InputIterator stop, Type initial) {
 while(start != stop) {
 initial += *start;
 ++start;
 }
 return initial;
 }While some of the syntax specifics might be a bit confusing (notably the template header and the inline keyword), you can still see that the heart of the code is just a standard iterator loop that continuously ad-vances the start iterator forward until it reaches the destination. There's nothing magic about accumu-
late, and the fact that the function call is a single line of code doesn't change that it still uses a loop to sum all the values together.If STL algorithms are just functions that use loops behind the scenes, why even bother with them? There are several reasons, the first of which is simplicity. With STL algorithms, you can leverage off of code that's already been written for you rather than reinventing the code from scratch. This can be a great time-saver and also leads into the second reason, correctness. If you had to rewrite all the algorithms from scratch every time you needed to use them, odds are that at some point you'd slip up and make a mistake. You might, for example, write a sorting routine that accidentally uses < when you meant > and consequently does not work at all. Not so with the STL algorithms – they've been thoroughly tested and will work cor-rectly for any given input. The third reason to use algorithms is speed. In general, you can assume that if there's an STL algorithm that performs a task, it's going to be faster than most code you could write by hand. Through advanced techniques like template specialization and template metaprogramming, STL al-gorithms are transparently optimized to work as fast as possible. Finally, STL algorithms offer clarity. With algorithms, you can immediately tell that a call to accumulate adds up numbers in a range. With a for loop that sums up values, you'd have to read each line in the loop before you understood what the code did.
* There is also a version of accumulate that accepts four parameters, as you'll see in the chapter on functors.

- 168 - Chapter 7: STL Algorithms

Algorithm Naming ConventionsThere are over fifty STL algorithms (defined either in <algorithm> or in <numeric>), and memorizing them all would be a chore, to say the least. Fortunately, many of them have common naming conventions so you can recognize algorithms even if you've never encountered them before.The suffix _if on an algorithm (replace_if, count_if, etc.) means the algorithm will perform a task on elements only if they meet a certain criterion. Functions ending in _if require you to pass in a predicate function that accepts an element and returns a bool indicating whether the element matches the criterion. For example consider the count algorithm and its counterpart count_if. count accepts a range of iterat-ors and a value, then returns the number of times that the value appears in that range. If we have a vec-
tor<int> of several integer values, we could print out the number of copies of the number 137 in that
vector as follows:
 cout << count(myVec.begin(), myVec.end(), 137) << endl;

count_if, on the other hand, accepts a range of iterators and a predicate function, then returns the num -ber of times the predicate evaluates to true in that range. If we were interested in how number of even numbers are contained in a vector<int>, we could could obtain the value as follows. First, we write a predicate function that takes in an int and returns whether it's even, as shown here:
 bool IsEven(int value) {
 return value % 2 == 0;
 }We could then use count_if as follows:
 cout << count_if(myVec.begin(), myVec.end(), IsEven) << endl;Algorithms containing the word copy (remove_copy, partial_sort_copy, etc.) will perform some task on a range of data and store the result in the location pointed at by an extra iterator parameter. With copy functions, you'll specify all the normal data for the algorithm plus an extra iterator specifying a destination for the result. We'll cover what this means from a practical standpoint later.If an algorithm ends in _n (generate_n, search_n, etc), then it will perform a certain operation n times. These functions are useful for cases where the number of times you perform an operation is meaningful, rather than the range over which you perform it. To give you a better feel for what this means, consider the fill and fill_n algorithms. Each of these algorithms sets a range of elements to some specified value. For example, we could use fill as follows to set every element in a deque to have value 0:
 fill(myDeque.begin(), myDeque.end(), 0);The fill_n algorithm is similar to fill, except that instead of accepting a range of iterators, it takes in a start iterator and a number of elements to write. For instance, we could set the first ten elements of a
deque to be zero by calling
 fill_n(myDeque.begin(), 10, 0);

Iterator CategoriesIf you'll recall from the discussion of the vector and deque insert functions, to specify an iterator to the nth element of a vector, we used the syntax myVector.begin() + n. Although this syntax is legal in

Chapter 7: STL Algorithms - 169 -conjunction with vector and deque, it is illegal to use + operator with iterators for other container classes like map and set. At first this may seem strange – after all, there's nothing intuitively wrong with moving a
set iterator forward multiple steps, but when you consider how the set is internally structured the reas-ons become more obvious. Unlike vector and deque, the elements in a map or set are not stored sequen-tially (usually they're kept in a balanced binary tree). Consequently, to advance an iterator n steps for-ward, the map or set iterator must take n individual steps forward. Contrast this with a vector iterator, where advancing forward n steps is a simple addition (since all of the vector's elements are stored con-tiguously). Since the runtime complexity of advancing a map or set iterator forward n steps is linear in the size of the jump, whereas advancing a vector iterator is a constant-time operation, the STL disallows the
+ operator for map and set iterators to prevent subtle sources of inefficiency.Because not all STL iterators can efficiently or legally perform all of the functions of every other iterator, STL iterators are categorized based on their relative power. At the high end are random-access iterators that can perform all of the possible iterator functions, and at the bottom are the input and output iterators which guarantee only a minimum of functionality. There are five different types of iterators, each of which is discussed in short detail below.

• Output Iterators. Output iterators are one of the two weakest types of iterators. With an output iterator, you can write values using the syntax *myItr = value and can advance the iterator for-ward one step using the ++ operator. However, you cannot read a value from an output iterator us-ing the syntax value = *myItr, nor can you use the += or – operators.
• Input Iterators. Input iterators are similar to output iterators except that they read values instead of writing them. That is, you can write code along the lines of value = *myItr, but not

*myItr = value. Moreover, input iterators cannot iterate over the same range twice.
• Forward Iterators. Forward iterators combine the functionality of input and output iterators so that most intuitive operations are well-defined. With a forward iterator, you can write both

*myItr = value and value = *myItr. Forward iterators, as their name suggests, can only move forward. Thus ++myItr is legal, but --myItr is not.
• Bidirectional Iterators. Bidirectional iterators are the iterators exposed by map and set and en-compass all of the functionality of forward iterators. Additionally, they can move backwards with the decrement operator. Thus it's possible to write --myItr to go back to the last element you vis-ited, or even to traverse a list in reverse order. However, bidirectional iterators cannot respond to the + or += operators.
• Random-Access Iterators. Don't get tripped up by the name – random-access iterators don't move around randomly. Random-access iterators get their name from their ability to move for-ward and backward by arbitrary amounts at any point. These are the iterators employed by vec-

tor and deque and represent the maximum possible functionality, including iterator-from-iterator subtraction, bracket syntax, and incrementation with + and +=.If you'll notice, each class of iterators is progressively more powerful than the previous one – that is, the iterators form a functionality hierarchy. This means that when a library function requires a certain class of iterator, you can provide it any iterator that's at least as powerful. For example, if a function requires a for -ward iterator, you can provide either a forward, bidirectional, or random-access iterator. The iterator hier-archy is illustrated below:

- 170 - Chapter 7: STL Algorithms

Random-Access Iterators

itr += distance; itr + distance;
itr1 < itr2; itr[myIndex];

Bidirectional Iterators

--itr;

Forward Iterators

Input Iterators

val = *itr;
++itr;

Output Iterators

*itr = val;
++itr;

Why categorize iterators this way? Why not make them all equally powerful? There are several reasons. First, in some cases, certain iterator operations cannot be performed efficiently. For instance, the STL map and set are layered on top of balanced binary trees, a structure in which it is simple to move from one ele -ment to the next but significantly more complex to jump from one position to another arbitrarily. By disal -lowing the + operator on map and set iterators, the STL designers prevent subtle sources of inefficiency where simple code like itr + 5 is unreasonably inefficient. Second, iterator categorization allows for better classification of the STL algorithms. For example, suppose that an algorithm takes as input a pair of input iterators. From this, we can tell that the algorithm will not modify the elements being iterated over, and so can feel free to pass in iterators to data that must not be modified under any circumstance. Simil-arly, if an algorithm has a parameter that is labeled as an output iterator, it should be clear from context that the iterator parameter defines where data generated by the algorithm should be written.
Reordering AlgorithmsThere are a large assortment of STL algorithms at your disposal, so for this chapter it's useful to discuss the different algorithms in terms of their basic functionality. The first major grouping of algorithms we'll talk about are the reordering algorithms, algorithms that reorder but preserve the elements in a container.Perhaps the most useful of the reordering algorithms is sort, which sorts elements in a range in ascend-ing order. For example, the following code will sort a vector<int> from lowest to highest:
 sort(myVector.begin(), myVector.end());

sort requires that the iterators you pass in be random-access iterators, so you cannot use sort to sort a
map or set. However, since map and set are always stored in sorted order, this shouldn't be a problem.By default, sort uses the < operator for whatever element types it's sorting, but you can specify a different comparison function if you wish. Whenever you write a comparison function for an STL algorithm, it should accept two parameters representing the elements to compare and return a bool indicating wheth-er the first element is strictly less than the second element. In other words, your callback should mimic the < operator. For example, suppose we had a vector<placeT>, where placeT was defined as
 struct placeT {
 int x;
 int y;
 };

Chapter 7: STL Algorithms - 171 -Then we could sort the vector only if we wrote a comparison function for placeTs.* For example:
 bool ComparePlaces(placeT one, placeT two) {
 if(one.x != two.x)
 return one.x < two.x;
 return one.y < two.y;
 }

 sort(myPlaceVector.begin(), myPlaceVector.end(), ComparePlaces);You can also use custom comparison functions even if a default already exists. For example, here is some code that sorts a vector<string> by length, ignoring whether the strings are in alphabetical order:
 bool CompareStringLength(string one, string two) {
 return one.length() < two.length();
 }

 sort(myVector.begin(), myVector.end(), CompareStringLength);One last note on comparison functions is that they should either accept the parameters by value or by “ref-erence to const.” Since we haven't covered const yet, for now your comparison functions should accept their parameters by value. Otherwise you can get some pretty ferocious compiler errors.Another useful reordering function is random_shuffle, which randomly scrambles the elements of a con-tainer. Because the scrambling is random, there's no need to pass in a comparison function. Here's some code that uses random_shuffle to scramble a vector's elements:
 random_shuffle(myVector.begin(), myVector.end());As with sort, the iterators must be random-access iterators, so you can't scramble a set or map. Then again, since they're sorted containers, you shouldn't want to do this in the first place.Internally, random_shuffle uses the built-in rand() function to generate random numbers. Accordingly, you should use the srand function to seed the randomizer before using random_shuffle.The last major algorithm in this category is rotate, which cycles the elements in a container. For ex-ample, given the input container (0, 1, 2, 3, 4, 5), rotating the container around position 3 would result in the container (2, 3, 4, 5, 0, 1). The syntax for rotate is anomalous in that it accepts three iterators delin-eating the range and the new front, but in the order begin, middle, end. For example, to rotate a vector around its third position, we would write
 rotate(v.begin(), v.begin() + 2, v.end());

Searching AlgorithmsCommonly you're interested in checking membership in a container. For example, given a vector, you might want to know whether or not it contains a specific element. While the map and set naturally sup-port find, vectors and deques lack this functionality. Fortunately, you can use STL algorithms to correct this problem.
* When we cover operator overloading in the second half of this text, you'll see how to create functions that sort will use automatically.

- 172 - Chapter 7: STL AlgorithmsTo search for an element in a container, you can use the find function. find accepts two iterators delin-eating a range and a value, then returns an iterator to the first element in the range with that value. If nothing in the range matches, find returns the second iterator as a sentinel. For example:
 if(find(myVector.begin(), myVector.end(), 137) != myVector.end())
 /* ... vector contains 137 ... */Although you can legally pass map and set iterators as parameters to find, you should avoid doing so. If a container class has a member function with the same name as an STL algorithm, you should use the mem -ber function instead of the algorithm because member functions can use information about the container's internal data representation to work much more quickly. Algorithms, however, must work for all iterators and thus can't make any optimizations. As an example, with a set containing one million elements, the
set's find member function can locate elements in around twenty steps using binary search, while the STL find function could take up to one million steps to linearly iterate over the entire container. That's a staggering difference and really should hit home how important it is to use member functions over STL al-gorithms.Just as a sorted map and set can use binary search to outperform the linear STL find algorithm, if you have a sorted linear container (for example, a sorted vector), you can use the STL algorithm
binary_search to perform the search in a fraction of the time. For example:
 /* Assume myVector is sorted. */
 if (binary_search(myVector.begin(), myVector.end(), 137)) {
 /* ... Found 137 ... */
 }Also, as with sort, if the container is sorted using a special comparison function, you can pass that func-tion in as a parameter to binary_search. However, make sure you're consistent about what comparison function you use, because if you mix them up binary_search might not work correctly.Note that binary_search doesn't return an iterator to the element – it simply checks to see if it's in the container. If you want to do a binary search in order to get an iterator to an element, you can use the
lower_bound algorithm which, like the map and set lower_bound functions, returns an iterator to the first element greater than or equal to the specified value. Note that lower_bound might hand back an iter-ator to a different element than the one you searched for if the element isn't in the range, so be sure to check the return value before using it. As with binary_search, the container must be in sorted order for
lower_bound algorithm to work correctly.
Iterator AdaptorsThe algorithms that we've encountered so far do not produce any new data ranges. The sort algorithm rearranges data without generating new values. binary_search and accumulate scan over data ranges, but yield only a single value. However, there are a great many STL algorithms that take in ranges of data and produce new data ranges at output. As a simple example, consider the copy algorithm. At a high level, copy takes in a range of data, then duplicates the values in that range at another location. Con-cretely, copy takes in three parameters – two input iterators defining a range of values to copy, and an out-put iterator indicating where the data should be written. For example, given the following setup:

Chapter 7: STL Algorithms - 173 -
start stop
↓ ↓
0 1 2 3 4 5 6

result
↓
0 0 0 0 0 0 0After calling copy(start, stop, result), the result is as follows:

start stop
↓ ↓
0 1 2 3 4 5 6

result
↓
0 1 2 3 4 5 6When using algorithms like copy that generate a range of data, you must make sure that the destination has enough space to hold the result. Algorithms that generate data ranges work by overwriting elements in the range beginning with the specified iterator, and if your output iterator points to a range that doesn't have enough space the algorithms will write off past the end of the range, resulting in undefined behavior. But here we reach a wonderful paradox. When running an algorithm that generates a range of data, you must make sure that sufficient space exists to hold the result. However, in some cases you can't tell how much data is going to be generated until you actually run the algorithm. That is, the only way to determine how much space you'll need is to run the algorithm, which might result in undefined behavior because you didn't allocate enough space.To break this cycle, we'll need a special set of tools called iterator adaptors. Iterator adaptors (defined in the <iterator> header) are objects that act like iterators – they can be dereferenced with * and advanced forward with ++ – but which don't actually point to elements of a container. To give a concrete example, let's consider the ostream_iterator. ostream_iterators are objects that look like output iterators. That is, you can dereference them using the * operator, advance them forward with the ++ operator, etc. However, ostream_iterators don't actually point to elements in a container. Whenever you dereference an ostream_iterator and assign a value to it, that value is printed to a specified output stream, such as

cout or an ofstream. Here's some code showing off an ostream_iterator; the paragraph after it ex-plores how it works in a bit more detail:
 /* Declare an ostream_iterator that writes ints to cout. */
 ostream_iterator<int> myItr(cout, " ");

 /* Write values to the iterator. These values will be printed to cout. */
 *myItr = 137; // Prints 137 to cout
 ++myItr;

 *myItr = 42; // Prints 42 to cout
 ++myItrIf you compile and run this code, you will notice that the numbers 137 and 42 get written to the console, separated by spaces. Although it looks like you're manipulating the contents of a container, you're actually writing characters to the cout stream.

- 174 - Chapter 7: STL AlgorithmsLet's consider this code in a bit more detail. If you'll notice, we declared the ostream_iterator by writ-ing
 ostream_iterator<int> myItr(cout, " ");There are three important pieces of data in this line of code. First, notice that ostream_iterator is a para-meterized type, much like the vector or set. In the case of ostream_iterator, the template argument indicates what sorts of value will be written to this iterator. That is, an ostream_iterator<int> writes
ints into a stream, while an ostream_iterator<string> would write strings. Second, notice that when we created the ostream_iterator, we passed it two pieces of information. First, we gave the
ostream_iterator a stream to write to, in this case cout. Second, we gave it a separator string, in our case a string holding a single space. Whenever a value is written to an ostream_iterator, that value is pushed into the specified stream, followed by the separator string.At this point, iterator adaptors might seem like little more than a curiosity. Sure, we can use an
ostream_iterator to write values to cout, but we could already do that directly with cout. So what makes the iterator adaptors so useful? The key point is that iterator adaptors are iterators, and so they can be used in conjunction with the STL algorithms. Whenever an STL algorithm expects a regular iterator, you can supply an iterator adaptor instead to “trick” the algorithm into performing some complex task when it believes it's just writing values to a range. For example, let's revisit the copy algorithm now that we have ostream_iterators. What happens if we use copy to copy values from a container to an os-
tream_iterator? That is, what is the output of the following code:
 copy(myVector.begin(), myVector.end(), ostream_iterator<int>(cout, " "));This code copies all of the elements from the myVector container to the range specified by the
ostream_iterator. Normally, copy would duplicate the values from myVector at another location, but since we've written the values to an ostream_iterator, this code will instead print all of the values from the vector to cout, separated by spaces. This means that this single line of code prints out myVector!Of course, this is just one of many iterator adaptors. We initially discussed iterator adaptors as a way to break the “vicious cycle” where algorithms need space to hold their results, but the amount of space needed can only be calculated by running the algorithm. To resolve this issue, the standard library provides a collection of special iterator adapters called insert iterators. These are output iterators that, when written to, insert the value into a container using one of the insert, push_back, or push_front functions. As a simple example, let's consider the back_insert_iterator. back_insert_iterator is an iterator that, when written to, calls push_back on a specified STL sequence containers (i.e. vector or
deque) to store the value. For example, consider the following code snippet:
 vector<int> myVector; /* Initially empty */

 /* Create a back_insert_iterator that inserts values into myVector. */
 back_insert_iterator< vector<int> > itr(myVector);

 for (int i = 0; i < 10; ++i) {
 *itr = i; // "Write" to the back_insert_iterator, appending the value.
 ++itr;
 }

 /* Print the vector contents; this displays 0 1 2 3 4 5 6 7 8 9 */
 copy(myVector.begin(), myVector.end(), ostream_iterator<int>(cout, " "));This code is fairly dense, so let's go over it in some more detail. The first line simply creates an empty
vector<int>. The next line is

Chapter 7: STL Algorithms - 175 -
 back_insert_iterator< vector<int> > itr(myVector);This code creates a back_insert_iterator which inserts into a vector<int>. This syntax might be a bit strange, since the iterator type is parameterized over the type of the container it inserts into, not the type of the elements stored in that container. Moreover, notice that we indicated to the iterator that it should insert into the myVector container by surrounding the container name in parentheses. From this point, any values written to the back_insert_iterator will be stored inside of myVector by calling
push_back.We then have the following loop, which indirectly adds elements to the vector:
 for (int i = 0; i < 10; ++i) {
 *itr = i; // "Write" to the back_insert_iterator, appending the value.
 ++itr;
 }Here, the line *itr = i will implicitly call myVector.push_back(i), adding the value to the vector. Thus, when we encounter the final line:
 copy(myVector.begin(), myVector.end(), ostream_iterator<int>(cout, " "));the call to copy will print out the numbers 0 through 9, inclusive, since they've been stored in the vector.In practice, it is rare to see back_insert_iterator used like this. This type of iterator is almost exclus-ively used as a parameter to STL algorithms that need a place to store a result. For example, consider the
reverse_copy algorithm. Like copy, reverse_copy takes in three iterators, two delineating an input range and one specifying a destination, then copies the elements from the input range to the destination. However, unlike the regular copy algorithm, reverse_copy copies the elements in reverse order. For ex-ample, using reverse_copy to copy the sequence 0, 1, 2, 3, 4 to a destination would cause the destination range to hold the sequence 4, 3, 2, 1, 0. Suppose that we are interested in using the reverse_copy al-gorithm to make a copy of a vector with the elements in reverse order as the original. Then we could do so as follows:
 vector<int> original = /* ... */
 vector<int> destination;
 reverse_copy(original.begin(), original.end(),
 back_insert_iterator< vector<int> >(destination));The syntax back_insert_iterator<vector<int> > is admittedly bit clunky, and fortunately there's a shorthand. To create a back_insert_iterator that inserts elements into a particular container, you can write
 back_inserter(container);Thus the above code with reverse_copy could be rewritten as
 vector<int> original = /* ... */
 vector<int> destination;
 reverse_copy(original.begin(), original.end(), back_inserter(destination));This is much cleaner than the original and is likely to be what you'll see in practice.The back_inserter is a particularly useful container when you wish to store the result of an operation in a vector or deque, but cannot be used in conjunction with map or set because those containers do not

- 176 - Chapter 7: STL Algorithmssupport the push_back member function. For those containers, you can use the more general
insert_iterator, which insert elements into arbitrary positions in a container. A great example of in-
sert_iterator in action arises when computing the union, intersection, or difference of two sets. Math-ematically speaking, the union of two sets is the set of elements contained in either of the sets, the intersec-
tion of two sets is the set of elements contained in both of the sets, and the difference of two sets is the set of elements contained in the first set but not in the second. These operations are exported by the STL al -gorithms as set_union, set_intersection, and set_difference. These algorithms take in five para-meters – two pairs of iterator ranges defining what ranges to use as the input sets, along with one final iterator indicating where the result should be written. As with all STL algorithms, the set algorithms as -sume that the destination range has enough space to store the result of the operation, and again we run into a problem because we cannot tell how many elements will be produced by the algorithm. This is an ideal spot for an insert_iterator. Given two sets one and two, we can compute the union of those two
sets as follows:
 set<int> result;
 set_union(setOne.begin(), setOne.end(), // All of the elements in setOne
 setTwo.begin(), setTwo.end(), // All of the elements in setTwo
 inserter(result, result.begin())); // Store in result.Notice that the last parameter is inserter(result, result.begin()). This is an insert iterator that inserts its elements into the result set. For somewhat technical reasons, when inserting elements into a
set, you must specify both the container and the container's begin iterator as parameters, though the generated elements will be stored in sorted order.All of the iterator adaptors we've encountered so far have been used to channel the output of an algorithm to a location other than an existing range of elements. ostream_iterator writes values to streams,
back_insert_iterator invokes push_back to make space for its elements, etc. However, there is a par-ticularly useful iterator adapter, the istream_iterator, which is an input iterator. That is,
istream_iterators can be used to provide data as inputs to particular STL algorithms. As its name sug-gests, istream_iterator can be used to read values from a stream as if it were a container of elements. To illustrate istream_iterator, let's return to the example from the start of this chapter. If you'll recall, we wrote a program that read in a list of numbers from a file, then computed their average. In this pro -gram, we read in the list of numbers using the following while loop:
 int currValue;
 while (input >> currValue)
 values.insert(currValue);Here, values is a multiset<int>. This code is equivalent to the following, which uses the STL copy al-gorithm in conjunction with an inserter and two istream_iterators:
 copy(istream_iterator<int>(input), istream_iterator<int>(),
 inserter(values, values.begin());This is perhaps the densest single line of code we've encountered yet, so let's dissect it to see how it works. Recall that the copy algorithm copies the values from an iterator range and stores them in the range spe-cified by the destination iterator. Here, our destination is an inserter that adds elements into the val-
ues multiset. Our input is the pair of iterators
 istream_iterator<int>(input), istream_iterator<int>()What exactly does this mean? Whenever a value is read from an istream_iterator, the iterator uses the stream extraction operator >> to read a value of the proper type from the input stream, then returns it.

Chapter 7: STL Algorithms - 177 -Consequently, the iterator istream_iterator<int>(input) is an iterator that reads int values out of the stream input. The second iterator, istream_iterator<int>(), is a bit stranger. This is a special
istream_iterator called the end-of-stream iterator. When defining ranges with STL iterators, it is al-ways necessary to specify two iterators, one for the beginning of the range and one that is one past the end of it. When working with STL containers this is perfectly fine, since the size of the container is known. However, when working with streams, it's unclear exactly how many elements that stream will contain. If the stream is an ifstream, the number of elements that can be read depends on the contents of the file. If the stream is cin, the number of elements that can be read depends on how many values the user decides to enter. To get around this, the STL designers used a bit of a hack. When reading values from a stream with an istream_iterator, whenever no more data is available in the stream (either because the stream entered a fail state, or because the end of the file was reached), the istream_iterator takes on a special value which indicates “there is no more data in the stream.” This value can be formed by constructing an
istream_iterator without specifying what stream to read from. Thus in the code
 copy(istream_iterator<int>(input), istream_iterator<int>(),
 inserter(values, values.begin());the two istream_iterators define the range from the beginning of the input stream up until no more values can be read from the stream.The following table lists some of the more common iterator adapters and provides some useful context. You'll likely refer to this table most when writing code that uses algorithms.
back_insert_iterator<Container> back_insert_iterator<vector<int> >

 itr(myVector);
back_insert_iterator<deque<char> > itr =
 back_inserter(myDeque);An output iterator that stores elements by calling push_back on the spe-cified container. You can declare back_insert_iterators explicitly, or can create them with the function back_inserter.

front_insert_iterator<Container> front_insert_iterator<deque<int> >
 itr(myIntDeque);
front_insert_iterator<deque<char> > itr =
 front_inserter(myDeque);An output iterator that stores elements by calling push_front on the specified container. Since the container must have a push_front mem-ber function, you cannot use a front_insert_iterator with a vector. As with back_insert_iterator, you can create front_insert_iter-
ators with the the front_inserter function.

insert_iterator<Container> insert_iterator<set<int> >
 itr(mySet, mySet.begin());
insert_iterator<set<int> > itr =
 inserter(mySet, mySet.begin());An output iterator that stores its elements by calling insert on the spe-cified container to insert elements at the indicated position. You can use this iterator type to insert into any container, especially set. The special function inserter generates insert_iterators for you.

- 178 - Chapter 7: STL Algorithms

ostream_iterator<Type> ostream_iterator<int> itr(cout, " ");
ostream_iterator<char> itr(cout);
ostream_iterator<double> itr(myStream, "\n");An output iterator that writes elements into an output stream. In the constructor, you must initialize the ostream_iterator to point to an
ostream, and can optionally provide a separator string written after every element.

istream_iterator<Type> istream_iterator<int> itr(cin); // Reads from cin
istream_iterator<int> endItr; // Special end valueAn input iterator that reads values from the specified istream when dereferenced. When istream_iterators reach the end of their streams (for example, when reading from a file), they take on a special “end” value that you can get by creating an istream_iterator with no para-meters. istream_iterators are susceptible to stream failures and should be used with care.

ostreambuf_iterator<char> ostreambuf_iterator<char> itr(cout); // Write to cout

An output iterator that writes raw character data to an output stream. Unlike
ostream_iterator, which can print values of any type,
ostreambuf_iterator can only write individual characters. ostream-
buf_iterator is usually used in conjunction with istreambuf_iterat-
or.

istreambuf_iterator<char> istreambuf_iterator<char> itr(cin); // Read data from cin
istreambuf_iterator<char> endItr; // Special end value

An input iterator that reads unformatted data from an input stream. istre-
ambuf_iterator always reads in character data and will not skip over
whitespace. Like istream_iterator, istreambuf_iterators have a
special iterator constructed with no parameters which indicates “end of
stream.” istreambuf_iterator is used primarily to read raw data from a
file for processing with the STL algorithms.

Removal AlgorithmsThe STL provides several algorithms for removing elements from containers. However, removal al-gorithms have some idiosyncrasies that can take some time to adjust to.Despite their name, removal algorithms do not actually remove elements from containers. This is some-what counterintuitive but makes sense when you think about how algorithms work. Algorithms accept
iterators, not containers, and thus do not know how to erase elements from containers. Removal functions work by shuffling down the contents of the container to overwrite all elements that need to be erased. Once finished, they return iterators to the first element not in the modified range. So for example, if you have a vector initialized to 0, 1, 2, 3, 3, 3, 4 and then remove all instances of the number 3, the resulting
vector will contain 0, 1, 2, 4, 3, 3, 4 and the function will return an iterator to one spot past the first 4. If you'll notice, the elements in the iterator range starting at begin and ending with the element one past the four are the sequence 0, 1, 2, 4 – exactly the range we wanted.To truly remove elements from a container with the removal algorithms, you can use the container class member function erase to erase the range of values that aren't in the result. For example, here's a code snippet that removes all copies of the number 137 from a vector:
 myVector.erase(remove(myVector.begin(), myVector.end(), 137), myVector.end());

Chapter 7: STL Algorithms - 179 -Note that we're erasing elements in the range [*, end), where * is the value returned by the remove al-gorithm.There is another useful removal function, remove_if, that removes all elements from a container that sat-isfy a condition specified as the final parameter. For example, using the ispunct function from the header file <cctype>, we can write a StripPunctuation function that returns a copy of a string with all the punctuation removed:*
 string StripPunctuation(string input) {
 input.erase(remove_if(input.begin(), input.end(), ispunct), input.end());
 return input;
 }(Isn't it amazing how much you can do with a single line of code? That's the real beauty of STL al -gorithms.)If you're shaky about how to actually remove elements in a container using remove, you might want to consider the remove_copy and remove_copy_if algorithms. These algorithms act just like remove and
remove_if, except that instead of modifying the original range of elements, they copy the elements that aren't removed into another container. While this can be a bit less memory efficient, in some cases it's ex-actly what you're looking for.
Other Noteworthy AlgorithmsThe past few sections have focused on common genera of algorithms, picking out representatives that il -lustrate the behavior of particular algorithm classes. However, there are many noteworthy algorithms that we have not discussed yet. This section covers several of these algorithms, including useful examples.A surprisingly useful algorithm is transform, which applies a function to a range of elements and stores the result in the specified destination. transform accepts four parameters – two iterators delineating an input range, an output iterator specifying a destination, and a callback function, then stores in the output destination the result of applying the function to each element in the input range. As with other al-gorithms, transform assumes that there is sufficient storage space in the range pointed at by the destina-tion iterator, so make sure that you have sufficient space before transforming a range.
transform is particularly elegant when combined with functors, but even without them is useful for a whole range of tasks. For example, consider the tolower function, a C library function declared in the header <cctype> that accepts a char and returns the lowercase representation of that character. Com-bined with transform, this lets us write ConvertToLowerCase from strutils.h in two lines of code, one of which is a return statement:
 string ConvertToLowerCase(string text) {
 transform(text.begin(), text.end(), text.begin(), tolower);
 return text;
 }Note that after specifying the range text.begin(), text.end() we have another call to text.begin(). This is because we need to provide an iterator that tells transform where to put its output. Since we want to overwrite the old contents of our container with the new values, we specify text.begin() anoth-er time to indicate that transform should start writing elements to the beginning of the string as it gener-ates them.* On some compilers, this code will not compile as written. See the later section on compatibility issues for more information.

- 180 - Chapter 7: STL AlgorithmsThere is no requirement that the function you pass to transform return elements of the same type as those stored in the container. It's legal to transform a set of strings into a set of doubles, for example.Most of the algorithms we've seen so far operate on entire ranges of data, but not all algorithms have this property. One of the most useful (and innocuous-seeming) algorithms is swap, which exchanges the val-ues of two variables. We first encountered swap two chapters ago when discussing sorting algorithms, but it's worth repeating. Several advanced C++ techniques hinge on swap's existence, and you will almost cer-tainly encounter it in your day-to-day programming even if you eschew the rest of the STL.Two last algorithms worthy of mention are the min_element and max_element algorithms. These al-gorithms accept as input a range of iterators and return an iterator to the largest element in the range. As with other algorithms, by default the elements are compared by <, but you can provide a binary comparis-on function to the algorithms as a final parameter to change the default comparison order.The following table lists some of the more common STL algorithms. It's by no means an exhaustive list, and you should consult a reference to get a complete list of all the algorithms available to you.
Type accumulate(InputItr start,
 InputItr stop,
 Type value)

Returns the sum of the elements in the range [start, stop) plus the value of value.
bool binary_search(RandomItr start,
 RandomItr stop,
 const Type& value)

Performs binary search on the sorted range specified by [start, stop) and returns whether it finds the element value. If the elements are sorted using a special comparison function, you must specify the function as the final parameter.
OutItr copy(InputItr start,
 InputItr stop,
 OutItr outputStart)

Copies the elements in the range [start, stop) into the output range starting at outputStart. copy returns an iterator to one past the end of the range written to.
size_t count(InputItr start,
 InputItr end,
 const Type& value)

Returns the number of elements in the range [start, stop) equal to value.
size_t count_if(InputItr start,
 InputItr end,
 PredicateFunction fn)

Returns the number of elements in the range [start, stop) for which fn returns true. Useful for determining how many elements have a certain property.
bool equal(InputItr start1,
 InputItr stop1,
 InputItr start2)

Returns whether elements contained in the range defined by [start1, stop1) and the range beginning with start2 are equal. If you have a special comparison function to compare two elements, you can specify it as the final parameter.
pair<RandomItr, RandomItr>
 equal_range(RandomItr start,
 RandomItr stop,
 const Type& value)

Returns two iterators as a pair that defines the sub-range of ele-ments in the sorted range [start, stop) that are equal to value. In other words, every element in the range defined by the returned iterators is equal to value. You can specify a special comparison function as a final parameter.
void fill(ForwardItr start,
 ForwardItr stop,
 const Type& value)

Sets every element in the range [start, stop) to value.
void fill_n(ForwardItr start,
 size_t num,
 const Type& value)

Sets the first num elements, starting at start, to value.
InputItr find(InputItr start,
 InputItr stop,
 const Type& value)

Returns an iterator to the first element in [start, stop) that is equal to value, or stop if the value isn't found. The range doesn't need to be sorted.

Chapter 7: STL Algorithms - 181 -
InputItr find_if(InputItr start,
 InputItr stop,
 PredicateFunc fn)

Returns an iterator to the first element in [start, stop) for which
fn is true, or stop otherwise.

Function for_each(InputItr start,
 InputItr stop,
 Function fn)

Calls the function fn on each element in the range [start, stop).
void generate(ForwardItr start,
 ForwardItr stop,
 Generator fn);

Calls the zero-parameter function fn once for each element in the range [start, stop), storing the return values in the range.
void generate_n(OutputItr start,
 size_t n,
 Generator fn);

Calls the zero-parameter function fn n times, storing the results in the range beginning with start.
bool includes(InputItr start1,
 InputItr stop1,
 InputItr start2,
 InputItr stop2)

Returns whether every element in the sorted range [start2, stop2) is also in [start1, stop1). If you need to use a special comparison function, you can specify it as the final para-meter.
Type inner_product(InputItr start1,
 InputItr stop1,
 InputItr start2,
 Type initialValue)

Computes the inner product of the values in the range [start1, stop1) and [start2, start2 + (stop1 – start1)). The inner product is the value ∑
i=1

n

aibiinitialValue , where ai and bi denote the ith ele-ments of the first and second range.
bool
lexicographical_compare(InputItr s1,
 InputItr s2,
 InputItr t1,
 InputItr t2)

Returns whether the range of elements defined by [s1, s2) is lex-icographically less than [t1, t2); that is, if the first range precedes the second in a “dictionary ordering.”
InputItr
lower_bound(InputItr start,
 InputItr stop,
 const Type& elem)

Returns an iterator to the first element greater than or equal to the element elem in the sorted range [start, stop). If you need to use a special comparison function, you can specify it as the final para-meter.
InputItr max_element(InputItr start,
 InputItr stop)

Returns an iterator to the largest value in the range [start, stop). If you need to use a special comparison function, you can specify it as the final parameter.
InputItr min_element(InputItr start,
 InputItr stop)

Returns an iterator to the smallest value in the range [start, stop). If you need to use a special comparison function, you can specify it as the final parameter.
bool next_permutation(BidirItr start,
 BidirItr stop)

Given a range of elements [start, stop), modifies the range to contain the next lexicographically higher permutation of those ele-ments. The function then returns whether such a permutation could be found. It is common to use this algorithm in a do ...
while loop to iterate over all permutations of a range of data, as shown here:
sort(range.begin(), range.end());
do {
 /* ... process ... */
}while(next_permutation(range.begin(), range.end()));

bool prev_permutation(BidirItr start,
 BidirItr stop)

Given a range of elements [start, stop), modifies the range to contain the next lexicographically lower permutation of those ele-ments. The function then returns whether such a permutation could be found.
void random_shuffle(RandomItr start,
 RandomItr stop)

Randomly reorders the elements in the range [start, stop).

- 182 - Chapter 7: STL Algorithms

ForwardItr remove(ForwardItr start,
 ForwardItr stop,
 const Type& value)

Removes all elements in the range [start, stop) that are equal to
value. This function will not remove elements from a container. To shrink the container, use the container's erase function to erase all values in the range [retValue, end()), where retValue is the return value of remove.

ForwardItr
remove_if(ForwardItr start,
 ForwardItr stop,
 PredicateFunc fn)

Removes all elements in the range [start, stop) for which fn re-turns true. See remove for information about how to actually re-move elements from the container.
void replace(ForwardItr start,
 ForwardItr stop,
 const Type& toReplace,
 const Type& replaceWith)

Replaces all values in the range [start, stop) that are equal to
toReplace with replaceWith.

void replace_if(ForwardItr start,
 ForwardItr stop,
 PredicateFunction fn,
 const Type& with)

Replaces all elements in the range [start, stop) for which fn re-turns true with the value with.
ForwardItr rotate(ForwardItr start,
 ForwardItr middle,
 ForwardItr stop)

Rotates the elements of the container such that the sequence [middle, stop) is at the front and the range [start, middle) goes from the new middle to the end. rotate returns an iterator to the new position of start.
ForwardItr search(ForwardItr start1,
 ForwardItr stop1,
 ForwardItr start2,
 ForwardItr stop2)

Returns whether the sequence [start2, stop2) is a subsequence of the range [start1, stop1). To compare elements by a special comparison function, specify it as a final parameter.
InputItr set_difference(
 InputItr start1,
 InputItr stop1,
 InputItr start2,
 InputItr stop2,
 OutItr dest)

Stores all elements that are in the sorted range [start1, stop1) but not in the sorted range [start2, stop2) in the destination pointed to by dest. If the elements are sorted according to a spe-cial comparison function, you can specify the function as the final parameter.
InputItr set_intersection(
 InputItr start1,
 InputItr stop1,
 InputItr start2,
 InputItr stop2,
 OutItr dest)

Stores all elements that are in both the sorted range [start1, stop1) and the sorted range [start2, stop2) in the des-tination pointed to by dest. If the elements are sorted according to a special comparison function, you can specify the function as the final parameter.
InputItr set_union(
 InputItr start1,
 InputItr stop1,
 InputItr start2,
 InputItr stop2,
 OutItr dest)

Stores all elements that are in either the sorted range [start1, stop1) or in the sorted range [start2, stop2) in the des-tination pointed to by dest. If the elements are sorted according to a special comparison function, you can specify the function as the final parameter.
InputItr set_symmetric_difference(
 InputItr start1,
 InputItr stop1,
 InputItr start2,
 InputItr stop2,
 OutItr dest)

Stores all elements that are in the sorted range [start1, stop1) or in the sorted range [start2, stop2), but not both, in the destina-tion pointed to by dest. If the elements are sorted according to a special comparison function, you can specify the function as the fi-nal parameter.
void swap(Value& one, Value& two) Swaps the values of one and two.
ForwardItr
swap_ranges(ForwardItr start1,
 ForwardItr stop1,
 ForwardItr start2)

Swaps each element in the range [start1, stop1) with the corres-pond elements in the range starting with start2.

Chapter 7: STL Algorithms - 183 -
OutputItr transform(InputItr start,
 InputItr stop,
 OutputItr dest,
 Function fn)

Applies the function fn to all of the elements in the range [start, stop) and stores the result in the range beginning with
dest. The return value is an iterator one past the end of the last value written.

RandomItr
 upper_bound(RandomItr start,
 RandomItr stop,
 const Type& val)

Returns an iterator to the first element in the sorted range [start, stop) that is strictly greater than the value val. If you need to specify a special comparison function, you can do so as the final parameter.
A Word on CompatibilityThe STL is ISO-standardized along with the rest of C++. Ideally, this would mean that all STL implementa -tions are uniform and that C++ code that works on one compiler should work on any other compiler. Un-fortunately, this is not the case. No compilers on the market fully adhere to the standard, and almost uni-versally compiler writers will make minor changes to the standard that decrease portability.Consider, for example, the ConvertToLowerCase function from earlier in the section:
 string ConvertToLowerCase(string text) {
 transform(text.begin(), text.end(), text.begin(), tolower);
 return text;
 }This code will compile in Microsoft Visual Studio, but not in Xcode or the popular Linux compiler g++. The reason is that there are two tolower functions – the original C tolower function exported by <cctype> and a more modern tolower function exported by the <locale> header. Unfortunately, Xcode and g++ cannot differentiate between the two functions, so the call to transform will result in a compiler error. To fix the problem, you must explicitly tell C++ which version of tolower you want to call as follows:
 string ConvertToLowerCase(string text) {
 transform(text.begin(), text.end(), text.begin(), ::tolower);
 return text;
 }Here, the strange-looking :: syntax is the scope-resolution operator and tells C++ that the tolower func-tion is the original C function rather than the one exported by the <locale> header. Thus, if you're using Xcode or g++ and want to use the functions from <cctype>, you'll need to add the ::.Another spot where compatibility issues can lead to trouble arises when using STL algorithms with the STL set. Consider the following code snippet, which uses fill to overwrite all of the elements in an STL
set with the value 137:
 fill(mySet.begin(), mySet.end(), 137);This code will compile in Visual Studio, but will not under g++. Recall from the second chapter on STL containers that manipulating the contents of an STL set in-place can destroy the set's internal ordering. Visual Studio's implementation of set will nonetheless let you modify set contents, even in situations like the above where doing so is unsafe. g++, however, uses an STL implementation that treats all set iterators as read-only. Consequently, this code won't compile, and in fact will cause some particularly nasty com-piler errors.When porting C++ code from one compiler to another, you might end up with inexplicable compiler errors. If you find some interesting C++ code online that doesn't work on your compiler, it doesn't necessarily

- 184 - Chapter 7: STL Algorithmsmean that the code is invalid; rather, you might have an overly strict compiler or the online code might use an overly lenient one.
Extended Example: Palindromes

A man, a plan, a caret, a ban, a myriad, a sum, a lac, a liar, a hoop, a pint, a catalpa, a gas, an oil, a
bird, a yell, a vat, a caw, a pax, a wag, a tax, a nay, a ram, a cap, a yam, a gay, a tsar, a wall, a car,
a luger, a ward, a bin, a woman, a vassal, a wolf, a tuna, a nit, a pall, a fret, a watt, a bay, a daub, a
tan, a cab, a datum, a gall, a hat, a tag, a zap, a say, a jaw, a lay, a wet, a gallop, a tug, a trot, a
trap, a tram, a torr, a caper, a top, a tonk, a toll, a ball, a fair, a sax, a minim, a tenor, a bass, a
passer, a capital, a rut, an amen, a ted, a cabal, a tang, a sun, an ass, a maw, a sag, a jam, a dam, a
sub, a salt, an axon, a sail, an ad, a wadi, a radian, a room, a rood, a rip, a tad, a pariah, a revel, a
reel, a reed, a pool, a plug, a pin, a peek, a parabola, a dog, a pat, a cud, a nu, a fan, a pal, a rum, a
nod, an eta, a lag, an eel, a batik, a mug, a mot, a nap, a maxim, a mood, a leek, a grub, a gob, a
gel, a drab, a citadel, a total, a cedar, a tap, a gag, a rat, a manor, a bar, a gal, a cola, a pap, a yaw,
a tab, a raj, a gab, a nag, a pagan, a bag, a jar, a bat, a way, a papa, a local, a gar, a baron, a mat,
a rag, a gap, a tar, a decal, a tot, a led, a tic, a bard, a leg, a bog, a burg, a keel, a doom, a mix, a
map, an atom, a gum, a kit, a baleen, a gala, a ten, a don, a mural, a pan, a faun, a ducat, a pa -
goda, a lob, a rap, a keep, a nip, a gulp, a loop, a deer, a leer, a lever, a hair, a pad, a tapir, a door, a
moor, an aid, a raid, a wad, an alias, an ox, an atlas, a bus, a madam, a jag, a saw, a mass, an anus,
a gnat, a lab, a cadet, an em, a natural, a tip, a caress, a pass, a baronet, a minimax, a sari, a fall, a
ballot, a knot, a pot, a rep, a carrot, a mart, a part, a tort, a gut, a poll, a gateway, a law, a jay, a
sap, a zag, a tat, a hall, a gamut, a dab, a can, a tabu, a day, a batt, a waterfall, a patina, a nut, a
flow, a lass, a van, a mow, a nib, a draw, a regular, a call, a war, a stay, a gam, a yap, a cam, a ray,
an ax, a tag, a wax, a paw, a cat, a valley, a drib, a lion, a saga, a plat, a catnip, a pooh, a rail, a
calamus, a dairyman, a bater, a canal – Panama! – Dan Hoey [Pic96]It is fitting to conclude our whirlwind tour of the STL with an example showcasing exactly how concise and powerful well-written STL code can be. This example is shorter than the others in this book, but should nonetheless illustrate how the different library pieces all fit together. Once you've finished reading this chapter, you should have a solid understanding of how the STL and streams libraries can come together beautifully to elegantly solve a problem.

PalindromesA palindrome is a word or phrase that is the same when read forwards or backwards, such as “racecar ” or “Malayalam.” It is customary to ignore spaces, punctuation, and capitalization when reading palindromes, so the phrase “Mr. Owl ate my metal worm” would count as a palindrome, as would “Go hang a salami! I'm a lasagna hog.”Suppose that we want to write a function IsPalindrome that accepts a string and returns whether or not the string is a palindrome. Initially, we'll assume that spaces, punctuation, and capitalization are all significant in the string, so “Party trap” would not be considered a palindrome, though “Part y traP” would. Don't worry – we'll loosen this restriction in a bit. Now, we want to verify that the string is the same when read forwards and backwards. There are many possible ways to do this. Prior to learning the STL, we might have written this function as follows:

Chapter 7: STL Algorithms - 185 -
 bool IsPalindrome(string input) {
 for(int k = 0; k < input.size() / 2; ++k)
 if(input[k] != input[input.length() - 1 – k])
 return false;
 return true;
 }That is, we simply iterate over the first half of the string checking to see if each character is equal to its re-spective character on the other half of the string. There's nothing wrong with the approach, but it feels too
mechanical. The high-level operation we're modeling asks whether the first half of the string is the same forwards as the second half is backwards. The code we've written accomplishes this task, but has to expli -citly walk over the characters from start to finish, manually checking each pair. Using the STL, we can ac-complish the same result as above without explicitly spelling out the details of how to check each charac -ter.There are several ways we can harness the STL to solve this problem. For example, we could use the STL
reverse algorithm to create a copy of the string in reverse order, then check if the string is equal to its re -verse. This is shown here:
 bool IsPalindrome(string input) {
 string reversed = input;
 reverse(input.begin(), input.end());
 return reversed == input;
 }This approach works, but requires us to create a copy of the string and is therefore less efficient than our original implementation. Can we somehow emulate the functionality of the initial for loop using iterators? The answer is yes, thanks to reverse_iterators. Every STL container class exports a type
reverse_iterator which is similar to an iterator except that it traverses the container backwards. Just as the begin and end functions define an iterator range over a container, the rbegin and rend functions define a reverse_iterator range spanning a container.Let's also consider the the STL equal algorithm. equal accepts three inputs – two iterators delineating a range and a third iterator indicating the start of a second range – then returns whether the two ranges are equal. Combined with reverse_iterators, this yields the following one-line implementation of IsPal-
indrome:
 bool IsPalindrome(string input) {
 return equal(input.begin(), input.begin() + input.size() / 2,
 input.rbegin());
 }This is a remarkably simple approach that is identical to what we've written earlier but much less verbose. Of course, it doesn't correctly handle capitalization, spaces, or punctuation, but we can take care of that with only a few more lines of code. Let's begin by stripping out everything from the string except for al-phabetic characters. For this task, we can use the STL remove_if algorithm, which accepts as input a range of iterators and a predicate, then modifies the range by removing all elements for which the predic -ate returns true. Like its partner algorithm remove, remove_if doesn't actually remove the elements from the sequence (see the last chapter for more details), so we'll need to erase the remaining elements afterwards. Because we want to eliminate all characters from the string that are not alphabetic, we need to create a predicate function that accepts a character and returns whether it is not a letter. The header file

- 186 - Chapter 7: STL Algorithms

<cctype> exports a helpful function called isalpha that returns whether a character is a letter. This is the opposite what we want, so we'll create our own function which returns the negation of isalpha:*
 bool IsNotAlpha(char ch) {
 return !isalpha(ch);
 }We can now strip out nonalphabetic characters from our input string as follows:
 bool IsPalindrome(string input) {
 input.erase(remove_if(input.begin(), input.end(), IsNotAlpha),
 input.end());
 return equal(input.begin(), input.begin() + input.size() / 2,
 input.rbegin());
 }Finally, we need to make sure that the string is treated case-insensitively, so inputs like “RACEcar” are ac -cepted as palindromes. Using the code developed in the chapter on algorithms, we can convert the string to uppercase after stripping out everything except characters, yielding this final version of IsPalindrome:
 bool IsPalindrome(string input) {
 input.erase(remove_if(input.begin(), input.end(), IsNotAlpha),
 input.end());
 transform(input.begin(), input.end(), input.begin(), ::toupper);
 return equal(input.begin(), input.begin() + input.size() / 2,
 input.rbegin());
 }This function is remarkable in its elegance and terseness. In three lines of code we've stripped out all of the characters in a string that aren't letters, converted what's left to upper case, and returned whether the string is the same forwards and backwards. This is the STL in action, and I hope that you're beginning to appreciate the power of the techniques you've learned over the past few chapters.Before concluding this example, let's consider a variant on a palindrome where we check whether the
words in a phrase are the same forwards and backwards. For example, “Did mom pop? Mom did!” is a pal-indrome both with respect to its letters and its words, while “This is this” is a phrase that is not a palin-drome but is a word-palindrome. As with regular palindromes, we'll ignore spaces and punctuation, so “It's an its” counts as a word-palindrome even though it uses two different forms of the word its/it's. The machinery we've developed above works well for entire strings; can we modify it to work on a word-by-word basis?In some aspects this new problem is similar to the original. We still to ignore spaces, punctuation, and capitalization, but now need to treat words rather than letters as meaningful units. There are many pos-sible algorithms for checking this property, but one solution stands out as particularly good. The idea is as follows:

1. Clean up the input: strip out everything except letters and spaces, then convert the result to upper case.
2. Break up the input into a list of words.
3. Return whether the list is the same forwards and backwards.In the first step, it's important that we preserve the spaces in the original input so that we don't lose track of word boundaries. For example, we would convert the string “Hello? Hello!? HELLO?” into “HELLO * When we cover the <functional> library in the second half of this book, you'll see a simpler way to do this.

Chapter 7: STL Algorithms - 187 -HELLO HELLO” instead of “HELLOHELLOHELLO” so that we can recover the individual words in the second step. Using a combination of the isalpha and isspace functions from <cctype> and the convert-to-upper-case code used above, we can preprocess the input as shown here:
 bool IsNotAlphaOrSpace(char ch) {
 return !isalpha(ch) && !isspace(ch);
 }

 bool IsWordPalindrome(string input) {
 input.erase(remove_if(input.begin(), input.end(), IsNotAlphaOrSpace),
 input.end());
 transform(input.begin(), input.end(), input.begin(), ::toupper);
 /* ... */
 }At this point the string input consists of whitespace-delimited strings of uniform capitalization. We now need to tokenize the input into individual words. This would be tricky were it not for stringstream. Re-call that when reading a string out of a stream using the stream extraction operator (>>), the stream treats whitespace as a delimiter. Thus if we funnel our string into a stringstream and then read back in-dividual strings, we'll end up with a tokenized version of the input. Since we'll be dealing with an arbitrar-ily-long list of strings, we'll store the resulting list in a vector<string>, as shown here:
 bool IsWordPalindrome(string input) {
 input.erase(remove_if(input.begin(), input.end(), IsNotAlphaOrSpace),
 input.end());
 transform(input.begin(), input.end(), input.begin(), ::toupper);

 stringstream tokenizer(input);
 vector<string> tokens;

 /* ... */
 }Now, what is the easiest way to read strings out of the stream until no strings remain? We could do this manually, as shown here:
 bool IsWordPalindrome(string input) {
 input.erase(remove_if(input.begin(), input.end(), IsNotAlphaOrSpace),
 input.end());
 transform(input.begin(), input.end(), input.begin(), ::toupper);

 stringstream tokenizer(input);
 vector<string> tokens;

 string token;
 while(tokenizer >> token)
 tokens.push_back(token);
 }This code is correct, but it's bulky and unsightly. The problem is that it's just too mechanical. We want to insert all of the tokens from the stringstream into the vector, but as written it's not clear that this is what's happening. Fortunately, there is a much, much easier way to solve this problem thanks to is-
tream_iterator. Recall that istream_iterator is an iterator adapter that lets you iterate over an in-put stream as if it were a range of data. Using istream_iterator to wrap the stream operations and the
vector's insert function to insert a range of data, we can rewrite this entire loop in one line as follows:

- 188 - Chapter 7: STL Algorithms

 bool IsWordPalindrome(string input) {
 input.erase(remove_if(input.begin(), input.end(), IsNotAlphaOrSpace),
 input.end());
 transform(input.begin(), input.end(), input.begin(), ::toupper);

 stringstream tokenizer(input);
 vector<string> tokens;

 tokens.insert(tokens.begin(),
 istream_iterator<string>(tokenizer),
 istream_iterator<string>());
 }Recall that two istream_iterators are necessary to define a range, and that an istream_iterator constructed with no arguments is a special “end of stream” iterator. This one line of code replaces the en-tire loop from the previous implementation, and provided that you have some familiarity with the STL this second version is also easier to read.The last step in this process is to check if the sequence of strings is the same forwards and backwards. But we already know how to do this – we just use equal and a reverse_iterator. Even though the original implementation applied this technique to a string, we can use the same pattern here on a
vector<string> because all the container classes are designed with a similar interface. Remarkable, isn't it?The final version of IsWordPalindrome is shown here:
 bool IsWordPalindrome(string input) {
 input.erase(remove_if(input.begin(), input.end(), IsNotAlphaOrSpace),
 input.end());
 transform(input.begin(), input.end(), input.begin(), ::toupper);

 stringstream tokenizer(input);
 vector<string> tokens;

 tokens.insert(tokens.begin(),
 istream_iterator<string>(tokenizer),
 istream_iterator<string>());
 return equal(tokens.begin(), tokens.begin() + tokens.size() / 2,
 tokens.rbegin());
 }

More to ExploreWhile this chapter lists some of the more common algorithms, there are many others that are useful in a variety of contexts. Additionally, there are some useful C/C++ library functions that work well with al -gorithms. If you're interested in maximizing your algorithmic firepower, consider looking into some of these topics:
1. <cctype>: This chapter briefly mentioned the <cctype> header, the C runtime library's character type library. <cctype> include support for categorizing characters (for example, isalpha to re-turn if a character is a letter and isxdigit to return if a character is a valid hexadecimal digit) and formatting conversions (toupper and tolower).

Chapter 7: STL Algorithms - 189 -
2. <cmath>: The C mathematics library has all sorts of nifty functions that perform arithmetic opera-tions like sin, sqrt, and exp. Consider looking into these functions if you want to use transform on your containers.
3. Boost Algorithms: As with most of the C++ Standard Library, the Boost C++ Libraries have a whole host of useful STL algorithms ready for you to use. One of the more useful Boost algorithm sets is the string algorithms, which extend the functionality of the find and replace algorithms on strings from dealing with single characters to dealing with entire strings.

Practice ProblemsAlgorithms are ideally suited for solving a wide variety of problems in a small space. Most of the following programming problems have short solutions – see if you can whittle down the space and let the algorithms do the work for you!
1. Give three reasons why STL algorithms are preferable over hand-written loops.
2. What does the _if suffix on an STL algorithm indicate? What about _n?
3. What are the five iterator categories?
4. Can an input iterator be used wherever a forward iterator is expected? That is, if an algorithm re -quires a forward iterator, is it legal to provide it an input iterator instead? What about the other way around?
5. Why do we need back_insert_iterator and the like? That is, what would happen with the STL algorithms if these iterator adaptors didn't exist?
6. The distance function, defined in the <iterator> header, takes in two iterators and returns the number of elements spanned by that iterator range. For example, given a vector<int>, calling

 distance(v.begin(), v.end());
 returns the number of elements in the container. Modify the code from this chapter that prints the average of the values in a file so that it instead prints the average of the values in the file between 25 and 75. If no elements are in this range, you should print a message to this effect. You will need to use a combination of accumulate and dis-
tance.

7. Using remove_if and a custom callback function, write a function RemoveShortWords that ac-cepts a vector<string> and removes all strings of length 3 or less from it. This function can be written in two lines of code if you harness the algorithms correctly.
8. In n-dimensional space, the distance from a point (x1, x2, x3, ..., xn) to the origin is

 x1
2 x2

2x3
2...xn

2 . Write a function DistanceToOrigin that accepts a vector<double> rep-resenting a point in space and returns the distance from that point to the origin. Do not use any loops – let the algorithms do the heavy lifting for you. (Hint: Use the inner_product algorithm to
compute the expression under the square root.)

- 190 - Chapter 7: STL Algorithms

9. Write a function BiasedSort that accepts a vector<string> by reference and sorts the vector lexicographically, except that if the vector contains the string “Me First,” that string is always at the front of the sorted list. This may seem like a silly problem, but can come up in some circum -stances. For example, if you have a list of songs in a music library, you might want songs with the title “Untitled” to always appear at the top.
10. Write a function CriticsPick that accepts a map<string, double> of movies and their ratings (between 0.0 and 10.0) and returns a set<string> of the names of the top ten movies in the map. If there are fewer than ten elements in the map, then the resulting set should contain every string in the map. (Hint: Remember that all elements in a map<string, double> are stored internally as

pair<string, double>)

11. Implement the count algorithm for vector<int>s. Your function should have the prototype
int count(vector<int>::iterator start, vector<int>::iterator stop, int ele-
ment) and should return the number of elements in the range [start, stop) that are equal to
element.

12. Using the generate_n algorithm, the rand function, and a back_insert_iterator, show how to populate a vector with a specified number of random values. Then use accumulate to compute the average of the range.
13. The median of a range of data is the value that is bigger than half the elements in the range and smaller than half the elements in a range. For data sets with odd numbers of elements, this is the middle element when the elements are sorted, and for data sets with an even number of elements it is the average of the two middle elements. Using the nth_element algorithm, write a function that computes the median of a set of data.
14. Show how to use a combination of copy, istreambuf_iterator, and ostreambuf_iterator to open a file and print its contents to cout.
15. Show how to use a combination of copy and iterator adapters to write the contents of an STL con-tainer to a file, where each element is stored on its own line.
16. Suppose that you are given two vector<int>s with their elements stored in sorted order. Show how to print out the elements those vectors have in common in one line of code using the

set_intersection algorithm and an appropriate iterator adaptor.
17. A monoalphabetic substitution cipher is a simple form of encryption. We begin with the letters of the alphabet, as shown here:

A B C D E F G H I J K L M N O P Q R S T U V W X Y ZWe then scramble these letters randomly, yielding a new ordering of the alphabet. One possibility is as follows:
K V D Q J W A Y N E F C L R H U X I O G T Z P M S B This new ordering thus defines a mapping from each letter in the alphabet to some other letter in the alphabet, as shown here:

Chapter 7: STL Algorithms - 191 -
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
K V D Q J W A Y N E F C L R H U X I O G T Z P M S BTo encrypt a source string, we simply replace each character in the string with its corresponding encrypted character. For example, the string “The cookies are in the fridge” would be encoded as follows:
T H E C O O K I E S A R E I N T H E F R I D G E
G Y J D H H F N J O K I J N R G Y J W I N Q A J Monoalphabetic substitution ciphers are surprisingly easy to break – in fact, most daily newspa-pers include a daily puzzle that involves deciphering a monoalphabetic substitution cipher – but they are still useful for low-level encryption tasks such as posting spoilers to websites (where viewing the spoiler explicitly requires the reader to decrypt the text). Using the random_shuffle algorithm, implement a function MonoalphabeticSubstitutionEn-

crypt that accepts a source string and encrypts it with a random monoalphabetic substitution cipher.

	Chapter 7: STL Algorithms

