284 Chapter 7 / Greedy Algorithms

7.3 Prim’s Algorithm

WWW Prim’s algorithm is another greedy algorithm that finds a minimal span-
ning tree in a connected, weighted graph. Unless specified otherwise, all of
the weights are assumed to be positive. Unlike Kruskal’s algorithm, whose
partial solutions are not necessarily connected, a partial solution in Prim’s
algorithm is a tree.

Prim’s algorithm begins with a start vertex and no edges and then applies
the greedy rule: Add an edge of minimum weight that has one vertex in the
current tree and the other not in the current tree.

Example 7.3.1. We show how Prim’s algorithm finds a minimal spanning
tree for the graph G in Figure 7.2.3 assuming that the start vertex is 5.
Prim’s algorithm first selects edge (5,6) since, among all of the edges
incident on the start vertex 5, it has minimum weight. Edge (5,6) has one
vertex in the current tree and the other not in the current tree.
At the next iteration, possible edges to add are

(5,1),(5,3),(6,3),(6,4)

since each has one vertex in the current tree and the other not in the current
tree [see Figure 7.3.1(a)]. Edges (5,1) and (6, 3) each have minimum weight
3 and either can be selected; different spanning trees will result, but each
will have minimum weight. We arbitrarily assume that (5,1) is selected.

At the next iteration, possible edges to add are

(1,2),(1,3),(5,3),(6,3),(6,4)

[see Figure 7.3.1(b)]. Edge (1, 3), which has minimum weight 2, is selected.
At the next iteration, possible edges to add are

(1,2),(3,4),(6,4)

[see Figure 7.3.1(c)]. Notice that (5, 3) and (6, 3) are no longer candidates for
selection because vertices 3, 5, and 6 are all in the tree. Edge (3,4), which
has minimum weight 1, is selected.

At the final iteration, possible edges to add are

(1,2),(2,4)

[see Figure 7.3.1(d)]. Edge (1,2), which has minimum weight 4, is selected.
We obtain the minimal spanning shown in Figure 7.3.1(e). ]

To implement Prim’s algorithm, we must keep track of candidate edges
to add to the current tree. We can simplify this task if we retain only one
minimum weight edge from each vertex not in the current tree to the current
tree. For example, Figure 7.3.1(b) shows three edges from vertex 3, which
is not in the current tree, to the tree: (3,1) of weight 2, (3,5) of weight
6, and (3,6) of weight 3. We would not select (3,5) or (3,6) because the



7.3 / Prim’s Algorithm 285

1 4 2 1 4 2
°
2 2 5
1 1
3 3 4 3 3 4
6
-
5 2 [§} 5 2 6
© (Y
1 4 2
°
2
3/ 3d 1 o
°
5 2 6

(e)

Figure 7.3.1 Prim’s algorithm. The start vertex is 5. Edges chosen are shown
as thick lines. Candidate edges for selection at the next iteration are shown
as thin lines. Edge (5, 6) is selected first because, among the edges incident
on the start vertex 5, (5, 6) has minimum weight. Next [see (a)], among the
candidate edges, (5, 1), which has minimum weight, is selected. Next [see
(b)], among the candidate edges, (1, 3), which has minimum weight, is se-
lected. Next [see (¢)], among the candidate edges, (3,4), which has minimum
weight, is selected. Finally [see (d)], among the candidate edges, (1, 2), which
has minimum weight, is selected yielding the minimal spanning tree (e).



286

Chapter 7 / Greedy Algorithms

weight of each exceeds the weight of (3,1). Therefore, we retain only (3,1)
as a candidate edge from vertex 3 to the current tree. If we retain only one
minimum weight edge from each vertex not in the current tree to the current
tree, Figure 7.3.1(b) becomes Figure 7.3.2.

4 2
‘.

1
2
3 3 4
/
5 2 6

Figure 7.3.2 Modifying Figure 7.3.1(b) to implement Prim’s algorithm. In-
stead of considering all edges from vertices not in the current tree to the tree,
we consider only a least weight edge from each vertex not in the current tree
to the tree.

We keep a list h of vertices v not in the tree and the minimum weight of
an edge from v to a vertex in the tree. We also maintain an array parent that
tells us which edges give minimum weights. If (v, w) is an edge of minimum
weight where v is not in the tree and w is in the tree, then parent[v] = w.

Example 7.3.2. For Figure 7.3.2, the following table shows the list i and the
parent of each vertex in h

h parent[v]
Vertex (v) Minimum Weight from v to Tree
2 4 1
3 2 1
4 6 6
The parent array is
parent[2] =1, parent[3] =1, parent[4]=6. |

After the vertex v with a minimum weight edge to the tree is deleted from
the h list, the vertices still in the h list may need their weights adjusted. For
example, if, in the original h list, the weight corresponding to vertex w was
10 but there is an edge from w to v of weight less than 10, say 5, the adjusted
weight corresponding to w becomes 5 (see Figure 7.3.3). Thus, after selecting
vertex v, we examine each vertex w not in the tree adjacent to v. If the weight
of edge (v, w) is less than the weight in the h list corresponding to w, we
update the weight corresponding to w to the weight of edge (v, w). We also
update parent{w] to v. In order to perform this updating efficiently, we
represent the graph using adjacency lists.



7.3 / Prim’s Algorithm 287

v

Current Tree

Figure 7.3.3 Updating a vertex’s weight entry in the h list. Before vertex
v was added to the tree, the least weight edge from w to the tree was 10.
Since edge (v, w) has weight 5, after v is added to the tree, the weight cor-
responding to w becomes 5. Also, parent[w] becomes v.

Example 7.3.3. We show a trace of Prim’s algorithm for the graph G of Figure
7.2.3. We assume that the start vertex is 5.
Initially, the h list and parents of vertices in h are

h parent[v]
Vertex (v) Minimum Weight from v to Tree
1 3 5
2 o0 -
3 6 5
4 00 -
6 2 5

As shown, if there is no edge from a vertex not in the tree to the tree, we set
its weight to . The parent array is

parent[1]1 =5, parent[3] =5, parent[5]=0, parent[6]=>5.

As shown, to indicate the start vertex, we set its parent to zero.

We then select the minimum weight 2 in the h list and delete this entry
from the h list, which corresponds to selecting edge (5, 6). We then examine
all of the vertices adjacent to 6 not in the tree to determine whether any
entries in the h list need updating. In this case, vertices 3 and 4 in the h list
have their weights adjusted. Since the edge (3, 6) has weight 3, but 3’s old
weight in the h list was 6, vertex 3’s weight entry is updated to 3. Similarly,
since there is an edge from 4 to 6 of weight 6, 4’s weight entry is updated to
6. The h list and parents of vertices in h become

h parent[v]
Vertex (v) Minimum Weight from v to Tree
1 3 5
2 00 -
3 3 6
4 6 6




288

Chapter 7 / Greedy Algorithms

c
7

(ot torly o
LR

e 2t

The parent array becomes

parent[1] =5, parent[3] =6, parent[4] =6,
parent[5] =0, parent[6] = 5.

Next, we select the minimum weight 3 in the h list and delete this entry
from the h list. Since there is a tie, we could select the entry corresponding
to either vertex 1 or 3. We arhitrarily choose vertex 1, which corresponds to
selecting edge (1,5). We then examine all of the vertices adjacent to 1 not
in the tree to determine whether any entries in the A list need updating. In
this case, vertices 2 and 3 in the h list have their weights adjusted. The h
list and parents of vertices in h become

h parent[v]
Vertex (v) Minimum Weight from v to Tree
2 4 1
3 2 1
4 6 6

and the parent array becomes

parent[1] =5, parent[2] =1, parent[3] =1,
parent[4] = 6, parent[5] =0, parent[6]=>5.

Next, we select the minimum weight 2 in the h list and delete this entry
from the h list, which corresponds to selecting edge (1, 3). We then examine
all of the vertices adjacent to 3 not in the tree to determine whether any
entries in the h list need updating. In this case, vertex 4 in the h list has its
weight adjusted. The h list and parents of vertices in h become

h - parent[v]
Vertex (v) Minimum Weight from v to Tree
2 4 1
4 1 3

and the parent array becomes

parent[1] =5, parent[2] =1, parent[3]=1,
parent{4] = 3, parent[5] =0, parent[6]=>5.

Next, we select the minimum weight 1 in the h list and delete this entry
from the h list, which corresponds to selecting edge (3, 4). We then examine
all of the vertices adjacent to 4 not in the tree to determine whether any
entries in the h list need updating. In this case, no vertex has its weight
adjusted. The h list and parent of the vertex in h become

h parent[v]
Vertex (v) Minimum Weight from v to Tree
2 4 1




7.3 / Prim’s Algorithm 289

and the parent array becomes

parent[1] =5, parent[2] =1, parent[3]=1,
parent{4] = 3, parent[5] =0, parent[6]=>5.

We select the remaining weight 4 in the h list and delete this entry from
the h list, which corresponds to selecting edge (1,2). The h list becomes
empty and the parent array is unchanged. Prim’s algorithm terminates with
the minimal spanning tree T shown in Figure 7.2.3. O

In Prim’s algorithm, we assume that h is an abstract data type that sup-
ports the following operations: If key is an array of size n, the expression

!
h.init(key,n) % GSulon
initializes h to the values in key. The expression Y

h.del()

deletes the item in h with the smallest weight and returns the corresponding
vertex. The expression

P X CoN €8
h.isin(w)

N

returns true if vertex w is in h and false otherwise. The expression R
h.keyval(w)

returns the weight corresponding to vertex w. Finally, the expression
h.decrease(w, wgt)

changes the weight corresponding to vertex w to wgt (a smaller value).

Algorithm 7.3.4 Prim’s Algorithm. This algorithm finds a minimal spanning
tree in a connected, weighted, n-vertex graph. The graph is represented
using adjacency lists; adj[i] is a reference to the first node in a linked list of
nodes representing the vertices adjacent to vertex i. Each node has members
ver, the vertex adjacent to i; weight, representing the weight of edge (i, ver);
and next, a reference to the next node in the linked list or null, for the last
node in the linked list. The start vertex is start. In the minimal spanning
tree, the parent of vertex i # start is parent[i], and parent[start] = 0. The
value o is the largest available integer value.

Input Parameters: adj, start 00 et
Output Parameter: parent ST

prim(adj, start, parent) {
n = adj.last
// keyis alocal array
fori=1ton
keyli] = o
key[start] =0
parent|[start] =0
// the following statement initializes the
// container h to the values in the array key



290

Chapter 7 / Greedy Algorithms

: , fori=1ton{ T

~ h.init(key, n) ; 4

- v = h.del()
ref = adjlv] RS
while (ref !=null) { ‘

w = ref.ver WA

if (h.isin(w) && ref .weight < h.keyval(w)) {
parent[w] = v
h.decrease(w, ref .weight)

}

ref = ref.next

}
}
}

There are several ways to implement the abstract data type h in Prim’s
algorithm (Algorithm 7.3.4). One efficient way is to use a binary minheap (see
Section 3.5). We analyze the worst-case time of Prim’s algorithm assuming
that h is implemented using a binary minheap and that the graph has n
vertices and m edges. The worst-case time of the various heap operations
involved are summarized in Figure 7.3.4 (see Section 3.5 for details).

Operation Worst-Case Time
init(key,n) B(n)
del() O(gn)
isin(w) o)
keyval(w) 0(1)
decrease(w, ref .weight) O(gn)

Figure 7.3.4 The worst-case time for binary minheap operations.

Each for loop takes time @(n). The init operation takes time ©(n). The
delete operation del, which takes time O (Ign), is in a for loop whose time is
®(n); thus, the total worst-case time for the delete operations is O(nlgn).
The total time for the while loop is ® (m) since each iteration of the while loop
inspects another node on some adjacency list and there are 2m nodes alto-
gether. Each isin and keyval operation takes constant time to evaluate. The
decrease operation decrease, which takes time O(Ign), is in the while loop
whose total time is ®(m); thus, the total worst-case time for the decrease
operations is O(mlgn). Since m > n — 1, the dominant term is m1gn and
the worst-case time is O (mlgn). [In the following subsection, we show that
this estimate is sharp; that is, the worst-case time is ©(mlgmn).]

If, instead of using a binary heap to implement Prim’s algorithm, we use
a Fibonacci heap (see Fredman, 1987), we can improve the worst-case time
of Prim’s algorithm to ®(m +nlgn).

The proof of correctness of Prim’s algorithm is similar to the proof of
correctness of Kruskal’s algorithm.



7.3 / Prim’s Algorithm 291

Theorem 7.3.5 Correctness of Prim’s Algorithm. Prim’s algorithm (Algo-
rithm 7.3.4) is correct; that is, it finds a minimal spanning tree.

Proof. We use induction to show that, at each iteration of Prim’s algorithm,
the tree constructed is contained in a minimal spanning tree. It then follows
that at the termination of Prim’s algorithm, the tree constructed is a minimal
spanning tree.

When we begin, the tree consists of no edges and is contained in every
minimal spanning tree. Thus the basis step is true.

Turning to the inductive step, let T denote the tree constructed by Prim’s
algorithm prior to another iteration of the algorithm. The inductive assump-
tion is that T is contained in a minimal spanning tree. Let (v, w) be the next
edge selected by Prim’s algorithm, where v isin T and w is notin T. Let G
be T together with all of the vertices not in T. Then T is a component of G’
and (v,w) is a minimum weight edge with one vertex in T and one not in
T. By Theorem 7.2.5, when (v, w) is added to G, the resulting graph is also
contained in a minimal spanning tree. The inductive step is complete and
the theorem is proved. n

TLower Bound Time Estimate

In this subsection, we show that the worst-case time for Prim’s algorithm
using a binary heap is ®(mlgn), where m denotes the number of edges and
n denotes the number of vertices.

The bottleneck is the decrease operation

h.decrease(w, ref .weight)

To obtain worst-case time, we must construct a graph in which the decrease
operation takes time ©(lgi) sufficiently often when the heap contains i ver-
tices. We can guarantee such behavior if the next vertex’s key to decrease
has the maximum keyin the heap which is then decreased so that it becomes
the smallest key in the heap (in which case the vertex moves from a terminal
node in the heap to the root). We construct such a graph with n > 4 vertices
and m > 4n edges as follows. [If m < 4n, for any graph the worst-case time
T satisfies

T=Cnlgn = %mlgn =Q(mlgn).

The first inequality results from the fact that any implementation of Prim’s
algorithm that uses comparisons of weights can sort an array of size 8(n),
and, so, has worst-case time Q(nlgn) (see Exercise 15).]

Our graph G has vertices 1,2,...,n. Fori = 1,...,n — 1, we construct
edges (i,i + 1) of weight 1 (see Figure 7.3.5). We next construct edges

(]-,n)y (]-’n - 1)9 ey (1)4)) (13 3)
of decreasing weight. We next construct edges

(2,m),(2,n-1),...,(2,5),(2,4)

TThis subsection can be omitted without loss of continuity.




292

Chapter 7 / Greedy Algorithms

36

Figure 7.3.5 Part of the graph G with n = 6 vertices for input to Prim’s
algorithm. The edges shown as curves are given the weights n?,n? - 1,
n? — 2,..., which here become 36, 35,.... This graph produces worst-case
time ©(mlgn). After vertices 1 and 2 are deleted from the heap, the heap
contains keys 33,34, 35,36 (the original minimum weights of edges from
vertices 3, 4, 5, 6 to vertex 1). We then examine the edges (2,6), (2,5), (2,4),
(2,3) in this order. Since the weight of (2, 6) is 32, 6’s key is decreased from
36 to 32. Since 36 was the largest key and 32 will become the smallest key,
vertex 6 moves from a terminal vertex in the heap to the root, which takes
time at least Clg(n — 2). Similarly, when keys 35, 34, 33 are decreased, they
too each take time at least Clg(n — 2). The total time to decrease these keys
is at least C(n — 2)1g(n — 2).

of decreasing weight, where the weight of (2,7n) is less than the weight of
(1,3). We continue in this way, stopping when m edges have been con-
structed. We assume that the weights assigned in this part of the construc-
tion are, in order, n?,n? — 1,n% - 2,....

Suppose that G is input to Prim’s algorithm and that the start vertexis 1.
After 1 is deleted from the heap and the keys are decreased, we have

Vertex Minimum Weight to Tree

2 1
3 n%—(n-3)
4 n? - (n—4)

n-2 mn2-2
n-1 n?-1
n n?

Vertex 2 is deleted next. Assume that when the keys are decreased, the
edges are examined in the order

(Z!n); (Zyn - 1)"") (2)4)’ (2) 3)

After vertex 2 is deleted from the heap, n’s key is largest. Therefore, it is a ’
terminal vertex in the heap. Since its new value is less than any of the current



7.3 / Prim’s Algorithm 293

keys, the time to decrease n's key is at least Clg(n — 2) for some constant
C. Now (n — 1)’s key is largest. Therefore, it is a terminal vertex in the heap.
Since its new value is less than any of the current keys, the time to decrease
(n —1)’s key is also at least Clg(n — 2). Similarly, the time to decrease each
of the other keys is also at least Clg(n — 2). The total time to decrease the
keys (if all of these edges are present) is at least C(n — 2)1g(n - 2).

Vertex 3 is deleted next. Assume that when the keys are decreased, the
edges are examined in the order

(3,n),3,n-1),...,(3,5),(3,4).

Arguing as in the preceding paragraph, we see that the time to decrease each
of the keys is at least Clg(n — 3), and the total time to decrease the keys (if
all of these edges are present) is at least C(n — 3)1g(n — 3).

Let T be the time for all of the decrease operations for our graph G. Then

Tz=2Cl(n-2)lgn-2)+n-3)lgn-3)+---+(k+1lign-pl

where the last edges constructed were k edges of the form (p,i). (The in-
equality could be strict since the right side may not account for all of the
keys that eventually decrease to 1.) We show that

C n-2

First, suppose that n —p = [ (n — 2)/2]. Then

T = Cln=-2lgm-2)+n-3)1gn-3)+---+(k+1Dlgn-p)l
> C[(n—Z)lg[n_Z-l+---+(k+1)lg[-1%2-|:|
. n-2
> C[(n—2)+---+(k+1)]lg[——2—]
> C[(n—3)+---+k)]1g(3‘-"—2).

2
Since the sum
n-3)+---+k

counts all of the edges except those of weight 1 and those incident on ver-
tex 1,
n-3)+---+k=m-(n-1) - (n-2).
Because m > 4n,
m—-—(n-1)-mn-2)=z

|3

(see Exercise 12). It follows that

C n-2
ngmlg(T).



294 Chapter 7 / Greedy Algorithms

Now suppose that n — p < [(n — 2)/2]. In this case,

T = Cln-2)lgm-2)+n-3)lgn-3)+--- + (k+Dlgn-p)]
> c[m-2mm-2 4+ [P 218" F]
> c[m-21[222] v+ [P e[ 25
> :(n_2)+___+[n;2'|]1g(";2)

C
> Eml (__n—Z)
z 3 g 5 ;

The last inequality follows from the inequality

(n—2)+...+["—2]zn(n—1)

2 4 ’

which holds for n > 4 (see Exercise 13), and the fact that the maximum
number of edges in the graph is n(n —1)/2.
In either case, we have

T = gmlg (E_—Z) = Q(mlgn).
2 2

We showed earlier that the worst-case time of Prim’s algorithm using a binary

heap is O(mlgn). It follows that the worst-case time of Prim’s algorithm

using a binary heap is @(mlgn).

Exercises

1S. Trace Prim’s algorithm for the graph of Exercise 1, Section 7.2. Assume
that the start vertex is 1.

2. Trace Prim’s algorithm for the graph of Exercise 2, Section 7.2. Assume
that the start vertex is 8.

3. Trace Prim’s algorithm for the graph of Exercise 3, Section 7.2. Assume
that the start vertex is 11.

4S. Write an algorithm whose input is the parent array constructed by Prim’s
algorithm and whose output is a list of the edges in the minimal spanning
tree constructed by Prim’s algorithm.

5. Explain why we can’t eliminate the parent array in Algorithm 7.3.4 and
replace the statement

parentfw] = v



7.4 / Dijkstra’s Algorithm 295

7S.

10S.

11.

12,

13S.

14.

15.

with

w9

println(v +“ " + w)

. What is the worst-case time (in terms of n) of Prim’s algorithm when the

input is the complete graph on n vertices? Assume that h is implemented
using a binary minheap.

What is the worst-case time of Prim’s algorithm if h is implemented using
an array that is always sorted from largest to smallest weight?

What is the worst-case time of Prim’s algorithm if h is implemented using
an unsorted array?

Are there graphs for which Prim’s algorithm is faster than Kruskal’s algo-
rithm?

Are there graphs for which Prim’s algorithm is slower than Kruskal’s al-
gorithm?

Provide an implementation of Prim’s algorithm that uses an adjacency
matrix instead of adjacency lists. What is the worst-case time of your
algorithm? Assume that h is implemented using a binary minheap.

Show that if m > 4n,

m-n-1)-(n-2) =

SE

Show that if n > 4,

(n—2~)+(n—3)+...+[";2] Zn(n4—1).

Show that any implementation of Prim’s algorithm must examine each
edge’s weight at least once, and thus has time Q(m).

Show that any implementation of Prim’s algorithm that uses comparisons
of weights can sort an array of size ®(n) and, so, has worst-case time
Q(nlgn).

./L

7.4 Dijkstra’s Algorithm U 20t

The map in Figure 7.4.1(a) shows six cities and the time in minutes to drive
between cities that are directly connected by a road. A computer technician
based in Riverview, who is desperately needed in Wolf, must find the quickest
route from Riverview to Wolf.

The map in Figure 7.4.1(a) can be considered a graph [see Figure 7.4.1(b)]

in which the cities become vertices, the roads become edges, and the times



