
1

Table Oriented Programming

Abbreviated "TOP" in some places.
Languages or techniques that tend to view data as relational tables (or relational-influenced) and
behavior as operations on such tables. Sometimes code is put into the table "cells". In many
ways it is a kind of CollectionOrientedProgramming.
Some RelationalWeenies, such as TopMind, feel that TableOrientedProgramming is a direct
competitor to ObjectOrientedProgramming. Others feel that they are orthogonal. Past debates to
try to settle this issue never came to a consensus.
Relationship with SQL: Although few seem to believe SQL is the ideal query language to build
TOP or anything else around (see SqlFlaws), its entrenchment in the industry suggests that TOP
standards or tools either be built around SQL, or at least support it as an option.

Relational tables are not required, just a decision table. This is nothing more than an Arbitrary
redefinition of language to hide the fact these are decision tables which are as old as
programming it's self.
{Nobody claimed it's brand new. See bottom illustration re Ada Lovelace. And it's not just about
"decision tables". Decision tables are one component/technique of it, as described below. Also
note that by some measures, the existing RDBMS are not "true" relational either. If that was a
key goal, then one may want to focus on "Relational Oriented Programming" instead. However,
I don't believe that would require overhauling most the general TOP techniques. If you believe
otherwise, I'd like to see an example scenario. Hopefully that wouldn't rekindle the "bag" debate
(BagVersusSetControversyRoadmap).}

Discussion

Is there anything new here? Isn't this standard, Microsoft favored, RecordSet based
Programming? (See Fowler's PoEAA)
One open issue is whether the "tableness" should be directly built into a language, or instead be
an add-on library to existing languages.
It's not really an open issue, since what it should be isn't relevant... what's relevant is what it is,
and most major languages do not have table support built in, it's always in the libraries.
Arguing about what should be is pointless.
It is a name given to programming using a database and some procedural code. The term is an
invention of TopMind ("top"), and as such there are no communities, conferences, journals,

2

publications, associations, consortia or well-known papers devoted
to TableOrientedProgramming.

 I have seen a book with something like "table oriented programming" in the title, and it
talked about using logic tables for programming, somewhat similar to ControlTables, but
with a heavier reliance on Booleans. However, I have not been able to find it online
anywhere so far. It was published approximately in 1970 and the author was something
like "Goldstein". But, I do kind of consider myself the "AlanKay of T.O.P." in that
although I did not invent it, I did (attempt to) define, describe, and evangelize it. And I
have seen it fairly often in the ExBase community when I did ExBase consulting at
multiple companies; it just never had a clear name/identity. Real programmers were
"doing it" even though they did not call it T.O.P. --TopMind

I still have no idea what TableOrientedProgramming is. If it is simply code that
uses RelationalAlgebra, well I don't get why the syntax matters (i.e. procedural or
object-oriented).
What it is, is a name for using a database and some procedural code to put up crud screens,
while doing most of the work with SQL. Nothing special, basic first year programming stuff.
{I don't know, most colleges tend to teach code-centric techniques, not data-centric techniques
regardless of "year". And I see only a weak relationship with CrudScreens, which is mostly a UI
issue, not an underlying structure issue (although TOP tends to blur the tools used by both ends).
And, Microsoft's approach is not very table-oriented in my observation. It tends to follow the
flavor of the day. For example, the built-in "objects" of Microsoft Access (queries, macros,
reports, etc.) could have been stored in a table-oriented way; in which case they could be queried
just like any other table instead of for-each object iteration to access them via
code. FoxPro partially followed the TOP path, I would note. -t}

OO tends to do things in code that would be in tables under TOP. Generally one is more likely
to store taxonomies, relationships, and structures in tables rather than in code under TOP.
Inheritance is putting a taxonomy in code, for example. In TOP thinking this is a no-no because
taxonomies are relative to use.
It sounds like Prolog Language would be an example of Table Oriented Programming:
everything is represented as nary relations (tables) and code is represented as logical statements
(with some procedural pollution) about those relations.
PrologLanguage and RelationalLanguages share many things in common.
What is it that distinguishes
a RelationalLanguage and TableOrientedProgramming from PrologLanguage?

 Prolog has recursive queries, and hence is Turing Equivalent, whereas Relational
Languages do not and are not. Further, in Prolog relations are free form and highly
dynamic; one need not create table headers before creating data tuples, and related to that,
tables with many rows are comparatively rare in Prolog, while tables with single row are

3

rare in Relational Languages. Prolog has much more general support for relations, but is
vastly slower for the kinds of applications that RDBMS systems are typically used for.
The two areas have an important theoretical link, but are largely non-overlapping in
pragma. (Related: Dynamic Relational)

Characteristics of Table Oriented Programming:

 Heavy use of DataDictionarys
 Heavy use of ControlTables and table editors (TableBrowsers) to store and manage

business rules, categories, logic, configuration, and meta-data.
 Closely related to ControlTables (above) is the belief that often it's best to manage code in

tables instead of files. This often leads to criticism of file systems and file-oriented
development tools. TOP proponents tend to find file systems "primitive". For examples,
see InternationalUiExample and SeparationAndGroupingAreArchaicConcepts (source-co
de management discussion).

 A reliance on SQL or query languages to do a large part or majority of the processing.
 Languages that are well-integrated with query languages and possibly table editors

and TableBrowsers.
 Languages that support "local" and internal tables and/or query systems so that the

boundary or conversion effort between local and RDBMS is relatively small.
 Tends to view tables as a near-universal data structure and de-emphasizes arrays, linked

lists, pointer graphs, object graphs, etc. (See AreTablesGeneralPurposeStructures.)
 A belief that tables bring about uniformity
 A belief that tables better match human physiology and/or psychology (or at least a large

enough percent of the population and/or application to make it a viable tool).
 A belief that APIs or their equivalent would be simpler and better if they used existing

table-oriented standards and conventions. Example: KissWebServices is merely a web
wrapper around SQL.

 Variations-on-a-theme tend to be represented as rows in tables or ControlTables, often
one row per variation, instead of code, such as where sub-classing in OOP and
case/switch statements would otherwise be used. Blanks or nulls may represent "parent"
or "default".

 Values HigherOrderFunctions used with collection-oriented idioms (although existing
tools often don't support this well.) Imagine SQL similar to:

 /* execute mySubroutine for each result row */

 SELECT mySubroutine(st.columnA, st.ColumnB)

 FROM stuff AS st

 WHERE foo = bar

4

It is not intended to be a "Boolean concept", but rather a continuum. And it may not embrace
SQL as the "ultimate" relational query language, but perhaps respects it as a "good enough"
standard. Also, adherence to "strict" relational (as interpreted) may vary widely between
supporters.
The industry sometimes uses the term "data oriented" or "data-driven" for systems and tools tied
heavily to SQL and RDBMS.

Q: How do you justify that 'beliefs' are characteristic to a programming style?

Good point. Some of the above perhaps belong below, in the "Belief Policies". I'll put
refactoring on my to-do list.

Belief policies behind T.O.P.
1. DataAndCodeAreTheSameThing. Programming code is simply a manifestation (view) of
structures (CodeAvoidance). To an interpreter, code is just data. LittleLanguage is a productivity
and abstraction technique to define a mini domain-specific language. With TOP, one is
essentially doing the same kind of thing by creating a "little interpreter", a domain-specific
interpreter. (However, it will usually have a more declarative feel than actual interpreter code.)
No one seems interested that code-centric approaches emphasize something different than
data-centric approaches. I am having trouble putting this into words, but my experience tell me
data-centric approaches yield data driven programs. TOP smells (to me) like data driven
programming. In my experience, placing an emphasis on the data over the code created simpler,
elegant designs that worked better than the structured, code-centric approaches. May the wiki
please speak to this? I also note that DataDriven is a link into a sister site (which speaks to
DataDriven testing); why such a vacuum here? - jme

 When you say "data driven", do you mean http://foldoc.org/foldoc.cgi?query=data+driven?
It doesn't sound like it.

 Data driven could also mean CollectionOrientedProgramming. There are many other
"types" of collections (data structures) besides tables.
Thus, TableOrientedProgramming is more specific.

2. If we focus on data structures, then we should focus on finding the best structuring methods.

 Which raises the question: Best at what, exactly?
 Perhaps this relates to AreTablesGeneralPurposeStructures
 It could also be said to relate to the age-old "navigational" (NavigationalDatabase) versus

relational structuring techniques. Codd and Bachman (sp?) battled it out in the mid 70's,
and it still seems to be simmering with OO/XML versus relational today.

3. The best data structuring method appears to be relational in most cases.

5

(In practice, existing tools are not up to a full-blown table-centric approach, so compromises are
in order.)
4. There are more pre-package-able data-centric idioms than behavioral-centric
idioms DataIdiomAndBehaviorIdiomQuantity. And thus if we shift our design to be data-centric,
we can take advantage of these existing idioms to avoid reinventing the wheel and avoid
relearning the idiom systems.
5. The Eyes Have It - Information in tabular form is easier for most humans to relate to and
digest. For example, patterns can be visually spotted in tables that would be more difficult in
other approaches. Some kind of TableBrowser and/or query language can be also used to
transform tables (or views) to emphasize certain aspects. Contrast this with textual code which is
pretty much stuck in the format that the original author provided. You are thus at the mercy of
the originator's view. (Code browsers are essentially graph browsers, which sort of fill in the
same kind of need, but "navigational" structures are generally more difficult to "re-project", and
this is one of the reasons why NavigationalDatabases fell out of favor.)

 I disagree with your premises / assumptions. (1) "Navigational" is about API, not
about structure. One can certainly represent, transform, and query even DirectedGraphs -
which are about as 'navigational' as a 'structure' can feasibly get - in non-navigational
manners. NavigationalDatabase fell out of favor not so much because they used
graphs/trees, but rather because they didn't much support whole-graph queries, joins,
updates, and views. Navigational APIs view and surgically manipulate a database through
a straw. (2) There are some interesting ways of organizing code
in GraphicalProgrammingLanguages, Smalltalk IDEs, etc. that should be found among
your "other approaches" but that seem to have been ignored, which makes your claim
about tabular approaches quite dubious. Organizing code such that it's in much smaller
chunks with implicit context such that they can be organized and rearranged at
convenience is certainly feasible and worthy of pursuit, but you seem to suggest a
dichotomy between 'tabular' vs. 'textual in files'.

 Regarding (2), They have not really caught on, and I'm generally comparing the more
common techniques to TOP. Feel free to create a topic to sing the praises of GPL's.
Regarding (1), see TableOrientedProgrammingDiscussion.

6. Having MoreThanOneWayToPresentIt is a good thing. With query tools and table browsers,
it's relatively easy to transform one's view of table-ized info into a form more conducive to the
task at hand. Contrast this with text files where you are more or less limited to the author's
grouping and presentation of code. (Fancy IDE's can be more flexible, but they are essentially
confirming GreencoddsTenthRuleOfProgramming.)
7. Tables are easier for most power-users to grok compared to linguistic-centric approaches, in
part because of the ubiquity of spread-sheets. See CompilingVersusMetaDataAid.

6

One area where OO and procedural languages do not operate as well as relational are in
operations done over collections or sets of the same object.
The ways that OO, procedural, and functional languages support operations over collections are:

 Write a separate loop (typically a for loop, but other variants are also used) for each
operation and manually verify each loop is identical. A unique function or set of steps is
embedded within the loop.

 Write a single loop but pass it a function as a parameter; each function must have the
same signature. This can be done directly with functions in assembly, C, and C++
although the syntax is relatively obscure; one can use the "..." syntax or K&R C to avoid
much or all of the signature restrictions. For OO languages, the function may be
embedded in a function class and class member variables my be used in lieu of function
parameters using a variant of the Visitor pattern.

 Use an InternalIterator or ExternalIterator to iterate over the collection; the logic to be
applied is inlined in the code.

 Use HigherOrderFunctions (like mapcar/apply, fold/foldr/reduce) to iterate over the
container (or reduce it), passing in a function to perform the necessary operation. For
example, suppose we could execute a function for each record by having constructs
borrowed from SQL such as (PageAnchor: exec_1):

 EXECUTE myRoutine(columnA, columnB) FROM myTable WHERE x > y

 // This version makes references clearer:

 EXECUTE myRoutine(m.columnA, m.columnB) FROM myTable AS m WHERE m.x > m.y

 (In practice, most systems don't directly support the above, but we can rely on similar
constructs by convention.)

In comparison, SQL treats data inherently as a collection. All operations have the loop built into
the language, compiler, or library so that the programmer does not need to explicitly code the
loop nor take any unusual steps to pass a function to a loop.
Unfortunately, SQL isn't sufficient as a programming language for most tasks, so one must pull
the data into memory and process with a real language, which puts us back to using loops and
functions, or HigherOrderFunctions to process the data. Keep in mind that SQL is probably far
from the ideal TOP language.
Language constructs and examples that support passing a function into a common loop:

 C++ STL for_each template

7

 JavaScript [Note: Using "for in" in JavaScript loops over the properties of the object, not
over it's elements, so for(each in aList) won't work.]

 Array.prototype.map=function(toRun){

 for(var index=0;index<this.length;index++)

 toRun(this[index]);

 }

 Array.prototype.filter=function(isCondition){

 var result = new Array();

 for(var index=0;index<this.length;index++)

 if(isCondition(this[index]))

 result.push(this[index]);

 return result;

 }

To run over a collection, use the following:
 aList.map(function(each){each.DoSomething()});

or
 var theMatches = aList.filter(function(each){return each == "some condition"});

 HigherOrderFunctions in FunctionalProgrammingLanguages and
MultiParadigmLanguages

 Smalltalk blocks

 aList do: [:each | each doSomething].

or
 |theMatches|

 theMatches := aList select: [:each | each = 'some condition'].

 Java InnerClasses
 foreach in CsharpLanguage and JavaLanguage 1.5

Either way, they remove the need to ever have to manually write loops. Since you are passing
functions to these methods, no other parameters are needed.
Why can one not merely derive a user collection class from some base collection class and from
the class to be contained in the collection and have the user collection class then expose all
methods from the base collection class? Without writing any additional code, one could call a
method on the user collection class and it would automatically iterate through its collection,
calling the same method on each member. For example, I could create a collection of text boxes
and then call a SetBackgroundColor(newColor) method on the collection and it would set the
background color on all text boxes in the collection. -- WayneMack

8

[Consider that that is easily done by a generic foreach or do method like so....]
[aTextBoxCollection.forEach(function(each){each.backGroundColor="newColor"});]
[You don't really want specific methods as you suggest, you want generic ones that can take
functions as parameters to specialize their behavior, they are much more flexible and require
much less code to be written over the long run. A collection should not be concerned with the
particulars of an operation, only that the operation needs to be applied to all it's members or
some of it's members. Therefore we leave the operation open for extension by making the
operation a parameter, and only write the loops on the collection.]
[One can and many do. I wouldn't inherit implementation from both the collection and the
member classes, though. I might inherit implementation from the collection and interface from
the member if that interface makes sense in the context of a collection. Usually I just use a
collection that has a forEach() method and pass it a closure/block/inner class instance that
performs the desired behavior.]
Would you care to expand on why it is advantageous to implement methods on a collection
outside of a collection class? (I guess the little light bulb just didn't go off in my head when I
read the above comments.)
[I assume you mean the methods passed to "forEach()"? If so, those methods don't operate on a
collection. They operate on members of a collection. "forEach()" makes them operate on every
member of a collection.]
(Aside, I'm going to start to refactor the top of this section to eliminate bulk. If I lose any
important content, please refactor back in.)

Just an idea. It would be interesting to see a language that could do something like:
 tableX.doStrategy() where [condition]

This would be more or less equivalent to:
 r = sqlQuery("select doStrategy from tableX where [condition]")

 while (row = getNext(r)) {

 execute(row['doStrategy']);

 }

Based roughly on concepts discussed in EvalVsPolymorphism.

That's why people rave about smalltalk's collections: that's exactly what you can do.
Likewise, there are several libraries which wrap java's collections which let you do the
same thing, and the whole thing is trivially easy with Lisp. Add ListComprehensions to
the mix, and you even get the set algebra: "[doStrategy x y | x <- tableX, y <- tableY,
condition x y]".

This might be a good place to start a discussion on what BuckyPope
of IbmThomasJayWatsonResearchCenter used to call "class codes" - maybe it has since
reappeared under a new name. He noticed that you very often find code like:

9

 IF PROVINCE = 'NB' OR PROVINCE = 'PEI' OR PROVINCE = 'NS'...

in programs. If you have many occurrences of this kind of thing, it becomes very hard to
maintain. He advocated storing the attributes that you are interested in in tables, so this code
becomes something like:
 LOOK UP PROVINCE

 IF PROVINCE IS MARITIME ...

While this looks obvious in hindsight, especially to TableOrientedProgramming people, it is
surprising how often you see statements like the former in business applications. They just
seem to grow, and it's hard to stamp them out once they take root!
I have just come across the ControlTable page - it sounds very similar.

If someone were looking to design a new TopBasedLanguage, what would you consider to be
necessary, what would you consider desirable, and what would you wish to avoid?

First-class relational operators would seem an obvious one, but would you implement them as
a RelationalAlgebra or a relational calculus, or a combination of both?

What else would you want? Transaction management? List comprehensions? Shaped arrays?
First-class StoredProcedures, including possibly RecursivelyStoredProcedures (i.e., inner
functions)? Higher-order functions (presumably operating on the StoredProcedures)? would
functions be both represented and implemented as tables, homoiconically
(see HomoiconicLanguages)? What sort of syntax and semantics would you want?

It also occurs to me that if you can have RecursivelyStoredProcedures, and if you save a
stored procedure's lexical environment in a table along with the code, and invoke it at need,
you would have a LexicalClosure - which, since ClosuresAndObjectsAreEquivalent, shows
that the two paradigms must, on at least a theoretical level, be compatible. Similarly, if you
can store a function's successor for later invocation, you could have continuations, in which
case you wouldn't necessarily need the inner functions. Of course, using a table for this
purpose implies the existence of persistent continuations, which is JustWrong...
One has to be careful to design something that can be both big and small. For example, one
should perhaps be able to use such a language or kit with MinimalTable abilities, but also
plug in DB2 or Oracle if needed without code overhaul. I also think that as much as possible
should be in libraries instead of hard-wired into the language. Thus, ideally the language
would offer meta-language abilities so as to easily extend it. I would like to see Lisp reworked
to be more palatable to the "masses". Java grew popular partly because it borrowed from
people's C/C++ familiarity (for good or bad).
Goddess Eris, it just occurred to me! TOP isn't a paradigm - it's a MetaObjectProtocol!
TopMop! ;) -- JayOsako

Well, I suppose everything could be defined in terms of MetaObjectProtocols, or any
other TuringComplete paradigm for that matter. OO just has a psychological tilt toward
behavior instead of declarative techniques and is not "bound" to relational rules. In the end it
is all about psychology. -- top

10

Related: MaspBrainstorming

Spreadsheet-Influenced Ideas

I once got an email from a fellow table fan who suggested using spreadsheets, or at least a
spreadsheet-like interface for programming. Initially I was not very warm to the idea, but
looking for better ways to combine nimble tables with code, I am now warming up to the idea.
Most spreadsheets allow text to flow into adjacent cells as long as there is nothing in those
adjacent cells. Thus, long programming text will not cause problems. And, the cells can be
used for indentation, which can avoid the TabMunging problem that pure text keeps facing. If
a section of code is indented 3 cells, then it is always indented 3 cells regardless of what edits
it. Tabs versus spaces is no longer an issue.
But the biggest benefit is the ability to embed and define smaller tables inside "code". Think
of them as "table closures".
Here is an example. First the non-spreadsheet version of the code:
 // define column headers

 addColumnHeader("Name");

 addColumnHeader("Student ID");

 if (authorized) {

 addColumnHeader("SSN");

 }

 addColumnHeader("Grade - GPA");

 // loop for each student

 while (row = getNextStudent()) {

 outNewRow();

 outColumn(row['name'], left, '');

 if (authorized) {

 outColumn(row['SSN'],'center','');

 }

 outColumn(row['studentID'],'right','');

 outColumn(row['GPA'],'right','#9.999');

 }

Spreadsheet version:
 A...B........C............D..........E........F

 ...

 table rptCols // report column definitions

FldName..Descript.....Alignment..Format...HideOption

name.....Name.........left

11

SSN...................center..............Yes

studentID.............center

GPA......Grade.-.GPA..right......#9.999

 end.table

 .

 loop on table rtpCols where not HideOption and authorized

addColumnHeader(Descript)

 end loop

 .

 loop on table Students

outNewRow()

loop on table rptCols where not HideOption and authorized

outColumn(&FldName, &Align, &Format)

end loop

 end loop

(Dots only to prevent TabMunging)
This is rough pseudo-code and not necessarily meant to promote a certain style of syntax.
Also, in a real spreadsheet we would be able to see the cell grid, which would make the table
much more clear. The "loop on table" structure is similar to ColdFusion's <CFloop
query="foo"> tag, which allows column scope within the tag. (However, perhaps such a
feature should be allowed to be turned off if desired.) The instantiation of result set "Students"
is not shown in either example. We may be able to factor the "where" criteria to one spot.
Benefits:

 No quotes needed in table
 Stuff is aligned to help see patterns
 Adding new report fields can be done at one spot instead of two.
 I personally find it better SeparationOfConcerns and cleaner. Stuff about what is

displayed is not mixed in with details on how to display it. The first half is declarative
and the second half imperative for the most part.

I imagine some adjustments or additions would have to be made to spreadsheets to make them
more useful for code editing and viewing. For example, one may have to keep resizing the cell
(column) widths in order to view portions of the current screen. Maybe this can be automated.
for example, pressing F6 may stretch all cells to fit all the information in the current screen,
and pressing shift-F6 puts it back the way it was. Even in the example it is obvious that the
indentation (cell width) for viewing tables tends to be different than the best for viewing code.
Keep in mind that most spreadsheets display the current cell's contents at top, so that if any
single cell is too large to show, it is relatively easy to put the cursor on it in order to see its full
contents at top.

12

Maybe some way can be devised to alternate between a grid view and text mode in the same
module (virtual or real). Maybe the browser can have "start grid"..."end grid" and "start
text"..."end text" markers of some kind, and the editor would display that section in
accordance. In an editor, it could kind of resemble the "bands" found in many report writers.
One could slide the bands larger or smaller as needed, and a check-box in the band bar would
determine whether it is a grid or text band. This would allow text where it is best used and
grids where it is best used, but have them intermixed in the same view rather than going back
and forth between the grid screen and the text screen that most approaches currently require. --
top

MultiThreading

TableOrientedProgramming reduces the need for multi-threaded programming. One can
launch independent processes or sub-processes that communicate entirely via tables. Most
table engines and RDBMS have concurrency management built in, either with row and table
locks, and/or with transactions. Since these are available in the table engine, adding them to a
language is kind of a violation of OnceAndOnlyOnce. However, this may not be effective for
certain embedded or timing-sensitive applications. See AreRdbmsSlow for more on timing
issues.

 WOW, that quite a claim. You do realize that Mulithreading is about avoiding process
overhead right? And you know that not all threads need to share data, or that when
they do it is always best to avoid threads right? An you are aware that message passing
via queues tends to do the same thing right? And you know about pipes and commercial
messaging products like MQSeries right? If you are using tables only to pass non
persistent data there is something wrong with your design. If you are doing it to ensure
delivery then you should consider if your protocol really needs to be stateful.

 I'm not sure what you are getting at. Perhaps this discussion belongs
under TableOrientedSynchronization.

This seems to be assuming that the database is necessarily provided by an external process.
Integrating it with the language is likely to be both more efficient and more convenient, and
personally I'd much rather do this in a language with good support for concurrency
(say ErlangLanguage using the MnesiaDatabase), than try to avoid MultiThreading.
-- DavidSarahHopwood

Perhaps, but then you lose multi-language ability. If you "share", every language then does
not have to invent and perfect it all from scratch.
Suppose we use n programming languages in a project, one of which acts as a hub to
integrate components written in the other languages and to access a database. If the database
is external, then the hub language is effectively SQL. I'm just suggesting using a real
programming language as the hub instead. The number of inter-language interfaces is the
same: n-1 in each case. -- dh

13

Why would it be called the "hub" then?

The central node in a star (a.k.a. HubAndSpoke) network is usually called the hub. "Pivot"
would be another possible term. We use a star network because we don't want n*(n-1)/2
inter-language interfaces.
{So the only difference between that and a network is that the edge nodes are not allowed to
talk directly to each other? Is that the only distinguishing feature you are suggesting? If not,
what are the other distinguishing features?}

Or use FlowBasedProgramming, which can link together modules written in different
languages, as well as reusable components that drive different services, e.g. SQL. In the first
FBP implementation we had a reusable stream-to-stream component that drove the standard
IBM Sort (or any vendor Sort that used the same call interface) - it was much more friendly
than using the vanilla Sort because you could change the key on the fly, route data around it,
etc. Similar comments apply to a reusable SQL component. -- PaulMorrison

Related, and perhaps a merge candidate: TableOrientedSynchronization

Tables All The Way Down

From WhenDoSchemasAndClassesDeviate:
Re: nobody has managed to design a TableOrientedProgramming language that's "tables all
the way down", like SmallTalk is objects.
Tables are best used as a larger-scale structure than objects. Rather than everything be a table,
a "pure table" arrangement would probably look more like everything is in a table one way or
another. For example, every variable might be a row in a Variables table, every function
defined in a Function table, etc.
Things like Microsoft's semi-generic bytecode interpreter (CommonLanguageRuntime) is
essentially a database, just not a relational database. A TOP approach would change that fact
and toss the underlying NavigationalDatabase for such a thing. But, MooresLaw has not quite
caught up yet. Source code is only one view among many possible of programs. It is about
divorcing presentation from meaning, as described in CodeAvoidance.
Further, DynamicRelational may be required to keep it flexible enough to be practical. So far
there are no completely dynamic implementations. After all, Smalltalk is dynamic. Relational
can be too.
Another issue is that maybe a yin-yang kind of relationship may be better than a single atomic
"type". See YinYangVersusSinglism and FormulasPlusAttributes.
-- top

But I would be interested in seeing an implementation of a tables-all-the-way-down system.
How could you represent functions? Functions lend themselves to hierarchical containment.
Mathematically, a function is a mapping from a set to a set, and a table is a set, so could you
map a table to another table? Could you have virtual tables that have an infinite number of
rows (say for real-numbered values) and implement this mapping? I'm just pontificating here...
this would be interesting to figure out.

14

Using the mathematical definition of a function, a TOP language is almost trivial. A function
is really a set of ordered pairs <a, b>, where a is a member of the domain (a set) and b is a
member of the range (another set). This can be represented as a table with the two columns
(domain, range). Functions of arity > 1 would just be represented as a table (arg1, arg2,
arg3, ..., result).
The problem is, the SetTheory definition of a function is very difficult to work with on a daily
basis. You don't want to have to explicitly specify outputs for every input; that defeats the
purpose of a computer. Go use a paper-and-pencil spreadsheet.
Instead, most functions are defined as compositions - possibly recursive - of other functions.
This is fairly easy to see in Lisp notation: (factorial n) = (cond ((= n 1) 1) (T (* n (factorial (-
n 1))))). There're some tricky bits, like the conditional and the use of recursion, but these are
all covered by DenotationalSemantics.
Something like this is very hard to represent as a table. It's fundamentally hierarchical:
functions are made of compositions of functions, which are themselves made of compositions
of functions, etc. And for reasons of practicality, most of these intermediate compositions are
unnamed. They're also denoted positionally by their position in the argument list. When you
try to stuff this into a table, you basically end up with a TreeInSql.
There is no need to implement a function as a table by listing every (argument, result) pair. A
function could be represented like a table, i.e. every object looks like a table. After all SQL
views look like a table, but are none (being views into one). Looking at a function as a table it
would be easy (and difficult in other approaches) to get the domain and range of a function.
Of course no every query on an function-table could be computed effectively let alone
efficiently.
I find it a worthwhile idea to combine such an approach with e.g.
a SetOrientedProgramming approach based on PrologLanguage. Handling small set (in
memory) and large sets (database) uniformly (possibly annotated with hints about size and
atomicity) could provide a very elegant and safe way to implement critical financial
applications. -- GunnarZarncke

PS. It seems, this (same approach for large and small sets) has already been done:
See HaskellDb. -- .gz PPS. See PrologForMassiveData

There is one exception: ContinuationPassingStyle. In CPS, every function call must appear in
tail position, so no argument is itself a composition of function applications. The tree has been
flattened out and labels assigned to every intermediate node, which is just what we need to
store the full composition in a table. I'm very curious about a table-based CPS intermediate
representation: it looks like there's a full mapping from CPS to relational tables, and this also
encodes the complete call graph of the program. Closure analysis may be tricky though; most
CPS representations store environment information in the lexical structure of the CPS
representation, which would be lost on conversion to tables. If that can be encoded too,
however, then you'll have the complete liveliness graph of all registers encoded in the

15

intermediate representation. This would let you do really efficient inter-procedural register
allocation. -- JonathanTang

Keep in mind, a table is just one of several WaysToExpressRelations.
Everything is probably equivalent to everything, if we want to go that route.

I wonder if the compile-time-type-checking view is in direct conflict with TOP. A good
portion of TOPs challengers are pro-StaticTyping it seems. Heavy pre-run checking requires
finding ways to limit the variations of "queries" or dispatching in order for the compiler to
"reason" about them. Such tools lean toward hierarchies in order to limit the search tree on
"types" and related variations. However, if one finds trees inherently limiting, the alternatives
don't seem to offer enough regularity compared to trees to do pre-run pass-or-fail analysis. My
view is that this simply reflects the real unescapable nature of the world
(LifeIsaBigMessyGraph) and that tree-based checking is a false and messy security. You can't
compile the whole world. -- top

It's not in conflict or required; it's orthogonal. This is obvious if you have a sufficiently
expressive type system. See also FourOutOfFiveRule. -- DavidSarahHopwood

I doubt there is such as thing as "sufficiently expressive type system", as described
in ThereAreNoTypes.
By "sufficiently expressive type system", I was talking about type systems that exist in practice,
for example SoftTyping in MrSpidey.

Looks like someone's trying to cash-in: http://www.tablecode.com/founders.htm. And it's
not TopMind.
You guys can fight over it. Let me know who wins.
The patents often talk about "objects in tables". As long as nobody calls them objects, no
problem. However, they also talks about "code in tables". Does this mean that
"Eval(myColumn)" has been patented?

 Currently, the "patent" is merely a patent application, not a granted patent. And it is, as
far as I can tell, utter BullShit; TopMinds stuff appears to be PriorArt for much of it.

Anyway, the guy claims to have "invented" TableOrientedProgramming. While I can find
references to him on the web that are earlier than 2004; I can't find anything older than last
year on TOP.
ThePragmaticProgrammer reportedly has content on the topic as well.
JoelOnSoftware has a thread about
this: http://discuss.joelonsoftware.com/default.asp?joel.3.166265

The Diabs have a paper up on ACM; the list of references is
embarrassing: http://portal.acm.org/citation.cfm?id=1094855.1094930#references

16

While it isn't TableOrientedProgramming per se (and I imagine that there is much prior art
in CommonLispObjectSystem for this), a paper that TopMindmight find interesting:
http://www.informatik.uni-ulm.de/rs/mitarbeiter/ch/publ/Heinlein:Goerigk:Kiel.Inf:2004.pdf
Perhaps this link could go under EvalVsPolymorphism.

 A better location would be a more general page on dispatch techniques. Like many other
things, the stuff in that paper is largely orthogonal to eval.

Top,
I'm curious: Did you edit the following article
on WikiPedia? http://en.wikipedia.org/wiki/Table-Oriented_Programming

I didn't see any of your usual IPs (dslextreme) in the edit list, and you didn't post with a
recognizable username. I did notice, however, your fingerprints
on http://en.wikipedia.org/wiki/Design_pattern_%28computer_science%29 and I'm curious:
Why do you think that design patterns have anything to do with the OO-vs-relational debate?
Were one to embrace TOP whole-hog; I'm certain that higher-level patterns would emerge.
Many view design patterns as only relevant to OO; in my experience they are applicable to
almost any programming paradigm. -- ScottJohnson (who edits Wikipedia
as http://en.wikipedia.org/wiki/User:EngineerScotty, btw...)
I actually did not create the Table Oriented Programming topic over there. However, I do
remember encountering it and making changes quite a long while back. I forgot all about it
until you mentioned it. -- top

I see you did delete some vandalism from the page (vandalism which uttered your name in
vain)... do you still prefer to not have your real name published? -- sj

 He's been stating that preference for many years; there's no reason to assume that his
policy has some built-in time limit that will expire at some random point. :-) -- Doug

o If you go to the tablizer website, and look at the bottom of the pages, you'll see
the following:

o "...Material © Copyright 1998...2005 by Findy Services and [Top's First Initial
and Last Name]"

o Plus, there seem to be quite a few guys on the net who try and "out" topmind
wherever they can... if Top wants to keep his real name a secret, he does a rather
poor job of it. :) -- First letter S... :-)

o That's not the point. We all know what his real name is, and he knows that, and
isn't trying to keep it a secret as such, he just does not like to be addressed by his
real name, because it makes it overwhelmingly obvious who he is, as opposed to
it simply being possible to find out his real name. Since his given rationale is to
avoid threatening his career, this seems reasonable to me; a potential employer

17

will search on his real name, not on TopMind, so his approach works perfectly
well for that kind of thing. -- Doug

 Although, typing Top's real name into google produces the tablizer page as
the first couple of results... -- sj

 Discussion moved to RealNamesPlease.

For those of us sick of writing and manually managing essentially tabular data in an
object-oriented language like C++, I'm interested in pursuing
a TemplateMetaprogramming approach to auto-building tuples, tables of tuples, and indices
within the C++ runtime, and maybe a TemplateMetaprogramming supported query language,
too. Might be something boost-worthy. However, I ain't tacklin' that one alone. My main use
of tables is when I need to index the same data N-ways from Sunday, I almost always end up
writing them by hand, and I rarely use joins (though I know how to go about it after writing
the C++ version for EveryCombinationInManyProgrammingLanguages).
The SqLite libraries are C-based. Perhaps you can incorporate them into your code.

When I coined "table-oriented programming", this is NOT what I had in
mind: BefungeLanguage (http://en.wikipedia.org/wiki/Befunge)
That is more like "grid-oriented programming". Grids are like 2D positional arrays and tables
are like 2D associative arrays.

Re: Quote: "A belief that tables better match human physiology and/or psychology (or at least
a large enough percent of the population to make it a viable tool)."

Psychology has nothing to do with tables. Human psychology is oriented around depression,
happiness, food, replication, sadness. The relational model was created to organize data
efficiently and sensibly, not to tie in psychology of the human brain. in fact one problem with
bad programmers is that they let their emotions get in the way of truth - and truth is what
computers are all about. If you want to model the human brain you'd be best looking into
artificial intelligence and fuzzy logic. The relational model is very un-human and un-animal.
It is infact extremely "true or false" oriented, centered more around the CPU "bit" where there
is 0 or 1. Bringing psychology and anthropomorphisms into programming is extremely
dangerous, because databases are not about human psychology. Databases are about correct
data retrieval (would you want erroneous data?) that can be accessed efficiently and did I
already say it, correctly. Tables (relations) were invented so that data would be accessible in
an efficient and correct manner. And by efficient I don't mean that your database is "fast", I
mean efficient organization of data where one can look up how many customers live in so and
so state or province without having to write tons of code (normalization helps significantly
there). It has nothing to do with psychology. It's about accessing the data in the most efficient
manner. And once again, by efficiency I do not mean the clock time.

18

"Psychology" involves lots of things. Emotions is one of them. But there's also the
"perceptual" side, that borders on physiology. I wish there was a better name for the aspect
that we are considering here, but I haven't found it. Most people would agree that
"psychology affects grokkability". Somewhere on this wiki is a discussion about whether
relational is a "natural" property of our universe, like Pi, or whether it's somehow tied to
human nature and human qualities. I suspect it's the latter. Machines and math don't "care"
either way. Relational is merely a UsefulLie for humans. As far as "correctness", I'd use some
form of relational even if it didn't have referential integrity etc. That's a nice bonus, but not
the single magical factor. -t
You ought to do some research as to why the relational model was invented. It was invented
to organize data, especially repetitive similarly structured data. The relational model (tables)
are tied to data, not some natural property of humans, but the natural properties of data. The
natural properties of data are: often you will see repetitive entries (by repetitive I mean they
all fit into a table - for data that doesn't have a common structure, that's where relational fails..
for example a GUI with a button, a panel, and a window - these don't all fit easily into a table
and are better as single structures or objects (unless you had 3400 buttons on the screen that
needed to be searched)).
I agree about the factoring part, but navigational (NavigationalDatabase) can also be used to
factor out repetition. Thus, relational has no monopoly there. I disagree that a table-oriented
GUI is not possible. I even gave an example in NonOopGuiMethodologies. Hardware wasn't
up to the task when GUI's started, but may be now. Further, DynamicRelational may be a
better fit for such anyhow rather than the Oracle clones we have now. Further, a lot of
"kinds" of widgets can be rolled up into just two "types" of widgets: singular and compound.
The difference between a label, link, click-able image, and button are not sufficient to make
them separate "kinds" of things. If I want to make an image click-able, I don't want to have to
change it's type, I merely want to be able to be able to add clicking behavior/attributes to it.
Viewing them through the smorgasbord model [see...damn-i-forgot-name] may give us more
flexibility and combinations. I agree that hard "types" may be a UsefulLie, especially for
newbies, but does not add to flexibility and reuse.

MicrosoftAccess is "proof by popularity" that TableOrientedProgramming works: entire small
and medium-sized applications are often written in Access without using a single line of code
(other than expressions, such as ">id"), or at least very little. Many Access programmers don't
even know VBA. That being said, I would do many things different if designing a better TOP
C.R.U.D. thing-a-matic, the primary one being making all the application configuration,
queries, settings, macros, etc. be full-blown tables that can be queried and analyzed by the
DBMS like any other table can, not the proprietary hidden binary structures that MS often
uses. It may have originally been done for efficiency reasons. For example, to allow lots of
open-ended "cells", a Memo type would have to be used often, and these tend to be slow.
More efficient auto-sizing would have to be explored. Existing RDBMS are tuned for data

19

usage patterns, not config attributes. Table-based management of query parameters would also
help. -t
At best, MicrosoftAccess is "proof by popularity" that desktop DBMSes
using QueryByExample and reasonably-usable built-in form and report painters plus an
included implementation of VisualBasic for scripting and marketed by MicroSoft can be
popular. It says nothing about TableOrientedProgramming, whatever that is. Arguably, what
is being called "TableOrientedProgramming" here is nothing more than using
the RelationalModel, or something resembling it, to build applications.
I'm not talking about form and report painters, for basic (and esthetically ugly) apps can be
built without ever touching them. Perhaps what I'm getting at is
AttributeOrientedProgramming, which is a close relative of TOP. An entire app can be built
by merely filling in attributes and attribute tables. Most if not all of the things in Access could
be turned into tables or queries on tables, and many of them are. For example, the
"switchboard" (menu panel) wizard creates a switchboard ControlTable, which is internally
used to control the switchboard. The macro commands are also presented to the user as a
table/grid (although I don't know if it's implemented as a table under the hood). And I've built
basic ControlTable based report writers for ExBase with sub-grouping/totalling back in the
ASCII days. Basic forms can also be done that way, if you don't mind meek aesthetics. Let's
review:

 Queries – Designed primarily via a QueryByExample-based grid interface. These can be
Select, Update, Insert, etc. queries. One can also edit queries as direct SQL if desired.

 Macros – Attribute-driven in macro designer grid. Could be or perhaps is table-ized
under-the-hood. (Conditional expressions are also possible, but awkward in Access.)
It's almost like a CRUD-oriented Assembler language, which is fine for short lists of
commands.

 Menu Panels ("switchboard") – Table-driven under the hood. A wizard puts a GUI dialog
interface over this table.

 Data entry forms – One can use "raw" edit table views, or the drag-and-drop VB-like
painter tools. However, these can also be done via table-driven interfaces, although
MS-Access doesn't. (You'll just have to take my word for it.)

 Report writer – Access can "auto-guess" from edit table views, but otherwise uses a
report painter. I built a table-driven report-writer back in the DOS days. It used
a DataDictionary with additional attributes for sub-grouping options, which somewhat
resembled Access's query-builder when the "totaling" row is switched on.

Thus, all the basics of typical CrudScreen apps can be table- and query-based. Application
programming code and screen/form painters are not necessary. (But even painter tools can
store the design in tables. FoxPro did this more or less under the hood.) Again, I'm not
suggesting one always take the 100% TOP road. I'm only pointing out it's possible. A good
many apps can be around 70%. Generally the low-use and internal forms and reports are made

20

using TOP, and the high-use critical ones are more carefully tweaked and micro-managed
using or assisted by application code. -top

It is exceedingly unclear to me what TableOrientedProgramming really 'means'. Proposed:

 Definition 1: Tables, Sets, or Relations are FirstClass, and so are relational operations on
these (union, join, select, etc.), and relations are used (idiomatically) instead
of CompositePattern for data. By FirstClass, I mean: table-values may be anonymous,
stored to variables in the language (RelVars), communicated as arguments, and
returned. Consequences of using TOP under this definition:

o TableOrientedProgramming is fully compatible
with ObjectOrientedProgramming, FunctionalProgramming, FunctionalReactive
Programming, DataflowProgramming, etc. Some extensions are required mostly
to support relational operations, and the language-implementation might do well
to provide some automated optimizations (both query-optimizations, and
storage/indexing optimizations for the

o Need for VisitorPattern is diminished.
o With tables being anonymous, it can be somewhat difficult to define

relationships between 'tables' variables, such as ForeignKeys and
CascadingDelete and consistency requirements. This is suitable
for DynamicTyping, but one may wish to expand to something even broader
for StaticTyping: FirstClass 'database' objects where the TypeSystem recognizes
as a primitive values that can encompass many tables along with the
relationships between them.

o PersistentLanguage feature is possible, but occurs more along the lines of
persistent ObjectOriented language.

o Integration with external RDBMS is unlikely, or at best 'indirect' (i.e. loading
queries from remote tables into a local table-value, ideally lazily or at-need). It
will likely require some mapping effort on the edge of the system (e.g. via
a ForeignFunctionInterface). But if PersistentLanguage feature allows automatic
re-establishment of communications, this problem will be greatly reduced.

o Tables are subject to ObjectCapabilityModel security. That is, tables can be
"hidden" within the process, fully encapsulated, inaccessible to DBAs and such
unless made available through an IDE or debugger. Even if they are accessible,
such tables will have semantics that depend heavily on context and who is using
the table, so a DBA would need much detailed knowledge of the application to
make sense of the multitude of tables.

o Mutable-state communication can be avoided (KillMutableState) in favor of
passing about immutable table values between components and processing them
using pure functions. This can reduce need for ACID transactions, though some

21

sort of SoftwareTransactionalMemory is still appropriate for the little
mutable-state remaining. Whatever solution is used to protect mutable state for
other variables is likely to protect mutable state for tables.

 Definition 2: Tables, Sets, or Relations are SecondClass (or at least used as such
by TableOrientedProgramming). That is, you can name these RelVars in a "global"
space, as part of a program definition. You might be able to create temporary views or
tables for processing (i.e. functions that take tables as arguments), but either you cannot
return tables, or such FirstClass use of tables (i.e. creating a process that loops forever
passing tables as arguments and assigning result-tables to local variables) is
idiomatically discouraged by TableOrientedProgramming in favor of communicating
between components by shared-state mutation on globally identified tables.
Consequences of using TOP under this definition:

o Communication between components primarily by shared state in common
tables closely matches the BlackboardMetaphor and LindaTupleSpaces designs.
Process-composition occurs as a flat architecture attached to a common database.
Tables are used for RemoteProcedureCall, InterProcessCommunication, etc.
Related: TableOrientedSynchronization.

o Since all tables are named, their number doesn't vary wildly during program
execution, and the names are in a global space, it is easy to describe and
establish constraint-relationships between RelVars (including ForeignKey,
CascadingDelete, etc.) that are often associated with RDBMS.

o Multiple instances of the same application need semantics for whether all
instances share the same tables, or each application gets its own table. One might
annotate this sort of information as part of defining the global RelVars (even
going so far as to say a particular RelVar corresponds to a
particular UniformResourceIdentifier for an RDBMS). It may be that some
tables are marked 'volatile' - gone with the wind the moment the application is
killed.

o Easy integration with RDBMS and local DBs (like SqLite). Easy persistence via
such integration.

o DBAs can get easy access to all the tables. Since they're "global", the table
semantics are pretty much independent of context. This allows DBAs to easily
understand and maintain tables.

o Challenged to handle two or more databases or data sources - distributed queries
and distributed transactions to work with more than one RDBMS will be a
serious challenge for implementors. This encourages the 'store everything into
one uber-massive organization-global RDBMS' design. Ideally, it would even be
world-global, but the security issues of this architecture forbid that.

o Security-challenged architecture. By default, everyone has access to any table
they can name. This is problematic given the above-described propensity to

22

grow into truly organization-global tables. People have attempted to erect
various forms of egg-shell security - i.e. passwords and such - to protect tables
and data. If any component of a TOP application is compromised, in general all
tables it has authority to interact with are compromised.

o The use of tables for TableOrientedSynchronization purposes creates
considerable extra 'cleanup' and burden for the applications. It is rare that
resources are sufficient to keep a complete history of everything every process
does. More relevantly, general forms of GarbageCollection won't be able to take
out tables in a global space, so it will be up to the processes to selectively delete
rows from the global tables after taking the appropriate actions. All this
exacerbates the egg-shell security problem, since any compromised process will
have access to various shared IPC tables and can therefore compromise
communications between all other processes.

o Transactions and persistence over tables, as they are, do not include the
processes or communications. This can create some challenges if one wishes to
perform behaviors atomically and persistently - all at once or not at all. This
leads to patterns as seen in MnesiaDatabase, where one creates tables that
essentially track what each process is doing, what it plans to do next. This
requires a great deal of explicit effort and explicit interactions with tables.
Further, if persistence is the goal, then the table in question cannot be local and
volatile to the application - it must be part of an RDBMS. (For security, this
table at least could be local to an application to avoid granting other processes
the ability to directly compromise program behavior.)

o It is not possible for two or more independent processes or applications to
coordinate a behaviors atomically: communication occurs through the database,
but process A cannot see what process B is attempting to do atomically until
AFTER process B commits its intent to the database. Because processes do not
compose or coordinate atomically, each process will need to be monolithic in
nature - i.e. process A will need to include the features of process B. Since
monolithic processes need much more authority than fine-grained processes,
they contribute to egg-shell security issues.

It has been my impression that what TopMind really means when he discusses
'TableOrientedProgramming' is more along the lines of Definition 2. It isn't particularly
compatible with ObjectOrientedProgramming, and it's a closer fit to the sort of situations he
describes (i.e. relying on external RDBMS systems, procedural+relational, using RDBMS for
persistence, etc.).
It has been my impression that what TopMind really means when he discusses
'TableOrientedProgramming' is ExBase.

23

 ExBase is a "taste" of a TOP-friendly language. I honed many of my TOP skills in it and I
saw other ExBase fans do the same. However, it still has a lot of warts in my opinion. I
once kicked around a re-worked version of ExBase, but realized that a flexible enough
general language with good libraries could do almost the same without having to
hard-wire DB idioms into it. -t

Maybe so. Either way, it seems to be a relatively limited vision of a programming model.
Indeed. It's more of a coding style than a programming model.
{The programming model can make TOP simpler and smoother, but I agree that it's not really
about programming languages. However, one of you is a "linguistical thinker" I believe, and
to such a person, everything may be "about language" because they think in language terms.
I'm not sure how to translate this into linguistic-speak. If I was going to make the "ultimate
TOP language", first we'd have to settle on whether we maximize for integration with existing
RDBMS and SQL, or focus on an "ideal" (or alternative) relational system. And this includes
deciding on compiler/type-heavy or dynamic-friendly designs. Ideally, a language or libraries
would support "local tables" to supplement RDBMS usage that have language scoping rules
more or less like arrays. (They can be emulated using nested maps and some API's that
support a query language.) This is closer to the "first class" description above. As far as
"sharing", at this point, I am happy to stick with TableOrientedSynchronization for
concurrency issues. -t}

After reading this page, I still do not really understand TOP. Thus, I will as a comparitive
question. Programming only with functions is possible. Functions can be expressed as an
ordered pairs, for example f(i)=i*i where 0<i<4 is the set {{1,1}, {2,4}, {3,9}}, which fits
nicely into a table of two columns and three rows. Is this a trivial example TOP?
--EdwinEarlRoss

Rather than strive for a hard-bordered definition, which will probably result in an
endless LaynesLaw battle, I'll try to present more examples in topics such
as ViewingAlgorithmsAsCollectionProcessing.

AdaLovelace, the first Table Oriented Programmer?:

See: KayLanguage, ArrayOrientedLanguage, ControlTable, DataDictionary, RelationalDataba
se, FoxPro, SetTheory, RelationalAlgebra, SourceCodeInDatabase, BusinessRulesMetabase,
SetOrientedProgramming, CollectionOrientedProgramming, ProgrammingParadigm, PayrollE
xample, TableOrientedProgrammingDiscussion, EmbraceSql

24

CategoryProgrammingLanguage, CategoryInfoPackaging, CategoryDatabase, CategoryTable
CategoryDataOrientation

Last edit November 25, 2014, See github about remodeling.

