
 1

http://thbecker.net/articles/rvalue_references/section_01.html 

C++ Rvalue References Explained 
By Thomas Becker  Last updated: March 2013 

 

Contents 

1. Introduction 

2. Move Semantics 

3. Rvalue References 

4. Forcing Move Semantics 

5. Is an Rvalue Reference an Rvalue? 

6. Move Semantics and Compiler Optimizations 

7. Perfect Forwarding: The Problem 

8. Perfect Forwarding: The Solution 

9. Rvalue References and Exceptions 

10. The Case of the Implicit Move 

11. Acknowledgments and Further Reading 

 

Introduction 

Rvalue references are a feature of C++ that was added with the C++11 standard. What makes rvalue 

references a bit difficult to grasp is that when you first look at them, it is not clear what their purpose is 

or what problems they solve. Therefore, I will not jump right in and explain what rvalue references are. 

Instead, I will start with the problems that are to be solved and then show how rvalue references 

provide the solution. That way, the definition of rvalue references will appear plausible and natural to 

you. 

Rvalue references solve at least two problems: 

1. Implementing move semantics 

2. Perfect forwarding 

If you are not familiar with these problems, do not worry. Both of them will be explained in detail below. 

We'll start with move semantics. But before we're ready to go, I need to remind you of what lvalues 

and rvalues are in C++. Giving a rigorous definition is surprisingly difficult, but the explanation below is 

good enough for the purpose at hand. 
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The original definition of lvalues and rvalues from the earliest days of C is as follows: An lvalue is an 

expression e that may appear on the left or on the right hand side of an assignment, whereas 

an rvalue is an expression that can only appear on the right hand side of an assignment. For example, 

  int a = 42; 
  int b = 43; 
 
  // a and b are both l-values: 
  a = b; // ok 
  b = a; // ok 
  a = a * b; // ok 
 
  // a * b is an rvalue: 
  int c = a * b; // ok, rvalue on right hand side of assignment 
  a * b = 42; // error, rvalue on left hand side of assignment 

In C++, this is still useful as a first, intuitive approach to lvalues and rvalues. However, C++ with its 

user-defined types has introduced some subtleties regarding modifiability and assignability that cause 

this definition to be incorrect. There is no need for us to go further into this. Here is an alternate 

definition which, although it can still be argued with, will put you in a position to tackle rvalue 

references: An lvalue is an expression that refers to a memory location and allows us to take the 

address of that memory location via the & operator. An rvalue is an expression that is not an lvalue. 

Examples are: 

  // lvalues: 
  // 
  int i = 42; 
  i = 43; // ok, i is an lvalue 
  int* p = &i; // ok, i is an lvalue 
  int& foo(); 
  foo() = 42; // ok, foo() is an lvalue 
  int* p1 = &foo(); // ok, foo() is an lvalue 
 
  // rvalues: 
  // 
  int foobar(); 
  int j = 0; 
  j = foobar(); // ok, foobar() is an rvalue 
  int* p2 = &foobar(); // error, cannot take the address of an rvalue 
  j = 42; // ok, 42 is an rvalue 

If you are interested in a rigorous definition of rvalues and lvalues, a good place to start is Mikael 

Kilpeläinen's ACCU article on the subject 

 

Move Semantics 

Suppose X is a class that holds a pointer or handle to some resource, say, m_pResource. By a resource, 

I mean anything that takes considerable effort to construct, clone, or destruct. A good example 

is std::vector, which holds a collection of objects that live in an array of allocated memory. Then, 

logically, the copy assignment operator for X looks like this: 

X& X::operator=(X const & rhs) 
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{ 

  // [...] 

  // Make a clone of what rhs.m_pResource refers to. 

  // Destruct the resource that m_pResource refers to.  

  // Attach the clone to m_pResource. 

  // [...] 

} 

Similar reasoning applies to the copy constructor. Now suppose X is used as follows: 

X foo(); 

X x; 

// perhaps use x in various ways 

x = foo(); 

The last line above 

 clones the resource from the temporary returned by foo, 

 destructs the resource held by x and replaces it with the clone, 

 destructs the temporary and thereby releases its resource. 

Rather obviously, it would be ok, and much more efficient, to swap resource pointers (handles) 

between x and the temporary, and then let the temporary's destructor destruct x's original resource. In 

other words, in the special case where the right hand side of the assignment is an rvalue, we want the 

copy assignment operator to act like this: 

// [...] 

// swap m_pResource and rhs.m_pResource 

// [...]   

This is called move semantics. With C++11, this conditional behavior can be achieved via an overload: 

X& X::operator=(<mystery type> rhs) 

{ 

  // [...] 

  // swap this->m_pResource and rhs.m_pResource 

  // [...]   

} 

Since we're defining an overload of the copy assignment operator, our "mystery type" must essentially 

be a reference: we certainly want the right hand side to be passed to us by reference. Moreover, we 

expect the following behavior of the mystery type: when there is a choice between two overloads 

where one is an ordinary reference and the other is the mystery type, then rvalues must prefer the 

mystery type, while lvalues must prefer the ordinary reference. 

If you now substitute "rvalue reference" for "mystery type" in the above, you're essentially 

looking at the definition of rvalue references. 

Rvalue References 
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If X is any type, then X&& is called an rvalue reference to X. For better distinction, the ordinary 

reference X& is now also called an lvalue reference. 

An rvalue reference is a type that behaves much like the ordinary reference X&, with several 

exceptions. The most important one is that when it comes to function overload resolution, 

lvalues prefer old-style lvalue references, whereas rvalues prefer the new rvalue references: 

void foo(X& x); // lvalue reference overload 

void foo(X&& x); // rvalue reference overload 

 

X x; 

X foobar(); 

 

foo(x); // argument is lvalue: calls foo(X&) 

foo(foobar()); // argument is rvalue: calls foo(X&&) 

So the gist of it is: 

 Rvalue references allow a function to branch at compile time (via overload resolution) on the 

condition "Am I being called on an lvalue or an rvalue?" 
  
It is true that you can overload any function in this manner, as shown above. But in the 

overwhelming majority of cases, this kind of overload should occur only for copy constructors 

and assignment operators, for the purpose of achieving move semantics: 

X& X::operator=(X const & rhs); // classical implementation 

X& X::operator=(X&& rhs) 

{ 

  // Move semantics: exchange content between this and rhs 

  return *this; 

} 

Implementing an rvalue reference overload for the copy constructor is similar. 

Caveat: As it happens so often in C++, what looks just right at first glance is still a little shy of perfect. 

It turns out that in some cases, the simple exchange of content between this and rhs in the 

implementation of the copy assignment operator above is not quite good enough. We'll come back to 

this in Section 4, "Forcing Move Semantics" below. 

Note: If you implement 

void foo(X&); 

but not 

void foo(X&&); 

then of course the behavior is unchanged: foo can be called on l-values, but not on r-values. If you 

implement 

void foo(X const &); 

but not 

void foo(X&&); 

then again, the behavior is unchanged: foo can be called on l-values and r-values, but it is not 
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possible to make it distinguish between l-values and r-values. That is possible only by implementing 

void foo(X&&); 

as well. Finally, if you implement 

void foo(X&&); 

but neither one of 

void foo(X&); 

and 

void foo(X const &); 

then, according to the final version of C++11, foo can be called on r-values, but trying to call it on an 

l-value will trigger a compile error. 

Forcing Move Semantics 

As we all know, the First Amendment to the C++ Standard states: "The committee shall make no 

rule that prevents C++ programmers from shooting themselves in the foot." Speaking less 

facetiously, when it comes to choosing between giving programmers more control and saving 

them from their own carelessness, C++ tends to err on the side of giving more control. Being 

true to that spirit, C++11 allows you to use move semantics not just on rvalues, but, at your 

discretion, on lvalues as well. A good example is the std library function swap. As before, let X be 

a class for which we have overloaded the copy constructor and copy assignment operator to 

achieve move semantics on rvalues. 

template<class T> 

void swap(T& a, T& b)  

{  

  T tmp(a); 

  a = b;  

  b = tmp;  

}  

 

X a, b; 

swap(a, b); 

There are no rvalues here. Hence, all three lines in swap use non-move semantics. But we know 

that move semantics would be fine: wherever a variable occurs as the source of a copy 

construction or assignment, that variable is either not used again at all, or else it is used only as 

the target of an assignment. 

In C++11, there is an std library function called std::move that comes to our rescue. It is a 

function that turns its argument into an rvalue without doing anything else. Therefore, in C++11, 

the std library function swap looks like this: 

template<class T>  

void swap(T& a, T& b)  

{  
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  T tmp(std::move(a)); 

  a = std::move(b);  

  b = std::move(tmp); 

}  

 

X a, b; 

swap(a, b); 

Now all three lines in swap use move semantics. Note that for those types that do not implement 

move semantics (that is, do not overload their copy constructor and assignment operator with 

an rvalue reference version), the new swap behaves just like the old one. 

std::move is a very simple function. Unfortunately, though, I cannot show you the 

implementation yet. We'll come back to it later. 

Using std::move wherever we can, as shown in the swap function above, gives us the following 

important benefits: 

 For those types that implement move semantics, many standard algorithms and 

operations will use move semantics and thus experience a potentially significant 

performance gain. An important example is inplace sorting: inplace sorting algorithms do 

hardly anything else but swap elements, and this swapping will now take advantage of 

move semantics for all types that provide it. 

 The STL often requires copyability of certain types, e.g., types that can be used as 

container elements. Upon close inspection, it turns out that in many cases, moveability is 

enough. Therefore, we can now use types that are moveable but not copyable 

(unique_pointer comes to mind) in many places where previously, they were not 

allowed. For example, these types can now be used as STL container elements. 

Now that we know about std::move, we are in a position to see why the implementation of the 

rvalue reference overload of the copy assignment operator that I showed earlier is still a bit 

problematic. Consider a simple assignment between variables, like this: 

a = b;  

What do you expect to happen here? You expect the object held by a to be replaced by a copy 

of b, and in the course of this replacement, you expect the object formerly held by a to be 

destructed. Now consider the line 

a = std::move(b);  

If move semantics are implemented as a simple swap, then the effect of this is that the objects 

held by a and b are being exchanged between a and b. Nothing is being destructed yet. The 

object formerly held by a will of course be destructed eventually, namely, when b goes out of 

scope. Unless, of course, b becomes the target of a move, in which case the object formerly 

held by a gets passed on again. Therefore, as far as the implementer of the copy assignment 

operator is concerned, it is not known when the object formerly held by a will be destructed. 
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So in a sense, we have drifted into the netherworld of non-deterministic destruction here: a 

variable has been assigned to, but the object formerly held by that variable is still out there 

somewhere. That's fine as long as the destruction of that object does not have any side effects 

that are visible to the outside world. But sometimes destructors do have such side effects. An 

example would be the release of a lock inside a destructor. Therefore, any part of an object's 

destruction that has side effects should be performed explicitly in the rvalue reference overload 

of the copy assignment operator: 

X& X::operator=(X&& rhs) 

{ 

 

  // Perform a cleanup that takes care of at least those parts of the 

  // destructor that have side effects. Be sure to leave the object 

  // in a destructible and assignable state. 

 

  // Move semantics: exchange content between this and rhs 

   

  return *this; 

} 

Is an Rvalue Reference an Rvalue? 

As before, let X be a class for which we have overloaded the copy constructor and copy assignment 

operator to implement move semantics. Now consider: 

void foo(X&& x) 

{ 

  X anotherX = x; 

  // ... 

} 

The interesting question is: which overload of X's copy constructor gets called in the body of foo? 

Here, x is a variable that is declared as an rvalue reference, that is, a reference which preferably and 

typically (although not necessarily!) refers to an rvalue. Therefore, it is quite plausible to expect 

that x itself should also bind like an rvalue, that is, 

X(X&& rhs); 

should be called. In other words, one might expect that anything that is declared as an rvalue 

reference is itself an rvalue. The designers of rvalue references have chosen a solution that is 

a bit more subtle than that: 

  

Things that are declared as rvalue reference can be lvalues or rvalues. The distinguishing criterion 

is: if it has a name, then it is an lvalue. Otherwise, it is an rvalue. 
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In the example above, the thing that is declared as an rvalue reference has a name, and 

therefore, it is an lvalue: 

void foo(X&& x) 

{ 

  X anotherX = x; // calls X(X const & rhs) 

} 

Here is an example of something that is declared as an rvalue reference and does not have a 

name, and is therefore an rvalue: 

X&& goo(); 

X x = goo(); // calls X(X&& rhs) because the thing on 

             // the right hand side has no name 

And here's the rationale behind the design: Allowing move semantics to be applied tacitly to 

something that has a name, as in 

  X anotherX = x; 

  // x is still in scope! 

would be dangerously confusing and error-prone because the thing from which we just moved, 

that is, the thing that we just pilfered, is still accessible on subsequent lines of code. But the 

whole point of move semantics was to apply it only where it "doesn't matter," in the sense that 

the thing from which we move dies and goes away right after the moving. Hence the rule, "If it 

has a name, then it's an lvalue." 

So then what about the other part, "If it does not have a name, then it's an rvalue?" Looking at 

the goo example above, it is technically possible, though not very likely, that the expression 

goo() in the second line of the example refers to something that is still accessible after it has 

been moved from. But recall from the previous section: sometimes that's what we want! We 

want to be able to force move semantics on lvalues at our discretion, and it is precisely the rule, 

"If it does not have a name, then it's an rvalue" that allows us to achieve that in a controlled 

manner. That's how the function std::move works. Although it is still too early to show you the 

exact implementation, we just got a step closer to understanding std::move. It passes its 

argument right through by reference, doing nothing with it at all, and its result type is rvalue 

reference. So the expression 

std::move(x) 

is declared as an rvalue reference and does not have a name. Hence, it is an rvalue. Thus, 

std::move "turns its argument into an rvalue even if it isn't," and it achieves that by "hiding the 

name." 

Here is an example that shows how important it is to be aware of the if-it-has-a-name rule. 

Suppose you have written a class Base, and you have implemented move semantics by 
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overloading Base's copy constructor and assignment operator: 

Base(Base const & rhs); // non-move semantics 

Base(Base&& rhs); // move semantics 

Now you write a class Derived that is derived from Base. In order to assure that move semantics 

is applied to the Base part of your Derived objects, you must overload Derived's copy 

constructor and assignment operator as well. Let's look at the copy constructor. The copy 

assignment operator is handled analogously. The version for lvalues is straightforward: 

Derived(Derived const & rhs)  

  : Base(rhs) 

{ 

  // Derived-specific stuff 

} 

The version for rvalues has a big fat subtlety. Here's what someone who is not aware of 

the if-it-has-a-name rule might have done: 

Derived(Derived&& rhs)  

  : Base(rhs) // wrong: rhs is an lvalue 

{ 

  // Derived-specific stuff 

} 

If we were to code it like that, the non-moving version of Base's copy constructor would be 

called, because rhs, having a name, is an lvalue. What we want to be called is Base's moving 

copy constructor, and the way to get that is to write 

Derived(Derived&& rhs)  

  : Base(std::move(rhs)) // good, calls Base(Base&& rhs) 

{ 

  // Derived-specific stuff 

} 

Move Semantics and Compiler Optimizations 

Consider the following function definition: 

X foo() 

{ 

  X x; 

  // perhaps do something to x 

  return x; 

} 

Now suppose that as before, X is a class for which we have overloaded the copy constructor 

and copy assignment operator to implement move semantics. If you take the function definition 

above at face value, you may be tempted to say, wait a minute, there is a value copy happening 

here from x to the location of foo's return value. Let me make sure we're using move semantics 

instead: 
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X foo() 

{ 

  X x; 

  // perhaps do something to x 

  return std::move(x); // making it worse! 

} 

Unfortunately, that would make things worse rather than better. Any modern compiler will apply

return value optimization to the original function definition. In other words, rather than 

constructing an X locally and then copying it out, the compiler would construct the X object 

directly at the location of foo's return value. Rather obviously, that's even better than move 

semantics. 

So as you can see, in order to really use rvalue references and move semantics in an optimal 

way, you need to fully understand and take into account today's compilers’ “special effects” such 

as return value optimization and copy elision. For a detailed discussion see Items 25 and 41 of 

Scott Meyers' book “Effective Modern C++”. It gets get pretty subtle, but hey, we chose C++ as 

our language of choice for a reason, right? We made our beds, so now let's lie in them. 

Perfect Forwarding: The Problem 

The other problem besides move semantics that rvalue references were designed to solve is 

the perfect forwarding problem. Consider the following simple factory function: 

template<typename T, typename Arg>  

shared_ptr<T> factory(Arg arg) 

{  

  return shared_ptr<T>(new T(arg)); 

}  

Obviously, the intent here is to forward the argument arg from the factory function to T's 

constructor. Ideally, as far as arg is concerned, everything should behave just as if the factory 

function weren't there and the constructor were called directly in the client code: perfect 

forwarding. The code above fails miserably at that: it introduces an extra call by value, which is 

particularly bad if the constructor takes its argument by reference. 

The most common solution, chosen e.g. by boost::bind, is to let the outer function take the 

argument by reference: 

template<typename T, typename Arg>  

shared_ptr<T> factory(Arg& arg) 

{  

  return shared_ptr<T>(new T(arg)); 

}  

That's better, but not perfect. The problem is that now, the factory function cannot be called on 
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rvalues: 

factory<X>(hoo()); // error if hoo returns by value 

factory<X>(41); // error 

This can be fixed by providing an overload which takes its argument by const reference: 

template<typename T, typename Arg>  

shared_ptr<T> factory(Arg const & arg) 

{  

  return shared_ptr<T>(new T(arg)); 

}  

There are two problems with this approach. Firstly, if factory had not one, but several 

arguments, you would have to provide overloads for all combinations of non-const and const 

reference for the various arguments. Thus, the solution scales extremely poorly to functions with 

several arguments. 

Secondly, this kind of forwarding is less than perfect because it blocks out move semantics: the 

argument of the constructor of T in the body of factory is an lvalue. Therefore, move semantics 

can never happen even if it would without the wrapping function. 

It turns out that rvalue references can be used to solve both these problems. They make it 

possible to achieve truly perfect forwarding without the use of overloads. In order to understand 

how, we need to look at two more rules for rvalue references. 

Perfect Forwarding: The Solution 

The first of the remaining two rules for rvalue references affects old-style lvalue references as 

well. Recall that in pre-11 C++, it was not allowed to take a reference to a reference: something 

like A& & would cause a compile error. C++11, by contrast, introduces the following reference 

collapsing rules1: 

 A& & becomes A& 

 A& && becomes A& 

 A&& & becomes A& 

 A&& && becomes A&& 

Secondly, there is a special template argument deduction rule for function templates that take 

an argument by rvalue reference to a template argument: 

template<typename T> 

void foo(T&&); 

Here, the following apply: 

1. When foo is called on an lvalue of type A, then T resolves to A& and hence, by the 

reference collapsing rules above, the argument type effectively becomes A&. 



 12

2. When foo is called on an rvalue of type A, then T resolves to A, and hence the argument 

type becomes A&&. 

Given these rules, we can now use rvalue references to solve the perfect forwarding problem as 

set forth in the previous section. Here's what the solution looks like: 

template<typename T, typename Arg>  

shared_ptr<T> factory(Arg&& arg) 

{  

  return shared_ptr<T>(new T(std::forward<Arg>(arg))); 

}  

where std::forward is defined as follows: 

template<class S> 

S&& forward(typename remove_reference<S>::type& a) noexcept 

{ 

  return static_cast<S&&>(a); 

}  

(Don't pay attention to the noexcept keyword for now. It lets the compiler know, for certain 

optimization purposes, that this function will never throw an exception. We'll come back to it in 

Section 9.) To see how the code above achieves perfect forwarding, we will discuss separately 

what happens when our factory function gets called on lvalues and rvalues. Let A and X be 

types. Suppose first that factory<A> is called on an lvalue of type X: 

X x; 

factory<A>(x); 

Then, by the special template deduction rule stated above, factory's template argument Arg 

resolves to X&. Therefore, the compiler will create the following instantiations of factory and 

std::forward: 

shared_ptr<A> factory(X& && arg) 

{  

  return shared_ptr<A>(new A(std::forward<X&>(arg))); 

}  

 

X& && forward(remove_reference<X&>::type& a) noexcept 

{ 

  return static_cast<X& &&>(a); 

}  

After evaluating the remove_reference and applying the reference collapsing rules, this 

becomes: 

shared_ptr<A> factory(X& arg) 

{  

  return shared_ptr<A>(new A(std::forward<X&>(arg))); 

}  

 

X& std::forward(X& a)  

{ 
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  return static_cast<X&>(a); 

}  

This is certainly perfect forwarding for lvalues: the argument arg of the factory function gets 

passed on to A's constructor through two levels of indirection, both by old-fashioned lvalue 

reference. 

Next, suppose that factory<A> is called on an rvalue of type X: 

X foo(); 

factory<A>(foo()); 

Then, again by the special template deduction rule stated above, factory's template argument 

Arg resolves to X. Therefore, the compiler will now create the following function template 

instantiations: 

shared_ptr<A> factory(X&& arg) 

{  

  return shared_ptr<A>(new A(std::forward<X>(arg))); 

}  

 

X&& forward(X& a) noexcept 

{ 

  return static_cast<X&&>(a); 

}  

This is indeed perfect forwarding for rvalues: the argument of the factory function gets passed 

on to A's constructor through two levels of indirection, both by reference. Moreover, A's 

constructor sees as its argument an expression that is declared as an rvalue reference and 

does not have a name. By the no-name rule, such a thing is an rvalue. Therefore, A's 

constructor gets called on an rvalue. This means that the forwarding preserves any move 

semantics that would have taken place if the factory wrapper were not present. 

It is perhaps worth noting that the preservation of move semantics is in fact the only purpose of

std::forward in this context. Without the use of std::forward, everything would work quite 

nicely, except that A's constructor would always see as its argument something that has a 

name, and such a thing is an lvalue. Another way of putting this is to say that std::forward's 

purpose is to forward the information whether at the call site, the wrapper saw an lvalue or an 

rvalue. 

If you want to dig a little deeper for extra credit, ask yourself this question: why is the 

remove_reference in the definition of std::forward needed? The answer is, it is not really 

needed at all. If you use just S& instead of remove_reference<S>::type& in the definition of 

std::forward, you can repeat the case distinction above to convince yourself that perfect 

forwarding still works just fine. However, it works fine only as long as we explicitly specify Arg as 

the template argument of std::forward. The purpose of the remove_reference in the definition 

of std::forward is to force us to do so. 
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Rejoice. We're almost done. It only remains to look at the implementation of std::move. 

Remember, the purpose of std::move is to pass its argument right through by reference and 

make it bind like an rvalue. Here's the implementation: 

template<class T>  

typename remove_reference<T>::type&& 

std::move(T&& a) noexcept 

{ 

  typedef typename remove_reference<T>::type&& RvalRef; 

  return static_cast<RvalRef>(a); 

}  

Suppose that we call std::move on an lvalue of type X: 

X x; 

std::move(x); 

By the new special template deduction rule, the template argument T will resolve to X&. 

Therefore, what the compiler ends up instantiating is 

typename remove_reference<X&>::type&& 

std::move(X& && a) noexcept 

{ 

  typedef typename remove_reference<X&>::type&& RvalRef; 

  return static_cast<RvalRef>(a); 

}  

After evaluating the remove_reference and applying the new reference collapsing rules, this 

becomes 

X&& std::move(X& a) noexcept 

{ 

  return static_cast<X&&>(a); 

}  

That does the job: our lvalue x will bind to the lvalue reference that is the argument type, and the 

function passes it right through, turning it into an unnamed rvalue reference. 

I leave it to you to convince yourself that std::move actually works fine when called on an 

rvalue. But then you may want to skip that: why would anybody want to call std::move on an 

rvalue, when its only purpose is to turn things into rvalues? Also, you have probably noticed by 

now that instead of 

std::move(x); 

you could just as well write 

static_cast<X&&>(x); 
However, std::move is strongly preferred because it is more expressive. 

1The reference collapsing rules stated here are correct, but not entirely complete. I have omitted a small detail 

that is not relevant in our context, namely, the disappearance of const and volatile qualifiers during reference 

collapsing. Scott Meyer's "Effective Modern C++" modification history and errata page has the full 
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explanation. 

Rvalue References And Exceptions 

Normally, when you develop software in C++, it is your choice whether you want to pay attention 

to exception safety, or to use exceptions at all in your code. Rvalue references are a bit different 

in this regard. When you overload the copy constructor and the copy assignment operator of a 

class for the sake of move semantics, it is very much recommended that you do the following: 

1. Strive to write your overloads in such a way that they cannot throw exceptions. That is 

often trivial, because move semantics typically do no more than exchange pointers and 

resource handles between two objects. 

2. If you succeeded in not throwing exceptions from your overloads, then make sure to 

advertise that fact using the new noexcept keyword. 

If you don't do both of these things, then there is at least one very common situation where your 

move semantics will not be applied despite the fact that you would very much expect it: when an

std::vector gets resized, you certainly want move semantics to happen when the existing 

elements of your vector are being relocated to the new memory block. But that won't happen 

unless both of 1. and 2. above are satisfied. 

You don't really have to understand the reasons for this behavior. Observing the 

recommendations 1. and 2. above is easy enough, and it's all you really need to know. However, 

having an understanding that runs a little deeper than absolutely necessary has never hurt 

anybody. I recommend reading Item 14 (and all the other items, for that matter) of Scott Meyers' 

book “Effective Modern C++.” 

The Case of the Implicit Move 

At one point during the (often complex and controversial) discussion of rvalue references, the 

Standard Committee decided that move constructors and move assignment operators, that is, 

rvalue reference overloads for copy constructors and copy assignment operators, should be 

generated by the compiler when not provided by the user. This seems like a natural and 

plausible thing to request, considering that the compiler has always done the exact same thing 

for ordinary copy constructors and copy assignment operators. In August of 2010, Scott Meyers

posted a message on comp.lang.c++ in which he explained how compiler-generated move 

constructors can break existing code in a rather serious way. 

The committee then decided that this was indeed cause for alarm, and it restricted the 

automatic generation of move constructors and move assignment operators in such a way that 
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it is much less likely, though not impossible, for existing code to break. The final state of affairs 

is described in detail in Item 17 of Scott Meyers' book “Effective Modern C++.” 

The issue of implicitly moving remained controversial all the way up to the finalization of the 

Standard (see e.g. this paper by Dave Abrahams). In an ironic twist of fate, the only reason why 

the committee considered implicit move in the first place was as an attempt to resolve the issue 

with rvalue references and exceptions as mentioned in Section 9. This problem was 

subsequently solved in a more satisfactory way via the new noexcept keyword. Had the 

noexcept solution been found just a few months earlier, implicit move may have never seen the 

light of day. Oh well, so it goes. 

Ok, that's it, the whole story on rvalue references. As you can see, the benefits are 

considerable. The details are gory. As a C++ professional, you will have to understand these 

details. Otherwise, you have given up on fully understanding the central tool of your trade. You 

can take solace, though, in the thought that in your day-to-day programming, you will only have 

to remember three things about rvalue references: 

1. By overloading a function like this: 

2. void foo(X& x); // lvalue reference overload 

3. void foo(X&& x); // rvalue reference overload 

you can branch at compile time on the condition "is foo being called on an lvalue or an 

rvalue?" The primary (and for all practical purposes, the only) application of that is to 

overload the copy constructor and copy assignment operator of a class for the sake of 

implementing move semantics. If and when you do that, make sure to pay attention to 

exception handling, and use the new noexcept keyword as much as you can.  

  

4. std::move turns its argument into an rvalue. 

  

5. std::forward allows you to achieve perfect forwarding if you use it exactly as shown in 

the factory function example in Section 8. 

Enjoy! 
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I very much recommend reading the article by Howard E. Hinnant, Bjarne Stroustrup, and 

Bronek Kozicki on the subject of C++ rvalue references at the C++ Source. This article has 

more and better examples than mine does, and it has an extensive list of links to proposals and 

technical papers which you will find interesting. As a tradeoff, the article does not go into all the 

details the way I do; for example, it does not explicitly state the new reference collapsing rules 

or the special template argument deduction rule for rvalue references. 

Finally, your primary source of reference for all things C++11 and C++14 should be Scott 

Meyers' book “Effective Modern C++.” While my presentation in this article gave you sort of a 

sharp focus on rvalue references, Scott Meyers' book paints the entire picture of modern C++, 

whithout ever cutting corners on details. 

 


