
08-1

What is a “Better” Program?

C++ Object Oriented Programming
Pei-yih Ting
NTOU CS

08-2

軟體的特性
軟體之所謂軟…因為沒有 “硬性” 不可變、
不可挑戰的規則

08-3

軟體的特性
軟體之所謂軟…因為沒有 “硬性” 不可變、
不可挑戰的規則

好處: 彈性很大, 山不轉路轉, 沒有標準答案,
正確運作就好…

08-4

軟體的特性
軟體之所謂軟…因為沒有 “硬性” 不可變、
不可挑戰的規則

好處: 彈性很大, 山不轉路轉, 沒有標準答案,
正確運作就好…

壞處: 很多小問題合在一起不斷放大, 到處藏
污納垢, 沒有標準答案, 不知道到底對了沒有

08-5

軟體的特性
軟體之所謂軟…因為沒有 “硬性” 不可變、
不可挑戰的規則

好處: 彈性很大, 山不轉路轉, 沒有標準答案,
正確運作就好…

壞處: 很多小問題合在一起不斷放大, 到處藏
污納垢, 沒有標準答案, 不知道到底對了沒有

解決方法

08-6

軟體的特性
軟體之所謂軟…因為沒有 “硬性” 不可變、
不可挑戰的規則

好處: 彈性很大, 山不轉路轉, 沒有標準答案,
正確運作就好…

壞處: 很多小問題合在一起不斷放大, 到處藏
污納垢, 沒有標準答案, 不知道到底對了沒有

解決方法

Coding styles

08-7

軟體的特性
軟體之所謂軟…因為沒有 “硬性” 不可變、
不可挑戰的規則

好處: 彈性很大, 山不轉路轉, 沒有標準答案,
正確運作就好…

壞處: 很多小問題合在一起不斷放大, 到處藏
污納垢, 沒有標準答案, 不知道到底對了沒有

解決方法

Coding styles
 test-driven

08-8

軟體的特性
軟體之所謂軟…因為沒有 “硬性” 不可變、
不可挑戰的規則

好處: 彈性很大, 山不轉路轉, 沒有標準答案,
正確運作就好…

壞處: 很多小問題合在一起不斷放大, 到處藏
污納垢, 沒有標準答案, 不知道到底對了沒有

解決方法

Coding styles
 test-driven
元件化

08-9

軟體的特性
軟體之所謂軟…因為沒有 “硬性” 不可變、
不可挑戰的規則

好處: 彈性很大, 山不轉路轉, 沒有標準答案,
正確運作就好…

壞處: 很多小問題合在一起不斷放大, 到處藏
污納垢, 沒有標準答案, 不知道到底對了沒有

解決方法

Coding styles
 test-driven
元件化

模型化 (資料結構, 演算法, 物件化, 設計樣版)

08-10

Source Code is the Primary Document
 Jack Reeves, C++ Journal, 1992, “What is Software Design?”

08-11

Source Code is the Primary Document
 Jack Reeves, C++ Journal, 1992, “What is Software Design?”

“After reviewing the software development life cycle as
I understood it, I concluded that the on
documentation that actually seems to satisfy the criteria
of an engineering design is the source co

”.sgnitsil ed

08-12

Source Code is the Primary Document
 Jack Reeves, C++ Journal, 1992, “What is Software Design?”

“After reviewing the software development life cycle as
I understood it, I concluded that the on
documentation that actually seems to satisfy the criteria
of an engineering design is the source co

 The design of a software project is an abstract concept:

08-13

Source Code is the Primary Document
 Jack Reeves, C++ Journal, 1992, “What is Software Design?”

“After reviewing the software development life cycle as
I understood it, I concluded that the on
documentation that actually seems to satisfy the criteria
of an engineering design is the source co

 The design of a software project is an abstract concept:
 It has to do with the overall shape and structure of the program

as well as the detailed shape and structure of each module, class,
and method.

08-14

Source Code is the Primary Document
 Jack Reeves, C++ Journal, 1992, “What is Software Design?”

“After reviewing the software development life cycle as
I understood it, I concluded that the on
documentation that actually seems to satisfy the criteria
of an engineering design is the source co

 The design of a software project is an abstract concept:
 It has to do with the overall shape and structure of the program

as well as the detailed shape and structure of each module, class,
and method.

 It can be represented by many different diagrams and media, but
its final embodiment is the source code.

08-15

Source Code is the Primary Document
 Jack Reeves, C++ Journal, 1992, “What is Software Design?”

“After reviewing the software development life cycle as
I understood it, I concluded that the on
documentation that actually seems to satisfy the criteria
of an engineering design is the source co

 The design of a software project is an abstract concept:
 It has to do with the overall shape and structure of the program

as well as the detailed shape and structure of each module, class,
and method.

 It can be represented by many different diagrams and media, but
its final embodiment is the source code.

 Source code is the design

08-16

Goals
 透過一些編碼的潛規則，我們可以寫出一個 “好” 一點
的 C 程式

08-17

Goals
 透過一些編碼的潛規則，我們可以寫出一個 “好” 一點
的 C 程式

 除了正確性之外，程式短一點?? 執行快一點???

08-18

Goals
 透過一些編碼的潛規則，我們可以寫出一個 “好” 一點
的 C 程式

 除了正確性之外，程式短一點?? 執行快一點???

 “好” ? (in terms of test, debug, review, and extension)

08-19

Goals
 透過一些編碼的潛規則，我們可以寫出一個 “好” 一點
的 C 程式

 除了正確性之外，程式短一點?? 執行快一點???

 “好” ? (in terms of test, debug, review, and extension)
1. 容易了解，沒有邏輯上不緊密結合的資料變數或是敘述

08-20

Goals
 透過一些編碼的潛規則，我們可以寫出一個 “好” 一點
的 C 程式

 除了正確性之外，程式短一點?? 執行快一點???

 “好” ? (in terms of test, debug, review, and extension)
1. 容易了解，沒有邏輯上不緊密結合的資料變數或是敘述

2. Self-explaining … 我的程式碼會說話

08-21

Goals
 透過一些編碼的潛規則，我們可以寫出一個 “好” 一點
的 C 程式

 除了正確性之外，程式短一點?? 執行快一點???

 “好” ? (in terms of test, debug, review, and extension)
1. 容易了解，沒有邏輯上不緊密結合的資料變數或是敘述

2. Self-explaining … 我的程式碼會說話

3. 和觀念上的運作模型一致

08-22

Goals
 透過一些編碼的潛規則，我們可以寫出一個 “好” 一點
的 C 程式

 除了正確性之外，程式短一點?? 執行快一點???

 “好” ? (in terms of test, debug, review, and extension)
1. 容易了解，沒有邏輯上不緊密結合的資料變數或是敘述

2. Self-explaining … 我的程式碼會說話

3. 和觀念上的運作模型一致

4. 容易修改，不容易改錯

08-23

Goals
 透過一些編碼的潛規則，我們可以寫出一個 “好” 一點
的 C 程式

 除了正確性之外，程式短一點?? 執行快一點???

 “好” ? (in terms of test, debug, review, and extension)
1. 容易了解，沒有邏輯上不緊密結合的資料變數或是敘述

2. Self-explaining … 我的程式碼會說話

3. 和觀念上的運作模型一致

4. 容易修改，不容易改錯

5. 沒有容易錯誤的語法

08-24

Goals
 透過一些編碼的潛規則，我們可以寫出一個 “好” 一點
的 C 程式

 除了正確性之外，程式短一點?? 執行快一點???

 “好” ? (in terms of test, debug, review, and extension)
1. 容易了解，沒有邏輯上不緊密結合的資料變數或是敘述

2. Self-explaining … 我的程式碼會說話

3. 和觀念上的運作模型一致

4. 容易修改，不容易改錯

5. 沒有容易錯誤的語法

正確性無關：接下來是一個很簡單的例子，共有七個
版本，執行結果都是正確的

08-25

Version 1
01 #include <stdio.h>
02
03 void main()
04 {
05 int d[] = {12, 3, 37, 8, 24, 15, 5, 33};
06 int n = 8;
07 int *d1, *d2;
08 int *p;
09 int *e;
10
11 d1 = d;
12 d2 = d+n;
13 while (d1<d2)
14 {
15 p = d1;
16 e = d1 + 1;

17 while (e<d2)
18 {
19 if (*e<*p) p = e;
20 e++;
21 }
22 n = *p;
23 *p = *d1;
24 *d1 = n;
25 d1++;
26 }
27 printf("Sorted data:\n");
28 d1 = d;
29 while (d1<d2)
30 printf(" %d", *d1++);
31 printf("\n");
32 }

08-26

Execution Results

Sorted data:
3 5 8 12 15 24 33 37

由小至大按順序排列

08-27

What is this program doing?
Initial view

08-28

What is this program doing?
Initial view
 Input array initialized with unordered integers

08-29

What is this program doing?
Initial view
 Input array initialized with unordered integers
 Two layers of while loops

08-30

What is this program doing?
Initial view
 Input array initialized with unordered integers
 Two layers of while loops
 Some pointers to the elements of the array

08-31

What is this program doing?
Initial view
 Input array initialized with unordered integers
 Two layers of while loops
 Some pointers to the elements of the array
 Another while loop for output the results

08-32

What is this program doing?
Initial view
 Input array initialized with unordered integers
 Two layers of while loops
 Some pointers to the elements of the array
 Another while loop for output the results

Don’t like it!!??

08-33

What is this program doing?
Initial view
 Input array initialized with unordered integers
 Two layers of while loops
 Some pointers to the elements of the array
 Another while loop for output the results

Don’t like it!!??
 Pointers

08-34

What is this program doing?
Initial view
 Input array initialized with unordered integers
 Two layers of while loops
 Some pointers to the elements of the array
 Another while loop for output the results

Don’t like it!!??
 Pointers
 Generic while loops

08-35

What is this program doing?
Initial view
 Input array initialized with unordered integers
 Two layers of while loops
 Some pointers to the elements of the array
 Another while loop for output the results

Don’t like it!!??
 Pointers
 Generic while loops
 Mysterious variable names (identifier means nothing)

08-36

What is this program doing?
Initial view
 Input array initialized with unordered integers
 Two layers of while loops
 Some pointers to the elements of the array
 Another while loop for output the results

Don’t like it!!??
 Pointers
 Generic while loops
 Mysterious variable names (identifier means nothing)
 Deep control structures

08-37

What is this program doing?
Initial view
 Input array initialized with unordered integers
 Two layers of while loops
 Some pointers to the elements of the array
 Another while loop for output the results

Don’t like it!!??
 Pointers
 Generic while loops
 Mysterious variable names (identifier means nothing)
 Deep control structures
 Looks like a snippet of low level assembly instructions

08-38

Remove Unnecessary Pointers
 Pointers are sophisticated and sometimes inevitable, but

not always.

08-39

Remove Unnecessary Pointers
 Pointers are sophisticated and sometimes inevitable, but

not always.
 In the case of accessing memory blocks, pointers are

error prone, use array whenever possible.

08-40

Remove Unnecessary Pointers
 Pointers are sophisticated and sometimes inevitable, but

not always.
 In the case of accessing memory blocks, pointers are

error prone, use array whenever possible.
 Array syntax has much better semantic meaning than the

generic pointer dereferencing and arithmetics.

08-41

Remove Unnecessary Pointers
 Pointers are sophisticated and sometimes inevitable, but

not always.
 In the case of accessing memory blocks, pointers are

error prone, use array whenever possible.
 Array syntax has much better semantic meaning than the

generic pointer dereferencing and arithmetics.
int array[100];
int *ptr=array;
int i, sum = 0;
…
for (i=0; i<100; i++)

sum += *ptr++;

08-42

Remove Unnecessary Pointers
 Pointers are sophisticated and sometimes inevitable, but

not always.
 In the case of accessing memory blocks, pointers are

error prone, use array whenever possible.
 Array syntax has much better semantic meaning than the

generic pointer dereferencing and arithmetics.
int array[100];
int i;
int sum = 0;
…
for (i=0; i<100; i++)

sum += array[i];

int array[100];
int *ptr=array;
int i, sum = 0;
…
for (i=0; i<100; i++)

sum += *ptr++;

08-43

Version 2
01 #include <stdio.h>
02
03 void main()
04 {
05 int d[] = {12, 3, 37, 8, 24, 15, 5, 33};
06 int n = 8;
07 int i, j, k;
08
09 i = 0;
10 while (i<n)
11 {
12 k = i;
13 j = i + 1;
14 while (j<n)
15 {
16 if (d[j]<d[k]) k = j;

17 j = j + 1;
18 }
19 j = d[k];
20 d[k] = d[i];
21 d[i] = j;
22 i = i + 1;
23 }
24 printf("Sorted data:\n");
25 i = 0;
26 while (i<n)
27 {
28 printf(" %d", d[i]);
29 i = i + 1;
30 }
31 printf("\n");
32 }

08-44

Flowchart of the Program

j<n
i<n

i=0
i=i+1

j=j+1

j=i+1

k=i

d[j]<d[k]

k=j

no

yes

yes

no

noyes

stop

08-45

Flowchart of the Program

j<n
i<n

i=0
i=i+1

j=j+1

j=i+1

k=i

d[j]<d[k]

k=j

no

yes

yes

no

noyes

stop

Is this graph tell you more
than the code does?

08-46

Meaningful Identifiers
 A program is composed with a language. Just like any

language in your daily life, language itself should tell
good stories when it is used properly.

08-47

Meaningful Identifiers
 A program is composed with a language. Just like any

language in your daily life, language itself should tell
good stories when it is used properly.

 Why does the version 1 or version 2 program look like
gibberish to well trained programmers?

08-48

Meaningful Identifiers
 A program is composed with a language. Just like any

language in your daily life, language itself should tell
good stories when it is used properly.

 Why does the version 1 or version 2 program look like
gibberish to well trained programmers?

 Are the identifiers used meaningful??
e.g.

Hw ds Jhn lk th stk?
or

How does John like the steak?

08-49

Version 3
01 #include <stdio.h>
02
03 void main()
04 {
05 int data[] = {12, 3, 37, 8, 24, 15, 5, 33};
06 int ndata = sizeof(data) / sizeof(int);
07 int i, j;
08 int min;
09 int swapTmp;
10
11 i = 0;
12 while (i<ndata)
13 {
14 min = i;
15 j = i + 1;
16 while (j<ndata)

17 {
18 if (data[j]<data[min]) min = j;
19 j = j + 1;
20 }
21 swapTmp = data[min];
22 data[min] = data[i];
23 data[i] = swapTmp;
24 i = i + 1;
25 }
26
27 printf("Sorted data:\n");
28 i = 0;
29 while (i<ndata)
30 {
31 printf(" %d", data[i]);
32 i = i + 1;
33 }
34 printf("\n");
35 }

08-50

Version 3
01 #include <stdio.h>
02
03 void main()
04 {
05 int data[] = {12, 3, 37, 8, 24, 15, 5, 33};
06 int ndata = sizeof(data) / sizeof(int);
07 int i, j;
08 int min;
09 int swapTmp;
10
11 i = 0;
12 while (i<ndata)
13 {
14 min = i;
15 j = i + 1;
16 while (j<ndata)

17 {
18 if (data[j]<data[min]) min = j;
19 j = j + 1;
20 }
21 swapTmp = data[min];
22 data[min] = data[i];
23 data[i] = swapTmp;
24 i = i + 1;
25 }
26
27 printf("Sorted data:\n");
28 i = 0;
29 while (i<ndata)
30 {
31 printf(" %d", data[i]);
32 i = i + 1;
33 }
34 printf("\n");
35 }

avoid magic constants

08-51

Advanced View of the Codes
Initial view
 Input array initialized with unordered integers
 Two layers of while loops
 Some pointers to the elements of the array
 Another while loop for output the results

08-52

Advanced View of the Codes
Initial view
 Input array initialized with unordered integers
 Two layers of while loops
 Some pointers to the elements of the array
 Another while loop for output the results

Is it changing?

08-53

Advanced View of the Codes
Initial view
 Input array initialized with unordered integers
 Two layers of while loops
 Some pointers to the elements of the array
 Another while loop for output the results

Is it changing?
 Input array initialized with unordered integers

 Another while loop for output the results

08-54

Advanced View of the Codes
Initial view
 Input array initialized with unordered integers
 Two layers of while loops
 Some pointers to the elements of the array
 Another while loop for output the results

Is it changing?
 Input array initialized with unordered integers
 Two layers of while loops, the outer one prepares ndata sub-arrays,

the inner one goes through each sub-array to find something
minimal.

 Another while loop for output the results

08-55

Advanced View of the Codes
Initial view
 Input array initialized with unordered integers
 Two layers of while loops
 Some pointers to the elements of the array
 Another while loop for output the results

Is it changing?
 Input array initialized with unordered integers
 Two layers of while loops, the outer one prepares ndata sub-arrays,

the inner one goes through each sub-array to find something
minimal.

 A snippet of memory swapping code
 Another while loop for output the results

08-56

More Meaningful Language Construct
 While loop is the most generic repetition construct in C language

08-57

More Meaningful Language Construct
 While loop is the most generic repetition construct in C language

Forget about goto please!!!

08-58

More Meaningful Language Construct
 While loop is the most generic repetition construct in C language

initialize the loop condition
while (condition)
{

…
}

08-59

More Meaningful Language Construct
 While loop is the most generic repetition construct in C language

initialize the loop condition
while (condition)
{

…
}

the condition is likely to change inside the loop

08-60

More Meaningful Language Construct
 While loop is the most generic repetition construct in C language

 When you see this construct in a program, you expect some sort of job
repetition, could be an easy one or a complex one.

initialize the loop condition
while (condition)
{

…
}

the condition is likely to change inside the loop

08-61

More Meaningful Language Construct
 While loop is the most generic repetition construct in C language

 When you see this construct in a program, you expect some sort of job
repetition, could be an easy one or a complex one.

 For loop is a more semantically specific repetition construct in C
language --- repeat for a predetermined number of times

initialize the loop condition
while (condition)
{

…
}

the condition is likely to change inside the loop

08-62

More Meaningful Language Construct
 While loop is the most generic repetition construct in C language

 When you see this construct in a program, you expect some sort of job
repetition, could be an easy one or a complex one.

 For loop is a more semantically specific repetition construct in C
language --- repeat for a predetermined number of times

initialize the loop condition
while (condition)
{

…
}

the condition is likely to change inside the loop

for (i=0; i<count; i++)
{

…
}

08-63

Version 4
01 #include <stdio.h>
02
03 void main()
04 {
05 int data[] = {12, 3, 37, 8, 24, 15, 5, 33};
06 int ndata = sizeof(data) / sizeof(int);
07 int i, j;
08 int min;
09 int swapTmp;
10
11 for (i=0; i<ndata; i++)
12 {
13 min = i;
14 for (j=i+1; j<ndata; j++)
15 {
16 if (data[j]<data[min]) min = j;
17 }

18 swapTmp = data[min];
19 data[min] = data[i];
20 data[i] = swapTmp;
21 }
22
23 printf("Sorted data:\n");
24 for (i=0; i<ndata; i++)
25 printf(" %d", data[i]);
26 printf("\n");
27 }

08-64

Code That Further Illustrates Itself
 Function is a powerful construct to abstract ideas, to

hide distracting details, not just a utility for saving your
typing time and removing redundancy.

--- Version 5

08-65

Code That Further Illustrates Itself
 Function is a powerful construct to abstract ideas, to

hide distracting details, not just a utility for saving your
typing time and removing redundancy.

--- Version 5

 A construct like “loop inside a loop” is somehow beyond
the concrete control of common human mind. A single
layer of “loop” is better for most people to visualize in
mind.

--- Version 6

08-66

Version 5
01 #include <stdio.h>
02
03 void swap(int *, int *);
04 void printArrayContents(int [], int);
05
06 void main()
07 {
08 int data[] = {12, 3, 37, 8, 24, 15, 5, 33};
09 int ndata = sizeof(data) / sizeof(int);
10 int i, j;
11 int min;
12
13 for (i=0; i<ndata; i++)
14 {
15 min = i;

16 for (j=i+1; j<ndata; j++)
17 {
18 if (data[j]<data[min]) min = j;
19 }
20 swap(&data[i], &data[min]);
21 }
22
23 printArrayContents(data, ndata);
24 }
25
26 void swap(int *x, int *y)
27 {
28 int tmp;
29 tmp = *x;
30 *x = *y;
31 *y = tmp;
32 }

08-67

Version 5 (cont’d)
33
34 void printArrayContents(int data[], int ndata)
35 {
36 int i;
37 printf("Sorted data:\n");
38 for (i=0; i<ndata; i++)
39 printf(" %d", data[i]);
40 printf("\n");
41 }

08-68

Version 6
01 #include <stdio.h>
02
03 void selectionSort(int[], int);
04 void findMinimumOfAnArray(int[], int);
05 void swap(int*, int*);
06 void printArrayContents(int[], int);
07
08 void main()
09 {
10 int data[] = {12, 3, 37, 8, 24, 15, 5, 33};
11 int ndata = sizeof(data) / sizeof(int);
12
13 selectionSort(data, ndata);
14 printArrayContents(data, ndata);
15 }
16

08-69

Version 6 (cont’d)
17 void selectionSort(int data[], int ndata)
18 {
19 int i;
20 for (i=0; i<ndata; i++)
21 putMinimalElementInPlace(&data[i], ndata-i);
22 }
23
24 void putMinimalElementInPlace(int data[], int ndata)
25 {
26 int i, min;
27
28 min = 0;
29 for (i=1; i<ndata; i++)
30 {
31 if (data[i]<data[min]) min = i;
32 }
33 swap(&data[0], &data[min]);
34 }
35

36 void swap(int *x, int *y)
37 {
38 int tmp;
39 tmp = *x;
40 *x = *y;
41 *y = tmp;
42 }
43

44 void printArrayContents(int data[], int ndata)
45 {
46 int i;
47 printf("Sorted data:\n");
48 for (i=0; i<ndata; i++)
49 printf(" %d", data[i]);
50 printf("\n");
51 }

suitable level of details

08-70

Codes with a Conceptual Model
 Flowchart is no longer needed but definitely requires a

conceptual model for the codes to work with.

08-71

Codes with a Conceptual Model
 Flowchart is no longer needed but definitely requires a

conceptual model for the codes to work with.

…

08-72

Codes with a Conceptual Model
 Flowchart is no longer needed but definitely requires a

conceptual model for the codes to work with.

unsorted
data

…

gradually
sorted
data

08-73

Codes with a Conceptual Model
 Flowchart is no longer needed but definitely requires a

conceptual model for the codes to work with.

unsorted
data

…

In each iteration,
just pick the minimum
of the sub-array and
move it to the top

gradually
sorted
data

08-74

Who is responsible of this task?

08-75

Who is responsible of this task?
 The programmer or the program reader?

08-76

Who is responsible of this task?
 The programmer or the program reader?
 When we read the version 1 of this program, there were

little clues in the codes that told us directly what the
program is doing.

08-77

Who is responsible of this task?
 The programmer or the program reader?
 When we read the version 1 of this program, there were

little clues in the codes that told us directly what the
program is doing.

 Although we figure out that this is a piece of code that
implements the selection sort algorithm at last, it should
not take the original programmer too much effort to
produce a code snippet like version 6 and its
corresponding conceptual model which tell directly the
story of what the program is doing.

08-78

Who is responsible of this task?
 The programmer or the program reader?
 When we read the version 1 of this program, there were

little clues in the codes that told us directly what the
program is doing.

 Although we figure out that this is a piece of code that
implements the selection sort algorithm at last, it should
not take the original programmer too much effort to
produce a code snippet like version 6 and its
corresponding conceptual model which tell directly the
story of what the program is doing.

 A piece of code is to implement some engineering design,
simplicity is the best engineering principle. Try your best
to think and express ideas in an intuitive way.

08-79

Recursive Version
 Recursive version is often the most expressive form of the

underlying algorithm.

08-80

Recursive Version
 Recursive version is often the most expressive form of the

underlying algorithm.

void selectionSort(int data[], int ndata)
{

putMinimalElementInPlace(data, ndata);
if (ndata>2)

selectionSort(&data[1], ndata-1);
}

08-81

Efficiency Issues
 Using expressive name for all identifiers makes the

program much lengthier, easier to have typos, slow in
composing the program!!! Really??

08-82

Efficiency Issues
 Using expressive name for all identifiers makes the

program much lengthier, easier to have typos, slow in
composing the program!!! Really??
 Harddisk is cheap. Not necessary to think of space.

08-83

Efficiency Issues
 Using expressive name for all identifiers makes the

program much lengthier, easier to have typos, slow in
composing the program!!! Really??
 Harddisk is cheap. Not necessary to think of space.
 It is easier for compiler to detect typo than using x, y, z.

08-84

Efficiency Issues
 Using expressive name for all identifiers makes the

program much lengthier, easier to have typos, slow in
composing the program!!! Really??
 Harddisk is cheap. Not necessary to think of space.
 It is easier for compiler to detect typo than using x, y, z.
 Typing should not be the bottleneck.

08-85

Efficiency Issues
 Using expressive name for all identifiers makes the

program much lengthier, easier to have typos, slow in
composing the program!!! Really??
 Harddisk is cheap. Not necessary to think of space.
 It is easier for compiler to detect typo than using x, y, z.
 Typing should not be the bottleneck.
 Expressive programs are easier to compose, maintain, and extend.

08-86

Efficiency Issues
 Using expressive name for all identifiers makes the

program much lengthier, easier to have typos, slow in
composing the program!!! Really??
 Harddisk is cheap. Not necessary to think of space.
 It is easier for compiler to detect typo than using x, y, z.
 Typing should not be the bottleneck.
 Expressive programs are easier to compose, maintain, and extend.

 Excessive function calls take CPU time to transfer
arguments and to branch the control.

08-87

Efficiency Issues
 Using expressive name for all identifiers makes the

program much lengthier, easier to have typos, slow in
composing the program!!! Really??
 Harddisk is cheap. Not necessary to think of space.
 It is easier for compiler to detect typo than using x, y, z.
 Typing should not be the bottleneck.
 Expressive programs are easier to compose, maintain, and extend.

 Excessive function calls take CPU time to transfer
arguments and to branch the control.
 Let the compiler worry about it --- use inline function.

08-88

Efficiency Issues
 Using expressive name for all identifiers makes the

program much lengthier, easier to have typos, slow in
composing the program!!! Really??
 Harddisk is cheap. Not necessary to think of space.
 It is easier for compiler to detect typo than using x, y, z.
 Typing should not be the bottleneck.
 Expressive programs are easier to compose, maintain, and extend.

 Excessive function calls take CPU time to transfer
arguments and to branch the control.
 Let the compiler worry about it --- use inline function.

 Using dedicated variables for independent tasks looks like
abusing memories.

08-89

Efficiency Issues
 Using expressive name for all identifiers makes the

program much lengthier, easier to have typos, slow in
composing the program!!! Really??
 Harddisk is cheap. Not necessary to think of space.
 It is easier for compiler to detect typo than using x, y, z.
 Typing should not be the bottleneck.
 Expressive programs are easier to compose, maintain, and extend.

 Excessive function calls take CPU time to transfer
arguments and to branch the control.
 Let the compiler worry about it --- use inline function.

 Using dedicated variables for independent tasks looks like
abusing memories.
 Let the compiler worry about it.

08-90

Efficiency Issues
 Using expressive name for all identifiers makes the

program much lengthier, easier to have typos, slow in
composing the program!!! Really??
 Harddisk is cheap. Not necessary to think of space.
 It is easier for compiler to detect typo than using x, y, z.
 Typing should not be the bottleneck.
 Expressive programs are easier to compose, maintain, and extend.

 Excessive function calls take CPU time to transfer
arguments and to branch the control.
 Let the compiler worry about it --- use inline function.

 Using dedicated variables for independent tasks looks like
abusing memories.
 Let the compiler worry about it.

08-91

Assignments
 Bubble Sort
 Quick Sort
 Minimum Spanning Tree
 Tree Traversal
 …

