
08-1

What is a “Better” Program?

C++ Object Oriented Programming
Pei-yih Ting
NTOU CS



08-2

軟體的特性
軟體之所謂軟…因為沒有 “硬性” 不可變、
不可挑戰的規則

















08-3

軟體的特性
軟體之所謂軟…因為沒有 “硬性” 不可變、
不可挑戰的規則

好處: 彈性很大, 山不轉路轉, 沒有標準答案, 
正確運作就好…















08-4

軟體的特性
軟體之所謂軟…因為沒有 “硬性” 不可變、
不可挑戰的規則

好處: 彈性很大, 山不轉路轉, 沒有標準答案, 
正確運作就好…

壞處: 很多小問題合在一起不斷放大, 到處藏
污納垢, 沒有標準答案, 不知道到底對了沒有













08-5

軟體的特性
軟體之所謂軟…因為沒有 “硬性” 不可變、
不可挑戰的規則

好處: 彈性很大, 山不轉路轉, 沒有標準答案, 
正確運作就好…

壞處: 很多小問題合在一起不斷放大, 到處藏
污納垢, 沒有標準答案, 不知道到底對了沒有

解決方法











08-6

軟體的特性
軟體之所謂軟…因為沒有 “硬性” 不可變、
不可挑戰的規則

好處: 彈性很大, 山不轉路轉, 沒有標準答案, 
正確運作就好…

壞處: 很多小問題合在一起不斷放大, 到處藏
污納垢, 沒有標準答案, 不知道到底對了沒有

解決方法

Coding styles








08-7

軟體的特性
軟體之所謂軟…因為沒有 “硬性” 不可變、
不可挑戰的規則

好處: 彈性很大, 山不轉路轉, 沒有標準答案, 
正確運作就好…

壞處: 很多小問題合在一起不斷放大, 到處藏
污納垢, 沒有標準答案, 不知道到底對了沒有

解決方法

Coding styles
 test-driven






08-8

軟體的特性
軟體之所謂軟…因為沒有 “硬性” 不可變、
不可挑戰的規則

好處: 彈性很大, 山不轉路轉, 沒有標準答案, 
正確運作就好…

壞處: 很多小問題合在一起不斷放大, 到處藏
污納垢, 沒有標準答案, 不知道到底對了沒有

解決方法

Coding styles
 test-driven
元件化





08-9

軟體的特性
軟體之所謂軟…因為沒有 “硬性” 不可變、
不可挑戰的規則

好處: 彈性很大, 山不轉路轉, 沒有標準答案, 
正確運作就好…

壞處: 很多小問題合在一起不斷放大, 到處藏
污納垢, 沒有標準答案, 不知道到底對了沒有

解決方法

Coding styles
 test-driven
元件化

模型化 (資料結構, 演算法, 物件化, 設計樣版)



08-10

Source Code is the Primary Document
 Jack Reeves, C++ Journal, 1992, “What is Software Design?”


















08-11

Source Code is the Primary Document
 Jack Reeves, C++ Journal, 1992, “What is Software Design?”

“After reviewing the software development life cycle as 
I understood it, I concluded that the on
documentation that actually seems to satisfy the criteria
of an engineering design is the source co

”.sgnitsil ed








08-12

Source Code is the Primary Document
 Jack Reeves, C++ Journal, 1992, “What is Software Design?”

“After reviewing the software development life cycle as 
I understood it, I concluded that the on
documentation that actually seems to satisfy the criteria
of an engineering design is the source co

 The design of a software project is an abstract concept:








08-13

Source Code is the Primary Document
 Jack Reeves, C++ Journal, 1992, “What is Software Design?”

“After reviewing the software development life cycle as 
I understood it, I concluded that the on
documentation that actually seems to satisfy the criteria
of an engineering design is the source co

 The design of a software project is an abstract concept:
 It has to do with the overall shape and structure of the program

as well as the detailed shape and structure of each module, class, 
and method.







08-14

Source Code is the Primary Document
 Jack Reeves, C++ Journal, 1992, “What is Software Design?”

“After reviewing the software development life cycle as 
I understood it, I concluded that the on
documentation that actually seems to satisfy the criteria
of an engineering design is the source co

 The design of a software project is an abstract concept:
 It has to do with the overall shape and structure of the program

as well as the detailed shape and structure of each module, class, 
and method.

 It can be represented by many different diagrams and media, but 
its final embodiment is the source code.





08-15

Source Code is the Primary Document
 Jack Reeves, C++ Journal, 1992, “What is Software Design?”

“After reviewing the software development life cycle as 
I understood it, I concluded that the on
documentation that actually seems to satisfy the criteria
of an engineering design is the source co

 The design of a software project is an abstract concept:
 It has to do with the overall shape and structure of the program

as well as the detailed shape and structure of each module, class, 
and method.

 It can be represented by many different diagrams and media, but 
its final embodiment is the source code.

 Source code is the design



08-16

Goals
 透過一些編碼的潛規則，我們可以寫出一個 “好” 一點
的 C 程式



















08-17

Goals
 透過一些編碼的潛規則，我們可以寫出一個 “好” 一點
的 C 程式

 除了正確性之外，程式短一點?? 執行快一點???

















08-18

Goals
 透過一些編碼的潛規則，我們可以寫出一個 “好” 一點
的 C 程式

 除了正確性之外，程式短一點?? 執行快一點???

 “好” ?       (in terms of test, debug, review, and extension)














08-19

Goals
 透過一些編碼的潛規則，我們可以寫出一個 “好” 一點
的 C 程式

 除了正確性之外，程式短一點?? 執行快一點???

 “好” ?       (in terms of test, debug, review, and extension)
1. 容易了解，沒有邏輯上不緊密結合的資料變數或是敘述













08-20

Goals
 透過一些編碼的潛規則，我們可以寫出一個 “好” 一點
的 C 程式

 除了正確性之外，程式短一點?? 執行快一點???

 “好” ?       (in terms of test, debug, review, and extension)
1. 容易了解，沒有邏輯上不緊密結合的資料變數或是敘述

2. Self-explaining … 我的程式碼會說話











08-21

Goals
 透過一些編碼的潛規則，我們可以寫出一個 “好” 一點
的 C 程式

 除了正確性之外，程式短一點?? 執行快一點???

 “好” ?       (in terms of test, debug, review, and extension)
1. 容易了解，沒有邏輯上不緊密結合的資料變數或是敘述

2. Self-explaining … 我的程式碼會說話

3. 和觀念上的運作模型一致









08-22

Goals
 透過一些編碼的潛規則，我們可以寫出一個 “好” 一點
的 C 程式

 除了正確性之外，程式短一點?? 執行快一點???

 “好” ?       (in terms of test, debug, review, and extension)
1. 容易了解，沒有邏輯上不緊密結合的資料變數或是敘述

2. Self-explaining … 我的程式碼會說話

3. 和觀念上的運作模型一致

4. 容易修改，不容易改錯







08-23

Goals
 透過一些編碼的潛規則，我們可以寫出一個 “好” 一點
的 C 程式

 除了正確性之外，程式短一點?? 執行快一點???

 “好” ?       (in terms of test, debug, review, and extension)
1. 容易了解，沒有邏輯上不緊密結合的資料變數或是敘述

2. Self-explaining … 我的程式碼會說話

3. 和觀念上的運作模型一致

4. 容易修改，不容易改錯

5. 沒有容易錯誤的語法





08-24

Goals
 透過一些編碼的潛規則，我們可以寫出一個 “好” 一點
的 C 程式

 除了正確性之外，程式短一點?? 執行快一點???

 “好” ?       (in terms of test, debug, review, and extension)
1. 容易了解，沒有邏輯上不緊密結合的資料變數或是敘述

2. Self-explaining … 我的程式碼會說話

3. 和觀念上的運作模型一致

4. 容易修改，不容易改錯

5. 沒有容易錯誤的語法

正確性無關：接下來是一個很簡單的例子，共有七個
版本，執行結果都是正確的



08-25

Version 1
01 #include <stdio.h>
02 
03 void main()
04 {
05     int d[] = {12, 3, 37, 8, 24, 15, 5, 33};
06     int n = 8;
07     int *d1, *d2;
08     int *p;
09     int *e;
10     
11     d1 = d;
12     d2 = d+n;
13     while (d1<d2)
14     {
15         p = d1;
16         e = d1 + 1;

17         while (e<d2)
18         {
19             if (*e<*p) p = e;
20             e++;
21         }
22         n = *p;
23         *p = *d1;
24         *d1 = n;
25         d1++;
26     }
27     printf("Sorted data:\n");
28     d1 = d;
29     while (d1<d2)
30         printf(" %d", *d1++);
31     printf("\n");
32 }



08-26

Execution Results

Sorted data:
3  5  8  12  15  24  33  37

由小至大按順序排列



08-27

What is this program doing?
Initial view






















08-28

What is this program doing?
Initial view
 Input array initialized with unordered integers




















08-29

What is this program doing?
Initial view
 Input array initialized with unordered integers
 Two layers of while loops


















08-30

What is this program doing?
Initial view
 Input array initialized with unordered integers
 Two layers of while loops
 Some pointers to the elements of the array
















08-31

What is this program doing?
Initial view
 Input array initialized with unordered integers
 Two layers of while loops
 Some pointers to the elements of the array
 Another while loop for output the results















08-32

What is this program doing?
Initial view
 Input array initialized with unordered integers
 Two layers of while loops
 Some pointers to the elements of the array
 Another while loop for output the results

Don’t like it!!??












08-33

What is this program doing?
Initial view
 Input array initialized with unordered integers
 Two layers of while loops
 Some pointers to the elements of the array
 Another while loop for output the results

Don’t like it!!??
 Pointers










08-34

What is this program doing?
Initial view
 Input array initialized with unordered integers
 Two layers of while loops
 Some pointers to the elements of the array
 Another while loop for output the results

Don’t like it!!??
 Pointers
 Generic while loops








08-35

What is this program doing?
Initial view
 Input array initialized with unordered integers
 Two layers of while loops
 Some pointers to the elements of the array
 Another while loop for output the results

Don’t like it!!??
 Pointers
 Generic while loops
 Mysterious variable names (identifier means nothing)






08-36

What is this program doing?
Initial view
 Input array initialized with unordered integers
 Two layers of while loops
 Some pointers to the elements of the array
 Another while loop for output the results

Don’t like it!!??
 Pointers
 Generic while loops
 Mysterious variable names (identifier means nothing)
 Deep control structures




08-37

What is this program doing?
Initial view
 Input array initialized with unordered integers
 Two layers of while loops
 Some pointers to the elements of the array
 Another while loop for output the results

Don’t like it!!??
 Pointers
 Generic while loops
 Mysterious variable names (identifier means nothing)
 Deep control structures
 Looks like a snippet of low level assembly instructions



08-38

Remove Unnecessary Pointers
 Pointers are sophisticated and sometimes inevitable, but 

not always.






08-39

Remove Unnecessary Pointers
 Pointers are sophisticated and sometimes inevitable, but 

not always.
 In the case of accessing memory blocks, pointers are 

error prone, use array whenever possible.




08-40

Remove Unnecessary Pointers
 Pointers are sophisticated and sometimes inevitable, but 

not always.
 In the case of accessing memory blocks, pointers are 

error prone, use array whenever possible.
 Array syntax has much better semantic meaning than the 

generic pointer dereferencing and arithmetics.



08-41

Remove Unnecessary Pointers
 Pointers are sophisticated and sometimes inevitable, but 

not always.
 In the case of accessing memory blocks, pointers are 

error prone, use array whenever possible.
 Array syntax has much better semantic meaning than the 

generic pointer dereferencing and arithmetics.
int array[100];
int *ptr=array;
int i, sum = 0;
…
for (i=0; i<100; i++)

sum += *ptr++;



08-42

Remove Unnecessary Pointers
 Pointers are sophisticated and sometimes inevitable, but 

not always.
 In the case of accessing memory blocks, pointers are 

error prone, use array whenever possible.
 Array syntax has much better semantic meaning than the 

generic pointer dereferencing and arithmetics.
int array[100];
int i;
int sum = 0;
…
for (i=0; i<100; i++)

sum += array[i];

int array[100];
int *ptr=array;
int i, sum = 0;
…
for (i=0; i<100; i++)

sum += *ptr++;



08-43

Version 2
01 #include <stdio.h>
02 
03 void main()
04 {
05     int d[] = {12, 3, 37, 8, 24, 15, 5, 33};
06     int n = 8;
07     int i, j, k;
08     
09     i = 0;
10     while (i<n)
11     {
12         k = i;
13         j = i + 1;
14         while (j<n)
15         {
16             if (d[j]<d[k]) k = j;

17             j = j + 1;
18         }
19         j = d[k];
20         d[k] = d[i];
21         d[i] = j;
22         i = i + 1;
23     }
24     printf("Sorted data:\n");
25     i = 0;
26     while (i<n)
27     {
28         printf(" %d", d[i]);
29         i = i + 1;
30     }
31     printf("\n");
32 }



08-44

Flowchart of the Program

j<n
i<n

i=0
i=i+1

j=j+1

j=i+1

k=i

d[j]<d[k]

k=j

no

yes

yes

no

noyes

stop



08-45

Flowchart of the Program

j<n
i<n

i=0
i=i+1

j=j+1

j=i+1

k=i

d[j]<d[k]

k=j

no

yes

yes

no

noyes

stop

Is this graph tell you more 
than the code does?



08-46

Meaningful Identifiers
 A program is composed with a language.  Just like any 

language in your daily life, language itself should tell 
good stories when it is used properly.







08-47

Meaningful Identifiers
 A program is composed with a language.  Just like any 

language in your daily life, language itself should tell 
good stories when it is used properly.

 Why does the version 1 or version 2 program look like 
gibberish to well trained programmers?





08-48

Meaningful Identifiers
 A program is composed with a language.  Just like any 

language in your daily life, language itself should tell 
good stories when it is used properly.

 Why does the version 1 or version 2 program look like 
gibberish to well trained programmers?

 Are the identifiers used meaningful??
e.g.

Hw  ds Jhn lk th stk? 
or

How does John like the steak?



08-49

Version 3
01 #include <stdio.h>
02 
03 void main()
04 {
05     int data[] = {12, 3, 37, 8, 24, 15, 5, 33};
06     int ndata = sizeof(data) / sizeof(int);
07     int i, j;
08     int min;
09     int swapTmp;
10     
11     i = 0;
12     while (i<ndata)
13     {
14         min = i;
15         j = i + 1;
16         while (j<ndata)

17         {
18             if (data[j]<data[min]) min = j;
19             j = j + 1;
20         }
21         swapTmp = data[min];
22         data[min] = data[i];
23         data[i] = swapTmp;
24         i = i + 1;
25     }
26     
27     printf("Sorted data:\n");
28     i = 0;
29     while (i<ndata)
30     {
31         printf(" %d", data[i]);
32         i = i + 1;
33     }
34     printf("\n");
35 }



08-50

Version 3
01 #include <stdio.h>
02 
03 void main()
04 {
05     int data[] = {12, 3, 37, 8, 24, 15, 5, 33};
06     int ndata = sizeof(data) / sizeof(int);
07     int i, j;
08     int min;
09     int swapTmp;
10     
11     i = 0;
12     while (i<ndata)
13     {
14         min = i;
15         j = i + 1;
16         while (j<ndata)

17         {
18             if (data[j]<data[min]) min = j;
19             j = j + 1;
20         }
21         swapTmp = data[min];
22         data[min] = data[i];
23         data[i] = swapTmp;
24         i = i + 1;
25     }
26     
27     printf("Sorted data:\n");
28     i = 0;
29     while (i<ndata)
30     {
31         printf(" %d", data[i]);
32         i = i + 1;
33     }
34     printf("\n");
35 }

avoid magic constants



08-51

Advanced View of the Codes
Initial view
 Input array initialized with unordered integers
 Two layers of while loops
 Some pointers to the elements of the array
 Another while loop for output the results













08-52

Advanced View of the Codes
Initial view
 Input array initialized with unordered integers
 Two layers of while loops
 Some pointers to the elements of the array
 Another while loop for output the results

Is it changing?










08-53

Advanced View of the Codes
Initial view
 Input array initialized with unordered integers
 Two layers of while loops
 Some pointers to the elements of the array
 Another while loop for output the results

Is it changing?
 Input array initialized with unordered integers




 Another while loop for output the results



08-54

Advanced View of the Codes
Initial view
 Input array initialized with unordered integers
 Two layers of while loops
 Some pointers to the elements of the array
 Another while loop for output the results

Is it changing?
 Input array initialized with unordered integers
 Two layers of while loops, the outer one prepares ndata sub-arrays, 

the inner one goes through each sub-array to find something 
minimal.



 Another while loop for output the results



08-55

Advanced View of the Codes
Initial view
 Input array initialized with unordered integers
 Two layers of while loops
 Some pointers to the elements of the array
 Another while loop for output the results

Is it changing?
 Input array initialized with unordered integers
 Two layers of while loops, the outer one prepares ndata sub-arrays, 

the inner one goes through each sub-array to find something 
minimal.

 A snippet of memory swapping code
 Another while loop for output the results



08-56

More Meaningful Language Construct 
 While loop is the most generic repetition construct in C language







08-57

More Meaningful Language Construct 
 While loop is the most generic repetition construct in C language





Forget about goto please!!!



08-58

More Meaningful Language Construct 
 While loop is the most generic repetition construct in C language





initialize the loop condition 
while (condition) 
{

…
}



08-59

More Meaningful Language Construct 
 While loop is the most generic repetition construct in C language





initialize the loop condition 
while (condition) 
{

…
}

the condition is likely to change inside the loop



08-60

More Meaningful Language Construct 
 While loop is the most generic repetition construct in C language

 When you see this construct in a program, you expect some sort of job 
repetition, could be an easy one or a complex one.



initialize the loop condition 
while (condition) 
{

…
}

the condition is likely to change inside the loop



08-61

More Meaningful Language Construct 
 While loop is the most generic repetition construct in C language

 When you see this construct in a program, you expect some sort of job 
repetition, could be an easy one or a complex one.

 For loop is a more semantically specific repetition construct in C 
language --- repeat for a predetermined number of times

initialize the loop condition 
while (condition) 
{

…
}

the condition is likely to change inside the loop



08-62

More Meaningful Language Construct 
 While loop is the most generic repetition construct in C language

 When you see this construct in a program, you expect some sort of job 
repetition, could be an easy one or a complex one.

 For loop is a more semantically specific repetition construct in C 
language --- repeat for a predetermined number of times

initialize the loop condition 
while (condition) 
{

…
}

the condition is likely to change inside the loop

for (i=0; i<count; i++)
{

…
}



08-63

Version 4
01 #include <stdio.h>
02 
03 void main()
04 {
05     int data[] = {12, 3, 37, 8, 24, 15, 5, 33};
06     int ndata = sizeof(data) / sizeof(int);
07     int i, j;
08     int min;
09     int swapTmp;
10 
11     for (i=0; i<ndata; i++)
12     {
13         min = i;
14         for (j=i+1; j<ndata; j++)
15         {
16             if (data[j]<data[min]) min = j;
17         }

18         swapTmp = data[min];
19         data[min] = data[i];
20         data[i] = swapTmp;
21     }
22     
23     printf("Sorted data:\n");
24     for (i=0; i<ndata; i++)
25         printf(" %d", data[i]);
26     printf("\n");
27 }



08-64

Code That Further Illustrates Itself
 Function is a powerful construct to abstract ideas, to 

hide distracting details, not just a utility for saving your 
typing time and removing redundancy.

--- Version 5





08-65

Code That Further Illustrates Itself
 Function is a powerful construct to abstract ideas, to 

hide distracting details, not just a utility for saving your 
typing time and removing redundancy.

--- Version 5

 A construct like “loop inside a loop” is somehow beyond 
the concrete control of common human mind.  A single 
layer of “loop” is better for most people to visualize in 
mind. 

--- Version 6



08-66

Version 5
01 #include <stdio.h>
02 
03 void swap(int *, int *);
04 void printArrayContents(int [], int);
05 
06 void main()
07 {
08     int data[] = {12, 3, 37, 8, 24, 15, 5, 33};
09     int ndata = sizeof(data) / sizeof(int);
10     int i, j;
11     int min;
12 
13     for (i=0; i<ndata; i++)
14     {
15         min = i;

16         for (j=i+1; j<ndata; j++)
17         {
18             if (data[j]<data[min]) min = j;
19         }
20         swap(&data[i], &data[min]);
21     }
22     
23     printArrayContents(data, ndata);
24 }
25 
26 void swap(int *x, int *y)
27 {
28     int tmp;
29     tmp = *x;
30     *x = *y;
31     *y = tmp;
32 }



08-67

Version 5 (cont’d)
33 
34 void printArrayContents(int data[], int ndata)
35 {
36     int i;
37     printf("Sorted data:\n");
38     for (i=0; i<ndata; i++)
39         printf(" %d", data[i]);
40     printf("\n");
41 }



08-68

Version 6
01 #include <stdio.h>
02 
03 void selectionSort(int[], int);
04 void findMinimumOfAnArray(int[], int);
05 void swap(int*, int*);
06 void printArrayContents(int[], int);
07 
08 void main()
09 {
10     int data[] = {12, 3, 37, 8, 24, 15, 5, 33};
11     int ndata = sizeof(data) / sizeof(int);
12 
13     selectionSort(data, ndata);    
14     printArrayContents(data, ndata);
15 }
16 



08-69

Version 6 (cont’d)
17 void selectionSort(int data[], int ndata)
18 {
19     int i;
20     for (i=0; i<ndata; i++)
21         putMinimalElementInPlace(&data[i], ndata-i);
22 }
23 
24 void putMinimalElementInPlace(int data[], int ndata)
25 {
26     int i, min;
27 
28     min = 0;
29     for (i=1; i<ndata; i++)
30     {
31         if (data[i]<data[min]) min = i;
32     }
33     swap(&data[0], &data[min]);
34 }
35 

36 void swap(int *x, int *y)
37 {
38     int tmp;
39     tmp = *x;
40     *x = *y;
41     *y = tmp;
42 }
43 

44 void printArrayContents(int data[], int ndata)
45 {
46     int i;
47     printf("Sorted data:\n");
48     for (i=0; i<ndata; i++)
49         printf(" %d", data[i]);
50     printf("\n");
51 }

suitable level of details



08-70

Codes with a Conceptual Model
 Flowchart is no longer needed but definitely requires a 

conceptual model for the codes to work with.



08-71

Codes with a Conceptual Model
 Flowchart is no longer needed but definitely requires a 

conceptual model for the codes to work with.

…



08-72

Codes with a Conceptual Model
 Flowchart is no longer needed but definitely requires a 

conceptual model for the codes to work with.

unsorted 
data

…

gradually
sorted 
data



08-73

Codes with a Conceptual Model
 Flowchart is no longer needed but definitely requires a 

conceptual model for the codes to work with.

unsorted 
data

…

In each iteration,
just pick the minimum
of the sub-array and
move it to the top

gradually
sorted 
data



08-74

Who is responsible of this task?










08-75

Who is responsible of this task?
 The programmer or the program reader?








08-76

Who is responsible of this task?
 The programmer or the program reader?
 When we read the version 1 of this program, there were 

little clues in the codes that told us directly what the 
program is doing.







08-77

Who is responsible of this task?
 The programmer or the program reader?
 When we read the version 1 of this program, there were 

little clues in the codes that told us directly what the 
program is doing.

 Although we figure out that this is a piece of code that 
implements the selection sort algorithm at last, it should 
not take the original programmer too much effort to 
produce a code snippet like version 6 and its 
corresponding conceptual model which tell directly the 
story of what the program is doing. 





08-78

Who is responsible of this task?
 The programmer or the program reader?
 When we read the version 1 of this program, there were 

little clues in the codes that told us directly what the 
program is doing.

 Although we figure out that this is a piece of code that 
implements the selection sort algorithm at last, it should 
not take the original programmer too much effort to 
produce a code snippet like version 6 and its 
corresponding conceptual model which tell directly the 
story of what the program is doing. 

 A piece of code is to implement some engineering design, 
simplicity is the best engineering principle.  Try your best 
to think and express ideas in an intuitive way.



08-79

Recursive Version
 Recursive version is often the most expressive form of the 

underlying algorithm.



08-80

Recursive Version
 Recursive version is often the most expressive form of the 

underlying algorithm.

void selectionSort(int data[], int ndata)
{

putMinimalElementInPlace(data, ndata);
if (ndata>2)

selectionSort(&data[1], ndata-1);
}



08-81

Efficiency Issues
 Using expressive name for all identifiers makes the 

program much lengthier, easier to have typos, slow in 
composing the program!!!   Really??


















08-82

Efficiency Issues
 Using expressive name for all identifiers makes the 

program much lengthier, easier to have typos, slow in 
composing the program!!!   Really??
 Harddisk is cheap.  Not necessary to think of space.
















08-83

Efficiency Issues
 Using expressive name for all identifiers makes the 

program much lengthier, easier to have typos, slow in 
composing the program!!!   Really??
 Harddisk is cheap.  Not necessary to think of space.
 It is easier for compiler to detect typo than using x, y, z.














08-84

Efficiency Issues
 Using expressive name for all identifiers makes the 

program much lengthier, easier to have typos, slow in 
composing the program!!!   Really??
 Harddisk is cheap.  Not necessary to think of space.
 It is easier for compiler to detect typo than using x, y, z.
 Typing should not be the bottleneck.












08-85

Efficiency Issues
 Using expressive name for all identifiers makes the 

program much lengthier, easier to have typos, slow in 
composing the program!!!   Really??
 Harddisk is cheap.  Not necessary to think of space.
 It is easier for compiler to detect typo than using x, y, z.
 Typing should not be the bottleneck.
 Expressive programs are easier to compose, maintain, and extend.











08-86

Efficiency Issues
 Using expressive name for all identifiers makes the 

program much lengthier, easier to have typos, slow in 
composing the program!!!   Really??
 Harddisk is cheap.  Not necessary to think of space.
 It is easier for compiler to detect typo than using x, y, z.
 Typing should not be the bottleneck.
 Expressive programs are easier to compose, maintain, and extend.

 Excessive function calls take CPU time to transfer 
arguments and to branch the control.








08-87

Efficiency Issues
 Using expressive name for all identifiers makes the 

program much lengthier, easier to have typos, slow in 
composing the program!!!   Really??
 Harddisk is cheap.  Not necessary to think of space.
 It is easier for compiler to detect typo than using x, y, z.
 Typing should not be the bottleneck.
 Expressive programs are easier to compose, maintain, and extend.

 Excessive function calls take CPU time to transfer 
arguments and to branch the control.
 Let the compiler worry about it --- use inline function.







08-88

Efficiency Issues
 Using expressive name for all identifiers makes the 

program much lengthier, easier to have typos, slow in 
composing the program!!!   Really??
 Harddisk is cheap.  Not necessary to think of space.
 It is easier for compiler to detect typo than using x, y, z.
 Typing should not be the bottleneck.
 Expressive programs are easier to compose, maintain, and extend.

 Excessive function calls take CPU time to transfer 
arguments and to branch the control.
 Let the compiler worry about it --- use inline function.

 Using dedicated variables for independent tasks looks like 
abusing memories.




08-89

Efficiency Issues
 Using expressive name for all identifiers makes the 

program much lengthier, easier to have typos, slow in 
composing the program!!!   Really??
 Harddisk is cheap.  Not necessary to think of space.
 It is easier for compiler to detect typo than using x, y, z.
 Typing should not be the bottleneck.
 Expressive programs are easier to compose, maintain, and extend.

 Excessive function calls take CPU time to transfer 
arguments and to branch the control.
 Let the compiler worry about it --- use inline function.

 Using dedicated variables for independent tasks looks like 
abusing memories.
 Let the compiler worry about it.



08-90

Efficiency Issues
 Using expressive name for all identifiers makes the 

program much lengthier, easier to have typos, slow in 
composing the program!!!   Really??
 Harddisk is cheap.  Not necessary to think of space.
 It is easier for compiler to detect typo than using x, y, z.
 Typing should not be the bottleneck.
 Expressive programs are easier to compose, maintain, and extend.

 Excessive function calls take CPU time to transfer 
arguments and to branch the control.
 Let the compiler worry about it --- use inline function.

 Using dedicated variables for independent tasks looks like 
abusing memories.
 Let the compiler worry about it.



08-91

Assignments
 Bubble Sort
 Quick Sort
 Minimum Spanning Tree
 Tree Traversal
 …


