What Is a “Better” Program?

C++ Object Oriented Programming
Pei-yih Ting
NTOU CS

E8 e d

S FREZ AT FIE G AT AT R

E8 e d

B i AL L WA B - I R SR
w g B L R, G R R
Efﬁéiiéff’tf]&izzu...

B Al 12

< ficRY 2. AT L. B Fla s AT A
7 F PR LR
* WF e LM (R R, L A fE LR L
/{;‘g{ﬁfi‘)}&-ﬁf
* H el % %) RAR

'/"'5 QP\ ip, /)z ﬂﬁ

Bt g
o AL S BT L T R
A F PeE AR
* F u BB %R
]gg.ziﬁf’r)j&%w
* B e (% %) FH

/"5 P\i ,/);ﬂﬁ

<>ﬁ¢l=}‘\"5}z

B Al 12

Y8 CESEUE B FRER - B i B
A F PeE AR

*'flﬂ‘/:it@. 55—“’ (%~
I+ Frid Eﬁ‘;j&%&_

x Coding styles

Bt g
o AL S BT L T R
A F PeE AR
* F u BB %R
]gg.ziﬁf’r)j&%w
* B e (% %) FH

/"5 P\i ,/);ﬂﬁ

<> ﬁtF/ = }2'
x Coding styles
* test-driven

Bt g
o AL S BT L T R
A F PeE AR
* F u BB %R
]gg.ziﬁf’r)j&%w
* B e (% %) FH

5 NEE, LR
O e S PE S
x Coding styles
* test-driven

g s aE= R C

< fix K8 2. ’"Lr’ﬁi@j F] n)ﬁi”‘ M 3T

*'fld‘/f@_ 5§_H l&“,
Eéiﬁf%)jﬁ%_

x Coding styles
* test-driven

(TR, 8, 47 2 1, 2R R

08-9

Source Code Is the Primary Document

+ Jack Reeves, C++ Journal, 1992, “What is Software Design?”

Source Code Is the Primary Document

+ Jack Reeves, C++ Journal, 1992, “What is Software Design?”
“After reviewing the software development life cycle as
| understood it, I concluded that the on
documentation that actually seems to satisfy the criteria
of an engineering design Is the source co

””.sgnitsil ed

Source Code Is the Primary Document

+ Jack Reeves, C++ Journal, 1992, “What is Software Design?”
“After reviewing the software development life cycle as
| understood it, I concluded that the on
documentation that actually seems to satisfy the criteria
of an engineering design Is the source co

< The design of a software project is an abstract concept:

Source Code Is the Primary Document

+ Jack Reeves, C++ Journal, 1992, “What is Software Design?”
“After reviewing the software development life cycle as
| understood it, I concluded that the on
documentation that actually seems to satisfy the criteria
of an engineering design Is the source co

< The design of a software project is an abstract concept:

x |t has to do with the overall shape and structure of the program
as well as the detailed shape and structure of each module, class,
and method.

Source Code Is the Primary Document

+ Jack Reeves, C++ Journal, 1992, “What is Software Design?”
“After reviewing the software development life cycle as
| understood it, I concluded that the on
documentation that actually seems to satisfy the criteria
of an engineering design Is the source co

< The design of a software project is an abstract concept:

x |t has to do with the overall shape and structure of the program

as well as the detailed shape and structure of each module, class,
and method.

x |t can be represented by many different diagrams and media, but
Its final embodiment is the source code.

Source Code Is the Primary Document

+ Jack Reeves, C++ Journal, 1992, “What is Software Design?”
“After reviewing the software development life cycle as
| understood it, I concluded that the on
documentation that actually seems to satisfy the criteria
of an engineering design Is the source co

< The design of a software project is an abstract concept:

x |t has to do with the overall shape and structure of the program

as well as the detailed shape and structure of each module, class,
and method.

x |t can be represented by many different diagrams and media, but
Its final embodiment is the source code.

Source code is the design

Goals
¢ BHiE - L SRR RPN E U E

51 C #2358

Goals

¢ B - L A DEARLR] > AT R A -
1 C A2 3¢

kT DA Y AR B B2 R

Goals

& 15— 1 G rE LR
1 C 4750

& K/ﬁ:t 7 Eir'-l— 5 b ﬁ._l'_ e — Elé:,?? ‘*’\IL f'r 0}#—- ‘11.‘!:.77?

& “HF7 7 (in terms of test, debug, review, and extension)

Goals

> - AR R > AT g - BT - B
1 C A% 50

¢ R R FEMEZ s AR e BEYD T e 392

< “4F? (in terms of test, debug, review, and extension)
TR BEL 2R RS S TR R it

Goals

> - AR R > AT g - BT - B
1 C A% 50

¢ R R FEMEZ s AR e BEYD T e 392

& “HF7 7 (in terms of test, debug, review, and extension)
L?%7ﬁ’£$&ﬁllﬁﬁﬁgmﬁﬁ%%ﬁiﬁﬁ
2. Self-explaining ... #% e42 ;7§ € 3%

Goals

> - AR R > AT g - BT - B
1 C A% 50

¢ R R FEMEZ s AR e BEYD T e 392

< 4377 (in terms of test, debug, review, and extension)
L?%7ﬁ’£$§ﬁ*%?%%€m?ﬁ%%ﬁiﬁﬁ
2. Self-explaining ... #% e42 ;7§ € 3%
3. fvB A b e TR - R

Goals

& 15— 1 G rE LR
1 C 4750

Sl I FEfhz b o 25N E - BE? 3 (7 - BEY7?

< 4377 (in terms of test, debug, review, and extension)
L?%7ﬁ’£$§ﬁ*%?%%€m?ﬁ%%ﬁiﬁﬁ
2. Self-explaining ... #% e42 ;7§ € 3%
3. e A b a8 T - &R
4. % 5 g ec o F F 5

Goals

& 15— 1 G rE LR
1 C 4750

¢k BAEfE2 b 23t e BEP? L - 877

< “4%” 7?2 (Interms of test, debug, review, and extension)
L 370 R BHEE G R R8T R RS L
2. Self-explaining ... #* ef2 ;5 78 € S22
3. B A b Hif (TR - K
4, ?%:’ﬂei,xgé’z;iﬁ%
S)a Rt S B E

Goals

o % E— B AR LR o A
1 C 2.3

v I FEE 2 b > fR Ve - BE?? (T - BL???

< 4377 (in terms of test, debug, review, and extension)
Lg% 7 f3 2 ¢ﬁP%?m¢€m?ﬂ%&éiﬁﬁ
2. Self-explaining ... #% e42 ;7§ € 3%
3. fopL A b i TR - R
4. ?%fﬁei,ng}%eé:@g
P 7RIt My R EE PP S

EREM AR T K- By H b
wh o R FRED A

Version 1

17 while (e<d2)

18 {

19 If (*e<*p) p=e¢;
20 e++;

21 }

22 n=*p;

23 *p = *di;

24 *dl =n;

25 dl++;

26 }

27 printf("Sorted data:\n");
28 dl=d;

29 while (d1<d2)

30 printf(" %d", *d1++);
31 printf("\n");

01 #include <stdio.h>
02
03 void main()
04 {
05 intd[] =412, 3, 37, 8, 24, 15, 5, 33},
06 Intn=28;
07 int*d1, *d2;
08 int *p;
09 iInt *e;
10
11 dl=d;
12 d2 =d+n;
13 while (d1<d2)
14 {
p=di;
e=dl+1;

Execution Results

Sorted data:
358 12 15 24 33 37

d DA R

What Is this program doing?

Initial view

What Is this program doing?

Initial view
< Input array initialized with unordered integers

What Is this program doing?

Initial view

< Input array initialized with unordered integers
< Two layers of while loops

What Is this program doing?

Initial view
< Input array initialized with unordered integers

< Two layers of while loops
< Some pointers to the elements of the array

What Is this program doing?

Initial view
< Input array initialized with unordered integers

< Two layers of while loops
< Some pointers to the elements of the array

< Another while loop for output the results

What Is this program doing?

Initial view
< Input array initialized with unordered integers

< Two layers of while loops
< Some pointers to the elements of the array

< Another while loop for output the results

Don’t like 1t11??

What Is this program doing?

Initial view
< Input array initialized with unordered integers

< Two layers of while loops
< Some pointers to the elements of the array
< Another while loop for output the results

Don’t like 1t11??
< Pointers

What Is this program doing?

Initial view

< Input array initialized with unordered integers
< Two layers of while loops

< Some pointers to the elements of the array

< Another while loop for output the results

Don’t like 1t!1??
<+ Pointers
< Generic while loops

What Is this program doing?

Initial view
< Input array initialized with unordered integers

< Two layers of while loops
< Some pointers to the elements of the array

< Another while loop for output the results

Don’t like 1t11??

< Pointers
< Generic while loops
< Mysterious variable names (identifier means nothing)

What Is this program doing?

Initial view

< Input array initialized with unordered integers
< Two layers of while loops

< Some pointers to the elements of the array

< Another while loop for output the results

Don’t like 1t!1??

< Pointers

< Generic while loops

< Mysterious variable names (identifier means nothing)
< Deep control structures

What Is this program doing?

Initial view

< Input array initialized with unordered integers
< Two layers of while loops

< Some pointers to the elements of the array

< Another while loop for output the results

Don’t like 1t!!??
< Pointers
< Generic while loops
< Mysterious variable names (identifier means nothing)
< Deep control structures
Looks like a snippet of low level assembly instructions

Remove Unnecessary Pointers

< Pointers are sophisticated and sometimes inevitable, but
not always.

Remove Unnecessary Pointers

< Pointers are sophisticated and sometimes inevitable, but
not always.

< In the case of accessing memory blocks, pointers are
error prone, use array whenever possible.

Remove Unnecessary Pointers

< Pointers are sophisticated and sometimes inevitable, but
not always.

< In the case of accessing memory blocks, pointers are
error prone, use array whenever possible.

Array syntax has much better semantic meaning than the

generic pointer dereferencing and arithmetics.

Remove Unnecessary Pointers

< Pointers are sophisticated and sometimes inevitable, but
not always.

< In the case of accessing memory blocks, pointers are
error prone, use array whenever possible.

Array syntax has much better semantic meaning than the
generic pointer dereferencing and arithmetics.

Int array[100];
Int *ptr=array,
Int I, sum = 0;

for (i=0; 1<100; I1++)
sum += *ptr++;

Remove Unnecessary Pointers

< Pointers are sophisticated and sometimes inevitable, but
not always.

< In the case of accessing memory blocks, pointers are
error prone, use array whenever possible.

Array syntax has much better semantic meaning than the
generic pointer dereferencing and arithmetics.

Int array[100]; Int array[100];
int *ptr=array; Int 1,
Int 1, sum = 0; Int sum = 0;

for (1=0; 1<100; i1++)
sum += array[i];

for (i=0; 1<100; I1++)
sum += *ptr++;

Version 2

17 j=]+1;

18 }

19 j = d[K];

20 d[k] = d[i];

21 d[i] =j;

22 I=i+1;

23 }

24 printf("Sorted data:\n");
25 i=0;

26 while (i<n)

27 {

28 printf(" %d", d[i]);
29 1=1+1;

30 }

31 printf("\n");

321}

01 #include <stdio.h>
02
03 void main()
04 {
05 intd[] ={12, 3, 37, 8, 24, 15, 5, 33},
06 intn=S8§;
07 inti,], k;
08
09 1=0;
10 while (i<n)
11 {
12 k=1;

j=1+1;

while (j<n)

{

It (dlj]<d[K]) k =J;

Flowchart of the Program

Flowchart of the Program

no

l yes
| stop |

Is this graph tell you more
than the code does?

Meaningful Identifiers

< A program Is composed with a language. Just like any
language in your daily life, language itself should tell
good stories when it is used properly.

Meaningful Identifiers

< A program Is composed with a language. Just like any
language in your daily life, language itself should tell
good stories when it is used properly.

<~ Why does the version 1 or version 2 program look like

gibberish to well trained programmers?

Meaningful Identifiers

< A program Is composed with a language. Just like any
language in your daily life, language itself should tell
good stories when it is used properly.

<~ Why does the version 1 or version 2 program look like

gibberish to well trained programmers?

Are the identifiers used meaningful??

e.g.
Hw ds Jhn |k th stk?

How does John like the steak?

Version 3

01 #include <stdio.h> R
02 (18 if (data[j]<data[min]) min =j;

03 void main() |;8 1=+ L
04 { | }

: 121 swapTmp = data[min];
05 Int data[] — {12, 3, 37, 8, 24, 15, 5, 33},|22 data[min] — data[l],

06 Int ndata = sizeof(data) / sizeof(int); 193 data[i] = swapTmp;
07 iIntl, J; |24 i=i+1:

08 Int min; :25 }

09 intswapTmp; 126

10 127 printf("Sorted data:\n");
11 i=0: 128 1=0;

12 while (i<ndata) 129 while (i<ndata)

130 {
14 min=i 131 gl wal’s CRtE| 1)
5 =i+l 132 1=ird
by 133}
16 while (J<ndata) |34 printf("\n");
35}

13 {

Version 3

01 #include <stdio.h> R
02 (18 if (data[j]<data[min]) min =j;

03 void main() | ég j=i+
04 { | }

: 121 swapTmp = data[min];
05 Int data[] — {12, 3, 37, 8, 24, 15, 5, 33},|22 data[min] — data[l],

06 Int ndata = sizeof(data) / sizeof(int); 193 data[i] = swapTmp:
07 inti,j; avoid magic constants 94 i=i+1:

08 Int min; :25 }

09 intswapTmp; 126

10 127 printf("Sorted data:\n");
11 i=0: 128 1=0;

12 while (i<ndata) 129 while (i<ndata)

130 {
14 min=i 131 gl wal’s CRtE| 1)
5 =i+l 132 1=ird
by 133}
16 while (J<ndata) |34 printf("\n");
35}

13 {

Advanced View of the Codes

Initial view

< Input array initialized with unordered integers
< Two layers of while loops

< Some pointers to the elements of the array

< Another while loop for output the results

Advanced View of the Codes

T EURYITEY,
< Input array initialized with unordered integers

< Two layers of while loops
< Some pointers to the elements of the array
< Another while loop for output the results

Is it changing?

Advanced View of the Codes

Initial view

< Input array initialized with unordered integers
< Two layers of while loops

< Some pointers to the elements of the array

< Another while loop for output the results

Is it changing?
< Input array Initialized with unordered integers

< Another while loop for output the results

Advanced View of the Codes

Initial view

< Input array initialized with unordered integers
< Two layers of while loops

< Some pointers to the elements of the array

< Another while loop for output the results

Is it changing?
< Input array Initialized with unordered integers

< Two layers of while loops, the outer one prepares ndata sub-arrays,
the inner one goes through each sub-array to find something
minimal.

Another while loop for output the results

Advanced View of the Codes

Initial view

< Input array initialized with unordered integers
< Two layers of while loops

< Some pointers to the elements of the array

< Another while loop for output the results

Is it changing?
< Input array Initialized with unordered integers

< Two layers of while loops, the outer one prepares ndata sub-arrays,
the inner one goes through each sub-array to find something
minimal.

< A snippet of memory swapping code
< Another while loop for output the results

More Meaningful Language Construct

<~ While loop is the most generic repetition construct in C language

More Meaningful Language Construct

<~ While loop is the most generic repetition construct in C language

Forget about goto please!!!

More Meaningful Language Construct

<~ While loop is the most generic repetition construct in C language

Initialize the loop condition
while (condition)

{
¥

More Meaningful Language Construct

<~ While loop is the most generic repetition construct in C language

Initialize the loop condition
while (condition)

{
¥

the condition is likely to change inside the loop

More Meaningful Language Construct

<~ While loop is the most generic repetition construct in C language

Initialize the loop condition
while (condition)

{
¥

the condition is likely to change inside the loop

<+ When you see this construct in a program, you expect some sort of job
repetition, could be an easy one or a complex one.

More Meaningful Language Construct

<~ While loop is the most generic repetition construct in C language

Initialize the loop condition
while (condition)

{
¥

the condition is likely to change inside the loop

When you see this construct in a program, you expect some sort of job
repetition, could be an easy one or a complex one.

For loop Is a more semantically specific repetition construct in C
language --- repeat for a predetermined number of times

More Meaningful Language Construct

<~ While loop is the most generic repetition construct in C language

Initialize the loop condition
while (condition)

{
¥

the condition is likely to change inside the loop

When you see this construct in a program, you expect some sort of job
repetition, could be an easy one or a complex one.

For loop Is a more semantically specific repetition construct in C
language --- repeat for a predetermined number of times

for (1=0; i<count; i++)

1
¥

Version 4

18 swapTmp = data[min];
19 data[min] = data[i];

20 data[i] = swapTmp;

21 }

22

23 printf("Sorted data:\n");
24 for (1=0; i<ndata; 1++)
25 printf(" %d", data[i]);
26 printf("\n");

27 }

01 #include <stdio.h>

02

03 void main()

04 {

05 intdata[] = {12, 3, 37, 8, 24, 15, 5, 33};
06 int ndata = sizeof(data) / sizeof(int);

07 inti,j;

08 Int min;

09 intswapTmp;

10

11 for (i=0; i<ndata; i++)

12 {

13 min = I;

14 for (j=i+1; j<ndata; j++)

15 {

16 If (data[j]<data[min]) min = j;
17 }

Code That Further Illustrates Itself

< Function is a powerful construct to abstract ideas, to
hide distracting details, not just a utility for saving your
typing time and removing redundancy.

--- Version 5

Code That Further Illustrates Itself

< Function is a powerful construct to abstract ideas, to
hide distracting details, not just a utility for saving your
typing time and removing redundancy.

--- Version 5

< A construct like “loop Inside a loop” I1s somehow beyond
the concrete control of common human mind. A single
layer of “loop” Is better for most people to visualize In
mind.

--- Version 6

Version 5

01 #include <stdio.h> 116
02 117
I18
119
1 20
05 121
06 void main() 122
123

03 void swap(int *, int *);
04 void printArrayContents(int [], int);

07 {

08 int data[] = {12, 3, 37, 8, 24, 15, 5, 33};, gg }

09 iInt ndata = sizeof(data) / sizeof(int); 1

11 int min; 128
12 129
13 for (i=0; i<ndata; i++) :2(1)
14 {

min =1,

l
I32}

for (j=i+1; j<ndata; j++)
{
If (data[j]<data[min]) min = j;

by
swap(&data[i], &data[min]);

}

printArrayContents(data, ndata);

26 void swap(int *x, int *y)
10 inti, j; :27{

int tmp;
tmp = *X;
*x::*y;
*y = tmp;

Version 5 (cont’d)

33

34 void printArrayContents(int data[], int ndata)
354

36 Inti;

37 printf("Sorted data:\n");

38 for (1=0; i<ndata; i++)

39 printf(" %d", data[i]);

40 printf(*\n");

41}

Version 6

01 #include <stdio.h>

02

03 void selectionSort(int[], int);

04 void findMinimumOfAnArray(int[], int);
05 void swap(int*, int*);

06 void printArrayContents(int[], int);

07

08 void main()

09 {

10 intdata[] = {12, 3, 37, 8, 24, 15, 5, 33};
11 int ndata = sizeof(data) / sizeof(int);
12

13 selectionSort(data, ndata);

14 printArrayContents(data, ndata);
15}

16

Version 6 (cont’d)

17 void selectionSort(int data[], int ndata)
18 { suitable level of details
19 inti

20~ ~for (i=0; i<ndata; i++) =
21, putMinimalElementinPlace(&data[i], ndata-i);

-

36 void swap(int *x, int *y)
374

38 Inttmp;

39 tmp =*X;

40 *x=7y;

41 *y =tmp;

42 }

43

R4

\..

23

24 void putMinimalElementinPlace(int data[], int ndata)
25 {

26 Inti, min;

27

28 min=0;

29 for (1=1; i<ndata; i++)

30 {

31 If (data[i]<data[min]) min =1,
32 }

33 swap(&data[0], &data[min]);
341}

35

1 44 void printArrayContents(int data[], int ndata)
145 {

: 46 iInti;

| 47 printf("Sorted data:\n");

1 48 for (i=0; i<ndata; I++)

149 printf(" %d", data[i]);

150 printf("\n");

"51}

Codes with a Conceptual Model

< Flowchart is no longer needed but definitely requires a
conceptual model for the codes to work with.

Codes with a Conceptual Model

< Flowchart is no longer needed but definitely requires a
conceptual model for the codes to work with.

Codes with a Conceptual Model

< Flowchart is no longer needed but definitely requires a
conceptual model for the codes to work with.

gradually
sorted
data

unsorted <
data

Codes with a Conceptual Model

< Flowchart is no longer needed but definitely requires a
conceptual model for the codes to work with.

gradually
sorted
_ | _data

In each Iteration,

just pick the minimum
of the sub-array and
move It to the top

unsorted <
data

Who Is responsible of this task?

Who Is responsible of this task?

< The programmer or the program reader?

Who Is responsible of this task?

< The programmer or the program reader?

< When we read the version 1 of this program, there were
little clues In the codes that told us directly what the
program is doing.

Who Is responsible of this task?

< The programmer or the program reader?

< When we read the version 1 of this program, there were
little clues In the codes that told us directly what the

program is doing.
< Although we figure out that this is a piece of code that

Implements the selection sort algorithm at last, it should
not take the original programmer too much effort to
produce a code snippet like version 6 and its
corresponding conceptual model which tell directly the
story of what the program is doing.

Who Is responsible of this task?

< The programmer or the program reader?

< When we read the version 1 of this program, there were
little clues In the codes that told us directly what the
program is doing.

< Although we figure out that this is a piece of code that
Implements the selection sort algorithm at last, it should
not take the original programmer too much effort to
produce a code snippet like version 6 and its
corresponding conceptual model which tell directly the
story of what the program is doing.

A piece of code Is to Implement some engineering design,
simplicity 1s the best engineering principle. Try your best
to think and express ideas In an intuitive way. 08-78

Recursive Version

< Recursive version Is often the most expressive form of the
underlying algorithm.

Recursive Version

< Recursive version Is often the most expressive form of the
underlying algorithm.

void selectionSort(int data[], int ndata)

1

putMinimalElementinPlace(data, ndata);
If (ndata>2)
selectionSort(&data[1], ndata-1);

Efficiency Issues

< Using expressive name for all identifiers makes the
program much lengthier, easier to have typos, slow In
composing the program!!! Really??

Efficiency Issues

< Using expressive name for all identifiers makes the
program much lengthier, easier to have typos, slow In
composing the program!!! Really??
x Harddisk Is cheap. Not necessary to think of space.

Efficiency Issues

< Using expressive name for all identifiers makes the
program much lengthier, easier to have typos, slow In
composing the program!!! Really??
x Harddisk Is cheap. Not necessary to think of space.
* |t Is easier for compiler to detect typo than using X, vy, z.

Efficiency Issues

< Using expressive name for all identifiers makes the
program much lengthier, easier to have typos, slow In
composing the program!!! Really??
x Harddisk Is cheap. Not necessary to think of space.
* |t Is easier for compiler to detect typo than using X, vy, z.

* Typing should not be the bottleneck.

Efficiency Issues

< Using expressive name for all identifiers makes the
program much lengthier, easier to have typos, slow In
composing the program!!! Really??
x Harddisk Is cheap. Not necessary to think of space.
* |t Is easier for compiler to detect typo than using X, vy, z.

x Typing should not be the bottleneck.
* EXpressive programs are easier to compose, maintain, and extend.

Efficiency Issues

< Using expressive name for all identifiers makes the
program much lengthier, easier to have typos, slow In
composing the program!!! Really??
x Harddisk Is cheap. Not necessary to think of space.
* |t Is easier for compiler to detect typo than using X, vy, z.

x Typing should not be the bottleneck.
* EXpressive programs are easier to compose, maintain, and extend.

<+ Excessive function calls take CPU time to transfer
arguments and to branch the control.

Efficiency Issues

< Using expressive name for all identifiers makes the
program much lengthier, easier to have typos, slow In
composing the program!!! Really??
x Harddisk Is cheap. Not necessary to think of space.
* |t Is easier for compiler to detect typo than using X, vy, z.

x Typing should not be the bottleneck.
* EXpressive programs are easier to compose, maintain, and extend.

<+ Excessive function calls take CPU time to transfer
arguments and to branch the control.

x Let the compiler worry about it --- use inline function.

Efficiency Issues

< Using expressive name for all identifiers makes the
program much lengthier, easier to have typos, slow In
composing the program!!! Really??
x Harddisk Is cheap. Not necessary to think of space.
* |t Is easier for compiler to detect typo than using X, vy, z.

x Typing should not be the bottleneck.
* EXpressive programs are easier to compose, maintain, and extend.

< EXxcessive function calls take CPU time to transfer
arguments and to branch the control.
x Let the compiler worry about it --- use inline function.

< Using dedicated variables for independent tasks looks like
abusing memories.

Efficiency Issues

< Using expressive name for all identifiers makes the
program much lengthier, easier to have typos, slow In
composing the program!!! Really??
x Harddisk Is cheap. Not necessary to think of space.
* |t Is easier for compiler to detect typo than using X, vy, z.
x Typing should not be the bottleneck.
x EXpressive programs are easier to compose, maintain, and extend.

< EXxcessive function calls take CPU time to transfer
arguments and to branch the control.
x Let the compiler worry about it --- use inline function.
< Using dedicated variables for independent tasks looks like
abusing memories.
x et the compiler worry about it.

Efficiency Issues

< Using expressive name for all identifiers makes the
program much lengthier, easier to have typos, slow In
composing the program!!! Really??
x Harddisk Is cheap. Not necessary to think of space.
* |t Is easier for compiler to detect typo than using X, vy, z.
x Typing should not be the bottleneck.
x EXpressive programs are easier to compose, maintain, and extend.

< EXxcessive function calls take CPU time to transfer
arguments and to branch the control.
x Let the compiler worry about it --- use inline function.
< Using dedicated variables for independent tasks looks like
abusing memories.
x et the compiler worry about it.

Assignments

< Bubble Sort

< Quick Sort

< Minimum Spanning Tree
< Tree Traversal

> ...

