Basic Object Design

C++ Object Oriented Programming
Pei-yih Ting
NTOUCS

Contents

< Object Oriented Analysis/Design

Contents

< Object Oriented Analysis/Design

<~ Elements of a well-designed class

Contents

< Object Oriented Analysis/Design

<~ Elements of a well-designed class

* Strong Cohesion

Contents

< Object Oriented Analysis/Design

<~ Elements of a well-designed class
* Strong Cohesion

* Completeness and Convenience

Contents

< Object Oriented Analysis/Design

<~ Elements of a well-designed class
* Strong Cohesion
* Completeness and Convenience

* Consistency

Contents
< Object Oriented Analysis/Design

<~ Elements of a well-designed class
* Strong Cohesion
* Completeness and Convenience

* Consistency

* Loose Coupling

Contents
< Object Oriented Analysis/Design

<~ Elements of a well-designed class
* Strong Cohesion
* Completeness and Convenience
* Consistency

* Loose Coupling

< Design classes before you code it

Contents
< Object Oriented Analysis/Design

<~ Elements of a well-designed class
* Strong Cohesion
* Completeness and Convenience
* Consistency

* Loose Coupling

< Design classes before you code it

* CRC card

Contents
< Object Oriented Analysis/Design

<~ Elements of a well-designed class
* Strong Cohesion
* Completeness and Convenience
* Consistency

* Loose Coupling

< Design classes before you code it

* CRC card

* Class description

Contents
< Object Oriented Analysis/Design

<~ Elements of a well-designed class
* Strong Cohesion
* Completeness and Convenience
* Consistency

* Loose Coupling

< Design classes before you code it

*x CRC cara
x Class description

* Function description

Contents

< Object Oriented Analysis/Design
<~ Elements of a well-designed class
* Strong Cohesion
* Completeness and Convenience
* Consistency

* Loose Coupling

< Design classes before you code it

*x CRC cara
x Class description
* Function description

< Discover your classes

Contents

< Object Oriented Analysis/Design
<~ Elements of a well-designed class
* Strong Cohesion
* Completeness and Convenience
* Consistency

* Loose Coupling

< Design classes before you code it

*x CRC cara

x Class description

* Function description
< Discover your classes

* Object discovery techniques

Contents

< Object Oriented Analysis/Design
<~ Elements of a well-designed class
* Strong Cohesion
* Completeness and Convenience
* Consistency

* Loose Coupling

< Design classes before you code it

*x CRC card
x Class description
* Function description
< Discover your classes
* Object discovery techniques

* Noun-verb analysis example

Contents
< Object Oriented Analysis/Design

<~ Elements of a well-designed class
* Strong Cohesion
* Completeness and Convenience
* Consistency

* Loose Coupling

< Design classes before you code it

*x CRC card
x Class description
* Function description
< Discover your classes
* Object discovery techniques * Tentative classes
* Noun-verb analysis example

Object Oriented Analysis/Design

Object Oriented Analysis/Design

OOA

< Object-Oriented Analysis (OOA)

* What are the classes in the system?
* What are the operations and attributes?

* What are the inheritance relationships?

Object Oriented Analysis/Design

OOA

Identification

< Object-Oriented Analysis (OOA)

* What are the classes in the system?
* What are the operations and attributes?

* What are the inheritance relationships?

Object Oriented Analysis/Design

OOA

Identification

What objects do
I need to implement
the system?

< Object-Oriented Analysis (OOA)

* What are the classes in the system?
* What are the operations and attributes?

* What are the inheritance relationships?

Object Oriented Analysis/Design

O0OA 010))

Identification

What objects do
I need to implement
the system?

< Object-Oriented Analysis (OOA)

* What are the classes in the system?
* What are the operations and attributes?
* What are the inheritance relationships?
< Object-Oriented Design (OOD)
* How do objects relate to other objects?
* How i1s the system constructed with the objects?

Object Oriented Analysis/Design

O0OA 010))

Identification Integration

What objects do
I need to implement
the system?

< Object-Oriented Analysis (OOA)

* What are the classes in the system?
* What are the operations and attributes?
* What are the inheritance relationships?
< Object-Oriented Design (OOD)
* How do objects relate to other objects?
* How i1s the system constructed with the objects?

Object Oriented Analysis/Design

O0OA 010))

Identification Integration

What objects do How do I integrate
I need to implement| | the objects to make
the system? the system work?

< Object-Oriented Analysis (OOA)

* What are the classes in the system?
* What are the operations and attributes?
* What are the inheritance relationships?
< Object-Oriented Design (OOD)
* How do objects relate to other objects?
* How i1s the system constructed with the objects?

Object Oriented Analysis/Design

O0OA 010)) 010)

Identification Integration

What objects do How do I integrate
I need to implement| | the objects to make
the system? the system work?

< Object-Oriented Analysis (OOA)

* What are the classes in the system?
* What are the operations and attributes?
* What are the inheritance relationships?
< Object-Oriented Design (OOD)
* How do objects relate to other objects?
* How i1s the system constructed with the objects?

< Object-Oriented Programming (OOP)

How do you create the system using your particular object-oriented
programming language?

Object Oriented Analysis/Design

O0OA 010)) 010)

Identification Integration Implementation

What objects do How do I integrate
I need to implement| | the objects to make
the system? the system work?

< Object-Oriented Analysis (OOA)

* What are the classes in the system?
* What are the operations and attributes?
* What are the inheritance relationships?
< Object-Oriented Design (OOD)
* How do objects relate to other objects?
* How i1s the system constructed with the objects?

< Object-Oriented Programming (OOP)

How do you create the system using your particular object-oriented
programming language?

Object Oriented Analysis/Design

O0OA 010)) 010)

Identification Integration Implementation

What objects do How do I integrate How do I use the
I need to implement| | the objects to make | |programming lang
the system? the system work? to create each object?

< Object-Oriented Analysis (OOA)

* What are the classes in the system?
* What are the operations and attributes?
* What are the inheritance relationships?
< Object-Oriented Design (OOD)
* How do objects relate to other objects?
* How i1s the system constructed with the objects?

< Object-Oriented Programming (OOP)

How do you create the system using your particular object-oriented
programming language?

Object Oriented Analysis/Design

+ There are generally four phases to the object-oriented
analysis/design process:

Object Oriented Analysis/Design

+ There are generally four phases to the object-oriented
analysis/design process:

< In the problem domain,

Object Oriented Analysis/Design

+ There are generally four phases to the object-oriented
analysis/design process:

< In the problem domain,

x 1dentification of objects from the program specification.

Object Oriented Analysis/Design

+ There are generally four phases to the object-oriented
analysis/design process:

< In the problem domain,

x 1dentification of objects from the program specification.

x 1dentification of the attributes and behaviors of these objects.

Object Oriented Analysis/Design

+ There are generally four phases to the object-oriented
analysis/design process:

< In the problem domain,

x 1dentification of objects from the program specification.

x 1dentification of the attributes and behaviors of these objects.

x 1dentification of any super-classes.

Object Oriented Analysis/Design

+ There are generally four phases to the object-oriented
analysis/design process:

< In the problem domain,

x 1dentification of objects from the program specification.

x 1dentification of the attributes and behaviors of these objects.

x 1dentification of any super-classes.

specification of the behaviors of the identified classes.

Basic Object Design

Objects 1n general have two important properties:

Basic Object Design

Objects 1n general have two important properties:
1. State

Basic Object Design

Objects 1n general have two important properties:
1. State
2. Behaviour

+ Object States:

Basic Object Design

Objects 1n general have two important properties:
1. State
2. Behaviour

+ Object States:

An object contains certain information about itself e.g.

Basic Object Design

Objects 1n general have two important properties:
1. State
2. Behaviour

+ Object States:

An object contains certain information about itself e.g.

> a lecturer "knows" his name, address, age, courses he teach ...

Basic Object Design

Objects 1n general have two important properties:
1. State
2. Behaviour

+ Object States:

An object contains certain information about itself e.g.
> a lecturer "knows" his name, address, age, courses he teach ...

> a student “knows” his name, address, age, ID, courses studied ...

Basic Object Design

Objects 1n general have two important properties:
1. State
2. Behaviour

+ Object States:

An object contains certain information about itself e.g.
> a lecturer "knows" his name, address, age, courses he teach ...
> a student “knows” his name, address, age, ID, courses studied ...
> a lecture theatre “knows" its location, capacity etc.

Basic Object Design

Objects 1n general have two important properties:
1. State
2. Behaviour

+ Object States:

An object contains certain information about itself e.g.
> a lecturer "knows" his name, address, age, courses he teach ...
> a student “knows” his name, address, age, ID, courses studied ...
> a lecture theatre “knows" its location, capacity etc.

The information that an object maintains determines its state.
The individual components of information are known as the
objects attributes.

Basic Object Design (cont’d)

+ Object Behaviours:

Basic Object Design (cont’d)

+ Object Behaviours:

Apart from maintaining information about itself, an object is
also capable of performing certain actions. €.g.

Basic Object Design (cont’d)

+ Object Behaviours:

Apart from maintaining information about itself, an object is
also capable of performing certain actions. €.g.

» a lecturer teach a class, grade assignments, set an examination
paper, eftc.

Basic Object Design (cont’d)

+ Object Behaviours:

Apart from maintaining information about itself, an object is
also capable of performing certain actions. €.g.

» a lecturer teach a class, grade assignments, set an examination
paper, eftc.

» a student attend a lecture, complete an assignment, sit in an exam,
etc.

Basic Object Design (cont’d)

+ Object Behaviours:

Apart from maintaining information about itself, an object is
also capable of performing certain actions. €.g.

» a lecturer teach a class, grade assignments, set an examination
paper, eftc.

» a student attend a lecture, complete an assignment, sit in an exam,
etc.

The actions that an object can perform are known as its

behaviours.

Basic Object Design (cont’d)

+ Object Behaviours:
Apart from maintaining information about itself, an object is
also capable of performing certain actions. €.g.

» a lecturer teach a class, grade assignments, set an examination
paper, eftc.

» a student attend a lecture, complete an assignment, sit in an exam,
etc.

The actions that an object can perform are known as its

behaviours.

When applying an object-orientated analysis & design to a
problem specification we Identify objects, record their states,
and specify their behaviours.

Specitying Good Objects

% Strong Cohesion

Specitying Good Objects

+ Strong Cohesion

+ Completeness and Convenience

Specitying Good Objects

+ Strong Cohesion
+ Completeness and Convenience

<+ Consistency

Specitying Good Objects

+ Strong Cohesion
+ Completeness and Convenience
<+ Consistency

<~ Loose Coupling

Cohesion

< A good class describes a single abstraction

Cohesion

< A good class describes a single abstraction

O

Cohesion

< A good class describes a single abstraction

ol |€00

Cohesion

< A good class describes a single abstraction

ol |€00

< Assume we are writing a

networking email program

Cohesion

< A good class describes a single abstraction

© ¢
< Assume we are writing a class Mail

networking email program public:
void sendMessage() const;

void receiveMessage();

void displayMessage() const;

void processCommand();

void getCommand();
private:

char *m_message;

char *m_command;

¥3

Cohesion

< A good class describes a single abstraction

ol |€00

< Assume we are writing a class Mail

networking email program public:
void sendMessage() const;

void receiveMessage();

void displayMessage() const;
. void processCommand();
Why does this class void getCommand();

private:
char *m_message;
char *m_command;

¥3

lack cohesion?

Cohesion

< A good class describes a single abstraction

ol |€00

< Assume we are writing a class Mail

networking email program public:
void sendMessage() const;

void receiveMessage();

void displayMessage() const;
. void processCommand();
Why does this class void getCommand();

private:
char *m_message;
char *m_command;

¥3

<+ To achieve good cohesion, you must classify objects into groups
with close functionalities.

lack cohesion?

Completeness and Convenience

< Every class must contain all necessary features.

Completeness and Convenience

< Every class must contain all necessary features.

class String {

public:
String(char *inputData);
void displayString() const;
char getLetter(int slot) const;
char getLength() const;

private:

char *m_string;

}3

Completeness and Convenience

< Every class must contain all necessary features.

* Why is this class not complete?

* What would be desirable but not
essential features?

class String {

public:
String(char *inputData);
void displayString() const;
char getLetter(int slot) const
char getLength() const;

private:

char *m_string;

}3

9

Completeness and Convenience

< Every class must contain all necessary features.

class String {

public:

* Why is this class not complete? String(char *inputData);

* What would be desirable but not void displayString() const;
essential features? char getLetter(int slot) const;
char getLength() const;

private:
char *m_string;

}3

< The opposite problem i1s a class that
1s over-complete 1n the name of convenience.

Completeness and Convenience

< Every class must contain all necessary features.

class String {

public:

* Why is this class not complete? String(char *inputData);

* What would be desirable but not void displayString() const;
essential features? char getLetter(int slot) const;
char getLength() const;

private:
char *m_string;

3

< The opposite problem i1s a class that
1s over-complete 1n the name of convenience.

char getLetter(int slot) const;

char getFirstLetter() const;

char getLastLetter() const;

char getPreviousLetter() const;

char getNextLetter() const;

char findLetter(char letter) const; // find first occurrence of letter
char findLetterEnd(char letter) const; // finds last occurrence

Completeness and Convenience

< Every class must contain all necessary features.

class String {

public:

* Why is this class not complete? String(char *inputData);

* What would be desirable but not void displayString() const;
essential features? char getLetter(int slot) const;
char getLength() const;

private:
char *m_string;

3

< The opposite problem i1s a class that
1s over-complete 1n the name of convenience.

char getLetter(int slot) const;

char getFirstLetter() const;

char getLastLetter() const;

char getPreviousLetter() const;

char getNextLetter() const;

char findLetter(char letter) const; // find first occurrence of letter
char findLetterEnd(char letter) const; // finds last occurrence

* A class stuffed with unnecessary features is not convenient.

Consistency

<~ Here 1s a very inconsistent class.

Consistency

<~ Here 1s a very inconsistent class.

class Data {
public:
Data(); ~Data();
Data(char *name, int weight, int height);
void setWeight(int weight);
void setHeight(int height);
int returnWeight();
int getSize();
private:
char *m_name;
int m_weight;
int m_length;

3

Consistency

<~ Here 1s a very inconsistent class.

class Data {
public:
Data(); ~Data();
Data(char *name, int weight, int height);
void setWeight(int weight);
void setHeight(int height);
int returnWeight();
int getSize();
private:
char *m_name; / class Graphics {
int m_weight; void drawLine(int x, int y); // absolute coordinate
int m_length; void movePen(int deltaX, int deltaY); // relative offsets

3

-

13

Consistency

<~ Here 1s a very inconsistent class.

class Data {
public:
Data(); ~Data();
Data(char *name, int weight, int height);
void setWeight(int weight);
void setHeight(int height);
int returnWeight();
int getSize();
private:
char *m_name; / class Graphics {
int m_weight; void drawLine(int x, int y); // absolute coordinate
int m_length; void movePen(int deltaX, int deltaY); // relative offsets

3

-

13

< This Graphics class 1s both inconsistent and unclear

Consistency

<~ Here 1s a very inconsistent class.

class Data {
public:
Data(); ~Data();
Data(char *name, int weight, int height);
void setWeight(int weight);
void setHeight(int height);
int returnWeight();
int getSize();
private:
char *m_name; / class Graphics {
int m_weight; void drawLine(int x, int y); // absolute coordinate
int m_length; void movePen(int deltaX, int deltaY); // relative offsets

3

-

13

< This Graphics class 1s both inconsistent and unclear

* drawLine() draws a line from the current pen position to the new
coordinate (X, y) which is specified in absolute coordinates

Consistency

<~ Here 1s a very inconsistent class.

class Data {
public:
Data(); ~Data();
Data(char *name, int weight, int height);
void setWeight(int weight);
void setHeight(int height);
int returnWeight();
int getSize();
private:
char *m_name; / class Graphics {
int m_weight; void drawLine(int x, int y); // absolute coordinate
int m_length; void movePen(int deltaX, int deltaY); // relative offsets

¥3 }5

-

< This Graphics class 1s both inconsistent and unclear

* drawLine() draws a line from the current pen position to the new
coordinate (X, y) which is specified in absolute coordinates

* movePen() moves the pen from the current position by the amounts (X, y)
which is specified in relative coordinates

Consistency

<~ Here 1s a very inconsistent class.

class Data {
public:
Data(); ~Data();
Data(char *name, int weight, int height); ’
void setWeight(int weight); .~ | Without these descriptions,
void setHeight(int height); g it is hard to guess what
int return Weight(); functions of this class are about.
int getSize();
private:
char *m_name; / class Graphics {
int m_weight; void drawLine(int x, int y); // absolute coordinate
int m_length; void movePen(int deltaX, int deltaY); // relative offsets

¥3 }5

-

< This Graphics class 1s both inconsistent and unclear

* drawLine() draws a line from the current pen position to the new

7

coordinate (X, y) which is specified in absolute coordinates e

* movePen() moves the pen from the current position by the amounts (X, y)
which is specified in relative coordinates

Coupling

+ Classes with many interconnections are highly coupled.

7z

7z

Coupling

+ Classes with many interconnections are highly coupled.

7z

7z

class Input { // returns data from file at location
fileReferenceNum
public:
double readFromFile(long &fileReferenceNum);
§3

Coupling

+ Classes with many interconnections are highly coupled.

7z

7z

class Input { // returns data from file at location

fileReferenceNum
public:
double readFromFile(long &fileReferenceNum);

}3

class Math {// returns sine or cosine of current data in file
public:
double sine(Input source, long &fileReferenceNum);
double cosine(Input source, long &fileReferenceNum);

33

Coupling

+ Classes with many interconnections are highly coupled.

7z

void main() §{
Math mathObject;
Input inputObject;
long fileReferenceNum = (; // do not forget initialization
cout << mathObject.sine(inputObject, fileReferenceNum);

)

class Input { // returns data from file at location

fileReferenceNum
public:
double readFromFile(long &fileReferenceNum);

}3

class Math {// returns sine or cosine of current data in file
public:
double sine(Input source, long &fileReferenceNum);
double cosine(Input source, long &fileReferenceNum);

33

7z

Reduce Coupling

< Encapsulation reduces coupling

Reduce Coupling

< Encapsulation reduces coupling

class Input {

public:
Input(); // will set m_refNum to zero
double readFromFile();

private: // will take care of m_refNum
int m_refNum;

¥5

Reduce Coupling

< Encapsulation reduces coupling

class Math {
class Input { public:
public: Math(Input &);
Input(); // will set m_refNum to zero double sine(); // will handle m_data
double readFromFile(); double cosine(); // automatically
private: // will take care of m_refNum private:
int m_refNum; Input m_data;

13 ¥s

Reduce Coupling

< Encapsulation reduces coupling

class Math {
class Input { public:
public: Math(Input &);
Input(); // will set m_refNum to zero double sine(); // will handle m_data
double readFromFile(); double cosine(); // automatically
private: // will take care of m_refNum private:
int m_refNum; Input m_data;
$3 3
void main() {
Input inputObject;
Math mathObject(inputObject);
cout << mathObject.sine();

)

Reduce Coupling

< Encapsulation reduces coupling

class Math {
class Input { public:
public: Math(Input &);
Input(); // will set m_refNum to zero double sine(); // will handle m_data
double readFromFile(); double cosine(); // automatically
private: // will take care of m_refNum private:
int m_refNum; Input m_data;
$3 3
void main . .
Input in(l),ét()bject; < Avoid passing a great amount of

Math mathObject(inputObject); data across object boundaries.
SO S DS ESTE)E Object should provide abstract

and simple services.

)

Reduce Coupling

< Encapsulation reduces coupling

class Math {

class Input { public:

public: Math(Input &);
Input(); // will set m_refNum to zero double sine(); // will handle m_data
double readFromFile(); double cosine(); // automatically

private: // will take care of m_refNum private:
int m_refNum; Input m_data;

$3 3

void main() { . .
Input inputObject; < Avoid passing a great amount of
Math mathObject(inputObject); data across object boundaries.
S SSIETIC LA EAIIE I Object should provide abstract

} ; :
and simple services.

As opposed to the data flow design methodology, in which data
flows along processing units, object oriented/based programming
design objects to keep and handle data intelligently. Put all
responsible objects together with close links for accomplishing a
specific work without looking into their detailed processed data.

22-45

Design Classes Before You Code It

<~ Before writing a large program, decide on your classes, what they
do, and how they relate to other classes.

Design Classes Before You Code It

<~ Before writing a large program, decide on your classes, what they
do, and how they relate to other classes.

<+ CRC cards — Classes — Responsibilities, Collaborators

Design Classes Before You Code It

<~ Before writing a large program, decide on your classes, what they
do, and how they relate to other classes.

<+ CRC cards — Classes — Responsibilities, Collaborators
<~ Example

Class Math
Responsibilities Collaborators

Design Classes Before You Code It

<~ Before writing a large program, decide on your classes, what they
do, and how they relate to other classes.

<+ CRC cards — Classes — Responsibilities, Collaborators
<~ Example

Class Math
Responsibilities Collaborators

Return cosine of file data

Class Input
Responsibilities
Read next data from file

Design Classes Before You Code It

<~ Before writing a large program, decide on your classes, what they
do, and how they relate to other classes.

<+ CRC cards — Classes — Responsibilities, Collaborators
<~ Example

Class Math
Responsibilities Collaborators

Return cosine of file data

Class Input
Responsibilities
Read next data from file

< What about the data members?
These are hashed out after all the CRC cards have been prepared.

22-46

Class Description

< An alternative approach to the CRC method

Class Description

< An alternative ap

roach to the CRC method

Name

Array

Purpose

Create a fixed-size array which protects against out of
bounds and off by one errors.

Constructors

Default set the array to size 0
Non default sets the array to a size specified by the client

Destructors

Deletes the memory associated with the array

Operations
Mutators
Accessors

Insert data into a specified slot
Retrieve data from a specified slot

Fields

m_dataSize
m_data

Class Description

< An alternative ap

roach to the CRC method

Name

Array

Purpose

Create a fixed-size array which protects against out of
bounds and off by one errors.

Constructors

Default set the array to size 0
Non default sets the array to a size specified by the client

Destructors

Deletes the memory associated with the array

Operations
Mutators
Accessors

Insert data into a specified slot
Retrieve data from a specified slot

Fields

m_dataSize
m_data

4 Codes class Array {
public:

Array();
Array(int arraySize);
~Array();
void insertElement(int element, int slot);
int getElement(int slot) const;
private:
int m_dataSize;
int *m_data;

¥3

Function Descriptions

< Each function should be completely specified before coding.

Function Descriptions

< Each function should be completely specified before coding.

Prototype int getElement(int slot) const;

Purpose To return the integer in the array at position slot
Receives The slot which the client would like to access.

The first element in the array is slot 0.

Returns The integer if the function succeeds, otherwise returns
an error value specified as kError

Remarks KError is currently set to 0.

Function Descriptions

< Each function should be completely specified before coding.

Prototype int getElement(int slot) const;

Purpose To return the integer in the array at position slot
Receives The slot which the client would like to access.

The first element in the array is slot 0.

Returns The integer if the function succeeds, otherwise returns
an error value specified as kError

Remarks KError is currently set to 0.

< Alternatively, write the complete function documentation and
prepare a skeleton function declaration

Function Descriptions

< Each function should be completely specified before coding.

Prototype int getElement(int slot) const;

Purpose To return the integer in the array at position slot
Receives The slot which the client would like to access.

The first element in the array is slot 0.

Returns The integer if the function succeeds, otherwise returns
an error value specified as kError

Remarks KError is currently set to 0.

< Alternatively, write the complete function documentation and
prepare a skeleton function declaration

/* function: getElement

* Usage: value = getElement(slot);
*

* Returns the integer in the array corresponding to slot.
* The first element is slot zero. If the slot is out of range
* KError is returned, which is currently zero.

*/

int Array::getElement(int slot) {

)

Discover Your Classes

+ Bertrand Meyer in "Object-oriented Software Construction"

Discover Your Classes

+ Bertrand Meyer in "Object-oriented Software Construction"

"When software design is understood as operational modeling,
object-oriented design is a natural approach

Discover Your Classes

+ Bertrand Meyer in "Object-oriented Software Construction"

"When software design is understood as operational modeling,
object-oriented design is a natural approach: the world being
modeled is made of objects — sensors, devices, airplanes,
employees, paychecks, tax returns

Discover Your Classes

+ Bertrand Meyer in "Object-oriented Software Construction"

"When software design is understood as operational modeling,
object-oriented design is a natural approach: the world being
modeled is made of objects — sensors, devices, airplanes,
employees, paychecks, tax returns — and it is appropriate to
organize the model around computer representations of theses
objects.

Discover Your Classes

+ Bertrand Meyer in "Object-oriented Software Construction"

"When software design is understood as operational modeling,
object-oriented design is a natural approach: the world being
modeled is made of objects — sensors, devices, airplanes,
employees, paychecks, tax returns — and it is appropriate to
organize the model around computer representations of theses
objects. This is why object-oriented designers usually do not

spend their time in academic discussions of methods to find
objects: in the physical or abstract reality being modeled, the
objects are just there for the picking!

Discover Your Classes

+ Bertrand Meyer in "Object-oriented Software Construction"

"When software design is understood as operational modeling,
object-oriented design is a natural approach: the world being
modeled is made of objects — sensors, devices, airplanes,
employees, paychecks, tax returns — and it is appropriate to
organize the model around computer representations of theses
objects. This is why object-oriented designers usually do not

spend their time in academic discussions of methods to find
objects: in the physical or abstract reality being modeled, the
objects are just there for the picking! The software objects will
simply reflect these external objects."

Discover Your Classes

+ Bertrand Meyer in "Object-oriented Software Construction"

"When software design is understood as operational modeling,
object-oriented design is a natural approach: the world being
modeled is made of objects — sensors, devices, airplanes,
employees, paychecks, tax returns — and it is appropriate to
organize the model around computer representations of theses
objects. This is why object-oriented designers usually do not

spend their time in academic discussions of methods to find
objects: in the physical or abstract reality being modeled, the
objects are just there for the picking! The software objects will
simply reflect these external objects."

<+ How do the experts identify objects?

Discover Your Classes

+ Bertrand Meyer in "Object-oriented Software Construction"

"When software design is understood as operational modeling,
object-oriented design is a natural approach: the world being
modeled is made of objects — sensors, devices, airplanes,
employees, paychecks, tax returns — and it is appropriate to
organize the model around computer representations of theses
objects. This is why object-oriented designers usually do not
spend their time in academic discussions of methods to find
objects: in the physical or abstract reality being modeled, the
objects are just there for the picking! The software objects will
simply reflect these external objects."

<+ How do the experts identify objects?

"It's a Holy Grail. There is no panacea." -- Bjarne Stroustrup

Discover Your Classes

+ Bertrand Meyer in "Object-oriented Software Construction"

"When software design is understood as operational modeling,
object-oriented design is a natural approach: the world being
modeled is made of objects — sensors, devices, airplanes,
employees, paychecks, tax returns — and it is appropriate to
organize the model around computer representations of theses
objects. This is why object-oriented designers usually do not
spend their time in academic discussions of methods to find
objects: in the physical or abstract reality being modeled, the
objects are just there for the picking! The software objects will
simply reflect these external objects."

<+ How do the experts identify objects?

"It's a Holy Grail. There is no panacea." -- Bjarne Stroustrup

"That's a fundamental question for which there is no easy
answer." -- R. Gabriel, designer of Common Lisp Object

System (CLOS)

Object Discovery Techniques

<~ Real-world modeling:

Object Discovery Techniques

<~ Real-world modeling:

* Use objects in the application domain as the basis for objects in
the system.

Object Discovery Techniques

<~ Real-world modeling:

* Use objects in the application domain as the basis for objects in
the system.

<~ Behavior modeling:

Object Discovery Techniques

<~ Real-world modeling:

* Use objects in the application domain as the basis for objects in
the system.

<~ Behavior modeling:

* Determine the overall behaviors of the system (what 1t does).

Object Discovery Techniques

<~ Real-world modeling:

* Use objects in the application domain as the basis for objects in
the system.

<~ Behavior modeling:

* Determine the overall behaviors of the system (what 1t does).

* Components which play significant roles in each behavior are
objects.

Object Discovery Techniques

<~ Real-world modeling:

* Use objects in the application domain as the basis for objects in
the system.

<~ Behavior modeling:

* Determine the overall behaviors of the system (what 1t does).

* Components which play significant roles in each behavior are
objects.

<~ Scenario-based analysis:

Object Discovery Techniques

<~ Real-world modeling:

* Use objects in the application domain as the basis for objects in
the system.

<~ Behavior modeling:
* Determine the overall behaviors of the system (what 1t does).

* Components which play significant roles in each behavior are
objects.

<~ Scenario-based analysis:

* Create scenarios of the system.

Object Discovery Techniques

<~ Real-world modeling:

* Use objects in the application domain as the basis for objects in
the system.

<~ Behavior modeling:
* Determine the overall behaviors of the system (what 1t does).

* Components which play significant roles in each behavior are
objects.

<~ Scenario-based analysis:

* Create scenarios of the system.

* What are the required entities in each scenario?

Object Discovery Techniques

Real-world modeling:

* Use objects in the application domain as the basis for objects in
the system.

Behavior modeling:

* Determine the overall behaviors of the system (what 1t does).

* Components which play significant roles in each behavior are
objects.

> Scenario-based analysis:

* Create scenarios of the system.

* What are the required entities in each scenario?
Grammatical analysis:

Object Discovery Techniques

Real-world modeling:

* Use objects in the application domain as the basis for objects in
the system.

Behavior modeling:
* Determine the overall behaviors of the system (what 1t does).

* Components which play significant roles in each behavior are
objects.

> Scenario-based analysis:

* Create scenarios of the system.

* What are the required entities in each scenario?
Grammatical analysis:

* Write a natural language description of the system.

Object Discovery Techniques

Real-world modeling:

* Use objects in the application domain as the basis for objects in
the system.

Behavior modeling:
* Determine the overall behaviors of the system (what 1t does).

* Components which play significant roles in each behavior are
objects.

> Scenario-based analysis:

* Create scenarios of the system.

* What are the required entities in each scenario?
Grammatical analysis:

* Write a natural language description of the system.

x The nouns are the classes; the verbs are the methods.

Noun-Verb Analysis Example

<~ Program description (specification, highly abbreviated)

Noun-Verb Analysis Example

<~ Program description (specification, highly abbreviated)

"The program allows the user to assign students to sections based on the
available times.

Noun-Verb Analysis Example

<~ Program description (specification, highly abbreviated)

"The program allows the user to assign students to sections based on the
available times. Times are input by the teacher.

Noun-Verb Analysis Example

<~ Program description (specification, highly abbreviated)

"The program allows the user to assign students to sections based on the
available times. Times are input by the teacher. Students rank times by
preference (up to three allowed) using a form.

Noun-Verb Analysis Example

<~ Program description (specification, highly abbreviated)

"The program allows the user to assign students to sections based on the
available times. Times are input by the teacher. Students rank times by
preference (up to three allowed) using a form. All of the student inputs are
collected into a central database.

Noun-Verb Analysis Example

<~ Program description (specification, highly abbreviated)

"The program allows the user to assign students to sections based on the
available times. Times are input by the teacher. Students rank times by
preference (up to three allowed) using a form. All of the student inputs are
collected into a central database. When the teacher indicates the database is
complete

Noun-Verb Analysis Example

<~ Program description (specification, highly abbreviated)

"The program allows the user to assign students to sections based on the
available times. Times are input by the teacher. Students rank times by
preference (up to three allowed) using a form. All of the student inputs are
collected into a central database. When the teacher indicates the database is
complete, the final result is optimized so that no section has more than 12
students

Noun-Verb Analysis Example

<~ Program description (specification, highly abbreviated)

"The program allows the user to assign students to sections based on the
available times. Times are input by the teacher. Students rank times by
preference (up to three allowed) using a form. All of the student inputs are
collected into a central database. When the teacher indicates the database is
complete, the final result is optimized so that no section has more than 12
students and each student has received the highest possible preference.

Noun-Verb Analysis Example

<~ Program description (specification, highly abbreviated)

"The program allows the user to assign students to sections based on the
available times. Times are input by the teacher. Students rank times by
preference (up to three allowed) using a form. All of the student inputs are
collected into a central database. When the teacher indicates the database is
complete, the final result is optimized so that no section has more than 12
students and each student has received the highest possible preference. The
results are stored in a file showing which students have been assigned to
which sections."

Noun-Verb Analysis Example

<~ Program description (specification, highly abbreviated)

"The program allows the user to assign students to sections based on the
available times. Times are input by the teacher. Students rank times by
preference (up to three allowed) using a form. All of the student inputs are
collected into a central database. When the teacher indicates the database is
complete, the final result is optimized so that no section has more than 12
students and each student has received the highest possible preference. The
results are stored in a file showing which students have been assigned to
which sections."

<~ Noun analysis: students, sections, times, teacher, preferences, form,
student inputs, database, results, output file

Noun-Verb Analysis Example

<~ Program description (specification, highly abbreviated)

"The program allows the user to assign students to sections based on the
available times. Times are input by the teacher. Students rank times by
preference (up to three allowed) using a form. All of the student inputs are
collected into a central database. When the teacher indicates the database is
complete, the final result is optimized so that no section has more than 12
students and each student has received the highest possible preference. The
results are stored in a file showing which students have been assigned to
which sections."

<~ Noun analysis: students, sections, times, teacher, preferences, form,
student inputs, database, results, output file

This can be simplified further to just these categories
form, (section) times, database, results (optimization process), output file

Noun-Verb Analysis Example

<~ Program description (specification, highly abbreviated)

"The program allows the user to assign students to sections based on the
available times. Times are input by the teacher. Students rank times by
preference (up to three allowed) using a form. All of the student inputs are
collected into a central database. When the teacher indicates the database is
complete, the final result is optimized so that no section has more than 12
students and each student has received the highest possible preference. The
results are stored in a file showing which students have been assigned to
which sections."

<~ Noun analysis: students, sections, times, teacher, preferences, form,
student inputs, database, results, output file

This can be simplified further to just these categories
form, (section) times, database, results (optimization process), output file

< Possible classes: optimization process, student, teacher, form, sections,
database, output

Noun-Verb Analysis Example

<~ Program description (specification, highly abbreviated)

"The program allows the user to assign students to sections based on the
available times. Times are input by the teacher. Students rank times by
preference (up to three allowed) using a form. All of the student inputs are
collected into a central database. When the teacher indicates the database is
complete, the final result is optimized so that no section has more than 12
students and each student has received the highest possible preference. The
results are stored in a file showing which students have been assigned to
which sections."

<~ Noun analysis: students, sections, times, teacher, preferences, form,
student inputs, database, results, output file

This can be simplified further to just these categories
form, (section) times, database, results (optimization process), output file

< Possible classes: optimization process, student, teacher, form, sections,
database, output

< Verb analysis: assign students, input sections, rank by preference,
collect into database, indicate database is complete,
optimize results, store results in file

Tentative Classes

< Assign verbs to nouns, that 1s, assign methods to classes. This 1s
the usual classification problem.

Tentative Classes

< Assign verbs to nouns, that 1s, assign methods to classes. This 1s
the usual classification problem.

* Ex: class Optimization

Tentative Classes

< Assign verbs to nouns, that 1s, assign methods to classes. This 1s
the usual classification problem.

* Ex: class Optimization

{ optimize data

Tentative Classes

< Assign verbs to nouns, that 1s, assign methods to classes. This 1s
the usual classification problem.

* Ex: class Optimization

{ optimize data

store 1n file

Tentative Classes

< Assign verbs to nouns, that 1s, assign methods to classes. This 1s
the usual classification problem.

* Ex: class Optimization Possible collaborators: Database, File

{ optimize data

store 1n file

Tentative Classes

< Assign verbs to nouns, that 1s, assign methods to classes. This 1s
the usual classification problem.

* Ex: class Optimization Possible collaborators: Database, File

{ optimize data
store 1n file

< Expect changes:

Tentative Classes

< Assign verbs to nouns, that 1s, assign methods to classes. This 1s
the usual classification problem.

* Ex: class Optimization Possible collaborators: Database, File

{ optimize data
store 1n file

< Expect changes:
Designs always turn out to be wrong or incomplete

Tentative Classes

< Assign verbs to nouns, that 1s, assign methods to classes. This 1s
the usual classification problem.

* Ex: class Optimization Possible collaborators: Database, File

{ optimize data
store 1n file

< Expect changes:

Designs always turn out to be wrong or incomplete, but having no
design 1s worse.

Tentative Classes

< Assign verbs to nouns, that 1s, assign methods to classes. This 1s
the usual classification problem.

* Ex: class Optimization Possible collaborators: Database, File

{ optimize data
store 1n file

< Expect changes:

Designs always turn out to be wrong or incomplete, but having no
design 1s worse. In a suitably encapsulated object system, it 1s easy
to refactor.

Tentative Classes

< Assign verbs to nouns, that 1s, assign methods to classes. This 1s
the usual classification problem.

* Ex: class Optimization Possible collaborators: Database, File

{ optimize data
store 1n file

< Expect changes:

Designs always turn out to be wrong or incomplete, but having no
design 1s worse. In a suitably encapsulated object system, it 1s easy
to refactor. It 1s easy to create new objects

Tentative Classes

< Assign verbs to nouns, that 1s, assign methods to classes. This 1s
the usual classification problem.

* Ex: class Optimization Possible collaborators: Database, File

{ optimize data
store 1n file

< Expect changes:

Designs always turn out to be wrong or incomplete, but having no
design 1s worse. In a suitably encapsulated object system, it 1s easy
to refactor. It 1s easy to create new objects and to reassign methods
or data from one class to another class.

Tentative Classes

< Assign verbs to nouns, that 1s, assign methods to classes. This 1s
the usual classification problem.

* Ex: class Optimization Possible collaborators: Database, File

{ optimize data
store 1n file

< Expect changes:

Designs always turn out to be wrong or incomplete, but having no
design 1s worse. In a suitably encapsulated object system, it 1s easy
to refactor. It 1s easy to create new objects and to reassign methods
or data from one class to another class.

<~ Checking your design:

Tentative Classes

< Assign verbs to nouns, that 1s, assign methods to classes. This 1s
the usual classification problem.

* Ex: class Optimization Possible collaborators: Database, File

{ optimize data
store 1n file

< Expect changes:

Designs always turn out to be wrong or incomplete, but having no
design 1s worse. In a suitably encapsulated object system, it 1s easy
to refactor. It 1s easy to create new objects and to reassign methods
or data from one class to another class.

<~ Checking your design:
Once you have the classes,

Tentative Classes

< Assign verbs to nouns, that 1s, assign methods to classes. This 1s
the usual classification problem.

* Ex: class Optimization Possible collaborators: Database, File

{ optimize data
store 1n file

< Expect changes:

Designs always turn out to be wrong or incomplete, but having no
design 1s worse. In a suitably encapsulated object system, it 1s easy
to refactor. It 1s easy to create new objects and to reassign methods
or data from one class to another class.

<~ Checking your design:

Once you have the classes, rewrite the program
description using the new terms and actions.

Tentative Classes

< Assign verbs to nouns, that 1s, assign methods to classes. This 1s
the usual classification problem.

* Ex: class Optimization Possible collaborators: Database, File

{ optimize data
store 1n file

< Expect changes:

Designs always turn out to be wrong or incomplete, but having no
design 1s worse. In a suitably encapsulated object system, it 1s easy
to refactor. It 1s easy to create new objects and to reassign methods
or data from one class to another class.

<~ Checking your design:

Once you have the classes, rewrite the program
description using the new terms and actions. If
the description does not make sense, you have a bad design.

Tentative Classes

Assign verbs to nouns, that 1s, assign methods to classes. This 1s
the usual classification problem.

* Ex: class Optimization Possible collaborators: Database, File

{ optimize data
store 1n file

Expect changes:

Designs always turn out to be wrong or incomplete, but having no
design 1s worse. In a suitably encapsulated object system, it 1s easy
to refactor. It 1s easy to create new objects and to reassign methods
or data from one class to another class.

Checking your design:

Once you have the classes, rewrite the program
description using the new terms and actions. If
the description does not make sense, you have a bad design. If it
does, you have a better and cleaner description.

Tentative Classes

< Assign verbs to nouns, that 1s, assign methods to classes. This 1s
the usual classification problem.

* Ex: class Optimization Possible collaborators: Database, File

{ optimize data
store 1n file

Expect changes:

Designs always turn out to be wrong or incomplete, but having no
design 1s worse. In a suitably encapsulated object system, it 1s easy
to refactor. It 1s easy to create new objects and to reassign methods
or data from one class to another class.

Checking your design:

Once you have the classes, rewrite the program

description using the new terms and actions. If

the description does not make sense, you have a bad design. If it
does, you have a better and cleaner description. The model
extracted will become gradually simpler.

Tentative Classes

< Assign verbs to nouns, that 1s, assign methods to classes. This 1s
the usual classification problem.

* Ex: class Optimization Possible collaborators: Database, File

{ optimize data
store 1n file

Expect changes:

Designs always turn out to be wrong or incomplete, but having no

design 1s worse. In a suitably encapsulated object system, it 1s easy
to refactor. It 1s easy to create new objects and to reassign methods
or data from one class to another class.

specification

Checking your design:

Once you have the classes, rewrite the program
description using the new terms and actions. If
the description does not make sense, you have a bad design. If it
does, you have a better and cleaner description. The model
extracted will become gradually simpler.

design

=] —

+ HERILETIHEE - BEEENFAEZIH > SIS : IRAEH]

DL _EEIIE ? [ES (R

B EMT - KT ERVEETES ? A8 T8 E

#PEf LA o

EE - A DA - FERRA

AR > JEREE]

EAt 2 IAHE

+ FERILETIHASE - %ﬁf@mgkﬁ%m FAHE R ¢ BRAEH
DUE EBIWE 7 JE J[E[E K © BJ DN o FEERAL T 2R1R » [ERAEET]
BRI - REEENEGETRITS ? BA8 T BBt : /5 -
AV EA o BB1RA — (U BB RETIEEASE » P N Z1% - fitsLh
B ERIJIER DA ? AR ERMER A TT—& - (B IEKH

JTEIIVEREY > FrDARLERAER © 1REF -

=] —

v FERIRETHEE > BFEEENZAEZH > BEER « RAEH
UG EBINS 7 JTER[EIEE « DM - FEERA TR » [EEEE]
BEEMI - IRETEERYEETRITS ? BB TEEIZEA - 125 -
#H DL - B — BB SR E BRASE » 28 N 2% - st
B ¢ EREJIER DA ? AR ERMER A T —& - B AR

JIEIBBEEY » BT CABRERAMER © 1REF - JE5EHHR > Sn—(rEkE
MR B ERBYEASE - H/eMIER © IR T RAVEA 7 FER
firsR © B —RERLAT - AE HAVEIA R AR E=VUE A
AFHEYEASE - M ¢ RIS 7 IWE MRS 0 R RES
A EERHIES T - D TR ¢ B DARIZEA (4 -

=] —

v FERIRETHSEE > FEEENZ AR > BEER « RAEH

DUE _FBUIE Q [EEEET © 5 DR o fEFRA

ARRIR > TERREE]

BEEMI - IRETEERYEETRITS ? BB T EEIZEA - /2 -
#H DL - BRI — BB SRE BRREE » 28 N 2% - st

N e Y=
=3 AR =1

RV JTE] DA ? ASRABERME5 A T —=kh - [E AR

TGRS » P ABLERAIS5E © TREF - PESEHRIR » S5—{UEE
ElZRE TBIEASE > HI/uREER © REFI (T FERAYSEE ? TR

firsie © B —REBLLF o

L H HEVE B R R DI & =V A

AHBIEREE - i X ¢ H—REES ? WE RS - e
RIREHSER R » Fr AR ¢ B DRI RR (& - BI5E3K
SR RERERE R - HEEREXEEEE - HE&X/DiE ?
EHEA ¢ 3507C 0 REHE—TIréatisk - fMifkik 6507T

i

KT 82 > BeFE-E AL B

(m{

KET

22-53

H#— (cont’d)

H#— (cont’d)

¢ P JE B, seaThD, BHET (MRE, 3852

H#— (cont’d)

¢ U BB, GETED, BiE (IREE, 3852)
< FERIE:

H#— (cont’d)

< W BB, SeaThD, BEE (IRE, 2822
< FERE:

H#— (cont’d)
o Wit [B, A, B (IEF,
< FHRE:

B

B TE EaxaTHI(): String

H#— (cont’d)
o Wi [E B, T, R (R, 2
< FHRE:

B

B TE EaxaTHI(): String

+EE2)T AR/N): int

H#— (cont’d)
o Wit [B, A, B (IEF,
< FHRE:

B

B TE EaxaTHI(): String

+EEZ 7B R/IN): int
+EY{ TSRV EZAY(): String

H#— (cont’d)
o Wit [B, A, B (IEF,
< FHRE:

B

B TE EaxaTHI(): String

+E27E R/N): int
+EI(T IR HVEZSY(): String
+HJE5(4%H: int): int

H#— (cont’d)
o Wit [B, A, B (IEF,
< FHRE:

B

B TE EaxaTHI(): String

+E27E R/N): int
+EI(T IR HVEZSY(): String
+HJE5(4%H: int): int

H#— (cont’d)
o Wit [B, A, B (IEF,
< FHRE:

5 & B

+0] DL _EBYIE(): boolean RS EEEEHER(): String
+EE2 I R/IN): int
ROV EER(): String
+HJE5(4%H: int): int

i

— (cont’d)

< U B &, BETEN, BEE (1
b=k

A=

+a] DUE _FEIIE(): boolean

+5EBEEZ(): void

IREH, 5652

B

HEATEE s THN(): String
+5cE2 738 R /IN): int
+EU(HEE Y B (): String
+HJE5(4%H: int): int

!

— (cont’d)

< U B &, BETEN, BEE (1
b=k

A=

+a] DUE _FEIIE(): boolean

+5EBEEZ(): void
+2/ DR (MR EE: int): int

IREH, 5652

B

HEATEE s THN(): String
+5cE2 738 R /IN): int
+EU(HEE Y B (): String
+HJE5(4%H: int): int

H#— (cont’d)
¢ U BB, GETED, BiE (IREE, 3852)
< FHRIE:

A= B

+a] DLE_[HIIE(): boolean HEnigEsxaTEN(): String

+IEEEEZ(): void +5eE2 7B R/N): int
+25/ DS (IR int) int +BI - EEREAYEZRI(): String
HEE (B RE: | +f 52 (5 %HE: int): int

H#— (cont’d)
¢ U BB, GETED, BiE (IREE, 3852)
< FHRIE:

A= B

+a] DLE_[HIIE(): boolean HEnigEsxaTEN(): String

+IEEEEZ(): void +5eE2 7B R/N): int
+25/ DS (IR int) int +BI - EEREAYEZRI(): String
HEE (B RE: | +f 52 (5 %HE: int): int

H#— (cont’d)
o Wit [B, A, B (IEF,
< FHRE:

A= B

+0] DL _EBYIE(): boolean HEATEE s THN(): String

+5EBREZ(): void +5E8Z 173 A/ N0): int
+25/ D2 (RE.: int): int +EI(PR HYEZRY(): String
+H R (SHE: +{1$2(£4E: int): int

Bt

+BIFAEZ(): void

H#— (cont’d)
o Wit [B, A, B (IEF,
< FHRE:

A= B

+0] DL _EBYIE(): boolean HEATEE s THN(): String

+5EBREZ(): void +5E8Z 173 A/ N0): int
+25/ D2 (RE.: int): int +EI(PR HYEZRY(): String
+H R (SHE: +{1$2(£4E: int): int

Bt

FHIGEB(): void
+5555 —HE(): void

H#— (cont’d)
o Wit [B, A, B (IEF,
< FHRE:

A= B

+0] DL _EBYIE(): boolean HEATEE s THN(): String

+5EBREZ(): void +5E8Z 173 A/ N0): int
+25/ D2 (RE.: int): int +EI(PR HYEZRY(): String
+H R (SHE: +{1$2(£4E: int): int

Bt

FHIGEB(): void
+5555 —HE(): void

H#— (cont’d)
o Wit [B, A, B (IEF,
< FHRE:

A= B

+0] DL _EBYIE(): boolean HEATEE s THN(): String

+5EBREZ(): void +5E8Z 173 A/ N0): int
+25/ D2 (RE.: int): int +EI(PR HYEZRY(): String
+H R (SHE: +{1$2(£4E: int): int

Bt

FHIGEB(): void
+5555 —HE(): void

¢ B EANE X

EEINEL: - -

R SRIEEE L BE C CPUEE

syl —

| T

+ BHipEINESEBINEN 2N - SRR - =R CPUEE

+ BEFBEBKREN - REFELET/IT > R ERAT -
FEER T EmAHEL FETEARE ITARTEE
T

B —

+ BEiGEINESEENTN, © IR - TR - &% > CPUEE
+ BEREEREA > IREG S/ ST/ ERERAT

HHEGER I E

— VN2
— R

¢ JEEFTKAR

TE ¢ B B

= RHE R RMEATAEWE - T\ BITEE

BT B -

+ BHipEINESEBINEN 2N - SRR - =R CPUEE

+ BEFBEBKREN - REFELET/IT > R ERAT -
FEER T EmAHEL FETEARE ITARTEE
T

o WEEFVKARIE | FHIS0Y AR I -
o BB - (IR TR BASE

+ BEiGEINESEENTN, © IR - TR - &% > CPUEE

+ BEFREEERESG > RS LT/\IT - B EL AT -
HEgEN TELARERL FEANEWME 1T\ AITEE

— VN2
— R

+ JEBRUKERITE © Byl B
« B - HRER AR Bda s
« S EEEMRG TN - RBRE HE AR ESR L — e ot RS -

BT B -

+ BEiGEINESEENTN, © IR - TR - &% > CPUEE

¢ BREEEKZESR > RS Ee T LET /3 B ERAT -
FHEEEN T E L ED > FMEAAEWE - 17\ ZITEE
—3—

+ JEBRKERIE © By hl L5 E AR peE T -
« B - HRER AR Bda s
« S EEEMRG TN - RBRE HE AR ESR L — e ot RS -

i AR ZHIERH - —REFEWREHE > IKWMESET-—5&
7= igﬁmlﬂm@ﬂﬁﬂ—%ﬂﬁﬁﬁﬂ - —RHV#FK

i3] — (cont’d)

i3] — (cont’d)

Main Board

Main Board

Main Board

Monitor

i3] — (cont’d)

Product

Main Board

Monitor

i3] — (cont’d)

Product

AN

Main Board Monitor

i3] — (cont’d)

Product

— Price

AN

Main Board

Monitor

i3] — (cont’d)

i3] — (cont’d)

Buy2GetlFree

SpecialPrice

Buy2GetlFree

i3] — (cont’d)

SpecialPrice

AN

Buy2GetlFree

i3] — (cont’d)

Week

SpecialPrice

AN

Buy2GetlFree

i3] — (cont’d)

Week

SpecialOfferItem

SpecialPrice

AN

Buy2GetlFree

i3] — (cont’d)

Week

SpecialOfferItem

SpecialPrice

AN

Buy2GetlFree

i3] — (cont’d)

Week

SpecialOfferItem

SpecialPrice

AN

Buy2GetlFree

i3] — (cont’d)

{5 — (cont’d)

PerHour

{5 — (cont’d)

PerHour
— rate

PerHour

— rate

ItemByltem

i3] — (cont’d)

PerHour

— rate

ItemByltem

— percentage

i3] — (cont’d)

PerHour

— rate

ItemByltem

— percentage

i3] — (cont’d)

AN

PerHour ItemByltem
— rate — percentage

i3] — (cont’d)

Salary

+ calculate(nltems/nHours)

AN

PerHour ItemByltem
— rate — percentage

Employee

i3] — (cont’d)

Salary

+ calculate(nltems/nHours)

AN

PerHour ItemByltem

— rate

— percentage

Employee

i3] — (cont’d)

Salary

+ calculate(nltems/nHours)

AN

PerHour ItemByltem

— rate

— percentage

i3] — (cont’d)

i3] — (cont’d)

MemberDiscount

i3] — (cont’d)

MemberDiscount

NonmemberDiscount

i3] — (cont’d)

MemberDiscount

NonmemberDiscount

i3] — (cont’d)

MemberDiscount

NonmemberDiscount

i3] — (cont’d)

Transaction

MemberDiscount

NonmemberDiscount

i3] — (cont’d)

Transaction

MemberDiscount

NonmemberDiscount

i3] — (cont’d)

Customer

Transaction

MemberDiscount

NonmemberDiscount

i3] — (cont’d)

Customer

order
*

Transaction

MemberDiscount | | NonmemberDiscount

i3] — (cont’d)

Customer

order
*

Product Transaction

MemberDiscount | | NonmemberDiscount

i3] — (cont’d)

Customer

order
*

Product |1.. Transaction

MemberDiscount | | NonmemberDiscount

i3] — (cont’d)

Customer

order
*

Product |I.. Transaction Employee

MemberDiscount | | NonmemberDiscount

i3] — (cont’d)

Customer

order
*

Product |I.. Transaction Employee
Serviced by

MemberDiscount | | NonmemberDiscount

i3] — (cont’d)

{5 — (cont’d)

Company

i3] — (cont’d)

Company

Employee

— (cont’d)

Customer

Company

Employee

i3] — (cont’d)

Customer

Company

Employee

i3] — (cont’d)

Customer

Company

Employee

D“*

SpecialOfferlitern

Mermber

Salary SystemFacade

TransactionSystemFacade

Custormner

cornponent

Ebprice

COmpany

I
faldnizd

D“*

transaction

Hiras

D..*

bice fy

MainEoard

Monitor

discoLnt By

DiscoLnt

SpeddPrice

1

Buy TwioWWithAnother Cne

7

MermberDiscount

MNonMermberDiscount

emplu:n,ree_

sy By

salarying

D..*

BralSalary (itermns)

W or kingHrSalary

BonusSalary

EMoney PerHr

&Percertane

