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+ There are generally four phases to the object-oriented
analysis/design process:

< In the problem domain,

x 1dentification of objects from the program specification.

x 1dentification of the attributes and behaviors of these objects.

x 1dentification of any super-classes.

specification of the behaviors of the identified classes.
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Objects 1n general have two important properties:
1. State
2. Behaviour

+ Object States:

An object contains certain information about itself e.g.
> a lecturer "knows" his name, address, age, courses he teach ...
> a student “knows” his name, address, age, ID, courses studied ...
> a lecture theatre “knows" its location, capacity etc.

The information that an object maintains determines its state.
The individual components of information are known as the
objects attributes.
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+ Object Behaviours:
Apart from maintaining information about itself, an object is
also capable of performing certain actions. €.g.

» a lecturer teach a class, grade assignments, set an examination
paper, eftc.

» a student attend a lecture, complete an assignment, sit in an exam,
etc.

The actions that an object can perform are known as its

behaviours.

When applying an object-orientated analysis & design to a
problem specification we Identify objects, record their states,
and specify their behaviours.
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< A good class describes a single abstraction

ol |€00

< Assume we are writing a class Mail

networking email program public:
void sendMessage() const;

void receiveMessage();

void displayMessage() const;
. void processCommand();
Why does this class void getCommand();

private:
char *m_message;
char *m_command;

¥3

<+ To achieve good cohesion, you must classify objects into groups
with close functionalities.

lack cohesion?
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char *m_string;

}3
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Completeness and Convenience

< Every class must contain all necessary features.

class String {

public:

* Why is this class not complete? String(char *inputData);

* What would be desirable but not void displayString() const;
essential features? char getLetter(int slot) const;
char getLength() const;

private:
char *m_string;

3

< The opposite problem i1s a class that
1s over-complete 1n the name of convenience.

char getLetter(int slot) const;

char getFirstLetter() const;

char getLastLetter() const;

char getPreviousLetter() const;

char getNextLetter() const;

char findLetter(char letter) const; // find first occurrence of letter
char findLetterEnd(char letter) const; // finds last occurrence

* A class stuffed with unnecessary features is not convenient.
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Consistency

<~ Here 1s a very inconsistent class.

class Data {
public:
Data(); ~Data();
Data(char *name, int weight, int height); ’
void setWeight(int weight); .~ | Without these descriptions,
void setHeight(int height); g it is hard to guess what
int return Weight(); functions of this class are about.
int getSize();
private:
char *m_name; / class Graphics {
int m_weight; void drawLine(int x, int y); // absolute coordinate
int m_length; void movePen(int deltaX, int deltaY); // relative offsets

¥3 }5
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< This Graphics class 1s both inconsistent and unclear

* drawLine() draws a line from the current pen position to the new

7

coordinate (X, y) which is specified in absolute coordinates e

* movePen() moves the pen from the current position by the amounts (X, y)
which is specified in relative coordinates
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class Input { // returns data from file at location

fileReferenceNum
public:
double readFromFile(long &fileReferenceNum);

}3

class Math {// returns sine or cosine of current data in file
public:
double sine(Input source, long &fileReferenceNum);
double cosine(Input source, long &fileReferenceNum);
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Coupling

+ Classes with many interconnections are highly coupled.

7z

void main() §{
Math mathObject;
Input inputObject;
long fileReferenceNum = (; // do not forget initialization
cout << mathObject.sine(inputObject, fileReferenceNum);

)

class Input { // returns data from file at location

fileReferenceNum
public:
double readFromFile(long &fileReferenceNum);

}3

class Math {// returns sine or cosine of current data in file
public:
double sine(Input source, long &fileReferenceNum);
double cosine(Input source, long &fileReferenceNum);

33
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< Encapsulation reduces coupling

class Input {

public:
Input(); // will set m_refNum to zero
double readFromFile();

private: // will take care of m_refNum
int m_refNum;
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Reduce Coupling

< Encapsulation reduces coupling

class Math {

class Input { public:

public: Math(Input &);
Input(); // will set m_refNum to zero double sine(); // will handle m_data
double readFromFile(); double cosine(); // automatically

private: // will take care of m_refNum private:
int m_refNum; Input m_data;

$3 3

void main() { . .
Input inputObject; < Avoid passing a great amount of
Math mathObject(inputObject); data across object boundaries.
S SSIETIC LA EAIIE I Object should provide abstract

} ; :
and simple services.

As opposed to the data flow design methodology, in which data
flows along processing units, object oriented/based programming
design objects to keep and handle data intelligently. Put all
responsible objects together with close links for accomplishing a
specific work without looking into their detailed processed data.
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Design Classes Before You Code It

<~ Before writing a large program, decide on your classes, what they
do, and how they relate to other classes.

<+ CRC cards — Classes — Responsibilities, Collaborators
<~ Example

Class Math
Responsibilities Collaborators

Return cosine of file data

Class Input
Responsibilities
Read next data from file

< What about the data members?
These are hashed out after all the CRC cards have been prepared.

22-46
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Name

Array

Purpose

Create a fixed-size array which protects against out of
bounds and off by one errors.

Constructors

Default set the array to size 0
Non default sets the array to a size specified by the client

Destructors

Deletes the memory associated with the array

Operations
Mutators
Accessors

Insert data into a specified slot
Retrieve data from a specified slot

Fields

m_dataSize
m_data




Class Description

< An alternative ap

roach to the CRC method

Name

Array

Purpose

Create a fixed-size array which protects against out of
bounds and off by one errors.

Constructors

Default set the array to size 0
Non default sets the array to a size specified by the client

Destructors

Deletes the memory associated with the array

Operations
Mutators
Accessors

Insert data into a specified slot
Retrieve data from a specified slot

Fields

m_dataSize
m_data

4 Codes class Array {
public:

Array();
Array(int arraySize);
~Array();
void insertElement(int element, int slot);
int getElement(int slot) const;
private:
int m_dataSize;
int *m_data;

¥3
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Function Descriptions

< Each function should be completely specified before coding.

Prototype int getElement(int slot) const;

Purpose To return the integer in the array at position slot
Receives The slot which the client would like to access.

The first element in the array is slot 0.

Returns The integer if the function succeeds, otherwise returns
an error value specified as kError

Remarks KError is currently set to 0.

< Alternatively, write the complete function documentation and
prepare a skeleton function declaration

/* function: getElement

* Usage: value = getElement(slot);
*

* Returns the integer in the array corresponding to slot.
* The first element is slot zero. If the slot is out of range
* KError is returned, which is currently zero.

*/

int Array::getElement(int slot) {

)
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"When software design is understood as operational modeling,
object-oriented design is a natural approach: the world being
modeled is made of objects — sensors, devices, airplanes,
employees, paychecks, tax returns — and it is appropriate to
organize the model around computer representations of theses
objects. This is why object-oriented designers usually do not
spend their time in academic discussions of methods to find
objects: in the physical or abstract reality being modeled, the
objects are just there for the picking! The software objects will
simply reflect these external objects."

<+ How do the experts identify objects?

"It's a Holy Grail. There is no panacea." -- Bjarne Stroustrup

"That's a fundamental question for which there is no easy
answer." -- R. Gabriel, designer of Common Lisp Object

System (CLOS)
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Real-world modeling:

* Use objects in the application domain as the basis for objects in
the system.

Behavior modeling:
* Determine the overall behaviors of the system (what 1t does).

* Components which play significant roles in each behavior are
objects.

> Scenario-based analysis:

* Create scenarios of the system.

* What are the required entities in each scenario?
Grammatical analysis:

* Write a natural language description of the system.

x The nouns are the classes; the verbs are the methods.
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<~ Program description (specification, highly abbreviated)

"The program allows the user to assign students to sections based on the
available times. Times are input by the teacher. Students rank times by
preference (up to three allowed) using a form. All of the student inputs are
collected into a central database. When the teacher indicates the database is
complete, the final result is optimized so that no section has more than 12
students and each student has received the highest possible preference. The
results are stored in a file showing which students have been assigned to
which sections."

<~ Noun analysis: students, sections, times, teacher, preferences, form,
student inputs, database, results, output file

This can be simplified further to just these categories
form, (section) times, database, results (optimization process), output file

< Possible classes: optimization process, student, teacher, form, sections,
database, output

< Verb analysis: assign students, input sections, rank by preference,
collect into database, indicate database is complete,
optimize results, store results in file
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