
Design of Object SystemsDesign of Object Systems

C++ Obj t O i t d P iC++ Object Oriented Programming
Pei-yih Ting

NTOUCSNTOUCS

23-1

Introduction
 Static model

UML T i l P 1 Cl Di R b C M i UML Tutorial: Part 1 – Class Diagrams, Robert C. Martin
http://faculty.ksu.edu.sa/amani.h/Documents/UMLTutoria(To%20benefit).pdf

 Dynamic model Dynamic model
 UML Tutorial: Collaboration Diagrams, Robert C. Martin

http://www objectmentor com/resources/articles/umlCollaborationDiagrams pdfhttp://www.objectmentor.com/resources/articles/umlCollaborationDiagrams.pdf

 UML Tutorial: Sequence Diagrams, Robert C. Martin
http://www.cs.umd.edu/~mvz/cmsc435-s09/pdf/cell-phone-sequence-chart.pdf

 The interplay between static and dynamic models:
 Novice OO designers often over-emphasize on static models – Novice OO designers often over emphasize on static models

classes, properties, interfaces, inheritance/aggregation relationships
 Software design is about behavior, behavior is dynamic

23-2

g , y
 Object oriented design is a technique used to separate and

encapsulate behaviors.

Introduction (cont’d)()
 A static model cannot be proven accurate without associated

dynamic modelsdynamic models.
 Dynamic models, on the other hand, do not adequately present

considerations of structure and dependency managementconsiderations of structure and dependency management.

 Require Quick iterations between static and dynamic models until
they converge to an acceptable solution.

Dynamic
Models

Static
Model

23-3

Dependency Managementp y g
 Dependency between ClassA and ClassB: a change in the interface

of ClassB necessitates changes in the implementation of ClassAof ClassB necessitates changes in the implementation of ClassA
 ClassA has a ClassB member object or member pointer (reference)
 ClassA is derived from ClassB ClassA ClassB

dependency

 ClassA has a function that takes a parameter of type ClassB
 ClassA has a function that uses a static member of ClassB
 ClassA sends a message (a method call) to ClassB
In each case, it is necessary to #include "classB.h" in classA.cpp.

 Code reuse an important goal always produces dependencies Code reuse, an important goal, always produces dependencies.
 When designing classes and libraries it is important to make sure that

we produce as few unnecessary or unintentional dependencies aswe produce as few unnecessary or unintentional dependencies as
possible because they slow down compilation and reduce reusability.

 Forward class declarations make it possible for classes to have Forward class declarations make it possible for classes to have
circular relationships without having circular dependencies between
header files. 23-4

UML Static Model
 Class Diagram

 l classes
 attributes/properties
 operations/interfaces/services operations/interfaces/services

 associations/relationships
 i h it It d d h t

Not every part in the graph is
i d inheritance

 aggregation/composition
It depends on what

the designer intends to capture.
required.

Date
+ <<create>> Date(year: int,

Employee
+ <<create>> Employee(name: char [], (y ,

month: int, day: int)
- m_day: int
- m_month: int

+ create Employee(name: char [],
year: int, month: int, day: int)

+ <<destroy>> ~Employee()
- m name: char * m_hiredDate

23-5

- m_year: int
_

- m_salary: int
- m_position: char *

UML Dynamic Modelsy
 State Diagram

D ib h t d t t i th t i Describe how a system responds to events in a manner that is
dependent upon its state

 Interaction Diagrams
 Sequence diagrams:

 focus on the order in which the messages are sent
 useful for describing the procedural flow through many objects

 Collaboration diagrams:
 focus on the relationships between the objects
 f l f i li i th l bj t ll b t t t j b d

N t S d ll b ti di d ib th

 useful for visualizing the way several objects collaborate to get a job done
 useful for comparing a dynamic model with a static model

23-6

Note: Sequence and collaboration diagrams describe the same
information and can be transformed into one another

Example: A Cellular Phonep
 Consider the software that controls a very simple cellular phone.

S ifi i Specifications
 Buttons: digits, send, accept, volume up/down, power, …
 Dialer hardware/software: emits the appropriate tones for dialing Dialer hardware/software: emits the appropriate tones for dialing
 Cellular radio: RF connection to the cellular network
 Microphone, speaker, displayp , p , p y

 There is an intuitive composition relationship from the above spec.

Static
M d l I

TelephoneDialer Cellular Radio

Model I

DisplaySpeakerButton Microphone

23-7
Is this good?? “Analogy to the real world” might not be sufficient.

Specifying Dynamicsp y g y
Make Phone Call Use cases:

1 User presses the digit buttons to1. User presses the digit buttons to
enter the phone number.

2. For each digit, the display is
updated to append the digit to the
phone number.

3 For each digit the dialer generates the corresponding tone and3. For each digit, the dialer generates the corresponding tone and
emits it from the speaker.

4. User presses “Send”.p
5. The “in use” indicator is illuminated on the display.
6. The cellular radio establishes a connection to the network.
7. The accumulated digits are sent to the network.
8. The connection is made to the called party.

23-8

 How do the objects in the static model collaborate to
execute this procedure?

Possible Dynamicsy
 When digit buttons are pressed:

 Digit button object sends a digit message to Telephone object Digit button object sends a digit message to Telephone object.
 Telephone object forwards the digit message to Dialer object.

 Dialer object sends a displayDigit message to Display object to
show the new digit.
Di l bj t d itT t S k bj t Dialer object sends an emitTone message to Speaker object.

 When send button is pressed:
 S d b tt bj t d d t T l h bj t Send button object sends a send message to Telephone object.
 Telephone object forwards the send message to Dialer object.

 Dialer object sends connect message to CellularRadio object.
 CellularRadio object sends inUse message to Display object to

ill i h “i ” i di h di l

23-9

illuminate the “in use” indicator on the display.
 Problem: Is the “Telephone object” necessary?

Collaboration Diagramg
 Collaboration Diagram of the “Make Phone Call” use case

1 O j i f l1. Objects: instances of classes

3 Messages (names nested sequence numbers arguments)
2. Links: instances of associations
3. Messages (names, nested sequence numbers, arguments)

:Speaker

* (d)

1.2:EmitTone(code)

:Cellular RadioDigits:Button :Dialer

1*:Digit(code) 2.1:Connect(pno)

1.1:DisplayDigit(code)

2 1 1:InUse2:Send()

23-10

:DisplaySend:Button
2.1.1:InUse2:Send()

Reconciling the Static Modelg
 Problem: The structure of objects in the collaboration diagram does not

look very much like the structure of the previous class diagram
 Which one needs to be modified?

Th “T l h ” l i h i i i i i d l i lik

look very much like the structure of the previous class diagram.
dynamic or static

 The “Telephone” class in the previous intuitive static model is like a
“god” controlling all objects by
monitoring all message flo s

Static Model IISpeakermonitoring all message flows.
This results in a highly
coupled design

+EmitTone(Param1)

p

 Why not change the
i d l

coupled design.

+Digit(code: int)
+Connect(num:PNO)

Dialer Cellular RadioButton

static model to a
“decentralized one”

i t t ith th

+Send() +Connect(num:PNO)

Display

23-11

consistent with the
collaboration diagram? +DisplayDigit(code: int)

+InUse()

Display

Static Model II (cont’d)()
 You might feel uncomfortable because static model II does not

seem to reflect the real world as well as the “intuitive” static model I.
 Static model I is based upon the physical structure of the

l htelephone.
 Static model II is based upon the real world behaviors of the

t l h i t d f it l ld h i l k (A itelephone instead of its real world physical makeup. (Again,
software models the behaviors.)

 Many dynamic models usually accompany a single static model.
 Each dynamic model explores a different variation of a use case / y p

scenario / requirement.
 The links between the objects in those dynamic models imply a

23-12

set of associations that must be present in a static model.

Static Model III
 Problem 1: Why should a class name Button know anything about a

class named Dialer?
 Does every button of this phone need to be related to the dialing

function? How about volume up/down?
 Shouldn’t the Button class be reusable in a program that does not

have any thing to do with Dialer?
 Dependency: in the current design when the interface of the Dialer Dependency: in the current design, when the interface of the Dialer

class changes, the class Button needs to be recompiled.
 Using the Adapted Server pattern to decouple Button from Dialer

Button ButtonServer
+ButtonPressed()

Extract the interface a
Button really needs such
that Button is independent

g p p p

ButtonPressed()

SendButtonAdapter DigitButtonAdapter VolumeButtonAdapter

that Button is independent
of its actual handler

23-13

SendButtonAdapter DigitButtonAdapter

Dialer

VolumeButtonAdapter

Static Model III (cont’d)()
 Problem 2: High coupling of classes Dialer and CellularRadio

through the class Display!g p y
 If the interface of Display changes in order to satisfy the

requirement of Dialer, the CellularRadio will be affected
(class CellularRadio depends on class Dialer); at very least, by
an unwarranted recompile.

 Interface Segregation of the class Displa

CellularRadioDialer

 Interface Segregation of the class Display

DialerDisplay CellularRadioDisplay

Display

+DisplayDigit(code: int) +InUse()

23-14

Display

consistent with the Single Responsibility Principle (SRP)

Collaboration Diagram IIg
 The change of static model will certainly change the dynamic model.

1*:ButtonPressed()
Digit: Button : DigitButtonAdapter

Di l

1.1:Digit(code)

2:ButtonPressed()
Send: Button : SendButtonAdapter

: Dialer

2.1:Send()

1.1.2:EmitTone(code)

()

2.1.1:Connect(phone no)
1.1.1:DisplayDigit(code)

: Speaker : CellularRadio
2.1.1.1:InUse()

Display
: DialerDisplay

Display
: CellularRadioDisplay

23-15
: Display

Sequence Diagram: Dialingq g g
 Both collaboration diagram and sequence diagram specify the

dynamics of the system: sequence of messages sent between objectsdynamics of the system: sequence of messages sent between objects.
 Collaboration diagram emphasizes the relationships between the objects
 Sequence diagram emphasizes the sequence of the messages

Digit: Button : DigitButton
Adapter

: Speakerdisplay
: DialerDisplay

: Dialer

ButtonPressed()()
Digit(code) DisplayDigit(code)

EmitTone(code)()

For each digit

 message lifeline iteration/looping condition

23-16

 message lifeline iteration/looping condition
 activation: the duration of the execution of a method in response to a

message; a method returns to the caller at the end of the activation

Sequence Diagram (cont’d)q g ()

S d B tt S dB tt C ll l R di display:CellularDi lSend: Button : SendButton
Adapter

: CellularRadio display:Cellular
RadioDisplay: Dialer

ButtonPressed()
Send() Connect(phone no)

InUse()

 Sequence diagram is easier to follow algorithmically Sequence diagram is easier to follow algorithmically.
 Usually use separate sequence diagram for each use case.
 Collaboration diagram shows the whole collaboration of objects in a

23-17

 Collaboration diagram shows the whole collaboration of objects in a
single dense diagram but somewhat obscures the algorithm.

Creation and Deletion of Objectsj
: CellularRadio: Dialer

Connect(phone no)
Create() : Connection

Connect(phone no)
ConnectionEstablished()

End()

Disconnected()

Disconnect()

Disconnected()

Destroy()

 half-arrowhead: asynchronous messages
 An asynchronous message is a message that returns immediately

an object terminates

23-18

 An asynchronous message is a message that returns immediately
while the receiving object receives the message and activates in a
different thread

Sequence Diagram: Answeringq g g
Send: Button : SendButton

Adapter
: CellularRadio : Ringer: Dialer

Adapter

ButtonPressed()

IncomingCall()
Ring()

itA i ()ButtonPressed()
Send()

waitAnswering()

Answer()

waitHangingUp()

Di l t itA i t t ft i i I i C ll()Di l t itA i t t ft i i I i C ll()Di l t itA i t t ft i i I i C ll() : Dialer enters waitAnswering state after receiving IncomingCall()
message.

 : Dialer enters waitAnswering state after receiving IncomingCall()
message. In this state, arriving Send() message denotes that user
wants to answer the incoming call instead of making an outgoing

 : Dialer enters waitAnswering state after receiving IncomingCall()
message. In this state, arriving Send() message denotes that user
wants to answer the incoming call instead of making an outgoingwants to answer the incoming call instead of making an outgoing
call
wants to answer the incoming call instead of making an outgoing
call and the : Dialer enters waitHangingUp state instead of
waitDialing state.

23-19

 Most activation rectangles have been omitted for clarity, only show
the activation rectangles for : Dialer.

Race Condition Depictedp
: SendButton
Adapter

: CellularRadio : Ringer: Dialer
Adapter

Send() Ring()

Connect(phone no) IncomingCall()

 “Making a call” is initiated by the user, while “Receiving a call” is

Making a call Receiving a call

 Making a call is initiated by the user, while Receiving a call is
initiated independently by another user.

 Message with a downward angle shows the elapsed time between the

 The crossing of messages indicates the race condition, which should

g g p
sending of the message and its reception.

23-20

g g ,
be handled carefully by both : Dialer and : CellularRadio objects with
state diagrams.

Three Bags Exampleg p

: main : Game : Bag : Ball
1: create() 1.1: create() 1.1.1: create()

: main : Game : Bag : Ball
2: getABag()

3: getABall()
4 i R d()

5: putBallsBack() g ()
4: isRed()

: main Game Bag Ball
1 1 131 2

: main Game Bag Ball

: main
: Game

B
create()

create()experiment1() : Bag
: Ball

()
create()

experiment1()
getABag()
getABall()
isRed()

23-21

isRed()
putBallsBack()

